JP5981881B2 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
JP5981881B2
JP5981881B2 JP2013114955A JP2013114955A JP5981881B2 JP 5981881 B2 JP5981881 B2 JP 5981881B2 JP 2013114955 A JP2013114955 A JP 2013114955A JP 2013114955 A JP2013114955 A JP 2013114955A JP 5981881 B2 JP5981881 B2 JP 5981881B2
Authority
JP
Japan
Prior art keywords
storage battery
storage
plate
partition plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013114955A
Other languages
Japanese (ja)
Other versions
JP2014235803A (en
Inventor
吉田 英明
英明 吉田
佐藤 敏幸
敏幸 佐藤
優 三浦
優 三浦
由涼 荻野
由涼 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2013114955A priority Critical patent/JP5981881B2/en
Publication of JP2014235803A publication Critical patent/JP2014235803A/en
Application granted granted Critical
Publication of JP5981881B2 publication Critical patent/JP5981881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、蓄電池収納箱に複数個の蓄電池を組込み接続し、個々の蓄電池の間には仕切り板が配置されている蓄電池システムに関する。   The present invention relates to a storage battery system in which a plurality of storage batteries are built in and connected to a storage battery storage box, and a partition plate is disposed between the individual storage batteries.

制御弁式鉛蓄電池は、正極板と負極板とを微細ガラス繊維を主体としたマット状セパレータを介して交互に積層し、同極性同士の極板の耳部を溶接によって接続することにより極板群を構成し、この極板群を、ABS製やPP(ポリプロピレン)製の電槽に収納し、この電槽に、開口部を有する蓋を溶着或いは接着剤で接着し、開口部から電解液を注液して電槽化成を行い、開口部にゴム弁(制御弁)を覆い被せて製造されている。
近年、風力発電や太陽光発電等の自然エネルギーが注目され、それに併設するサイクル用の制御弁式鉛蓄電池の需要が増加している。この用途に使用される蓄電池システム(組電池とも言う)は、複数個の制御弁式鉛蓄電池を収納する蓄電池収納箱を備え、各蓄電池を直列又は並列に接続することによって構成されている(例えば、特許文献1参照)。
A control valve type lead-acid battery is composed of a positive electrode plate and a negative electrode plate which are alternately laminated through mat-like separators mainly composed of fine glass fibers, and the electrode plates of the same polarity are connected by welding. This electrode plate group is housed in a battery case made of ABS or PP (polypropylene), and a lid having an opening is adhered to the battery case by welding or an adhesive, and an electrolytic solution is formed from the opening. Is formed by covering the opening with a rubber valve (control valve).
In recent years, natural energy such as wind power generation and solar power generation has attracted attention, and the demand for a control valve type lead storage battery for a cycle attached thereto has increased. A storage battery system (also referred to as an assembled battery) used for this application includes a storage battery storage box that stores a plurality of control valve type lead storage batteries, and is configured by connecting the storage batteries in series or in parallel (for example, , See Patent Document 1).

特開2010−277847号公報JP 2010-277847 A

しかし、従来の蓄電池システムでは、充放電を繰り返すと個々の蓄電池からの発熱による温度上昇を引き起こし、サイクル寿命特性が悪化するおそれがあった。また、PPのような安価ではあるが、比較的強度が弱い電槽を用いた大型の制御弁式鉛蓄電池では、その強度を高めるために電槽の全ての側面にリブを設けているのが一般的である。
また、サイクル用の制御弁式鉛蓄電池の場合、寿命要因の1つである正極活物質の軟化現象を抑制するために極板積層方向に極板群を圧迫する力(群圧)を高める設計が一般的であり、上記リブは群圧による電槽の膨らみを抑制する効果がある。しかし、上記リブは、蓄電池と仕切り板との間に空間(空気層)を形成し、この空間の熱伝導率の低さから放熱性を悪化させたり、放熱量の偏りを招いたりする原因となる。特に放熱量の偏りは、特定の蓄電池11に悪影響を及ぼし、結果的に蓄電池システムの特性に悪影響を及ぼすおそれが生じる。
However, in the conventional storage battery system, repeated charge and discharge may cause a temperature increase due to heat generation from each storage battery, which may deteriorate cycle life characteristics. Moreover, in a large-sized control valve type lead-acid battery using a battery case that is inexpensive but relatively weak in strength, such as PP, ribs are provided on all sides of the battery case in order to increase its strength. It is common.
In addition, in the case of control valve type lead-acid batteries for cycles, a design that increases the force (group pressure) that presses the electrode plate group in the electrode plate stacking direction to suppress the softening phenomenon of the positive electrode active material, which is one of the life factors. However, the rib has an effect of suppressing swelling of the battery case due to group pressure. However, the ribs form a space (air layer) between the storage battery and the partition plate, causing the heat dissipation to deteriorate due to the low thermal conductivity of the space, or causing the bias of the heat dissipation. Become. In particular, the bias of the heat radiation amount adversely affects the specific storage battery 11, and as a result, the characteristics of the storage battery system may be adversely affected.

本発明は、上述した事情を鑑みてなされたものであり、群圧による蓄電池の変形防止と蓄電池の均熱化とを両立することができる蓄電池システムを提供することにある。   This invention is made | formed in view of the situation mentioned above, It is providing the storage battery system which can make compatible prevention of a deformation | transformation of the storage battery by group pressure, and soaking | uniform-heating of a storage battery.

上述した課題を解決するため、本発明は、蓄電池収納箱に複数個の蓄電池を組込み接続し、個々の蓄電池の間には仕切り板が配置されている蓄電池システムであって、前記蓄電池の電槽の極板積層方向と直交する面にはリブが形成され、平行方向の面にはリブが形成されず、前記電槽と前記仕切り板の側板とが面接触可能となるように配置したことを特徴とする。
この構成では、蓄電池の電槽の極板積層方向と直交する面にはリブが形成されるため、極板積層方向に作用する群圧による蓄電池の変形を抑えることができる。しかも、蓄電池の電槽の極板積層方向と平行方向の面には、リブが形成されず、電槽と仕切り板の側板とが面接触可能となるので、個々の蓄電池の熱を仕切り板に効率良く伝えて放熱させることができる。これによって、群圧による蓄電池の変形防止と蓄電池の均熱化とを両立することができる。
In order to solve the above-described problem, the present invention is a storage battery system in which a plurality of storage batteries are built in and connected to a storage battery storage box, and a partition plate is arranged between the individual storage batteries, and the battery case of the storage battery The ribs are formed on the surface orthogonal to the electrode plate stacking direction, the ribs are not formed on the parallel surface, and the battery case and the side plate of the partition plate are arranged so as to be in surface contact. Features.
In this configuration, since ribs are formed on the surface of the battery case orthogonal to the electrode plate stacking direction, deformation of the battery due to group pressure acting in the electrode plate stacking direction can be suppressed. In addition, ribs are not formed on the surface parallel to the electrode stacking direction of the battery case of the storage battery, and the battery case and the side plate of the partition plate can be brought into surface contact with each other. Efficiently communicate and dissipate heat. Thereby, it is possible to achieve both prevention of deformation of the storage battery due to group pressure and soaking of the storage battery.

また、本発明は、上記構成において、前記仕切り板が空気の対流を可能とする空洞部を備えることを特徴とする。この構成によれば、蓄電池の充放電等により発生した熱を、仕切り板を介して放熱、冷却し、空気の対流によっても熱を排出させることができるので、蓄電池の温度上昇をより抑えて均熱化することができる。   Moreover, the present invention is characterized in that, in the above-described configuration, the partition plate includes a cavity portion that enables air convection. According to this configuration, the heat generated by charging / discharging the storage battery can be radiated and cooled via the partition plate, and the heat can be discharged even by convection of the air. Can be heated.

また、本発明は、上記構成において、前記蓄電池収納箱には、前記仕切り板の前記空洞部に連通するスリットが設けられることを特徴とする。この構成によれば、空気を通気させることができ、この通気により、より効率良く排熱することができる。   Moreover, this invention is characterized by the above-mentioned structure WHEREIN: The said storage battery storage box is provided with the slit connected to the said cavity part of the said partition plate. According to this configuration, air can be ventilated, and heat can be exhausted more efficiently by this ventilation.

本発明では、蓄電池収納箱に複数個の蓄電池を組込み接続し、個々の蓄電池の間には仕切り板が配置されている蓄電池システムであって、前記電槽の極板積層方向と直交する面にはリブが形成され、平行方向の面にはリブが形成されず、前記電槽と前記仕切り板の側板とが面接触可能となるように配置したので、群圧による蓄電池の変形防止と蓄電池の均熱化とを両立することができる。   In the present invention, a storage battery system in which a plurality of storage batteries are built in and connected to a storage battery storage box, and a partition plate is arranged between the individual storage batteries, on a surface orthogonal to the electrode plate stacking direction of the battery case. Since the rib is formed, the rib is not formed on the parallel surface, and the battery case and the side plate of the partition plate are arranged so that they can come into surface contact with each other. It is possible to achieve both soaking.

本発明の実施形態に係る蓄電池収納箱を備える蓄電池システムを示す図である。It is a figure which shows a storage battery system provided with the storage battery storage box which concerns on embodiment of this invention. 蓄電池収納箱を正面から見た図である。It is the figure which looked at the storage battery storage box from the front. 蓄電池収納箱を上方から見た図である。It is the figure which looked at the storage battery storage box from the upper part. 蓄電池の外観図である。It is an external view of a storage battery. 蓄電池収納箱を示す図である。It is a figure which shows a storage battery storage box. 仕切り板の斜視図である。It is a perspective view of a partition plate. 比較例を説明する図である。It is a figure explaining a comparative example. 蓄電池収納箱を二段重ねした図である。It is the figure which piled up the storage battery storage box two steps. 仕切り板の変形例の説明に供する図である。It is a figure where it uses for description of the modification of a partition plate. 押さえ板の変形例の説明に供する図である。It is a figure where it uses for description of the modification of a pressing plate. 比較例1の制御弁式鉛蓄電池の外観図である。2 is an external view of a control valve type lead storage battery of Comparative Example 1. FIG. 比較例1の制御弁式鉛蓄電池を収納した蓄電池収納箱の外観図である。It is an external view of the storage battery storage box which accommodated the control valve type lead acid battery of the comparative example 1.

以下、図面を参照して本発明の一実施の形態について説明する。
図1は、本発明の実施形態に係る蓄電池収納箱を備える蓄電池システム(組電池)を示す図である。
蓄電池システム10は、風力発電や太陽光発電の発電システムに用いられる産業用の組電池であり、複数の蓄電池(単電池に相当)11を横並びで収納する複数の蓄電池収納箱22を備えている。これら蓄電池収納箱22は、多段に積み上げられ、上下段に隣接する前記蓄電池収納箱22の下段の上部のフレーム26と上段の下部のフレーム27との4隅が、ボルト及びナットからなる連結部材(不図示)で各々連結されている。
本実施形態では、蓄電池収納箱22を4段とし、各蓄電池収納箱22に5個の蓄電池11が収納されており、合計20個の蓄電池11を組込み直列に接続した組電池を構成している。但し、この構成に限らず、蓄電池収納箱22の段数や蓄電池11の収納数は適宜に変更可能である。なお、各蓄電池収納箱22は同じ構成である。
前記蓄電池システム10は、非常用電源や自家発電装置の起動等の災害時のバックアップ等にも好適であり、用途は限定されない。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a storage battery system (assembled battery) including a storage battery storage box according to an embodiment of the present invention.
The storage battery system 10 is an industrial assembled battery used in a wind power generation system or a photovoltaic power generation system, and includes a plurality of storage battery storage boxes 22 that store a plurality of storage batteries (corresponding to single cells) 11 side by side. . These storage battery storage boxes 22 are stacked in multiple stages, and four corners of the lower upper frame 26 and the upper lower frame 27 adjacent to the upper and lower storage battery boxes 22 are connecting members (bolts and nuts). (Not shown).
In this embodiment, the storage battery storage boxes 22 are arranged in four stages, each storage battery storage box 22 stores five storage batteries 11, and a total of 20 storage batteries 11 are assembled and connected in series. . However, the present invention is not limited to this configuration, and the number of storage battery storage boxes 22 and the number of storage batteries 11 can be changed as appropriate. Each storage battery storage box 22 has the same configuration.
The storage battery system 10 is also suitable for backup in the event of a disaster such as an emergency power supply or startup of a private power generation device, and its application is not limited.

図2は、一段分(最上段)の蓄電池収納箱22を正面から見た図であり、図3は図2を上方から見た図である。
蓄電池収納箱22は、底板23と、底板23の上方に間隔を空けて配置される上板24と、底板23と上板24の左右端部間をつなぐ左右一対の側板25とを備え、前面が開口する前面開口収納部22A(図2)を有する箱形状(背面は閉口)に形成されている。この蓄電池収納箱22を構成する各板23〜25は、鉄やステンレス鋼等の金属板で製作されている。
図1及び図3に示すように、上板24の上面には、前後に間隔を空けて一対の金属製の上フレーム26が溶接接続され、底板23の下面にも、前後に間隔を空けて一対の金属製の下フレーム27が溶接接続されている。これら上下のフレーム26、27は、上板24及び底板23の左右に張り出し、この張り出した部分に、上下の蓄電池収納箱22を連結するための連結部材(不図示)を通す貫通孔が形成されている。
また、下段の蓄電池収納箱22の上フレーム26の上には、上段の蓄電池収納箱22の下フレーム27が載置される。このため、上下の蓄電池収納箱22の間には、空間部22Kが形成され、この空間部22Kは、上下の蓄電池収納箱22間を左右に連続するので、蓄電池収納箱22の外空間に連通する。
FIG. 2 is a view of the storage battery storage box 22 for one stage (top stage) as viewed from the front, and FIG. 3 is a view of FIG. 2 as viewed from above.
The storage battery storage box 22 includes a bottom plate 23, an upper plate 24 disposed above the bottom plate 23 with a space therebetween, and a pair of left and right side plates 25 connecting the left and right end portions of the bottom plate 23 and the upper plate 24. Is formed in a box shape (the back is closed) having a front opening storage portion 22A (FIG. 2). Each plate 23-25 which comprises this storage battery storage box 22 is manufactured with metal plates, such as iron and stainless steel.
As shown in FIGS. 1 and 3, a pair of metal upper frames 26 are welded to the upper surface of the upper plate 24 with a space in the front and rear, and the lower surface of the bottom plate 23 is also spaced in the front and back. A pair of metal lower frames 27 are connected by welding. These upper and lower frames 26, 27 project to the left and right of the upper plate 24 and the bottom plate 23, and through-holes through which connecting members (not shown) for connecting the upper and lower storage battery storage boxes 22 are formed in the projecting portions. ing.
A lower frame 27 of the upper storage battery storage box 22 is placed on the upper frame 26 of the lower storage battery storage box 22. For this reason, a space portion 22K is formed between the upper and lower storage battery storage boxes 22, and the space portion 22K continues to the left and right between the upper and lower storage battery storage boxes 22, and therefore communicates with the outer space of the storage battery storage box 22. To do.

蓄電池11は、制御弁式鉛蓄電池であり、図2乃至図4に示すように、直方体形状の電槽12と、この電槽12の前部を構成する電槽蓋13とを備えており、電槽蓋13に、正極端子15A、負極端子15B及び制御弁15Cが取り付けられている。なお、以下の説明において、正極端子15A,負極端子15Bを特に区別する必要が無い場合は端子15と表記する。
蓄電池11は、蓄電池収納箱22に装填されて、端子15等が取り付けられた電槽蓋13を、蓄電池収納箱22の前方に向け、且つ、蓄電池収納箱22よりも前方に出た状態とされる。このようにして蓄電池11を装填した後、蓄電池収納箱22の前部に押さえ板(止め金具とも称する)31が固定される。
The storage battery 11 is a control valve type lead storage battery, and as shown in FIGS. 2 to 4, includes a rectangular parallelepiped battery case 12 and a battery case lid 13 that forms the front part of the battery case 12. A positive electrode terminal 15 </ b> A, a negative electrode terminal 15 </ b> B, and a control valve 15 </ b> C are attached to the battery case lid 13. In the following description, the positive terminal 15A and the negative terminal 15B are referred to as terminals 15 when it is not necessary to distinguish between them.
The storage battery 11 is loaded in the storage battery storage box 22, and the battery case lid 13 to which the terminals 15 and the like are attached is directed to the front of the storage battery storage box 22 and is in a state of protruding forward from the storage battery storage box 22. The After loading the storage battery 11 in this way, a holding plate (also referred to as a stopper) 31 is fixed to the front portion of the storage battery storage box 22.

図2に示すように、各押さえ板31は、上下一対の締結部材32によって蓄電池収納箱22の底板23と上板24とに固定され、各蓄電池11を前方から押さえ、通常の使用時において蓄電池収納箱22から蓄電池11が抜け落ちないようにしている。この押さえ板31により、地震や転倒により蓄電池11が抜け落ちるのを防止することが可能になる。このようにして単一の蓄電池収納箱22に複数の蓄電池11を装填し、押さえ板31で固定したものを「ユニット型蓄電池」とも言う。
なお、押さえ板31は底板23と上板24とに固定する例を示したが、底板23(上板24)の左右に差し渡るように設けても良い。
As shown in FIG. 2, each holding plate 31 is fixed to the bottom plate 23 and the upper plate 24 of the storage battery storage box 22 by a pair of upper and lower fastening members 32, holds each storage battery 11 from the front, and the storage battery in normal use. The storage battery 11 is prevented from falling off from the storage box 22. The holding plate 31 can prevent the storage battery 11 from falling off due to an earthquake or a fall. In this way, a plurality of storage batteries 11 loaded in a single storage battery storage box 22 and fixed by a pressing plate 31 is also referred to as a “unit storage battery”.
Although the example in which the pressing plate 31 is fixed to the bottom plate 23 and the upper plate 24 is shown, the pressing plate 31 may be provided so as to extend to the left and right of the bottom plate 23 (upper plate 24).

蓄電池システム10の使用時には、各蓄電池11の端子15同士が、導体である接続板33(図1、図2参照)によって電気的に接続した状態とされる。接続板33は、隣接する蓄電池11の端子15同士を接続することによって、必要個数の蓄電池11を直列或いは並列に接続し、必要電圧や必要容量を確保した「組電池」を構成する。
なお、本実施形態では、図1及び図2に示すように、接続板33を銅板で形成し、蓄電池11を直列に接続した場合を示している。接続板33は、銅板に限らず、他の金属板や配線といった他の導体を用いることも可能である。
When the storage battery system 10 is used, the terminals 15 of each storage battery 11 are electrically connected by a connection plate 33 (see FIGS. 1 and 2) that is a conductor. The connection plate 33 connects the terminals 15 of the adjacent storage batteries 11 to each other, thereby connecting the required number of storage batteries 11 in series or in parallel to form an “assembled battery” that secures necessary voltage and required capacity.
In addition, in this embodiment, as shown in FIG.1 and FIG.2, the case where the connection board 33 is formed with a copper plate and the storage battery 11 is connected in series is shown. The connection plate 33 is not limited to a copper plate, and other conductors such as other metal plates and wirings can also be used.

図4は、蓄電池11の外観図である。
蓄電池11は、正極板と負極板とを微細ガラス繊維を主体としたマット状セパレータを介して交互に積層し、同極性同士の極板の耳部を溶接によって接続することにより極板群(不図示)を構成し、この極板群を電槽12に収納し、この電槽12に、開口部を有する電槽蓋13を溶着或いは接着剤で接着し、開口部から電解液を注液して電槽化成を行い、開口部に制御弁15Cを覆い被せて製造されている。
電槽12は、一端が開口する有底箱形状を有し、ABSやPP等の合成樹脂が用いられ、射出成型によって作製される。より具体的には、電槽12は、互いに対向する一対の短辺と一対の長辺とから構成される長方形断面に形成されており、短辺側の側面(以下、短辺側側面と言う)12Aが、極板群を挟んで互いに対向する一対の側面(側壁)に相当し、リブ12Rを備えるリブ付き側面(リブ付き側壁)に形成されている。また、長辺側の側面(以下、長辺側側面と言う)12Bは、リブを備えないリブ無し側面(リブ無し側壁)に形成されている。
FIG. 4 is an external view of the storage battery 11.
In the storage battery 11, positive electrode plates and negative electrode plates are alternately stacked via mat-like separators mainly composed of fine glass fibers, and the electrode plate groups (non-defects) are connected by welding the ears of the electrode plates of the same polarity. The electrode plate group is accommodated in the battery case 12, and a battery case lid 13 having an opening is bonded to the battery case 12 with an adhesive or an adhesive, and an electrolyte is injected from the opening. The battery is formed by covering the opening with the control valve 15C.
The battery case 12 has a bottomed box shape with one end opened, and is made by injection molding using a synthetic resin such as ABS or PP. More specifically, the battery case 12 is formed in a rectangular cross section composed of a pair of short sides and a pair of long sides facing each other, and is referred to as a short side surface (hereinafter referred to as a short side surface). ) 12A corresponds to a pair of side surfaces (side walls) facing each other across the electrode plate group, and is formed on the side surfaces with ribs (side walls with ribs) including the ribs 12R. Further, the side surface 12B on the long side (hereinafter referred to as the long side surface) 12B is formed on a side surface without ribs (side wall without ribs).

なお、図4中、符号αで示す矢印方向が極板積層方向である。つまり、短辺側側面12Aが極板積層方向と直交する面であり、長辺側側面12Bが、極板積層方向と平行な面である。
極板を圧迫する力(以下、群圧)は、極板の積層方向と直交する面に作用するため、一対の短辺側側面12Aを各々外側に膨出させる力として作用する。
本構成では、一対の短辺側側面12Aにリブ12Rを形成しているため、リブ12Rを形成しない場合と較べて、短辺側側面12Aの強度が向上している。このため、群圧による短辺側側面12Aの変形を抑え、群圧による蓄電池11全体の変形を抑えることができる。なお、一対の短辺側側面12Aに設けられるリブ12Rの本数や間隔等の設け方は同じである。
In FIG. 4, the direction indicated by the arrow α is the electrode plate stacking direction. That is, the short side surface 12A is a surface perpendicular to the electrode plate stacking direction, and the long side surface 12B is a surface parallel to the electrode plate stacking direction.
Since the force (hereinafter referred to as group pressure) for pressing the electrode plate acts on a surface orthogonal to the stacking direction of the electrode plates, it acts as a force that causes the pair of short side surfaces 12A to bulge outward.
In this configuration, since the rib 12R is formed on the pair of short side surfaces 12A, the strength of the short side surface 12A is improved as compared with the case where the ribs 12R are not formed. For this reason, deformation of the short side surface 12A due to group pressure can be suppressed, and deformation of the entire storage battery 11 due to group pressure can be suppressed. The number of ribs 12R provided on the pair of short side surfaces 12A, the way of providing the interval, and the like are the same.

詳述すると、これらリブ12Rは、短辺側側面12Aの長手方向(図4中、矢印βで示す方向)に沿って短辺側側面12Aの一端から他端に渡って連続する凸条の縦リブに形成されており、互いに間隔を空けて複数本(本構成では5本)形成されている。
このように、リブ12Rを短辺側側面12Aの長手方向に沿って延ばしたため、長手方向の曲げ強度を向上することができる。一般に長手方向は短手方向よりも曲がりやすいため、上記リブ12Rを設けたことによって、長手方向の曲がりを効果的に抑制し、群圧による短辺側側面12Aの変形を効果的に抑えることができる。
さらに、リブ12Rを複数本設けているため、これによっても、短辺側側面12Aを曲げにくくし、群圧による変形をより抑えることが可能である。
More specifically, the ribs 12R are longitudinal ridges that extend from one end to the other end of the short side surface 12A along the longitudinal direction of the short side surface 12A (the direction indicated by arrow β in FIG. 4). A plurality of ribs (five in this configuration) are formed at intervals.
Thus, since the rib 12R is extended along the longitudinal direction of the short side surface 12A, the bending strength in the longitudinal direction can be improved. In general, the longitudinal direction is easier to bend than the short direction. Therefore, the provision of the rib 12R effectively suppresses the bending in the longitudinal direction and effectively suppresses the deformation of the short side surface 12A due to the group pressure. it can.
Furthermore, since a plurality of ribs 12R are provided, this also makes it difficult to bend the short side surface 12A and further suppress deformation due to group pressure.

なお、これらリブ12Rの本数や幅を増やすほど曲げ強度を高く(群圧による変形を抑制)することができるため、幅や本数を調整すれば、曲げ強度を容易に調整することが可能である。
このため、寿命要因の1つである正極活物質の軟化現象を抑制するために群圧を高く設計する場合、リブ12Rの本数や幅を増やせば良い。また、電槽12の材料に、PPのような安価ではあるが、比較的強度が弱い材料を用いた場合にも、リブ12Rの本数や幅を増やすことによって、適正な曲げ強度に容易に調整することができる。
なお、リブ12Rの本数や幅を増やすと、蓄電池11の重量増や材料増によるコスト増大を招いてしまうことがある。これを回避するためには、必要とされる強度に応じてリブ12Rの本数や幅等を適宜調整すれば良い。また、リブ12Rの高さ調整やリブ12Rの形状変更によっても強度が変わるので、これらを適宜に組み合わせて、必要とされる強度に調整すれば良い。
Since the bending strength can be increased (the deformation due to the group pressure can be suppressed) as the number and the width of the ribs 12R are increased, the bending strength can be easily adjusted by adjusting the width and the number. .
For this reason, when the group pressure is designed to be high in order to suppress the softening phenomenon of the positive electrode active material, which is one of the life factors, the number and width of the ribs 12R may be increased. In addition, even when an inexpensive material such as PP is used as the material of the battery case 12 but a relatively weak material is used, it is easily adjusted to an appropriate bending strength by increasing the number and width of the ribs 12R. can do.
Increasing the number and width of the ribs 12R may cause an increase in cost due to an increase in weight and material of the storage battery 11. In order to avoid this, the number and width of the ribs 12R may be appropriately adjusted according to the required strength. In addition, the strength is changed by adjusting the height of the rib 12R or changing the shape of the rib 12R. Therefore, the strength may be adjusted by combining them appropriately.

また、これらのリブ12Rは、同じ高さに設定されており、短辺側側面12Aの一方を下側にした横置き状態にした場合に(図1、図2参照)、下側の全てのリブ12Rが底板23に当接するように構成されている。これによって、複数のリブ12Rによって蓄電池11を安定して載置させることができる。
また、これらのリブ12Rは、短辺側側面12Aの長手方向一杯に延び、かつ、互いに間隔を空けて短辺側側面12Aの短手方向に渡って複数形成されるため、これによっても、蓄電池11を安定して載置させることが可能になる。
Further, these ribs 12R are set to the same height, and when placed in a horizontal state with one of the short side surfaces 12A on the lower side (see FIG. 1 and FIG. 2), The rib 12R is configured to contact the bottom plate 23. Thereby, the storage battery 11 can be stably mounted by the plurality of ribs 12R.
In addition, since the ribs 12R extend in the longitudinal direction of the short side surface 12A and are formed in plural in the short direction of the short side surface 12A with a space between each other, the storage battery 11 can be placed stably.

一方、電槽12の長辺側側面12Bは、平坦面に形成されている。平坦面に形成される理由は、蓄電池収納箱22に設けられる仕切り板(仕切り部材)41(図3参照)と面接触させ、接触面積を確保し易くするためであり、個々の蓄電池11の熱を仕切り板41に効率良く伝えて放熱させることができる。
なお、電槽蓋13は、電槽12と同様の材料を用いて製作され、つまり、ABSやPP等の合成樹脂を用いて射出成型によって作製されている。
On the other hand, the long side surface 12B of the battery case 12 is formed in a flat surface. The reason why it is formed on a flat surface is to make surface contact with a partition plate (partition member) 41 (see FIG. 3) provided in the storage battery storage box 22 so as to easily secure the contact area. Can be efficiently transmitted to the partition plate 41 to dissipate heat.
The battery case lid 13 is manufactured using the same material as that of the battery case 12, that is, manufactured by injection molding using a synthetic resin such as ABS or PP.

ここで、蓄電池11は、内部反応や導電部のジュール熱等により発熱し、この発熱が蓄電池11の電池特性や寿命特性に悪影響を及ぼすおそれがある。また、蓄電池温度のばらつきが生じると、特定の蓄電池11の負担が大きくなり、結果的に蓄電池システム10の特性に悪影響を及ぼすおそれがある。
本実施形態では、上述したように、電槽12の長辺側側面12Bを平坦面とし、この長辺側側面12Bを仕切り板(仕切り部材)41に当接させることによって、蓄電池11と仕切り板41との接触面積を広く確保し、蓄電池11の熱を仕切り板41を介して効率良く放熱させるようにしている。
Here, the storage battery 11 generates heat due to internal reaction, Joule heat of the conductive portion, and the like, and this heat generation may adversely affect the battery characteristics and life characteristics of the storage battery 11. Moreover, when the dispersion | variation in storage battery temperature arises, the burden of the specific storage battery 11 will become large, and there exists a possibility of having a bad influence on the characteristic of the storage battery system 10 as a result.
In the present embodiment, as described above, the storage battery 11 and the partition plate are formed by making the long side surface 12B of the battery case 12 into a flat surface and bringing the long side surface 12B into contact with the partition plate (partition member) 41. The contact area with 41 is secured widely, and the heat of the storage battery 11 is efficiently radiated through the partition plate 41.

次に、仕切り板41及びその周辺構造を説明する。
図5は、一段分の蓄電池収納箱22を示す図である。なお、図5では、説明の便宜上、押さえ板31を外し、その他収納箱の詳細を省略した状態を示している。
仕切り板41は、蓄電池11の収納空間を左右に仕切って隣り合う蓄電池11間に配置され、上板24及び底板23に溶接接続されている。なお、図5の例では、横並びに配置される蓄電池11が5個であるため、仕切り板41は4個設けられている。
Next, the partition plate 41 and its peripheral structure will be described.
FIG. 5 is a diagram showing the storage battery storage box 22 for one stage. For convenience of explanation, FIG. 5 shows a state in which the presser plate 31 is removed and other details of the storage box are omitted.
The partition plate 41 is disposed between the adjacent storage batteries 11 by dividing the storage space of the storage battery 11 in the left and right directions, and is welded to the upper plate 24 and the bottom plate 23. In addition, in the example of FIG. 5, since the storage battery 11 arrange | positioned side by side is five, the four partition plates 41 are provided.

図6は、仕切り板41の斜視図である。仕切り板41は、熱伝導性が高い金属材料を用いて圧延等で製作された金属板が用いられ、左右一対の側板42と、これら側板42同士を所定距離だけ左右に離して連結する複数の連結体43とを備えている。
仕切り板41は、熱伝導性が高い材料を用いれば良く、蓄電池収納箱22と同じ金属板でも良いし、銅、アルミニウム合金、マグネシウム合金等の様々な金属材やプラスチック、樹脂等を用いることが可能である。また、仕切り板41の作製方法は、溶接等で接続する接続方法でも良いし、押出成形法、ダイキャスト成形法、ブロー成形法等の成形方法を適用しても良い。
FIG. 6 is a perspective view of the partition plate 41. As the partition plate 41, a metal plate manufactured by rolling or the like using a metal material having high thermal conductivity is used, and a pair of left and right side plates 42 and a plurality of these side plates 42 are connected to each other with a predetermined distance apart from each other. And a connecting body 43.
The partition plate 41 may be made of a material having high thermal conductivity, may be the same metal plate as the storage battery storage box 22, or may be made of various metal materials such as copper, aluminum alloy, magnesium alloy, plastic, resin, or the like. Is possible. The partition plate 41 may be produced by a connection method such as welding or a molding method such as an extrusion molding method, a die casting molding method, or a blow molding method.

連結体43は、左右の側板42間を、その間に上下に貫通する隙間Sを空けて連結する部材である。具体的には、連結体43は、左右の側板42の前縁間及び後縁間を架橋する平板状に形成され、左右の側板42間の上下に開口部KA,KBを形成する。
上記隙間S及び上下の開口部KA,KBによって、仕切り板41の側板42に沿うとともに上下に貫通する貫通孔である空洞部41Aが形成される。これによって、仕切り板41は上下に空気が流通自在に構成される。
この連結体43は、熱伝導性が高い材料で形成されるため、左右の側板42間に温度差がある場合は、高温側から低温側へと迅速に熱移動させる伝熱部材として機能する。これによって、左右の側板42に接する蓄電池11同士の温度のばらつきを抑制すること、つまり、均熱化を図ることができる。また、蓄電池11の熱は、左右の側板42及び連結体43に伝わるので、これらが上板24や底板23に熱を伝える架橋部、及び、仕切り板41内の空洞部41Aに向けて放熱する放熱部としても機能する。
The connecting body 43 is a member that connects the left and right side plates 42 with a gap S penetrating vertically therebetween. Specifically, the coupling body 43 is formed in a flat plate shape that bridges between the front edges and the rear edges of the left and right side plates 42, and forms openings KA and KB above and below the left and right side plates 42.
The gap S and the upper and lower openings KA and KB form a hollow portion 41A that is a through-hole that passes along the side plate 42 of the partition plate 41 and penetrates up and down. Thereby, the partition plate 41 is configured to allow air to flow up and down.
Since the connection body 43 is formed of a material having high thermal conductivity, when there is a temperature difference between the left and right side plates 42, the connection body 43 functions as a heat transfer member that quickly moves heat from the high temperature side to the low temperature side. Thereby, variation in temperature between the storage batteries 11 in contact with the left and right side plates 42 can be suppressed, that is, the temperature can be equalized. Further, since the heat of the storage battery 11 is transmitted to the left and right side plates 42 and the connecting body 43, they dissipate heat toward the bridging portion that transfers heat to the upper plate 24 and the bottom plate 23 and the hollow portion 41 </ b> A in the partition plate 41. Also functions as a heat dissipation part.

より具体的には、この仕切り板41の前後長(=側板42の前後長)LA(図6参照)は、蓄電池収納箱22の奥行き(前後長)L1(図3参照)と略同じ長さに形成されている。また、仕切り板41の高さ(=側板42の高さ)HA(図6参照)は、蓄電池収納箱22の底板23と上板24との離間距離H1(図2参照)と略同じ長さに形成されている。これによって、仕切り板41は蓄電池収納箱22の底板23と上板24とに当接した状態で立設し、両隣の蓄電池11から仕切り板41に伝わった熱を底板23や上板24に効率良く伝えることができる。
これら仕切り板41は、この仕切り板41の左右の側板42が、隣り合う蓄電池11の長辺側側面12Bと各々密着する間隔で配置されている。これにより、個々の蓄電池11と仕切り板41とを面接触させることができ、蓄電池11と仕切り板41との接触面積を広く確保することできる。
More specifically, the front-rear length (= front-rear length of the side plate 42) LA (see FIG. 6) of the partition plate 41 is substantially the same as the depth (front-rear length) L1 (see FIG. 3) of the storage battery storage box 22. Is formed. Further, the height of the partition plate 41 (= the height of the side plate 42) HA (see FIG. 6) is substantially the same as the distance H1 (see FIG. 2) between the bottom plate 23 and the upper plate 24 of the storage battery storage box 22. Is formed. Thus, the partition plate 41 is erected in contact with the bottom plate 23 and the upper plate 24 of the storage battery storage box 22, and the heat transmitted from the adjacent storage battery 11 to the partition plate 41 is efficiently transmitted to the bottom plate 23 and the upper plate 24. I can tell you well.
These partition plates 41 are arranged at intervals at which the left and right side plates 42 of the partition plate 41 are in close contact with the long side surface 12B of the adjacent storage battery 11. Thereby, each storage battery 11 and the partition plate 41 can be surface-contacted, and the contact area of the storage battery 11 and the partition plate 41 can be ensured widely.

ここで、図7は、比較例を説明する図である。この比較例は、蓄電池11の長辺側側面12Bにリブ12Xを設け、このリブ12Xを仕切り板41に当接させたものである。
この図7に示すように、長辺側側面12Bとリブ12Xと仕切り板41との間には、熱伝導率が低い空気層(空間)RAが形成されてしまう。このため、蓄電池11からの熱が仕切り板41へ伝わりにくく、放熱量が制限されてしまう。しかも、リブ12Xと仕切り板41との接触面積は小さいため、両隣の蓄電池11に温度差があっても高温側から低温側へと迅速に熱移動せず、個々の蓄電池11の温度ばらつきを抑制することも難しくなる。
Here, FIG. 7 is a diagram illustrating a comparative example. In this comparative example, a rib 12X is provided on the long side surface 12B of the storage battery 11, and the rib 12X is brought into contact with the partition plate 41.
As shown in FIG. 7, an air layer (space) RA having a low thermal conductivity is formed between the long side surface 12B, the rib 12X, and the partition plate 41. For this reason, the heat from the storage battery 11 is difficult to be transmitted to the partition plate 41, and the heat radiation amount is limited. In addition, since the contact area between the rib 12X and the partition plate 41 is small, even if there is a temperature difference between the adjacent storage batteries 11, the heat does not move quickly from the high temperature side to the low temperature side, and temperature variations of the individual storage batteries 11 are suppressed. It becomes difficult to do.

これに対し、本構成では、蓄電池11の極板積層方向に平行な面(長辺側側面12B)には、リブが形成されず、仕切り板41と面接触可能な平坦面に形成されているので、蓄電池11と仕切り板41との接触面積を広く確保でき、個々の蓄電池11の熱を仕切り板41を介して蓄電池収納箱22に効率良く伝えることができ、また、高温側から低温側への熱移動も促進させることができる。
従って、全ての蓄電池11の温度上昇を効率良く抑制し、個々の蓄電池11の均熱化を図ることが可能になる。
しかも、この仕切り板41は、上板24と底板23との間を架橋するので、蓄電池収納箱22を補強する補強部材としても機能する。さらに、仕切り板41は、蓄電池収納箱22の左右一対の側板25間の蓄電池11の間に介挿されるので、地震等で外部から大きな力が加わった場合に蓄電池11のずれを抑えるずれ抑制部材としても機能する。
また、本構成では、仕切り板41を上板24及び底板23に溶接接続する場合を説明したが、これに限らず、ボルト等の接続等でも良い。要は、仕切り板41を上板24や底板23に接触させ、蓄電池11からの熱を上板24や底板23に伝えやすくしておけば良い。
なお、仕切り板41に空洞部41Aを有するものであれば、仕切り板41は必ずしも上板24及び底板23と溶接等により接続されていなくても良い。
On the other hand, in the present configuration, the ribs are not formed on the surface (long side surface 12B) parallel to the electrode plate stacking direction of the storage battery 11, but are formed on a flat surface that can come into surface contact with the partition plate 41. Therefore, a wide contact area between the storage battery 11 and the partition plate 41 can be secured, and the heat of each storage battery 11 can be efficiently transmitted to the storage battery storage box 22 via the partition plate 41, and from the high temperature side to the low temperature side. The heat transfer can be promoted.
Therefore, the temperature rise of all the storage batteries 11 can be suppressed efficiently, and the individual storage batteries 11 can be uniformly heated.
In addition, since the partition plate 41 bridges between the upper plate 24 and the bottom plate 23, it functions as a reinforcing member that reinforces the storage battery storage box 22. Furthermore, since the partition plate 41 is inserted between the storage batteries 11 between the pair of left and right side plates 25 of the storage battery storage box 22, a displacement suppressing member that suppresses the displacement of the storage battery 11 when an external force is applied due to an earthquake or the like. Also works.
In this configuration, the case where the partition plate 41 is welded to the upper plate 24 and the bottom plate 23 has been described. However, the present invention is not limited to this, and a connection such as a bolt may be used. In short, the partition plate 41 may be brought into contact with the upper plate 24 and the bottom plate 23 so that the heat from the storage battery 11 can be easily transferred to the upper plate 24 and the bottom plate 23.
As long as the partition plate 41 has the hollow portion 41A, the partition plate 41 is not necessarily connected to the top plate 24 and the bottom plate 23 by welding or the like.

また、本構成では、蓄電池収納箱22の上板24及び底板23に複数のスリット(孔)51(図3、図5参照)を設けている。これらスリット51は、蓄電池収納箱22に横並びに設けられる仕切り板41と同数設けられており、上板24及び底板23を上下に貫通することで、各仕切り板41の隙間S及び上下の開口部KA,KB(図6参照)からなる上下貫通の空洞部41Aに各々連通する。
より具体的には、スリット51は、同図3に示すように、前後方向に長い長方形の孔形状であって、その幅(左右長)WSが、仕切り板41の上下の開口部KA,KBの幅WAよりも狭く、かつ、その前後長LSが、仕切り板41の前後長LAよりも短い形状に形成されている。このため、仕切り板41の位置が左右や前後に多少ずれたとしても、各スリット51を、仕切り板41の上下に貫通する空洞部41Aに連通させることができる。また、仕切り板41の位置が左右や前後に多少ずれたとしても、仕切り板41が上板24及び底板23に接触するので、上板24及び底板23に熱を伝えやすくすることができる。
In this configuration, a plurality of slits (holes) 51 (see FIGS. 3 and 5) are provided in the upper plate 24 and the bottom plate 23 of the storage battery storage box 22. These slits 51 are provided in the same number as the partition plates 41 provided side by side in the storage battery storage box 22, and penetrate the top plate 24 and the bottom plate 23 in the vertical direction so that the gaps S and the top and bottom openings of each partition plate 41 are provided. Each communicates with a vertically extending hollow portion 41A composed of KA and KB (see FIG. 6).
More specifically, as shown in FIG. 3, the slit 51 has a rectangular hole shape that is long in the front-rear direction, and its width (horizontal length) WS is the upper and lower openings KA and KB of the partition plate 41. The front and rear lengths LS of the partition plate 41 are shorter than the front and rear lengths LA of the partition plate 41. For this reason, even if the position of the partition plate 41 is slightly deviated left and right or front and rear, the slits 51 can be communicated with the cavity portion 41 </ b> A penetrating up and down the partition plate 41. Even if the position of the partition plate 41 is slightly shifted from side to side or front and back, the partition plate 41 comes into contact with the top plate 24 and the bottom plate 23, so that heat can be easily transferred to the top plate 24 and the bottom plate 23.

このようにして本構成の蓄電池システム10では、各蓄電池収納箱22を左右に仕切る仕切り板41とスリット51とによって、横並びの蓄電池11間を上下に延びて底板23及び上板24を貫通する通風路55(図5参照)を形成している。
この通風路55は、上下に延びるとともに上下に貫通するので、蓄電池11の発熱による熱が仕切り板41を介して通風路55内の空気に伝わり、煙突効果により底板23のスリット51から冷気が吸い上げられ、通風路55内で温められた空気を上板24のスリット51から放出させることができる。これによって、熱による上昇気流を生じさせ、対流による通気を促すことができる。
In this way, in the storage battery system 10 of this configuration, the partition plate 41 and the slit 51 that partition each storage battery storage box 22 left and right extend vertically between the storage batteries 11 side by side and pass through the bottom plate 23 and the upper plate 24. A path 55 (see FIG. 5) is formed.
Since this ventilation path 55 extends vertically and penetrates vertically, heat generated by the storage battery 11 is transferred to the air in the ventilation path 55 via the partition plate 41, and cold air is sucked up from the slit 51 of the bottom plate 23 by the chimney effect. The air heated in the ventilation path 55 can be discharged from the slit 51 of the upper plate 24. As a result, an updraft caused by heat can be generated and ventilation by convection can be promoted.

以上説明したように、本構成では、左右に並ぶ蓄電池11の熱を、蓄電池11間に設けた仕切り板41を介して上板24及び底板23に伝えて放熱させ、かつ、仕切り板41内を上下に延びる通風路55内の通気によっても、放熱させることができる。これらにより、左右に並ぶ蓄電池11の温度上昇を抑えて均熱化を図ることができる。   As described above, in this configuration, the heat of the storage batteries 11 arranged on the left and right is transferred to the top plate 24 and the bottom plate 23 via the partition plate 41 provided between the storage batteries 11 to dissipate heat, and the inside of the partition plate 41 is dissipated. Heat can also be dissipated by ventilation in the ventilation path 55 extending vertically. As a result, the temperature rise of the storage batteries 11 arranged on the left and right can be suppressed to achieve a uniform temperature.

図8は、蓄電池収納箱22を二段重ねした図である。
二段重ねの場合でも、各蓄電池収納箱22の仕切り板41とスリット51とによって、横並びの蓄電池11間を上下に延びるとともに上下に貫通する通風路55が形成される。このため、最下段の底板23のスリット51から冷気が吸い上げられ、通風路55内で温められた空気が最上段の上板24のスリット51から円滑に排出される。
周知のように、煙突効果(上昇気流の原理で排気を上方に導く効果)は、煙突が長いほど効果が高まるので、蓄電池システム10として実際に使用できる態様(図1参照)に組み上げた場合の方が一層効率的な放熱が期待できる。
FIG. 8 is a diagram in which the storage battery storage boxes 22 are stacked in two stages.
Even in the case of two-stage stacking, the partition plate 41 and the slit 51 of each storage battery storage box 22 form a ventilation path 55 that extends vertically between the storage batteries 11 side by side and penetrates up and down. For this reason, cold air is sucked up from the slit 51 of the bottom plate 23 at the lowermost stage, and the air warmed in the ventilation path 55 is smoothly discharged from the slit 51 of the upper plate 24 at the uppermost stage.
As is well known, the chimney effect (the effect of leading the exhaust upward by the principle of ascending airflow) becomes more effective as the chimney is longer, so when the battery is assembled in a mode that can be actually used as the storage battery system 10 (see FIG. 1). More efficient heat dissipation can be expected.

多段に重ねた場合には、上下の蓄電池収納箱22の間に左右に連続して外気に連通する空間部22Kが形成されるので、通風路55内の通気によって、空間部22Kからも冷気が吸い上げられる(図8参照)。これによって、上下の蓄電池収納箱22間の熱を通風路55を経由して効率良く排出することが可能になり、上下の蓄電池11についても均熱化を図ることができる。   When stacked in multiple stages, a space portion 22K is formed between the upper and lower storage battery storage boxes 22 so as to be continuously communicated with the outside air in the left and right directions. Sucked up (see FIG. 8). As a result, the heat between the upper and lower storage battery storage boxes 22 can be efficiently discharged through the air passage 55, and the upper and lower storage batteries 11 can be evenly heated.

なお、仕切り板41は、上下に貫通する空洞部(貫通孔)41Aを有する構成に限らず、前後に貫通する貫通孔である空洞部を有する構成でも良く、また、図9に示すように、上下及び前後に貫通する貫通孔である空洞部41Aを有する構成でも良い。
仕切り板41に、上下、及び/又は、前後に貫通する空洞部41Aを設けた場合には、図10に例示するように、蓄電池収納箱22に、空洞部41Aと連通する上下、及び/又は、前後に連通する孔であるスリットを設けることが好ましい。
図10の例では、押さえ板31に、前方開口スリット31Aを設け、不図示の背面板に空洞部41Aと連通するスリット(不図示)を設けた場合を示している。前後に空気を通気させることによっても、個々の蓄電池11の温度上昇を効率良く抑え、個々の蓄電池11の温度のばらつきを抑えることが可能になる。
Note that the partition plate 41 is not limited to a configuration having a hollow portion (through hole) 41A penetrating vertically, and may have a configuration having a hollow portion that is a through hole penetrating in the front-rear direction, as shown in FIG. The structure which has the cavity part 41A which is a through-hole penetrated up and down and front and back may be sufficient.
When the partition plate 41 is provided with a cavity portion 41A penetrating vertically and / or front and rear, as illustrated in FIG. 10, the storage battery storage box 22 is vertically communicated with the cavity portion 41A and / or It is preferable to provide a slit which is a hole communicating in the front-rear direction.
In the example of FIG. 10, the holding plate 31 is provided with a front opening slit 31 </ b> A, and the back plate (not shown) is provided with a slit (not shown) communicating with the cavity 41 </ b> A. It is also possible to efficiently suppress the temperature rise of the individual storage batteries 11 and to suppress the temperature variation of the individual storage batteries 11 by ventilating the air back and forth.

上述したスリット51,31A等のスリットや空洞部41Aの幅は、5mm〜50mmの範囲が望ましく、更には、10mm〜30mmが望ましい。スリットや空洞部41Aの幅を大きくすれば、空気を対流させるための空間が大きくなり効果的であるが、その効果は幅の大きさに対して飽和していくこととなる。
また、仕切り板41の厚さを大きくすれば、蓄電池システム10として占有する体積が大きくなるため、スペースファクターとしては不利になる。従って、効果とスペースファクターとの兼ね合いで、10mm〜60mmが望ましく、更には、10mm〜30mmがより望ましい。
また、仕切り板41の空洞部41Aの幅は、全て同じでも良いし、一部の仕切り板41のみ空洞部41Aの幅を変えても良い。なお、スリット51、31A等のスリットの幅や空洞部41Aの幅は仕切り板41の厚さより狭く形成したほうが放熱の観点から好ましい。
The width of the slits 51 and 31A described above and the width of the cavity 41A is preferably in the range of 5 mm to 50 mm, and more preferably 10 mm to 30 mm. Increasing the width of the slit or the cavity 41A increases the space for convection of air, which is effective, but the effect is saturated with respect to the width.
Moreover, since the volume occupied as the storage battery system 10 will become large if the thickness of the partition plate 41 is enlarged, it becomes disadvantageous as a space factor. Accordingly, the balance between the effect and the space factor is preferably 10 mm to 60 mm, and more preferably 10 mm to 30 mm.
Further, the widths of the hollow portions 41A of the partition plates 41 may all be the same, or only a part of the partition plates 41 may change the width of the hollow portions 41A. In addition, it is more preferable from the viewpoint of heat dissipation that the width of the slits 51 and 31A and the like and the width of the cavity 41A are narrower than the thickness of the partition plate 41.

蓄電池収納箱22を上下に複数段、積み重ねて構成する場合に、全ての段で、空洞部41Aを有する仕切り板41、及び、空洞部41Aに連結するスリットを有する蓄電池収納箱22を用いても良い。また、上段のみ、空洞部41Aを有する仕切り板41、及び、空洞部41Aに連通するスリットを有する蓄電池収納箱22を用いて、下段は、空洞部41Aの無い仕切り板41、及び、スリットが無い蓄電池収納箱22を用いても良い。
複数段の蓄電池収納箱22の上下段ともに、仕切り板41の一部を空洞部41A有り、残りを空洞部41A無しとする揚合には、蓄電池収納箱22は、該空洞部41Aに連通する上下面、及び/又は、前後面のみにスリットを設けても良いし、空洞部41Aの有無に関わらず、仕切り板41に当接する位置の上下面、及び/又は、前後面の全てにスリットを設けても良い。
When the storage battery storage box 22 is configured by stacking a plurality of stages in the vertical direction, the partition plate 41 having the cavity 41A and the storage battery storage box 22 having the slit connected to the cavity 41A are used at all stages. good. Moreover, only the upper stage uses the partition plate 41 having the cavity 41A and the storage battery storage box 22 having the slit communicating with the cavity 41A, and the lower stage has no partition plate 41 without the cavity 41A and no slit. A storage battery storage box 22 may be used.
In both the upper and lower stages of the multiple-stage storage battery storage box 22, the storage battery storage box 22 communicates with the cavity 41A for assembling such that a part of the partition plate 41 has a hollow part 41A and the rest has no hollow part 41A. Slits may be provided only on the upper and lower surfaces and / or the front and rear surfaces, and slits are provided on all of the upper and lower surfaces and / or the front and rear surfaces at positions where they abut against the partition plate 41 regardless of the presence or absence of the hollow portion 41A. It may be provided.

蓄電池収納箱22の中、及び、蓄電池収納箱22の上下段において、仕切り板41の空洞部41Aの有無、及び、蓄電池収納箱22のスリットの有無は、どの様な組み合わせで適用しても良い。全ての蓄電池温度の上昇を抑制する目的の場合には、全ての蓄電池11間に一様に空洞部41Aを適用することで、高い温度上昇の抑制効果が得られる。蓄電池温度を均熱化する目的の場合に、全ての蓄電池11間に一様に空洞部41Aを適用すれば、一定の蓄電池温度の均熱化効果が得られる。さらに、電池温度均熱化を目的とする場合には、蓄電池温度の上昇が特に大きい蓄電池11間のみに空洞部41Aを適用することで、高い蓄電池温度の均熱化効果が得られる。
仕切り板41は、単体の部品として用意して、蓄電池11を組込む作業の際に個々の蓄電池11間に配置しても良いし、予め、蓄電池収納箱22と一体となる様に組み合わせた製品としても良い。また、最初から蓄電池11を仕切ることが可能な板を備えた構造とした蓄電池収納箱22を用いても良い。
The presence / absence of the hollow portion 41A of the partition plate 41 and the presence / absence of the slit of the storage battery storage box 22 in the storage battery storage box 22 and in the upper and lower stages of the storage battery storage box 22 may be applied in any combination. . In the case of the purpose of suppressing an increase in the temperature of all the storage batteries, a high temperature increase suppressing effect can be obtained by uniformly applying the hollow portion 41A between all the storage batteries 11. In the case of the purpose of soaking the storage battery temperature, if the hollow portion 41A is uniformly applied between all the storage batteries 11, a uniform soaking effect of the storage battery temperature can be obtained. Furthermore, when the purpose is to equalize the battery temperature, by applying the hollow portion 41A only between the storage batteries 11 where the rise in the storage battery temperature is particularly large, an effect of equalizing the high storage battery temperature can be obtained.
The partition plate 41 may be prepared as a single component and disposed between the individual storage batteries 11 when the storage battery 11 is assembled. Alternatively, the partition plate 41 may be combined with the storage battery storage box 22 in advance. Also good. Moreover, you may use the storage battery storage box 22 made into the structure provided with the board which can partition the storage battery 11 from the beginning.

また、蓄電池収納箱22のスリットや仕切り板41の空洞部41Aは、矩形に限らず、正方形、円形、楕円、正三角、正多角形等の任意の形状で良く、また、その数は、1を含む複数の穴として構成しても良い。但し、蓄電池11と仕切り板41との接触面積を広く確保し効率よく放熱させるためには、電槽12の長辺側側面12Bと当接する仕切り板41とは穴等を形成せず平面とすることが好ましい。
また、蓄電池11、仕切り板41及び蓄電池収納箱22のいずれも工業製品であることから、表面の凹凸や歪み、蓄電池11の質量に伴う撓みなどがあるため、蓄電池11と仕切り板41との間には、僅かながら隙間が生じることがある。更に、蓄電池11の電槽12には、成形用の抜きテーパーが付いている場合がある。従って、蓄電池11と仕切り板41とは当接していることが好ましいが、実用上、蓄電池11と仕切り板41との間には数mmの隙間があっても良い。隙間の幅としては、0mm〜5mmの範囲が望ましく、更には、0mm〜2mmがより望ましい。前記範囲とすることで、個々の蓄電池11の熱を仕切り板41に効率良く伝えて放熱させることができる。
Further, the slit of the storage battery storage box 22 and the cavity 41A of the partition plate 41 are not limited to a rectangle, but may be any shape such as a square, a circle, an ellipse, a regular triangle, and a regular polygon. You may comprise as several holes containing. However, in order to ensure a large contact area between the storage battery 11 and the partition plate 41 and efficiently dissipate heat, the partition plate 41 that contacts the long side surface 12B of the battery case 12 is flat without forming a hole or the like. It is preferable.
In addition, since all of the storage battery 11, the partition plate 41, and the storage battery storage box 22 are industrial products, there are surface irregularities and distortions, bending due to the mass of the storage battery 11, and the like, and therefore between the storage battery 11 and the partition plate 41. In some cases, a slight gap may occur. Furthermore, the battery case 12 of the storage battery 11 may have a punching taper for molding. Therefore, it is preferable that the storage battery 11 and the partition plate 41 are in contact with each other, but in practice, there may be a gap of several mm between the storage battery 11 and the partition plate 41. The width of the gap is preferably in the range of 0 mm to 5 mm, and more preferably 0 mm to 2 mm. By setting it as the said range, the heat of each storage battery 11 can be efficiently transmitted to the partition plate 41, and can be radiated.

次に、本発明の実施例を比較例とともに説明する。なお、本発明は、以下の実施例に限定されるものではない。   Next, examples of the present invention will be described together with comparative examples. The present invention is not limited to the following examples.

<比較例1>
図11は、比較例1の制御弁式鉛蓄電池11Xの外観図であり、図12は、比較例1の制御弁式鉛蓄電池11Xを収納した蓄電池収納箱22Xの外観図である。なお、図11及び図12には、上述した構成と同様のものは同一の符号を付して示している。
図11に示すように、この制御弁式鉛蓄電池11X(以下、蓄電池11Xと言う)は、電槽12の全ての側面(短辺側側面12A、長辺側側面12B)にリブ12Rが形成されている。それ以外は、上述した蓄電池11と同様である。
図12に示すように、蓄電池収納箱22Xは、仕切り板41に空洞部41A(図6参照)が形成されず、かつ、上板24及び底板23にスリット51(図5参照)が形成されていない点を除いて、上述した蓄電池収納箱22と同様である。なお、前記仕切り板41の厚さは2.5mmとした。また、前記電槽12と前記仕切り板41の側面とは面接触している。
<Comparative Example 1>
11 is an external view of a control valve type lead storage battery 11X of Comparative Example 1, and FIG. 12 is an external view of a storage battery storage box 22X in which the control valve type lead storage battery 11X of Comparative Example 1 is stored. 11 and 12, the same components as those described above are shown with the same reference numerals.
As shown in FIG. 11, this control valve type lead storage battery 11X (hereinafter referred to as storage battery 11X) has ribs 12R formed on all side surfaces (short side surface 12A, long side surface 12B) of battery case 12. ing. Other than that is the same as the storage battery 11 mentioned above.
As shown in FIG. 12, in the storage battery storage box 22X, the cavity 41A (see FIG. 6) is not formed in the partition plate 41, and the slits 51 (see FIG. 5) are formed in the top plate 24 and the bottom plate 23. It is the same as the storage battery storage box 22 described above except that there is no point. The partition plate 41 had a thickness of 2.5 mm. Further, the battery case 12 and the side surface of the partition plate 41 are in surface contact.

この蓄電池11Xは、10時間率定格容量が500Ahであり、5個の蓄電池11Xを蓄電池収納箱22に組み込んで直列接続し、0.1CA(50A)の放電電流で5時間放電を行い、0.1CA(50A)の充電電流で2.45V/セルの定電圧充電を12時間実施した。
その際、個々の蓄電池11Xの負極端子15Bに熱電対を取り付け、個々の電池温度の推移を観察した。
<実施例1>
This storage battery 11X has a 10-hour rate rated capacity of 500 Ah, 5 storage batteries 11X are assembled in the storage battery storage box 22 and connected in series, and discharged at a discharge current of 0.1 CA (50 A) for 5 hours. A constant voltage charge of 2.45 V / cell was performed for 12 hours at a charging current of 1 CA (50 A).
At that time, a thermocouple was attached to the negative electrode terminal 15B of each storage battery 11X, and the transition of each battery temperature was observed.
<Example 1>

長辺側側面12Bにリブが形成されていない電槽11を用いた以外は、比較例1と同様に評価を行った。
<実施例2>
Evaluation was performed in the same manner as in Comparative Example 1 except that the battery case 11 having no ribs formed on the long side surface 12B was used.
<Example 2>

厚さ2.5mmの仕切り板41に幅2mmの貫通孔となる空洞部41Aを形成した以外は、実施例1と同様の電槽11を用いて、比較例1と同様に評価を行った。
<実施例3>
Evaluation was performed in the same manner as in Comparative Example 1 using the same battery case 11 as in Example 1, except that a hollow part 41A serving as a through hole having a width of 2 mm was formed in the partition plate 41 having a thickness of 2.5 mm.
<Example 3>

厚さ2.5mmの仕切り板41を用い、また、上板24及び底板23に前記仕切り板41と同位置にスリット51(図5参照)を形成した以外は、実施例1と同様の電槽11を用いて、比較例1と同様に評価を行った。
<実施例4>
A battery case similar to that of Example 1 except that a partition plate 41 having a thickness of 2.5 mm is used and a slit 51 (see FIG. 5) is formed in the upper plate 24 and the bottom plate 23 at the same position as the partition plate 41. 11 was evaluated in the same manner as in Comparative Example 1.
<Example 4>

厚さ7mmの仕切り板41に幅2mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅2mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1と同様の電槽11を用いて、比較例1と同様に評価を行った。
<実施例5>
Except that the partition plate 41 having a thickness of 7 mm has a hollow portion 41A serving as a through hole having a width of 2 mm, and the upper plate 24 and the bottom plate 23 have slits 51 (see FIG. 5) communicating with the cavity portion 41A having a width of 2 mm. Evaluation was performed in the same manner as in Comparative Example 1 using the same battery case 11 as in Example 1.
<Example 5>

厚さ10mmの仕切り板41に幅5mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅5mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1の電槽11を用いて、比較例1と同様に評価を行った。
<実施例6>
Except that the partition plate 41 having a thickness of 10 mm has a hollow portion 41A serving as a through hole having a width of 5 mm, and the upper plate 24 and the bottom plate 23 have slits 51 (see FIG. 5) communicating with the cavity portion 41A having a width of 5 mm. Evaluation was performed in the same manner as Comparative Example 1 using the battery case 11 of Example 1.
<Example 6>

厚さ30mmの仕切り板41に幅25mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅25mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1の電槽11を用いて、比較例1と同様に評価を行った。
<実施例7>
Except that a partition plate 41 having a thickness of 30 mm is provided with a cavity portion 41A serving as a through hole having a width of 25 mm, and a slit 51 (see FIG. 5) communicating with the cavity portion 41A having a width of 25 mm is formed on the top plate 24 and the bottom plate 23. Evaluation was performed in the same manner as Comparative Example 1 using the battery case 11 of Example 1.
<Example 7>

厚さ30mmの仕切り板41に幅20mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅20mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1の電槽11を用いて、比較例1と同様に評価を行った。
<実施例8>
Except that a partition plate 41 having a thickness of 30 mm is formed with a cavity portion 41A serving as a through hole having a width of 20 mm, and a slit 51 (see FIG. 5) communicating with the cavity portion 41A having a width of 20 mm is formed on the upper plate 24 and the bottom plate 23. Evaluation was performed in the same manner as Comparative Example 1 using the battery case 11 of Example 1.
<Example 8>

厚さ30mmの仕切り板41に幅15mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅15mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1の電槽11を用いて、比較例1と同様に評価を行った。
<実施例9>
Except that a partition plate 41 having a thickness of 30 mm has a hollow portion 41A serving as a through hole having a width of 15 mm, and a slit 51 (see FIG. 5) communicating with the hollow portion 41A having a width of 15 mm is formed in the top plate 24 and the bottom plate 23. Evaluation was performed in the same manner as Comparative Example 1 using the battery case 11 of Example 1.
<Example 9>

厚さ60mmの仕切り板41に幅55mmの貫通孔となる空洞部41Aを形成し、上板24及び底板23に幅55mmの空洞部41Aと連通するスリット51(図5参照)を形成した以外は、実施例1の電槽11を用いて、比較例1と同様に評価を行った。   Except that the partition plate 41 having a thickness of 60 mm has a hollow portion 41A serving as a through hole having a width of 55 mm, and the slits 51 (see FIG. 5) communicating with the hollow portion 41A having a width of 55 mm are formed on the top plate 24 and the bottom plate 23. Evaluation was performed in the same manner as Comparative Example 1 using the battery case 11 of Example 1.

これら評価により得た最大上昇電池温度と最大電池間温度差を表1に示す。
なお、「電槽リブの有無」については、電槽12の全ての側面(短辺側側面12A、長辺側側面12B)にリブ12Rが形成されているものを「有」、電槽12の長辺側側面12Bにリブが形成されていないものを「無」とした。
また、最大上昇電池温度は、評価中の最高電池温度と評価前の電池温度との差である。また、最大電池間温度差は、蓄電池11、11Xが最高温度に到達した際の電池65個中の最高電池温度と最低電池温度との差である。
Table 1 shows the maximum elevated battery temperature and the maximum inter-battery temperature difference obtained by these evaluations.
As for the “presence / absence of battery case ribs”, all the side surfaces (short side surface 12A, long side surface 12B) of the battery case 12 are formed with ribs 12R. The case where no rib was formed on the long side surface 12B was defined as “none”.
The maximum battery temperature rise is the difference between the highest battery temperature under evaluation and the battery temperature before evaluation. Further, the maximum inter-battery temperature difference is a difference between the maximum battery temperature and the minimum battery temperature among the 65 batteries when the storage batteries 11, 11X reach the maximum temperature.

Figure 0005981881
Figure 0005981881

表1に示すように、実施例1乃至9は、比較例1と比べると最大上昇電池温度が抑制されており、かつ、最大電池間温度差も抑制されていることが分かる。実施例1乃至8は、仕切り板41に当接する電槽側面にリブが形成されていないため、個々の蓄電池11からの熱が仕切り板41に伝わりやすく、電池収納箱上板24、底板23から放熱が促進され、温度上昇を抑制し、かつ、温度ばらつきも低減できることを確認することができた。
また、電槽12の極板積層方向と直交する面(短辺側側面12A)にリブ12Rが形成された実施例1乃至9は、電槽12の全ての側面にリブ12Rを設けた比較例1と同様に電槽12の変形を抑制することが可能であることを確認することができた。
なお、実施例1乃至3と実施例4乃至9を比べると、スリット51および空洞部41Aを有する実施例4乃至9の方が、最大上昇電池温度が更に抑制されていることが分かる。このことから、スリット51及び空洞部41Aが温度上昇の抑制に寄与していることを確認することができた。また、最大上昇電池温度を抑制することで最大電池間温度差を抑制することが可能であり、個々の蓄電池11の温度ばらつきもより低減できることを確認することができた。
As shown in Table 1, it can be seen that in Examples 1 to 9, the maximum rise battery temperature is suppressed and the maximum inter-battery temperature difference is also suppressed as compared with Comparative Example 1. In Examples 1 to 8, since ribs are not formed on the side surface of the battery case in contact with the partition plate 41, heat from each storage battery 11 is easily transmitted to the partition plate 41, and from the battery storage box upper plate 24 and the bottom plate 23. It was confirmed that heat dissipation was promoted, temperature rise was suppressed, and temperature variation could be reduced.
Moreover, Examples 1 thru | or 9 in which the rib 12R was formed in the surface (short-side side surface 12A) orthogonal to the electrode plate lamination direction of the battery case 12 are comparative examples in which the rib 12R is provided on all side surfaces of the battery case 12. It was confirmed that the deformation of the battery case 12 can be suppressed as in the case of 1.
When Examples 1 to 3 and Examples 4 to 9 are compared, it can be seen that Examples 4 to 9 having the slit 51 and the cavity portion 41A further suppress the maximum rise battery temperature. From this, it was confirmed that the slit 51 and the cavity 41A contribute to the suppression of the temperature rise. Moreover, it was possible to suppress the maximum inter-battery temperature difference by suppressing the maximum rising battery temperature, and to confirm that the temperature variation of the individual storage batteries 11 could be further reduced.

また、実施例6と9を比較すると、最大上昇電池温度、最大電池間温度差ともに同じ結果となった。スリット51や空洞部41Aの幅を大きくすれば、空気を対流させるための空間が大きくなり効果的であるが、スリット51や空洞部41Aの幅の大きさに対して温度上昇の抑制や、温度ばらつきの低減の効果は飽和していくことを確認することができた。
また、実施例6乃至8をみると、仕切り板41の厚さは同じでもスリット幅および空洞部幅が小さい実施例7乃至8は、実施例6と比較して最大上昇電池温度および最大電池間温度差がわずかながら上昇している。これは空気を対流させるための空間が小さくなったためであると考えられる。
Moreover, when Examples 6 and 9 were compared, the same results were obtained for both the maximum battery temperature rise and the maximum inter-battery temperature difference. Increasing the width of the slit 51 and the cavity portion 41A is effective because the space for convection of air is increased, but the rise in temperature with respect to the width of the slit 51 and the cavity portion 41A is suppressed. It was confirmed that the effect of reducing variation was saturated.
Further, when looking at Examples 6 to 8, Examples 7 to 8 having the same slit plate 41 thickness but a small slit width and small cavity width are higher in the maximum rise battery temperature and the maximum inter-battery temperature than in Example 6. The temperature difference is rising slightly. This is considered to be because the space for convection of air became small.

以上説明したように、本実施の形態では、蓄電池収納箱22に複数個の蓄電池11を組込み接続し、個々の蓄電池11の間に仕切り板41を配置した構成において、電槽12の極板積層方向と直交する面(短辺側側面12A)にはリブ12Rが形成され、平行方向の面(長辺側側面12B)にはリブが形成されず、電槽12と仕切り板41の側板42とを面接触可能となるように配置したので、極板積層方向と直交する面に作用する群圧による蓄電池11の変形を抑えることができ、かつ、個々の蓄電池11の熱を仕切り板41に効率良く伝えて蓄電池収納箱22から放熱させることができる。これによって、群圧による蓄電池11の変形防止と蓄電池11の均熱化とを両立することができる。   As described above, in the present embodiment, a plurality of storage batteries 11 are built in and connected to the storage battery storage box 22, and the partition plate 41 is arranged between the individual storage batteries 11. The rib 12R is formed on the surface (short side surface 12A) orthogonal to the direction, and the rib is not formed on the parallel surface (long side surface 12B), and the battery case 12 and the side plate 42 of the partition plate 41 Are arranged so as to be in surface contact with each other, so that deformation of the storage battery 11 due to group pressure acting on a surface orthogonal to the electrode plate stacking direction can be suppressed, and the heat of each storage battery 11 is efficiently transmitted to the partition plate 41. It is possible to convey well and to dissipate heat from the storage battery storage box 22. Accordingly, it is possible to achieve both prevention of deformation of the storage battery 11 due to group pressure and soaking of the storage battery 11.

しかも、仕切り板41が空気の対流を可能とする貫通孔となる空洞部41Aを備えるようにしたので、仕切り板41に伝わった熱を、空気の対流によっても排出させることができ、蓄電池11の温度上昇をより抑えて均熱化を図ることができる。
また、空洞部41Aが仕切り板41の側板42に沿って設けられるので、蓄電池11から側板42に伝わった熱で空気の対流を促進させやすく、効率良く排熱することができる。
また、空洞部41Aが連通する孔であるスリット51、31Aが蓄電池収納箱22に設けられるので、空洞部41Aとスリットとにより空気を通気させることができ、この通気により、より効率良く排熱することができる。
Moreover, since the partition plate 41 is provided with a hollow portion 41A serving as a through hole that enables air convection, the heat transmitted to the partition plate 41 can be discharged also by air convection, and the storage battery 11 The temperature rise can be further suppressed and soaking can be achieved.
In addition, since the hollow portion 41A is provided along the side plate 42 of the partition plate 41, it is easy to promote air convection by the heat transmitted from the storage battery 11 to the side plate 42, and heat can be efficiently exhausted.
Moreover, since the slits 51 and 31A, which are holes through which the hollow portion 41A communicates, are provided in the storage battery storage box 22, air can be ventilated by the hollow portion 41A and the slit, and heat can be exhausted more efficiently by this ventilation. be able to.

また、電槽12の極板積層方向と直交する面であるとともに互いに対向する一対の短辺側側面12Aの各々にリブ12Rが形成されるので、群圧による一対の短辺側側面12Aの変形を適切に抑えることができる。
また、電槽12の極板積層方向と平行な面であるとともに、互いに対向する一対の長辺側側面12Bは、平坦面に形成されるので、作製し易い。また、一対の短辺側側面12A間を最短距離で架橋するので、短辺側側面12A同士の連結強度を確保し易くなる。
また、リブ12Rは、極板積層方向と直交する面である短辺側側面12Aの長手方向に沿って延出するので、群圧による短辺側側面12Aの変形をリブ12Rによって効率良く抑えることができる。
Also, since ribs 12R are formed on each of the pair of short side surfaces 12A that are orthogonal to the electrode plate stacking direction of the battery case 12 and face each other, the deformation of the pair of short side surfaces 12A due to group pressure. Can be suppressed appropriately.
In addition, since the pair of long side surfaces 12B that are parallel to the electrode plate stacking direction of the battery case 12 and are opposed to each other are formed on a flat surface, they are easy to manufacture. Moreover, since a pair of short side surface 12A is bridge | crosslinked by the shortest distance, it becomes easy to ensure the connection intensity | strength of short side surface 12A.
Further, since the rib 12R extends along the longitudinal direction of the short side surface 12A, which is a surface orthogonal to the electrode stacking direction, the deformation of the short side surface 12A due to group pressure is efficiently suppressed by the rib 12R. Can do.

上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の主旨を逸脱しない範囲で任意に変形及び応用が可能である。
例えば、仕切り板41と蓄電池11とを交互に配置する場合を説明したが、これに限らない。また、蓄電池11が制御弁式鉛蓄電池の場合を説明したが、制御弁式鉛蓄電池以外の蓄電池の場合に本発明を適用しても良い。
The above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied without departing from the gist of the present invention.
For example, although the case where the partition plate 41 and the storage battery 11 are arrange | positioned alternately was demonstrated, it is not restricted to this. Moreover, although the case where the storage battery 11 was a control valve type lead acid battery was demonstrated, you may apply this invention in the case of storage batteries other than a control valve type lead acid battery.

10 蓄電池システム(組電池)
11 蓄電池
12 電槽
12A 短辺側側面(極板積層方向と直交する面)
12B 長辺側側面(極板積層方向に平行な面)
12R リブ
22 蓄電池収納箱
23 底板
24 上板
25 側板(電池収納箱の側板)
31A,51 スリット(孔)
41 仕切り板(仕切り部材)
41A 空洞部(貫通孔)
42 側板(仕切り板の側板)
43 連結体
55 通風路
10 Storage battery system (assembled battery)
11 storage battery 12 battery case 12A short side surface (surface orthogonal to electrode plate stacking direction)
12B Long side surface (surface parallel to electrode plate stacking direction)
12R rib 22 storage battery storage box 23 bottom plate 24 top plate 25 side plate (side plate of battery storage box)
31A, 51 slit (hole)
41 Partition plate (partition member)
41A Cavity (through hole)
42 side plate (partition plate side plate)
43 Connecting body 55 Ventilation path

Claims (3)

蓄電池収納箱に複数個の蓄電池を組込み接続し、個々の蓄電池の間には仕切り板が配置されている蓄電池システムであって、
前記蓄電池の電槽の極板積層方向と直交する面にはリブが形成され、平行方向の面にはリブが形成されず、前記電槽と前記仕切り板の側板とが面接触可能となるように配置したことを特徴とする蓄電池システム。
A storage battery system in which a plurality of storage batteries are built in and connected to a storage battery storage box, and a partition plate is arranged between the individual storage batteries,
A rib is formed on a surface orthogonal to the electrode plate stacking direction of the battery case of the storage battery, and no rib is formed on a parallel surface, so that the battery case and the side plate of the partition plate can be in surface contact. A storage battery system characterized by being arranged in
前記仕切り板が空気の対流を可能とする空洞部を備えることを特徴とする請求項1に記載の蓄電池システム。   The storage battery system according to claim 1, wherein the partition plate includes a hollow portion that enables air convection. 前記蓄電池収納箱には、前記仕切り板の前記空洞部に連通するスリットが設けられることを特徴とする請求項2に記載の蓄電池システム。   The storage battery system according to claim 2, wherein the storage battery storage box is provided with a slit communicating with the hollow portion of the partition plate.
JP2013114955A 2013-05-31 2013-05-31 Battery system Active JP5981881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114955A JP5981881B2 (en) 2013-05-31 2013-05-31 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114955A JP5981881B2 (en) 2013-05-31 2013-05-31 Battery system

Publications (2)

Publication Number Publication Date
JP2014235803A JP2014235803A (en) 2014-12-15
JP5981881B2 true JP5981881B2 (en) 2016-08-31

Family

ID=52138378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114955A Active JP5981881B2 (en) 2013-05-31 2013-05-31 Battery system

Country Status (1)

Country Link
JP (1) JP5981881B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029816A1 (en) 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled battery, storage battery, assembled battery, and storage battery system
JP6676832B2 (en) * 2017-09-29 2020-04-08 本田技研工業株式会社 Battery pack
CN109599514A (en) * 2018-10-19 2019-04-09 安徽正熹标王新能源有限公司 A kind of uniform temperature type lithium battery
CN110994044B (en) * 2019-11-11 2022-06-24 安徽理士电源技术有限公司 Lead-acid storage battery with protection structure
KR20220001228A (en) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 Battery Module Having Barrier and Insulation Layer For Fire Suppression
KR20230079299A (en) * 2020-09-30 2023-06-07 티아이 오토모티브 테크놀로지 센터 게엠베하 Energy storage system with temperature control unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124857U (en) * 1984-01-31 1985-08-22 新神戸電機株式会社 Sealed lead-acid battery case
JPH0719590B2 (en) * 1985-11-14 1995-03-06 松下電器産業株式会社 Negative electrode absorption type sealed lead acid battery
AU662858B2 (en) * 1993-04-01 1995-09-14 Gnb Industrial Battery Company Sealed lead-acid cell tray assembly and motive powered vehicle using such cell tray assembly
JP3328475B2 (en) * 1995-09-14 2002-09-24 松下電器産業株式会社 Storage battery case
JPH09199093A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Battery jar for storage battery, and storage battery
JP3484876B2 (en) * 1996-05-09 2004-01-06 新神戸電機株式会社 Sealed lead-acid battery unit
WO2000030190A1 (en) * 1998-11-17 2000-05-25 C & D Technologies, Inc. Selectable capacity fixed footprint lead-acid battery racking system with horizontal plates
JP2002289161A (en) * 2001-03-27 2002-10-04 Shin Kobe Electric Mach Co Ltd Battery pack body
JP2009140714A (en) * 2007-12-05 2009-06-25 Furukawa Battery Co Ltd:The Battery pack module

Also Published As

Publication number Publication date
JP2014235803A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP5981881B2 (en) Battery system
JP6019125B2 (en) Battery module assembly with improved reliability and medium-to-large battery pack including the same
JP6494870B2 (en) Battery module with improved cooling performance
JP5028346B2 (en) Power storage device
JP6189318B2 (en) Vehicle power supply for regenerative braking
KR102072765B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP6560438B2 (en) Battery module
KR101201742B1 (en) Battery module
JP6375779B2 (en) Battery pack heat dissipation structure
KR101806415B1 (en) Secondary Battery Cell Enhanced in Cooling Efficiency and Module-type Battery including the Same
JP6763981B2 (en) battery pack
KR102057620B1 (en) Battery module
JP6096597B2 (en) Storage battery storage box
US20220029223A1 (en) Sodium secondary battery module
JP2014071956A (en) Cell type battery case
JP2020500402A (en) Battery module, battery pack including the same, and power storage device
JP2021089812A (en) Battery module
JPH1092394A (en) Mono-block battery
JP2010287491A (en) Secondary battery
KR101637759B1 (en) Cooling plate to cool the battery cell and the lead tab at the same time
JP5154706B1 (en) Battery pack and battery module
JP6159658B2 (en) Partition plate
JP6192467B2 (en) Assembled battery
JP5691932B2 (en) Secondary battery
KR101654800B1 (en) Secondary battery with cooling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5981881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150