JP5981562B2 - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP5981562B2
JP5981562B2 JP2014548474A JP2014548474A JP5981562B2 JP 5981562 B2 JP5981562 B2 JP 5981562B2 JP 2014548474 A JP2014548474 A JP 2014548474A JP 2014548474 A JP2014548474 A JP 2014548474A JP 5981562 B2 JP5981562 B2 JP 5981562B2
Authority
JP
Japan
Prior art keywords
communication hole
valve body
valve
radial
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014548474A
Other languages
Japanese (ja)
Other versions
JPWO2014080663A1 (en
Inventor
悠 齊藤
悠 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koganei Corp
Original Assignee
Koganei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corp filed Critical Koganei Corp
Application granted granted Critical
Publication of JP5981562B2 publication Critical patent/JP5981562B2/en
Publication of JPWO2014080663A1 publication Critical patent/JPWO2014080663A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1826Check valves which can be actuated by a pilot valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0209Check valves or pivoted valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)

Description

本発明は、一方向への流体の流れを許容し、逆方向の流れを阻止する弁体を有する逆止弁に関する。   The present invention relates to a check valve having a valve body that allows fluid flow in one direction and blocks flow in the reverse direction.

逆止弁はチェック弁とも言われ、圧縮空気や液体等の流体を案内する流体圧流路に使用され、流体が一方向にのみ流れるようにし、逆方向に流れるのを阻止するための弁体を有している。逆止弁は流体を案内する第1の配管が接続される第1のポートと、第2の配管が接続される第2のポートとが形成されたバルブハウジングを有している。両方のポート間の流路に装着される弁体は軸方向に自在に移動し、弁座から離れて弁座を開放する位置と、弁座に密着して弁座を閉塞する位置とに位置する。   The check valve is also referred to as a check valve, and is used in a fluid pressure flow path for guiding fluid such as compressed air or liquid. The check valve is used to allow the fluid to flow only in one direction and prevent the fluid from flowing in the reverse direction. Have. The check valve has a valve housing in which a first port to which a first pipe for guiding fluid is connected and a second port to which a second pipe is connected are formed. The valve body mounted in the flow path between both ports moves freely in the axial direction, and is positioned at a position where it opens away from the valve seat and a position where it closes and closes the valve seat To do.

弁体をポペット型とした逆止弁においては、弁体を軸方向に移動させて弁座を開閉するようにしている。ポペット型の弁体を有する逆止弁には、特許文献1に記載されるように、弁座を開閉する弁体が流出孔に軸方向に移動自在に装着された形態がある。特許文献1では、バルブハウジングの流入孔と、流入孔よりも内径が大きい流出孔との境界部に環状の弁座が設けられている。この逆止弁においては、弁体には円錐形の頭部が一端部に設けられ、他端部側の基部には流出孔の内面を摺動する筒体が設けられており、流入孔から流出孔に流入した流体を外部に案内するための連通孔が基部に設けられている。   In a check valve in which the valve body is a poppet type, the valve body is moved in the axial direction to open and close the valve seat. A check valve having a poppet-type valve body has a form in which a valve body that opens and closes a valve seat is attached to an outflow hole so as to be movable in an axial direction, as described in Patent Document 1. In Patent Document 1, an annular valve seat is provided at a boundary portion between an inflow hole of a valve housing and an outflow hole having an inner diameter larger than the inflow hole. In this check valve, the valve body is provided with a conical head at one end, and the base on the other end is provided with a cylinder that slides on the inner surface of the outflow hole. A communication hole for guiding the fluid flowing into the outflow hole to the outside is provided in the base.

さらに他の形態の逆止弁としては、特許文献2に記載されるように、流入側の小径孔の内面を摺動する円筒形状の基部と、弁座を開閉する環状突起が設けられた頭部とを備えた弁体を有するものがある。この逆止弁においては、環状突起が弁座から離れる位置に移動すると、円筒形状の基部に形成された十字通路が流入側の小径孔と流出側の大径孔とを連通させる。   As another type of check valve, as described in Patent Document 2, a cylindrical base portion that slides on the inner surface of the small-diameter hole on the inflow side, and a head provided with an annular protrusion that opens and closes the valve seat are provided. Some have a valve body with a portion. In this check valve, when the annular projection moves to a position away from the valve seat, a cross passage formed in the cylindrical base portion connects the small diameter hole on the inflow side and the large diameter hole on the outflow side.

実開昭48−69135号公報Japanese Utility Model Publication No. 48-69135 特開平11−6574号公報Japanese Patent Laid-Open No. 11-6574

上述のように、ポペット型の弁体を有する逆止弁においては、弁体の頭部側を底面とする底付きの軸方向連通孔が、弁体の内部に形成されている。さらに、弁体が弁座から離れたときに軸方向の連通孔を流出孔に連通させるに径方向連通孔が、弁体に形成されている。   As described above, in a check valve having a poppet-type valve body, a bottomed axial communication hole having a bottom surface on the head side of the valve body is formed inside the valve body. Further, a radial communication hole is formed in the valve body so that the axial communication hole communicates with the outflow hole when the valve body is separated from the valve seat.

弁体が弁座を閉塞したときに弁座と弁体との間からの流体の漏出を防止するには、弁体の頭部を弁座面に確実に密着させて弁座のシール性を高める必要がある。弁体が傾斜して弁座に接触すると、弁座のシール性が低下して弁座からの漏出が発生することになる。弁座のシール性を高めるには、弁体が軸方向に開閉移動するときに弁体が傾斜しないように、弁体の中心軸と弁体を収容する連通孔の中心軸との同軸度を高める必要がある。弁体の摺動部の軸方向長さを長くすると、この同軸度を高めることができるが、弁体の軸方向寸法が長くなり、逆止弁を小型化することができなくなる。   To prevent fluid leakage from between the valve seat and the valve body when the valve body closes the valve seat, make sure that the head of the valve body is in close contact with the valve seat surface to improve the sealing performance of the valve seat. Need to increase. When the valve body is tilted and contacts the valve seat, the sealing performance of the valve seat is lowered and leakage from the valve seat occurs. In order to improve the sealing performance of the valve seat, the coaxiality between the central axis of the valve body and the central axis of the communication hole that accommodates the valve body is set so that the valve body does not tilt when the valve body moves in the axial direction. Need to increase. Increasing the axial length of the sliding portion of the valve body can increase the coaxiality, but the axial dimension of the valve body is increased and the check valve cannot be reduced in size.

弁体が弁座から離れる弁座開放時には、流入孔から弁体の連通孔を介して流出孔に流体が流れる。このときの流量を確保するには、弁体の連通孔の連通開度を大きくする必要がある。摺動部を弁体の頭部側と基部側との双方に分割して設けると、摺動部全体の軸方向長さを長くすることなく、弁体摺動時の同軸度を高めることができるが、弁体の頭部側に摺動部を設けると、連通開度を充分に確保することができなくなる。   When the valve seat is released from the valve seat, the fluid flows from the inflow hole to the outflow hole through the communication hole of the valve body. In order to secure the flow rate at this time, it is necessary to increase the communication opening degree of the communication hole of the valve body. If the sliding part is divided and provided on both the head side and the base side of the valve body, the coaxiality during sliding of the valve body can be improved without increasing the axial length of the entire sliding part. However, if the sliding portion is provided on the head side of the valve body, the communication opening cannot be sufficiently secured.

本発明の目的は、弁体の軸方向長さを長くすることなく、弁座開放時の流体流量を確保することができる逆止弁を提供することにある。   An object of the present invention is to provide a check valve that can ensure a fluid flow rate when the valve seat is opened without increasing the axial length of the valve body.

本発明の目的は、弁座開放時の流体流量を確保しつつ弁座閉塞時のシール性を高めることができる逆止弁を提供することにある。   An object of the present invention is to provide a check valve capable of enhancing the sealing performance when the valve seat is closed while ensuring the fluid flow rate when the valve seat is opened.

本発明の逆止弁は、第1のポートに開口する第1の連通孔、および第2のポートに開口する第2の連通孔が形成されるとともに、前記第1と第2の連通孔の境界部に弁座が形成されたバルブハウジングと、前記第2の連通孔に軸方向に摺動自在に装着され、前記弁座を開放して前記第1の連通孔から前記第2の連通孔へ向かう流体の流れを許容し、前記弁座を閉塞して逆方向に向かう流れを阻止する弁体と、前記第2の連通孔に装着され、前記弁体に前記弁座に向かうばね力を付勢するばね部材とを有し、前記弁体は、当該弁体の一端部側に設けられて前記弁座を開閉する頭部と、当該頭部よりも他端部側に設けられ前記第2の連通孔の内面を摺動する摺動面と、前記頭部と前記摺動面との間に設けられ前記摺動面よりも小径であって前記第2の連通孔の内周面との間で案内流路を形成する連通外周面と、前記摺動面と前記連通外周面との間の径方向の段差面とを有し、前記弁体の他端面に開口して前記弁体の一端部に向けて軸方向に延びる軸方向連通孔を前記弁体に形成し、径方向に延びて前記軸方向連通孔と前記案内流路とを連通させる径方向連通孔を、前記摺動面と前記連通外周面とに開口させて前記弁体に形成することを特徴とする。 The check valve according to the present invention includes a first communication hole that opens to the first port and a second communication hole that opens to the second port, and the first and second communication holes A valve housing in which a valve seat is formed at a boundary portion and an axially slidable attachment to the second communication hole, the valve seat is opened, and the second communication hole is opened from the first communication hole. A valve body that allows the flow of fluid toward the valve, blocks the valve seat and blocks the flow in the opposite direction, and is mounted on the second communication hole, and the valve body has a spring force toward the valve seat. A spring member for biasing, and the valve body is provided on one end portion side of the valve body and opens and closes the valve seat, and is provided on the other end side with respect to the head portion. a sliding surface that slides inside surface of the second communication holes, said a diameter is than the sliding surface provided between said head portion and said sliding surface and the It has a communication with the outer circumferential surface which forms a guide passage between the inner periphery of the communicating hole, and a radial step surface between the sliding surface and the communicating outer peripheral surface, the other of said valve body An axial communication hole that opens in the end surface and extends in the axial direction toward one end of the valve body is formed in the valve body, and extends in the radial direction to communicate the axial communication hole and the guide channel. A directional communication hole is formed in the valve body by opening it in the sliding surface and the communication outer peripheral surface.

第2の連通孔の内周面に摺動接触する摺動面と、案内流路を形成する連通外周面とを跨いで径方向連通孔が形成され、摺動面の一部が径方向連通孔を形成している。従って、弁体の軸方向長さを長くすることなく、摺動面の軸方向長さを長くすることができる。これにより、弁体移動時に弁体が傾斜することを防止でき、逆止弁を大型化することなく、弁体が弁座を閉塞したときの弁座のシール性を高めることができる。   A radial communication hole is formed across the sliding surface that is in sliding contact with the inner peripheral surface of the second communication hole and the communication outer peripheral surface that forms the guide channel, and a part of the sliding surface is in radial communication. A hole is formed. Therefore, the axial length of the sliding surface can be increased without increasing the axial length of the valve element. Thereby, it can prevent that a valve body inclines at the time of valve body movement, and can improve the sealing performance of the valve seat when a valve body obstruct | occludes a valve seat, without enlarging a check valve.

径方向連通孔は連通外周面と摺動面とを跨いで形成されている。すなわち、径方向連通孔は、連通外周面に径方向に開口した開口部と、軸方向に案内流路に対向するように開口した開口部とを有し、案内流路に連通する。これにより、弁体が弁座から離れた弁座開放時には、案内流路と径方向連通孔との連通開度を大きくすることができる。従って、弁体の軸方向長さを長くすることなく、弁座開放時における流体流量を高めることができる。   The radial communication hole is formed across the communication outer peripheral surface and the sliding surface. That is, the radial direction communication hole has an opening portion opened in the radial direction on the communication outer peripheral surface and an opening portion opened in the axial direction so as to face the guide flow channel, and communicates with the guide flow channel. Thereby, when the valve seat is opened away from the valve seat, the communication opening degree between the guide channel and the radial communication hole can be increased. Therefore, the fluid flow rate when the valve seat is opened can be increased without increasing the axial length of the valve body.

弁体が弁座を閉塞した状態における一実施の形態である逆止弁を示す断面図である。It is sectional drawing which shows the non-return valve which is one Embodiment in the state which closed the valve seat with the valve body. 弁体が弁座を開放した状態における図1の逆止弁を示す断面図である。It is sectional drawing which shows the non-return valve of FIG. 1 in the state which opened the valve seat with the valve body. 図1および図2に示された弁体の拡大斜視図である。FIG. 3 is an enlarged perspective view of the valve body shown in FIGS. 1 and 2. (A)は図3の正面図であり、(B)は図3の断面図である。(A) is a front view of FIG. 3, (B) is sectional drawing of FIG. (A)は弁体の変形例を示す正面図であり、(B)は(A)の縦断面図である。(A) is a front view which shows the modification of a valve body, (B) is a longitudinal cross-sectional view of (A). 比較例としての逆止弁を示す断面図である。It is sectional drawing which shows the non-return valve as a comparative example. 図6に示された弁体の拡大断面図である。It is an expanded sectional view of the valve body shown by FIG. 他の比較例としての逆止弁を示す断面図である。It is sectional drawing which shows the non-return valve as another comparative example. 図8に示された弁体の拡大断面図である。It is an expanded sectional view of the valve body shown by FIG.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1および図2に示されるように、この逆止弁10は、段付きの貫通孔11が形成されたバルブハウジング12を有している。第1のポート13が貫通孔の一端部に形成されている。この第1のポート13には継手14が装着される。第2のポート15が貫通孔11の他端部に形成されている。この第2のポート15には継手16が装着される。それぞれの継手14,16には、図1に示されるように、空気を案内するためのホースやパイプ等からなる配管17,18が装着される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, the check valve 10 has a valve housing 12 in which a stepped through hole 11 is formed. A first port 13 is formed at one end of the through hole. A joint 14 is attached to the first port 13. A second port 15 is formed at the other end of the through hole 11. A joint 16 is attached to the second port 15. As shown in FIG. 1, pipes 17 and 18 made of hoses and pipes for guiding air are attached to the joints 14 and 16, respectively.

貫通孔11は、第1のポート13に開口する第1の連通孔21と、第2のポート15に開口する第2の連通孔22とを有している。第2の連通孔22の内径は第1の連通孔21の内径よりも大きい。小径連通孔である第1の連通孔21と大径連通孔である第2の連通孔22との境界部には、弁座23が設けられている。この弁座23は第1の連通孔21から第2の連通孔22に向けて内径が大きくなったテーパ面となっている。テーパ面に代えて弁座23を、連通孔21,22の軸方向に対して直角方向の径方向面としても良い。   The through hole 11 includes a first communication hole 21 that opens to the first port 13 and a second communication hole 22 that opens to the second port 15. The inner diameter of the second communication hole 22 is larger than the inner diameter of the first communication hole 21. A valve seat 23 is provided at the boundary between the first communication hole 21 that is a small-diameter communication hole and the second communication hole 22 that is a large-diameter communication hole. The valve seat 23 has a tapered surface having an inner diameter that increases from the first communication hole 21 toward the second communication hole 22. Instead of the tapered surface, the valve seat 23 may be a radial surface perpendicular to the axial direction of the communication holes 21 and 22.

第2の連通孔22には、弁体24が軸方向に摺動自在に装着されている。弁体24の一端部に設けられた頭部25には、シール部材26が装着される環状溝27が形成されている。弁体24の頭部25に装着されるシール部材26は、弁体24の軸方向の摺動により弁座23を開閉する。図1に示されるように、弁体24のシール部材26が弁座23に密着すると弁座23が閉塞される。一方、図2に示されるように、弁体24の頭部25のシール部材26が弁座23から離れると弁座23が開放される。   A valve body 24 is attached to the second communication hole 22 so as to be slidable in the axial direction. An annular groove 27 in which a seal member 26 is mounted is formed in a head 25 provided at one end of the valve body 24. The seal member 26 attached to the head portion 25 of the valve body 24 opens and closes the valve seat 23 by sliding the valve body 24 in the axial direction. As shown in FIG. 1, when the seal member 26 of the valve body 24 is in close contact with the valve seat 23, the valve seat 23 is closed. On the other hand, as shown in FIG. 2, when the seal member 26 of the head portion 25 of the valve body 24 is separated from the valve seat 23, the valve seat 23 is opened.

図3および図4に示されるように、弁体24の他端部側は、頭部25と一体の基部28となっており、基部28には円筒形状の摺動部31が設けられている。この摺動部31の外径は頭部25の外径よりも大きい。摺動部31は、第2の連通孔22の内周面に摺動接触する摺動面32を有している。摺動部31よりも小径のばね装着部33と、このばね装着部33よりも小径の小径摺動部34が、基部28に設けられている。図1および図2に示されるように、第2の連通孔22には環状のばね受け部材35が取り付けられる。このばね受け部材35と摺動部31との間には、圧縮コイルばね36が装着されている。圧縮コイルばね36は、弁体24に対して弁座23に向かう方向のばね力を付勢する。この圧縮コイルばね36の一端はばね受け部材35の端面に当接し、圧縮コイルばね36の他端は摺動部31とばね装着部33との間の径方向端面37に当接している。   As shown in FIGS. 3 and 4, the other end side of the valve body 24 is a base portion 28 integrated with the head portion 25, and the base portion 28 is provided with a cylindrical sliding portion 31. . The outer diameter of the sliding portion 31 is larger than the outer diameter of the head 25. The sliding portion 31 has a sliding surface 32 that comes into sliding contact with the inner peripheral surface of the second communication hole 22. A spring mounting portion 33 having a smaller diameter than the sliding portion 31 and a small diameter sliding portion 34 having a smaller diameter than the spring mounting portion 33 are provided on the base portion 28. As shown in FIGS. 1 and 2, an annular spring receiving member 35 is attached to the second communication hole 22. A compression coil spring 36 is mounted between the spring receiving member 35 and the sliding portion 31. The compression coil spring 36 biases the spring force in the direction toward the valve seat 23 against the valve body 24. One end of the compression coil spring 36 is in contact with the end surface of the spring receiving member 35, and the other end of the compression coil spring 36 is in contact with the radial end surface 37 between the sliding portion 31 and the spring mounting portion 33.

小径摺動部34はばね受け部材35の内周面に摺動接触する小径摺動面38を有している。これにより、弁体24が軸方向に移動する際には、基部28の軸方向中央部の摺動面32が第2の連通孔22に摺動接触し、基部28の端部の小径摺動面38がばね受け部材の内周面に摺動接触する。   The small-diameter sliding portion 34 has a small-diameter sliding surface 38 that is in sliding contact with the inner peripheral surface of the spring receiving member 35. As a result, when the valve body 24 moves in the axial direction, the sliding surface 32 at the central portion in the axial direction of the base portion 28 comes into sliding contact with the second communication hole 22, and the small-diameter sliding at the end portion of the base portion 28. The surface 38 is in sliding contact with the inner peripheral surface of the spring receiving member.

頭部25と摺動部31の間には、摺動部31よりも小径の流路形成部41が設けられている。頭部25の外周面と摺動面32との間には、連通外周面43が設けられている。連通外周面43は、第2の連通孔22の内周面との間で案内流路42を形成する。図4(B)に示されるように、弁体24の内部には、軸方向に延びる軸方向連通孔44が形成されている。この軸方向連通孔44は、弁体24の他端面つまり基部28の端面に開口しており、頭部25側に底面を有する底付きの孔となっている。弁体24には径方向連通孔45が形成されている。径方向連通孔45は、軸方向連通孔44の底面側の部分と案内流路42とを連通させる。軸方向連通孔44の底面には、径方向連通孔45の内周面に段差なく連続した部分があり、底面は径方向連通孔45の内周面に接した状態となっている。径方向連通孔45は円周方向にほぼ90度置きに合計4つ形成されている。図4(B)に示されるように、軸方向連通孔44の径をDとし、それぞれの径方向連通孔45の径をdとすると、径dは径Dよりも小径となっている。   Between the head 25 and the sliding portion 31, a flow path forming portion 41 having a smaller diameter than the sliding portion 31 is provided. A communication outer peripheral surface 43 is provided between the outer peripheral surface of the head 25 and the sliding surface 32. The communication outer peripheral surface 43 forms a guide channel 42 between the communication outer peripheral surface 43 and the inner peripheral surface of the second communication hole 22. As shown in FIG. 4B, an axial communication hole 44 extending in the axial direction is formed inside the valve body 24. The axial communication hole 44 is open to the other end surface of the valve body 24, that is, the end surface of the base portion 28, and is a bottomed hole having a bottom surface on the head 25 side. A radial communication hole 45 is formed in the valve body 24. The radial direction communication hole 45 allows the portion on the bottom surface side of the axial direction communication hole 44 to communicate with the guide channel 42. The bottom surface of the axial communication hole 44 has a portion that is continuous with the inner peripheral surface of the radial communication hole 45 without a step, and the bottom surface is in contact with the inner peripheral surface of the radial communication hole 45. A total of four radial communication holes 45 are formed approximately every 90 degrees in the circumferential direction. As shown in FIG. 4B, when the diameter of the axial communication hole 44 is D and the diameter of each radial communication hole 45 is d, the diameter d is smaller than the diameter D.

弁体24には、第2の連通孔22の空気圧と圧縮コイルばね36のばね力の2つの力が、弁座23に向かう方向つまり弁座23を閉塞する方向の推力として加えられる。また、弁体24には、第1の連通孔21の空気圧が、弁座23から離れる方向つまり弁座23を開放する方向の推力として加えられる。配管17により案内されて第1の連通孔21に供給された空気の圧力が、弁体24を閉じる方向に加えられる推力よりも大きくなると、図2に示されるように、弁体24が弁座23から離れて弁座23が開放される。これにより、配管17から第1の連通孔21に供給された空気は、第2の連通孔22に流入し、弁体24に形成された径方向連通孔45と軸方向連通孔44を介して配管18から外部に流出する。一方、弁座23に向かう方向の推力が逆方向の推力よりも大きくなると、弁体24のシール部材26が弁座23に密着し弁座23が閉塞される。これにより、図1に示されるように、配管17により案内されて第1の連通孔21に供給された空気は、第2の連通孔22に流入しない。このように、逆止弁10は第1の連通孔21から第2の連通孔22への流体の流れを許容し、第2の連通孔22から第1の連通孔21への流れを阻止する。   Two forces, the air pressure of the second communication hole 22 and the spring force of the compression coil spring 36, are applied to the valve body 24 as thrust in the direction toward the valve seat 23, that is, the direction closing the valve seat 23. Further, the air pressure of the first communication hole 21 is applied to the valve body 24 as a thrust in a direction away from the valve seat 23, that is, a direction in which the valve seat 23 is opened. When the pressure of the air guided by the pipe 17 and supplied to the first communication hole 21 becomes larger than the thrust applied in the direction of closing the valve body 24, the valve body 24 is moved to the valve seat as shown in FIG. The valve seat 23 is opened away from the valve 23. Thus, the air supplied from the pipe 17 to the first communication hole 21 flows into the second communication hole 22 and passes through the radial communication hole 45 and the axial communication hole 44 formed in the valve body 24. It flows out from the pipe 18 to the outside. On the other hand, when the thrust in the direction toward the valve seat 23 becomes larger than the thrust in the reverse direction, the seal member 26 of the valve body 24 comes into close contact with the valve seat 23 and the valve seat 23 is closed. Accordingly, as shown in FIG. 1, the air guided by the pipe 17 and supplied to the first communication hole 21 does not flow into the second communication hole 22. As described above, the check valve 10 allows the flow of fluid from the first communication hole 21 to the second communication hole 22 and prevents the flow from the second communication hole 22 to the first communication hole 21. .

径方向連通孔45は、摺動部31と流路形成部41とに軸方向に跨る位置に形成されている。それぞれの径方向連通孔45の径方向内方端は軸方向連通孔44の底部に開口している。径方向連通孔45の径方向外方端は、摺動部31の摺動面32と、流路形成部41の連通外周面43との両方に、軸方向に跨るように開口している。円形の径方向連通孔45の横断面のうち半円部分が摺動部31に形成され、残りの半円部分が流路形成部41に形成されている。それぞれの径方向連通孔45の外方端部は、摺動部31と流路形成部41との間の径方向の段差面46に開口している。つまり、径方向連通孔45の中心は段差面46の軸方向位置とほぼ同じ場所に位置しているとも言える。したがって、外方端のうち、摺動面32に開口する部分は、図1に示されるように、第2の連通孔22により覆われるから実質的に開口しないことになる。しかし、段差面46と径方向連通孔45の外方端部との間にはエッジ47があり、エッジ47の間の連通開口部48は、案内流路42に対し軸方向に対向して開口する。   The radial communication hole 45 is formed at a position straddling the sliding portion 31 and the flow path forming portion 41 in the axial direction. The radially inner end of each radial communication hole 45 opens at the bottom of the axial communication hole 44. The radially outer end of the radial communication hole 45 is open on both the sliding surface 32 of the sliding portion 31 and the communication outer peripheral surface 43 of the flow path forming portion 41 so as to straddle in the axial direction. A semicircular portion of the cross section of the circular radial communication hole 45 is formed in the sliding portion 31, and the remaining semicircular portion is formed in the flow path forming portion 41. An outer end portion of each radial communication hole 45 opens in a radial step surface 46 between the sliding portion 31 and the flow path forming portion 41. In other words, it can be said that the center of the radial communication hole 45 is located at substantially the same position as the axial position of the step surface 46. Therefore, a portion of the outer end that opens to the sliding surface 32 is substantially not opened because it is covered by the second communication hole 22 as shown in FIG. However, there is an edge 47 between the step surface 46 and the outer end portion of the radial communication hole 45, and the communication opening 48 between the edges 47 opens in the axial direction opposite to the guide channel 42. To do.

このように、径方向連通孔45の外方端部は、案内流路42に沿う方向に連通外周面43に開口する部分と、案内流路42に軸方向に対向して段差面46に開口する部分とを有している。これにより、弁座23が開放されたときには、配管17から供給されて第1の連通孔21から第2の連通孔22に流入した空気は、径方向連通孔45が連通外周面43に開口する部分と、連通開口部48を形成する段差面46に開口する部分との双方から径方向連通孔45内に流入し、軸方向連通孔44を介して配管18から外部に流出する。したがって、径方向連通孔45の外方端は、その全面が連通外周面43には開口していないが、案内流路42に軸方向に対向する連通開口部48を介して径方向連通孔45と案内流路42とが連通しているので、それぞれの径方向連通孔45の径を大きくすることなく、案内流路42と軸方向連通孔44との流通断面積を大きくすることができる。4つの径方向連通孔45の合計の断面積は、軸方向連通孔44の断面積と同等かそれ以上の面積に設定されており、径方向連通孔45の流通抵抗は軸方向連通孔44の流通抵抗と同等かそれよりも小さくなっている。   As described above, the outer end of the radial communication hole 45 has a portion that opens to the communication outer peripheral surface 43 in the direction along the guide flow path 42, and an opening to the step surface 46 that faces the guide flow path 42 in the axial direction. And a portion to be Thus, when the valve seat 23 is opened, the air supplied from the pipe 17 and flowing into the second communication hole 22 from the first communication hole 21 opens the radial communication hole 45 in the communication outer peripheral surface 43. The gas flows into the radial communication hole 45 from both the part and the part opened to the step surface 46 forming the communication opening 48, and flows out from the pipe 18 through the axial communication hole 44. Therefore, the outer end of the radial communication hole 45 does not open entirely on the communication outer peripheral surface 43, but the radial communication hole 45 via the communication opening 48 that faces the guide channel 42 in the axial direction. And the guide flow path 42 communicate with each other, the flow cross-sectional area of the guide flow path 42 and the axial communication hole 44 can be increased without increasing the diameter of each radial communication hole 45. The total cross-sectional area of the four radial communication holes 45 is set to an area that is equal to or larger than the cross-sectional area of the axial communication hole 44, and the flow resistance of the radial communication holes 45 is that of the axial communication hole 44. It is equal to or smaller than the distribution resistance.

弁体24の軸方向長さを長くすると、逆止弁10の軸方向長さが大きくなるので、逆止弁を小型化することができなくなる。例えば、径方向連通孔45を、摺動部31と流路形成部41とに跨がせることなく、流路形成部41のみに形成すると、径方向連通孔45の開口部全体が連通外周面43に開口することになる。その場合には、径方向連通孔45が環状溝27に干渉しないように、流路形成部41の軸方向寸法を大きくしなければならないから、弁体24の軸方向寸法が長くなる。弁体24の軸方向寸法を長くすることなく、径方向連通孔45を連通外周面43に開口させるためには、摺動部31の軸方向寸法を短くすることになる。そのようにすると、弁体24が軸方向移動するときに弁体24が軸方向に対して倒れやすくなるので、弁体24が傾斜して弁座23に当たることがある。弁体24が傾斜した状態となって弁座23を閉塞すると、シール部材26が弁座23に対して片当たりしてしまい、弁体24のシール性が低下する。   When the axial length of the valve body 24 is increased, the axial length of the check valve 10 is increased, so that the check valve cannot be reduced in size. For example, if the radial communication hole 45 is formed only in the flow path forming part 41 without straddling the sliding part 31 and the flow path forming part 41, the entire opening of the radial communication hole 45 is communicated with the outer peripheral surface. 43 will open. In that case, since the axial dimension of the flow path forming portion 41 must be increased so that the radial communication hole 45 does not interfere with the annular groove 27, the axial dimension of the valve body 24 becomes longer. In order to open the radial communication hole 45 in the communication outer peripheral surface 43 without increasing the axial dimension of the valve body 24, the axial dimension of the sliding portion 31 is shortened. If it does so, since the valve body 24 will fall easily with respect to an axial direction when the valve body 24 moves to an axial direction, the valve body 24 may incline and may contact the valve seat 23. FIG. When the valve body 24 is inclined and the valve seat 23 is closed, the seal member 26 comes into contact with the valve seat 23 and the sealing performance of the valve body 24 is deteriorated.

これに対し、図示した逆止弁10においては、径方向連通孔45を摺動部31と流路形成部41とに跨らせて形成したので、摺動部31の軸方向長さを長くすることができる。これにより弁体24が軸方向に対して倒れにくくなるので、弁座23の閉塞時に、シール部材26が弁座23に片当たりすることを防止できた。これにより、弁体24のシール性を、弁体24の長さを長くすることなく、高めることができた。しかも、径方向連通孔45の流通面積ないし流通容積を充分に確保することができた。   On the other hand, in the illustrated check valve 10, since the radial communication hole 45 is formed so as to straddle the sliding portion 31 and the flow path forming portion 41, the axial length of the sliding portion 31 is increased. can do. As a result, the valve body 24 is unlikely to fall down in the axial direction, so that the seal member 26 can be prevented from coming into contact with the valve seat 23 when the valve seat 23 is closed. Thereby, the sealing performance of the valve body 24 could be enhanced without increasing the length of the valve body 24. In addition, the flow area or flow volume of the radial communication hole 45 can be sufficiently secured.

図4(A)に示されるように、径方向連通孔45の中心は段差面46の位置となっており、連通開口部48の幅寸法つまり円周方向寸法は径dの寸法と同一となっている。径方向連通孔45の中心を図4(A)において頭部25側に寄せると、連通開口部48の幅寸法は径dの寸法よりも小さくなり、径方向連通孔45の連通外周面43の開口部の面積は図示する形態よりも大きくなる。これに対し、径方向連通孔45の中心を図4(A)において頭部25側から離れる方向に寄せると、連通開口部48の幅寸法は径dの寸法よりも小さくなるとともに、径方向連通孔45の連通外周面43の開口部の面積も小さくなる。   As shown in FIG. 4A, the center of the radial communication hole 45 is the position of the step surface 46, and the width dimension, that is, the circumferential dimension of the communication opening 48 is the same as the diameter d. ing. When the center of the radial communication hole 45 is brought closer to the head 25 side in FIG. 4A, the width dimension of the communication opening 48 becomes smaller than the dimension of the diameter d, and the communication outer peripheral surface 43 of the radial communication hole 45 becomes smaller. The area of the opening is larger than the illustrated form. In contrast, when the center of the radial communication hole 45 is moved away from the head 25 side in FIG. 4A, the width dimension of the communication opening 48 is smaller than the dimension of the diameter d and the radial communication is performed. The area of the opening of the communication outer peripheral surface 43 of the hole 45 is also reduced.

これらの場合に比較して、径方向連通孔45の中心を段差面46の位置とすると、連通開口部48の幅寸法を最大にすることができ、流路面積を確保すると同時に弁体24の軸方向長さが長くなることを抑制できる。径方向連通孔45の中心を図4(A)において頭部25側に寄せる場合には、連通外周面43の開口部の面積が大きくなり、流路面積を確保できるが、連通外周面43の軸方向長さが長くなり、従って弁体24の軸方向長さが長くなってしまうので、弁体を小型化することができない。   Compared to these cases, when the center of the radial direction communication hole 45 is set to the position of the step surface 46, the width dimension of the communication opening 48 can be maximized, and the flow path area is secured and at the same time the valve body 24 An increase in the axial length can be suppressed. When the center of the radial direction communication hole 45 is brought closer to the head 25 side in FIG. 4A, the area of the opening of the communication outer peripheral surface 43 becomes larger and the flow path area can be secured. Since the axial length becomes long and the axial length of the valve body 24 becomes long, the valve body cannot be downsized.

径方向連通孔45の横断面形状としては、上述した円形に限られず、長円形ないし楕円形状の形態としても良く、矩形や多角形の形態としても良い。径方向連通孔45を長円形ないし楕円形状とする形態においては、長径が弁体24の径方向を向き、短径が弁体24の軸方向を向くように径方向連通孔45が弁体24に形成される。長径が弁体24の径方向を向くと連通開口部48の幅寸法を長くすることが出来るので、流通面積が大きくなる。短径が弁体24の軸方向を向くと、弁体24の軸方向長さが長くなることを抑制できる。長円形ないし楕円形状とする場合においても、摺動部31と流路形成部41とに軸方向に跨る位置、つまり段差面46を軸方向に貫通する位置に径方向連通孔45を形成する。   The cross-sectional shape of the radial communication hole 45 is not limited to the circular shape described above, and may be an oval or elliptical shape, or may be a rectangular or polygonal shape. In the form in which the radial communication hole 45 is an oval or elliptical shape, the radial communication hole 45 is formed in the valve body 24 such that the major axis faces the radial direction of the valve body 24 and the minor axis faces the axial direction of the valve body 24. Formed. When the long diameter is directed in the radial direction of the valve body 24, the width dimension of the communication opening 48 can be increased, so that the flow area is increased. When the minor axis faces the axial direction of the valve body 24, it is possible to suppress the axial length of the valve body 24 from becoming long. Even in the case of an oval or elliptical shape, the radial communication hole 45 is formed at a position straddling the sliding portion 31 and the flow path forming portion 41 in the axial direction, that is, at a position penetrating the step surface 46 in the axial direction.

図5(A)は弁体の変形例を示す正面図であり、図5(B)は図5(A)の縦断面図である。この弁体24の径方向連通孔45の横断面形状は、四辺形つまり矩形となっている。矩形の径方向連通孔45は、上述した形態と同様に、摺動部31と流路形成部41とに軸方向に跨る位置に形成されている。   FIG. 5 (A) is a front view showing a modification of the valve body, and FIG. 5 (B) is a longitudinal sectional view of FIG. 5 (A). The cross-sectional shape of the radial communication hole 45 of the valve body 24 is a quadrilateral, that is, a rectangle. The rectangular radial communication hole 45 is formed at a position across the sliding portion 31 and the flow path forming portion 41 in the axial direction, as in the above-described embodiment.

バルブハウジング12には、図1および図2に示されるように、バイパス部51が設けられ、このバイパス部51には弁取付孔52が形成されている。案内流路42と弁取付孔52とを連通する流路53aと、弁取付孔52を介して流路53aと第1の連通孔21とを連通させる流路53bとが、バルブハウジング12に形成されている。両方の流路53a,53bにより案内流路42と第1の連通孔21とを連通させるバイパス流路53が構成される。弁取付孔52にはバイパス流路53の開度を調整するために開度調整弁54が設けられている。この開度調整弁54は、先端にニードル弁55が設けられたねじ軸56を有し、ねじ軸56の基端部には回転操作部57が設けられている。ねじ軸56を回転させると、ニードル弁55が軸方向に移動してバイパス流路53の開度が調整される。調整された開度を固定するために、ねじ軸56にはロックナット58がねじ結合されている。   As shown in FIGS. 1 and 2, the valve housing 12 is provided with a bypass portion 51, and a valve mounting hole 52 is formed in the bypass portion 51. A flow path 53 a that connects the guide flow path 42 and the valve mounting hole 52, and a flow path 53 b that connects the flow path 53 a and the first communication hole 21 via the valve mounting hole 52 are formed in the valve housing 12. Has been. A bypass flow path 53 that connects the guide flow path 42 and the first communication hole 21 is constituted by both the flow paths 53a and 53b. An opening adjustment valve 54 is provided in the valve mounting hole 52 in order to adjust the opening of the bypass passage 53. The opening adjustment valve 54 has a screw shaft 56 with a needle valve 55 provided at the tip, and a rotation operation portion 57 is provided at the base end of the screw shaft 56. When the screw shaft 56 is rotated, the needle valve 55 moves in the axial direction, and the opening degree of the bypass passage 53 is adjusted. In order to fix the adjusted opening degree, a lock nut 58 is screwed to the screw shaft 56.

逆止弁10にバイパス流路53を設けると、第2のポート15に取り付けられた配管18から流入した空気は、バイパス流路53を介して第1の連通孔21に流出する。このように、バイパス流路53は、第1のポート13に取り付けられた配管17に流入した空気を案内することができる。   When the bypass flow path 53 is provided in the check valve 10, the air that flows in from the pipe 18 attached to the second port 15 flows out to the first communication hole 21 through the bypass flow path 53. In this way, the bypass flow path 53 can guide the air that has flowed into the pipe 17 attached to the first port 13.

上述した逆止弁10とは異なる逆止弁10a,10bを、比較例として図6〜図9に示す。これらの図においては、上述した逆止弁10における部材と共通性を有する部材には同一の符号が付されている。   Check valves 10a and 10b different from the above-described check valve 10 are shown in FIGS. 6 to 9 as comparative examples. In these drawings, the same reference numerals are given to members having commonality with the members of the check valve 10 described above.

図6および図7に示される逆止弁10aの弁体24は、径方向連通孔45の外方端が流路形成部41の連通外周面43に開口している。このように、弁体24の軸方向長さを上述した逆止弁10の弁体24と同一に設定しつつ、連通外周面43に沿う開口面で案内流路42と径方向連通孔45とを連通させると、摺動部31の軸方向長さを短くし、摺動部31の幅を小さくする必要がある。この寸法を短くすると、弁体24が弁座23を閉塞したときに、弁座23とシール部材26との間を介して第1の連通孔21から第2の連通孔22に空気が漏出する場合があることが、逆止弁10aの作動試験により判明した。作動回数の累積により洩れが生じやすくなる。この理由は、摺動部31の軸方向寸法が短いので、弁体24の開閉動作時に弁体24の中心軸が第2の連通孔22の中心軸に対して傾斜しやすくなり、弁体24が傾斜した状態で弁座23を閉塞したときにシール部材26が弁座23に片当たりしていると考えられる。   The valve body 24 of the check valve 10 a shown in FIGS. 6 and 7 has an outer end of the radial direction communication hole 45 opening on the communication outer peripheral surface 43 of the flow path forming portion 41. As described above, the guide channel 42 and the radial communication hole 45 are formed on the opening surface along the communication outer peripheral surface 43 while setting the axial length of the valve body 24 to be the same as that of the valve body 24 of the check valve 10 described above. , The axial length of the sliding portion 31 needs to be shortened and the width of the sliding portion 31 needs to be reduced. When this dimension is shortened, when the valve body 24 closes the valve seat 23, air leaks from the first communication hole 21 to the second communication hole 22 through the space between the valve seat 23 and the seal member 26. It has been found by the operation test of the check valve 10a that there is a case. Leakage is likely to occur due to the cumulative number of operations. This is because the axial dimension of the sliding portion 31 is short, so that the central axis of the valve body 24 tends to be inclined with respect to the central axis of the second communication hole 22 when the valve body 24 is opened and closed. It is considered that the seal member 26 is in contact with the valve seat 23 when the valve seat 23 is closed in a state where the valve seat 23 is inclined.

一方、図8および図9に示される逆止弁10bの弁体24には、摺動部31a,31bが径方向連通孔45の軸方向両側に設けられている。頭部側の摺動部31aには、第1の連通孔21と径方向連通孔45とを連通させるための図示しない切欠き部が形成されている。このように、弁体24の頭部側と基端部側とに2つの摺動部31a,31bを設けると、図6および図7に示した逆止弁10aに比較して弁体24の開閉動作時に弁体24が傾斜することを防止できた。しかしながら、弁体24が弁座23を開放したときに、切欠き部を介して流れる空気の流れは、頭部側の摺動部31aに邪魔されることになる。このため、弁体24が弁座23を開放したときにおける空気の流量が、上述した逆止弁10,10aに比較して減少することが避けられなかった。   On the other hand, the valve body 24 of the check valve 10 b shown in FIGS. 8 and 9 is provided with sliding portions 31 a and 31 b on both axial sides of the radial communication hole 45. The sliding portion 31a on the head side is formed with a notch (not shown) for allowing the first communication hole 21 and the radial communication hole 45 to communicate with each other. As described above, when the two sliding portions 31a and 31b are provided on the head side and the base end side of the valve body 24, the valve body 24 is compared with the check valve 10a shown in FIGS. It was possible to prevent the valve body 24 from being inclined during the opening / closing operation. However, when the valve body 24 opens the valve seat 23, the flow of air flowing through the notch is obstructed by the sliding portion 31a on the head side. For this reason, it is inevitable that the flow rate of air when the valve body 24 opens the valve seat 23 is reduced as compared with the check valves 10 and 10a described above.

図1〜図4に示した逆止弁10においては、径方向連通孔45が連通外周面43と摺動面32とを跨いで形成されている。したがって、径方向連通孔45は、連通外周面43に径方向に開口した開口部と、案内流路42に対向して軸方向に開口した開口部との双方によって案内流路42に連通する。これにより、弁体24が弁座23から離れた弁座開放時には、案内流路42と径方向連通孔45との連通開度を大きくすることができ、弁体24の軸方向長さを長くすることなく、弁座開放時における流体流量を高めることができる。さらに、径方向連通孔45の一部が連通外周面43に開口しているので、弁体24の長さを長くすることなく、摺動部31の軸方向長さを長くすることができる。弁体24の軸方向の移動時における同軸度が確保されて、弁体24の弁座23に対する片当たりの発生が防止される。これにより、弁座23が弁体24により閉塞されたときにおける弁座23のシール性を高めることができる。   In the check valve 10 shown in FIGS. 1 to 4, the radial communication hole 45 is formed across the communication outer peripheral surface 43 and the sliding surface 32. Accordingly, the radial communication hole 45 communicates with the guide flow path 42 by both an opening portion opened in the radial direction on the communication outer peripheral surface 43 and an opening portion opened in the axial direction opposite to the guide flow passage 42. Thereby, when the valve body 24 is opened away from the valve seat 23, the communication opening degree between the guide channel 42 and the radial communication hole 45 can be increased, and the axial length of the valve body 24 is increased. Therefore, the fluid flow rate when the valve seat is opened can be increased. Furthermore, since a part of the radial direction communication hole 45 opens in the communication outer peripheral surface 43, the axial length of the sliding portion 31 can be increased without increasing the length of the valve body 24. The degree of concentricity is ensured when the valve body 24 moves in the axial direction, and the occurrence of per contact of the valve body 24 against the valve seat 23 is prevented. Thereby, the sealing property of the valve seat 23 when the valve seat 23 is obstruct | occluded by the valve body 24 can be improved.

弁体24には、摺動面32から軸方向に離れたところに小径摺動面38が設けられている。摺動面32が第2の連通孔22の内面を摺動し、小径摺動面38がばね受け部材35の内周面に摺動する。それら2つの摺動箇所が軸方向に離れているので、弁体24の傾斜を更に抑制し、弁座23の閉塞時に、シール部材26が弁座23に片当たりすることを更に防止している。   The valve body 24 is provided with a small-diameter sliding surface 38 away from the sliding surface 32 in the axial direction. The sliding surface 32 slides on the inner surface of the second communication hole 22, and the small diameter sliding surface 38 slides on the inner peripheral surface of the spring receiving member 35. Since these two sliding portions are separated in the axial direction, the inclination of the valve body 24 is further suppressed, and the seal member 26 is further prevented from coming into contact with the valve seat 23 when the valve seat 23 is closed. .

図4(A)と(B)においては、径方向連通孔45は円周方向にほぼ90度置きに合計4つ形成されているが、180度置きに合計2つ形成してもよい。その場合には、軸方向連通孔44の径をDとし、それぞれの径方向連通孔45の径をdとすると、径dは径Dよりも小径とは限らず、径dは径Dと同じであっても良い。   4A and 4B, a total of four radial communication holes 45 are formed at intervals of 90 degrees in the circumferential direction, but a total of two may be formed at intervals of 180 degrees. In this case, if the diameter of the axial communication hole 44 is D and the diameter of each radial communication hole 45 is d, the diameter d is not necessarily smaller than the diameter D, and the diameter d is the same as the diameter D. It may be.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。この逆止弁10は圧縮空気を案内する空気圧回路に設けられ、圧縮空気が流路の一方向にのみ流れるようにするために使用されるが、例えば、油圧等の液体を作動媒体とする場合にも本発明の逆止弁を適用することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The check valve 10 is provided in a pneumatic circuit that guides compressed air, and is used to allow the compressed air to flow only in one direction of the flow path. For example, when a hydraulic fluid or the like is used as a working medium The check valve of the present invention can also be applied.

この逆止弁は、空気圧源からの圧縮空気を空気圧作動機器に供給するための空気圧システムに適用される。   This check valve is applied to a pneumatic system for supplying compressed air from a pneumatic source to a pneumatic actuator.

Claims (9)

第1のポートに開口する第1の連通孔、および第2のポートに開口する第2の連通孔が形成されるとともに、前記第1と第2の連通孔の境界部に弁座が形成されたバルブハウジングと、
前記第2の連通孔に軸方向に摺動自在に装着され、前記弁座を開放して前記第1の連通孔から前記第2の連通孔へ向かう流体の流れを許容し、前記弁座を閉塞して逆方向に向かう流れを阻止する弁体と、
前記第2の連通孔に装着され、前記弁体に前記弁座に向かうばね力を付勢するばね部材とを有し、
前記弁体は、当該弁体の一端部側に設けられて前記弁座を開閉する頭部と、当該頭部よりも他端部側に設けられ前記第2の連通孔の内面を摺動する摺動面と、前記頭部と前記摺動面との間に設けられ前記摺動面よりも小径であって前記第2の連通孔の内周面との間で案内流路を形成する連通外周面と、前記摺動面と前記連通外周面との間の径方向の段差面とを有し、
前記弁体の他端面に開口して前記弁体の一端部に向けて軸方向に延びる軸方向連通孔を前記弁体に形成し、
径方向に延びて前記軸方向連通孔と前記案内流路とを連通させる径方向連通孔を、前記摺動面と前記連通外周面とに開口させて前記弁体に形成することを特徴とする逆止弁。
A first communication hole that opens to the first port and a second communication hole that opens to the second port are formed, and a valve seat is formed at the boundary between the first and second communication holes. A valve housing,
The second communication hole is slidably mounted in the axial direction, and the valve seat is opened to allow a flow of fluid from the first communication hole toward the second communication hole. A valve body that blocks and prevents flow in the opposite direction;
A spring member attached to the second communication hole and biasing a spring force toward the valve seat on the valve body;
The valve body is provided on one end side of the valve body and opens and closes the valve seat, and is provided on the other end side of the head and slides on the inner surface of the second communication hole. A communication surface that is provided between the sliding surface and the head and the sliding surface, has a smaller diameter than the sliding surface, and forms a guide channel between the inner peripheral surface of the second communication hole. An outer peripheral surface, and a radial step surface between the sliding surface and the communication outer peripheral surface ;
An opening in the other end surface of the valve body and an axial communication hole extending in the axial direction toward one end portion of the valve body are formed in the valve body,
A radial communication hole that extends in the radial direction and communicates the axial communication hole and the guide channel is formed in the valve body by opening the sliding surface and the communication outer peripheral surface. Check valve.
請求項1記載の逆止弁において、前記径方向連通孔の横断面の半分が前記摺動面に開口し、残りの半分が前記連通外周面に開口することを特徴とする逆止弁。   2. The check valve according to claim 1, wherein a half of a cross section of the radial communication hole opens in the sliding surface, and the other half opens in the communication outer peripheral surface. 請求項1記載の逆止弁において、前記軸方向連通孔の底面が前記径方向連通孔の内周面の一部に連続することを特徴とする逆止弁。   2. The check valve according to claim 1, wherein a bottom surface of the axial communication hole is continuous with a part of an inner peripheral surface of the radial communication hole. 請求項1記載の逆止弁において、前記径方向連通孔は横断面が円形であることを特徴とする逆止弁。   2. The check valve according to claim 1, wherein the radial communication hole has a circular cross section. 請求項1記載の逆止弁において、前記径方向連通孔は横断面が矩形であることを特徴とする逆止弁。   The check valve according to claim 1, wherein the radial communication hole has a rectangular cross section. 請求項1〜5のいずれか1項に記載の逆止弁において、前記ばね部材が当接する環状のばね受け部材を前記第2の連通孔に取り付け、前記ばね受け部材の内周面に摺動する小径摺動面を前記弁体の他端部に設けることを特徴とする逆止弁。   6. The check valve according to claim 1, wherein an annular spring receiving member with which the spring member abuts is attached to the second communication hole, and slides on an inner peripheral surface of the spring receiving member. A check valve characterized in that a small-diameter sliding surface is provided at the other end of the valve body. 請求項1〜6のいずれか1項に記載の逆止弁において、前記頭部に前記弁座に密着するシール部材を設けることを特徴とする逆止弁。   The check valve according to claim 1, wherein a seal member that is in close contact with the valve seat is provided on the head. 請求項1〜7のいずれか1項に記載の逆止弁において、前記径方向連通孔を前記弁体に複数形成することを特徴とする逆止弁。   The check valve according to any one of claims 1 to 7, wherein a plurality of the radial communication holes are formed in the valve body. 請求項1〜8のいずれか1項に記載の逆止弁において、前記案内流路と前記第1の連通孔とを連通させるバイパス流路を前記バルブハウジングに形成し、前記バイパス流路の開度を調整する開度調整弁を前記バルブハウジングに設けることを特徴とする逆止弁。   The check valve according to any one of claims 1 to 8, wherein a bypass flow path that connects the guide flow path and the first communication hole is formed in the valve housing, and the bypass flow path is opened. A check valve characterized in that an opening adjusting valve for adjusting the degree is provided in the valve housing.
JP2014548474A 2012-11-21 2013-07-08 Check valve Active JP5981562B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012255380 2012-11-21
JP2012255380 2012-11-21
PCT/JP2013/068607 WO2014080663A1 (en) 2012-11-21 2013-07-08 Check valve

Publications (2)

Publication Number Publication Date
JP5981562B2 true JP5981562B2 (en) 2016-08-31
JPWO2014080663A1 JPWO2014080663A1 (en) 2017-01-05

Family

ID=50775855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548474A Active JP5981562B2 (en) 2012-11-21 2013-07-08 Check valve

Country Status (3)

Country Link
JP (1) JP5981562B2 (en)
KR (1) KR101653932B1 (en)
WO (1) WO2014080663A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599238B2 (en) 2015-04-03 2017-03-21 Caterpillar Inc. Valve having improved spool geometry
KR20180006648A (en) * 2016-07-11 2018-01-19 (주)한영 Poppet valve includes a valve holder having connection-hole with curvature
KR102433370B1 (en) * 2017-08-08 2022-08-18 주식회사 만도 Check valve
KR102381048B1 (en) * 2021-12-16 2022-04-04 신한정밀 주식회사 Water meter having a valve for preventing back flow of water
CN117052331B (en) * 2023-10-12 2024-01-05 牡丹江通用石油工具有限公司 Arrow-shaped pressure relief check valve of drilling tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488740Y1 (en) * 1967-04-12 1973-03-07
JPS4869135U (en) * 1971-12-03 1973-09-01
JPS5180724U (en) * 1974-12-20 1976-06-26
JP2002122088A (en) * 2000-10-16 2002-04-26 Toyota Industries Corp Channel structure in vacuum pump
JP2005351332A (en) * 2004-06-09 2005-12-22 Nitta Moore Co Check valve
JP3136824U (en) * 2007-08-06 2007-11-08 有限会社ワタリ・システムメカニック Check valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869135A (en) 1971-12-21 1973-09-20
US4637430A (en) * 1985-12-31 1987-01-20 Nupro Company Check valve
JPS6348079U (en) * 1986-09-12 1988-04-01
JPH03136824A (en) * 1989-10-23 1991-06-11 Hitachi Shonan Denshi Co Ltd Unscrewing mold
JP3136824B2 (en) * 1993-03-17 2001-02-19 松下電器産業株式会社 PLL circuit
JPH116574A (en) 1997-06-16 1999-01-12 Mikuni Corp Check valve
JP2002022042A (en) * 2000-07-05 2002-01-23 Seiko Epson Corp Check valve and check valve joint
JP7101066B2 (en) * 2018-07-10 2022-07-14 日本ペイント・サーフケミカルズ株式会社 Chromium-free metal surface treatment agents, metal surface treatment methods, and metal substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488740Y1 (en) * 1967-04-12 1973-03-07
JPS4869135U (en) * 1971-12-03 1973-09-01
JPS5180724U (en) * 1974-12-20 1976-06-26
JP2002122088A (en) * 2000-10-16 2002-04-26 Toyota Industries Corp Channel structure in vacuum pump
JP2005351332A (en) * 2004-06-09 2005-12-22 Nitta Moore Co Check valve
JP3136824U (en) * 2007-08-06 2007-11-08 有限会社ワタリ・システムメカニック Check valve

Also Published As

Publication number Publication date
KR20150015043A (en) 2015-02-09
KR101653932B1 (en) 2016-09-02
JPWO2014080663A1 (en) 2017-01-05
WO2014080663A1 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
JP5981562B2 (en) Check valve
US9903481B2 (en) Control valve
JP5456485B2 (en) Slide valve
JP2014152885A (en) Pilot-driven solenoid valve of piston structure
KR20130054265A (en) Stackable shuttle valve
JP2007292148A (en) Check valve
JP5265406B2 (en) Check valve
US10830366B2 (en) Hydraulic valve for dampening pressure spikes, and associated systems and methods
US20160186868A1 (en) Valve device
JP2012031966A (en) Three-way valve
US20170152964A1 (en) Valve device for controlling media flows of any type
RU2007104047A (en) OUTDOOR VALVE WITH TWO-STAGE VALVE
JP7084756B2 (en) Check valve
US10451093B2 (en) Fluid pressure cylinder
KR101852833B1 (en) Multi-stage poppet valve
JP2012211654A (en) Check valve
KR101700835B1 (en) Hydraulic or Pneumatic Check Valve
JP6976403B2 (en) Check valve device
JP7346037B2 (en) flow control valve
US20150101687A1 (en) Liquid Valve Design with internal Check Valve
KR101793791B1 (en) Pressure regulate valve device having a flow blocking function
JP2008008309A (en) One-way valve and door check device
JP7033794B2 (en) non-return valve
JP7440049B1 (en) flow control valve
JP2022084255A (en) On-off valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160728

R150 Certificate of patent or registration of utility model

Ref document number: 5981562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250