JP5978862B2 - Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method - Google Patents

Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method Download PDF

Info

Publication number
JP5978862B2
JP5978862B2 JP2012191964A JP2012191964A JP5978862B2 JP 5978862 B2 JP5978862 B2 JP 5978862B2 JP 2012191964 A JP2012191964 A JP 2012191964A JP 2012191964 A JP2012191964 A JP 2012191964A JP 5978862 B2 JP5978862 B2 JP 5978862B2
Authority
JP
Japan
Prior art keywords
test piece
excitation force
relative displacement
given
dynamic characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012191964A
Other languages
Japanese (ja)
Other versions
JP2014048928A (en
Inventor
山下 健一
健一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012191964A priority Critical patent/JP5978862B2/en
Publication of JP2014048928A publication Critical patent/JP2014048928A/en
Application granted granted Critical
Publication of JP5978862B2 publication Critical patent/JP5978862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、結合面動特性計測装置及び結合面動特性計測方法に関するものである。   The present invention relates to a combined surface dynamic characteristic measuring apparatus and a combined surface dynamic characteristic measuring method.

従来から、複数の部品が結合された解析対象物を有限要素モデル化して、有限要素法(Finite Element Method;FEM)によって解析を行う際に、解析精度の向上を図ることを目的として、部品間の結合部にばね要素と減衰要素とを配置する手法が知られているが、現在の技術では、ばね要素と減衰要素とに与える変数を計算によって求めることは困難であるため、一般的には、部品間の結合部を節点の共有による結合とした有限要素モデルを用いて解析を行っている。   Conventionally, in order to improve the analysis accuracy when an analysis object in which a plurality of parts are combined is converted into a finite element model and analyzed by the finite element method (FEM), There is known a method of arranging a spring element and a damping element at the joint of the two, but in the current technology, it is difficult to obtain a variable to be given to the spring element and the damping element by calculation. The analysis is performed using a finite element model in which the joints between parts are joined by sharing nodes.

特開2004−070397号公報JP 2004-070397 A 特開2006−350475号公報JP 2006-350475 A

しかしながら、このような有限要素モデルは、結合による剛性と減衰とが存在する実機の構造とはかけ離れた剛結構造として振る舞うため、有限要素法による解析値が実測値から大きく乖離することになり、解析精度が悪化する要因となっていた。   However, since such a finite element model behaves as a rigid connection structure that is far from the structure of the actual machine where rigidity and damping due to coupling exist, the analysis value by the finite element method greatly deviates from the actual measurement value, The analysis accuracy was a factor.

そのため、ばね要素と減衰要素とに与える変数の高精度な同定を可能とし、部品間の結合部にばね要素と減衰要素とを配置する手法の実用化が強く求められている。   Therefore, there is a strong demand for practical use of a technique that enables highly accurate identification of variables given to a spring element and a damping element and that arranges the spring element and the damping element at a joint between components.

そこで、本発明の目的は、複数の部品が結合された解析対象物を有限要素モデル化する際に、複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を高精度に同定することができる結合面動特性計測装置及び結合面動特性計測方法を提供することにある。   Therefore, an object of the present invention is to increase the variable given to the spring element and the damping element that represent the characteristics of the coupling while coupling the plurality of parts when modeling the analysis object in which the plurality of parts are coupled. It is an object of the present invention to provide a combined plane dynamic characteristic measuring apparatus and a combined plane dynamic characteristic measuring method that can be accurately identified.

この目的を達成するために創案された本発明は、複数の部品が結合された解析対象物を有限要素モデル化する際に、前記複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を同定するための結合面動特性計測装置であって、第1の部品を模した第1の試験片で第2の部品を模した第2の試験片を挟み込むと共に、前記第1の試験片と前記第2の試験片との結合面に予め設定した面圧を付与する面圧付与手段と、前記面圧付与手段により結合面に面圧が付与された状態で前記第2の試験片に予め設定した加振力を付与する加振力付与手段と、前記加振力付与手段により加振力が付与されたときの前記第1の試験片と前記第2の試験片との相対変位を計測する相対変位計測手段と、前記加振力付与手段により付与された加振力と前記相対変位計測手段により計測された相対変位とに基づいて、前記面圧付与手段により付与された面圧毎に前記ばね要素と前記減衰要素とに与える変数を同定する処理手段と、を備える結合面動特性計測装置である。   In order to achieve this object, the present invention provides a spring element and a damping element that combine a plurality of parts and express characteristics of the connection when an analysis object in which a plurality of parts are combined is modeled as a finite element. A coupled surface dynamic characteristic measuring apparatus for identifying a variable to be given to an element, and sandwiching a second test piece simulating a second part with a first test piece simulating a first part, and A surface pressure applying means for applying a predetermined surface pressure to the bonding surface between the first test piece and the second test piece; and the surface pressure applied to the bonding surface by the surface pressure applying means. Excitation force applying means for applying a preset excitation force to the two test pieces, and the first test piece and the second test piece when the excitation force is applied by the excitation force applying means. The relative displacement measuring means for measuring the relative displacement with the excitation force applying means. Processing means for identifying a variable to be given to the spring element and the damping element for each surface pressure applied by the surface pressure applying means based on the excitation force and the relative displacement measured by the relative displacement measuring means A coupled surface dynamic characteristic measuring device.

前記第1の試験片の表面状態は、前記第1の部品の表面状態と同一であり、前記第2の試験片の表面状態は、前記第2の部品の表面状態と同一であると良い。   The surface state of the first test piece is the same as the surface state of the first component, and the surface state of the second test piece is preferably the same as the surface state of the second component.

前記処理手段は、前記加振力付与手段により付与された加振力と前記相対変位計測手段により計測された相対変位とに基づいて、前記ばね要素に与えるばね定数を同定すると共に、同定されたばね定数と前記加振力付与手段により付与された加振力に対する前記相対変位計測手段により計測された相対変位の遅れ角度と前記加振力付与手段により付与された加振力の加振角振動数とに基づいて、前記減衰要素に与える減衰係数を同定すると良い。   The processing means identifies a spring constant to be given to the spring element based on the excitation force applied by the excitation force application means and the relative displacement measured by the relative displacement measurement means, and the identified spring A constant and a delay angle of relative displacement measured by the relative displacement measuring unit with respect to the excitation force applied by the excitation force applying unit and an excitation angular frequency of the excitation force applied by the excitation force applying unit. Based on the above, it is preferable to identify an attenuation coefficient to be given to the attenuation element.

また、本発明は、複数の部品が結合された解析対象物を有限要素モデル化する際に、前記複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を同定するための結合面動特性計測方法であって、第1の部品を模した第1の試験片で第2の部品を模した第2の試験片を挟み込むと共に、前記第1の試験片と前記第2の試験片との結合面に予め設定した面圧を付与する工程と、結合面に面圧が付与された状態で前記第2の試験片に予め設定した加振力を付与する工程と、加振力が付与されたときの前記第1の試験片と前記第2の試験片との相対変位を計測する工程と、付与された加振力と計測された相対変位とに基づいて、付与された面圧毎に前記ばね要素と前記減衰要素とに与える変数を同定する工程と、を備える結合面動特性計測方法である。   Further, according to the present invention, when an analysis object in which a plurality of parts are combined is formed into a finite element model, a variable given to the spring element and the damping element representing the characteristics of the connection is identified while the plurality of parts are combined. A method for measuring a coupling surface dynamic characteristic for sandwiching a second test piece simulating a second part with a first test piece simulating a first part, and the first test piece and the first test piece A step of applying a preset surface pressure to the bonding surface with the test piece of 2, and a step of applying a preset excitation force to the second test piece in a state where the surface pressure is applied to the bonding surface; Based on the step of measuring the relative displacement between the first test piece and the second test piece when an excitation force is applied, and the applied excitation force and the measured relative displacement Identifying a variable to be given to the spring element and the damping element for each measured surface pressure. A mating surface dynamics measurement method.

前記第1の試験片の表面状態を前記第1の部品の表面状態と同一とし、前記第2の試験片の表面状態を前記第2の部品の表面状態と同一とすると良い。   The surface state of the first test piece may be the same as the surface state of the first part, and the surface state of the second test piece may be the same as the surface state of the second part.

前記ばね要素と前記減衰要素とに与える変数を同定する工程では、付与された加振力と計測された相対変位とに基づいて、前記ばね要素に与えるばね定数を同定すると共に、同定されたばね定数と付与された加振力に対する計測された相対変位の遅れ角度と付与された加振力の加振角振動数とに基づいて、前記減衰要素に与える減衰係数を同定すると良い。   In the step of identifying the variable to be given to the spring element and the damping element, the spring constant to be given to the spring element is identified based on the applied excitation force and the measured relative displacement, and the identified spring constant Based on the measured relative displacement delay angle with respect to the applied excitation force and the excitation angular frequency of the applied excitation force, the damping coefficient applied to the damping element may be identified.

本発明によれば、複数の部品が結合された解析対象物を有限要素モデル化する際に、複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を高精度に同定することができる結合面動特性計測装置及び結合面動特性計測方法を提供することができる。   According to the present invention, when an analysis object in which a plurality of parts are combined is formed into a finite element model, the variable given to the spring element and the damping element that combine the plurality of parts and express the characteristics of the connection with high accuracy It is possible to provide a coupled plane dynamic characteristic measuring apparatus and a coupled plane dynamic characteristic measuring method that can be identified.

本発明に係る結合面動特性計測装置を示す側面図である。It is a side view which shows the combined surface dynamic characteristic measuring apparatus which concerns on this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 有限要素モデルの一例を示す図である。It is a figure which shows an example of a finite element model. 本発明に係る有限要素モデルを示す図である。It is a figure which shows the finite element model which concerns on this invention. 従来技術に係る有限要素モデルを示す図である。It is a figure which shows the finite element model which concerns on a prior art. 加振力と相対変位との関係を示す図である。It is a figure which shows the relationship between an exciting force and relative displacement. 平均面圧に対するばね定数及び減衰係数の関係を示す図である。It is a figure which shows the relationship between the spring constant with respect to an average surface pressure, and a damping coefficient. モード1〜4を示す図である。It is a figure which shows the modes 1-4.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜3に示すように、本実施の形態に係る結合面動特性計測装置10は、第1の部品を模した第1の試験片11で第2の部品を模した第2の試験片12を挟み込むと共に、第1の試験片11と第2の試験片12との結合面に予め設定した面圧を付与する面圧付与手段13と、面圧付与手段13により結合面に面圧が付与された状態で第2の試験片12に予め設定した加振力を付与する加振力付与手段14と、加振力付与手段14により加振力が付与されたときの第1の試験片11と第2の試験片12との相対変位を計測する相対変位計測手段15と、加振力付与手段14により付与された加振力と相対変位計測手段15により計測された相対変位とに基づいて、面圧付与手段13により付与された面圧毎にばね要素(ばね)と減衰要素(ダッシュポット)とに与える変数、即ちばね定数と減衰係数とを同定する処理手段(図示せず)と、を備えることを特徴とする。   As shown in FIGS. 1 to 3, the coupled surface dynamic characteristic measuring apparatus 10 according to the present embodiment is a first test piece 11 simulating a first component and a second test piece simulating a second component. The surface pressure is applied to the joint surface between the first test piece 11 and the second test piece 12, and the surface pressure is applied to the joint surface by the surface pressure imparting means 13. Excitation force applying means 14 for applying a preset excitation force to the second test piece 12 in the applied state, and the first test piece when the excitation force is applied by the excitation force applying means 14 11 based on the relative displacement measuring means 15 for measuring the relative displacement between the second test piece 12 and the excitation force applied by the excitation force applying means 14 and the relative displacement measured by the relative displacement measuring means 15. For each surface pressure applied by the surface pressure applying means 13, a spring element (spring) and a damping element (double Shupotto) and gives variable, i.e. the processing means for identifying a spring constant and damping coefficient (not shown), characterized in that it comprises a.

本実施の形態では、一例として、図4に示すように、シリンダヘッド41、シリンダブロック42、及びラダーフレーム43等の複数の部品が結合されたエンジン単シリンダを解析対象物として有限要素モデル化する場合を説明する。   In the present embodiment, as an example, as shown in FIG. 4, a finite element model is generated using an engine single cylinder in which a plurality of parts such as a cylinder head 41, a cylinder block 42, and a ladder frame 43 are combined as an analysis object. Explain the case.

結合面動特性計測装置10は、図5に示すように、複数の部品が結合された解析対象物を有限要素モデル化する際に、複数の部品を結合すると共に結合の特性を表すばね要素51と減衰要素52とに与えるばね定数と減衰係数とを同定するためのものである。   As shown in FIG. 5, the coupled surface dynamic characteristic measuring apparatus 10 combines a plurality of parts and represents a coupling characteristic when a finite element model of an analysis object in which a plurality of parts are coupled is represented. And a damping coefficient to be given to the damping element 52 and a damping coefficient.

従来は、ばね要素51と減衰要素52とに与えるばね定数と減衰係数とを計算によって求めることが困難であるとの理由から、図6に示すように、部品間の結合部を節点61の共有による結合、即ち節点結合として解析を行っていた。   Conventionally, since it is difficult to obtain the spring constant and the damping coefficient given to the spring element 51 and the damping element 52 by calculation, the joint between the parts is shared by the node 61 as shown in FIG. In other words, the analysis was performed as a joint by knots, that is, a node joint.

しかしながら、部品間の結合部を節点結合とした有限要素モデルは、結合による剛性と減衰とが存在する実機の構造とはかけ離れた剛結構造として振る舞うため、有限要素法による解析値が実測値から大きく乖離することになり、解析精度が悪化する要因となっていた。   However, the finite element model in which the joints between the parts are connected to each other behaves as a rigid connection structure that is far from the structure of the actual machine where the rigidity and damping due to the connection exist. The result was a large difference, which was a factor that deteriorated the analysis accuracy.

このような課題を解決し、部品間の結合部をばね要素51と減衰要素52とで有限要素モデル化するために、ばね要素51と減衰要素52とに与えるばね定数と減衰係数とを高精度に同定するために創案された発明が結合面動特性計測装置10である。   In order to solve such a problem and to model the coupling portion between the parts with the spring element 51 and the damping element 52, the spring constant and the damping coefficient given to the spring element 51 and the damping element 52 are highly accurate. The invention invented for the identification is the combined plane dynamic characteristic measuring device 10.

第1の試験片11は、第1の部品(例えば、シリンダヘッド41)と同一の材料で形成され、第2の試験片12は、第2の部品(例えば、シリンダブロック42)と同一の材料で形成される。また、第1の試験片11の表面状態は、第1の部品の表面状態と同一であり、第2の試験片12の表面状態は、第2の部品の表面状態と同一であることが好ましい。   The first test piece 11 is formed of the same material as the first part (for example, the cylinder head 41), and the second test piece 12 is the same material as the second part (for example, the cylinder block 42). Formed with. Further, the surface state of the first test piece 11 is preferably the same as the surface state of the first component, and the surface state of the second test piece 12 is preferably the same as the surface state of the second component. .

これは、ばね定数と減衰係数は、付与する面圧の差異により変化する一方で、結合部を形成する第1の部品と第2の部品のヤング率やポアソン比等の材料固有の機械的特性の他、表面粗さや平坦度等の表面状態にも影響を受けるからである。   This is because the spring constant and the damping coefficient change due to the difference in the applied surface pressure, while the mechanical properties unique to the material such as the Young's modulus and Poisson's ratio of the first and second parts forming the coupling portion. In addition, it is also affected by surface conditions such as surface roughness and flatness.

このような理由から、第1の試験片11と第2の試験片12は、実機の結合部を形成する第1の部品と第2の部品とから実際に切り出して作製されることが最も望ましいが、第1の部品と第2の部品の図面等の情報から結合部を忠実に模して作製されても構わない。   For these reasons, it is most desirable that the first test piece 11 and the second test piece 12 are actually cut out from the first part and the second part that form the coupling portion of the actual machine. However, the coupling portion may be faithfully modeled from information such as drawings of the first component and the second component.

面圧付与手段13は、結合面に対して垂直な方向に沿って設けられたリニアガイドレール16と、リニアガイドレール16上を走行するリニアガイド17を有すると共に、第1の試験片11と第2の試験片12とを挟み込んで結合面に面圧を付与する面圧付与部18と、面圧付与部18にスラストローラベアリング19を介して取り付けられると共に、計測器本体20の両側から面圧付与部18に荷重を印加するボルト21と、ボルト21によって印加された荷重を計測する荷重計22と、を備える。   The surface pressure applying means 13 includes a linear guide rail 16 provided along a direction perpendicular to the coupling surface, a linear guide 17 that travels on the linear guide rail 16, and the first test piece 11 and the first test piece 11. The surface pressure applying portion 18 that sandwiches the two test pieces 12 to apply a surface pressure to the coupling surface, and is attached to the surface pressure applying portion 18 via a thrust roller bearing 19 and the surface pressure from both sides of the measuring instrument main body 20. A bolt 21 for applying a load to the applying unit 18 and a load meter 22 for measuring the load applied by the bolt 21 are provided.

結合面に付与される面圧は、荷重計22の計測値を第1の試験片11と第2の試験片12との結合面積で除算することにより求めることができる。   The surface pressure applied to the bonding surface can be obtained by dividing the measured value of the load cell 22 by the bonding area between the first test piece 11 and the second test piece 12.

面圧付与手段13を用いて結合面に予め設定した面圧を付与するためには、荷重計22の計測値を第1の試験片11と第2の試験片12との結合面積で除算した値が予め設定した面圧の値となるように、ボルト21を回転させて印加される荷重を調整すれば良い。   In order to apply a preset surface pressure to the bonding surface using the surface pressure applying means 13, the measured value of the load cell 22 is divided by the bonding area between the first test piece 11 and the second test piece 12. What is necessary is just to adjust the load applied by rotating the volt | bolt 21 so that a value may become the value of the preset surface pressure.

なお、結合面に付与される面圧の求め方は、これに限定されるものではなく、例えば、感圧紙を用いて求めても良い。   In addition, how to obtain | require the surface pressure provided to a joint surface is not limited to this, For example, you may obtain | require using a pressure sensitive paper.

加振力付与手段14は、先端部が第2の試験片12の中心部にスタッドボルト23を介して取り付けられると共に、結合面に対して平行な方向に変動荷重を印加して第2の試験片12に加振力を付与するリニア単軸ロボット24と、リニア単軸ロボット24によって印加された変動荷重を計測する荷重計25と、を備える。   The excitation force applying means 14 is attached to the center portion of the second test piece 12 via the stud bolt 23 and applies a fluctuating load in a direction parallel to the coupling surface in the second test. A linear single-axis robot 24 that applies an excitation force to the piece 12 and a load meter 25 that measures a fluctuating load applied by the linear single-axis robot 24 are provided.

第2の試験片12に付与される加振力は、荷重計25の計測値から求めることができる。   The excitation force applied to the second test piece 12 can be obtained from the measurement value of the load meter 25.

加振力付与手段14を用いて第2の試験片12に予め設定した加振力を付与するためには、荷重計25の計測値が予め設定した加振力の値となるように、リニア単軸ロボット24の加振波形や加振角振動数を調整すれば良い。   In order to apply a preset excitation force to the second test piece 12 using the excitation force applying means 14, linear measurement is performed so that the measurement value of the load cell 25 becomes a preset excitation force value. The excitation waveform and the excitation angular frequency of the single axis robot 24 may be adjusted.

相対変位計測手段15は、XYリニアステージ26上に載置されると共に、加振力付与手段14により加振力が付与されたときの第1の試験片11の変位を計測する第1の変位センサ27と、XYリニアステージ26上に載置されると共に、加振力付与手段14により加振力が付与されたときの第2の試験片12の変位を計測する第2の変位センサ28と、を備える。   The relative displacement measuring unit 15 is placed on the XY linear stage 26 and measures the displacement of the first test piece 11 when the excitation force is applied by the excitation force applying unit 14. A sensor 27 and a second displacement sensor 28 that is mounted on the XY linear stage 26 and measures the displacement of the second test piece 12 when the excitation force is applied by the excitation force applying means 14. .

第1の変位センサ27と第2の変位センサ28は、例えば、静電容量型の変位センサからなる。   The first displacement sensor 27 and the second displacement sensor 28 are, for example, capacitive displacement sensors.

第1の試験片11と第2の試験片12との相対変位は、第1の変位センサ27の計測値から第2の変位センサ28の計測値を減算することにより求めることができる。   The relative displacement between the first test piece 11 and the second test piece 12 can be obtained by subtracting the measurement value of the second displacement sensor 28 from the measurement value of the first displacement sensor 27.

処理手段は、例えば、マイクロプロセッサやメモリ等を搭載したコンピュータを備え、加振力付与手段14により付与された加振力と相対変位計測手段15により計測された相対変位とに基づいて、ばね要素51に与えるばね定数を同定すると共に、同定されたばね定数と加振力付与手段14により付与された加振力に対する相対変位計測手段15により計測された相対変位の遅れ角度と加振力付与手段14により付与された加振力の加振角振動数とに基づいて、減衰要素52に与える減衰係数を同定するものである。   The processing unit includes, for example, a computer equipped with a microprocessor, a memory, and the like, and based on the excitation force applied by the excitation force applying unit 14 and the relative displacement measured by the relative displacement measuring unit 15, the spring element 51 is identified, and the relative displacement delay angle measured by the relative displacement measuring means 15 with respect to the identified spring constant and the excitation force applied by the excitation force applying means 14 and the excitation force applying means 14. The damping coefficient to be given to the damping element 52 is identified based on the excitation angular frequency of the excitation force applied by.

次に、結合面動特性計測装置10を用いた結合面動特性計測方法を説明する。   Next, a method for measuring a combined surface dynamic characteristic using the combined surface dynamic characteristic measuring apparatus 10 will be described.

本実施の形態に係る結合面動特性計測方法は、複数の部品が結合された解析対象物を有限要素モデル化する際に、複数の部品を結合すると共に結合の特性を表すばね要素51と減衰要素52とに与えるばね定数と減衰係数とを同定するためのものであり、第1の部品を模した第1の試験片11で第2の部品を模した第2の試験片12を挟み込むと共に、第1の試験片11と第2の試験片12との結合面に予め設定した面圧を付与する工程と、結合面に面圧が付与された状態で第2の試験片12に予め設定した加振力を付与する工程と、加振力が付与されたときの第1の試験片11と第2の試験片12との相対変位を計測する工程と、付与された加振力と計測された相対変位とに基づいて、付与された面圧毎にばね要素51と減衰要素52とに与えるばね定数と減衰係数とを同定する工程と、を備えることを特徴とする。   In the coupled surface dynamic characteristic measurement method according to the present embodiment, when an analysis object in which a plurality of parts are coupled is modeled as a finite element model, the spring element 51 and the damping that represent the coupling characteristics are coupled to the plurality of parts. This is for identifying the spring constant and damping coefficient applied to the element 52, and sandwiching the second test piece 12 simulating the second part with the first test specimen 11 simulating the first part. The step of applying a predetermined surface pressure to the joint surface between the first test piece 11 and the second test piece 12 and the second test piece 12 preset with the surface pressure applied to the joint surface A step of applying the applied excitation force, a step of measuring relative displacement between the first test piece 11 and the second test piece 12 when the excitation force is applied, and the applied excitation force and measurement. The spring element 51 and the damping element 52 for each applied surface pressure based on the applied relative displacement. A step of identifying the Erubane constant and damping coefficient, characterized in that it comprises a.

第1の試験片11の表面状態を第1の部品の表面状態と同一とし、第2の試験片12の表面状態を第2の部品の表面状態と同一とすることが望ましい。   It is desirable that the surface state of the first test piece 11 is the same as the surface state of the first component, and the surface state of the second test piece 12 is the same as the surface state of the second component.

ばね要素51と減衰要素52とに与えるばね定数と減衰係数とを同定する工程では、付与された加振力と計測された相対変位とに基づいて、ばね要素51に与えるばね定数を同定すると共に、同定されたばね定数と付与された加振力に対する計測された相対変位の遅れ角度と付与された加振力の加振角振動数とに基づいて、減衰要素52に与える減衰係数を同定する。   In the step of identifying the spring constant and damping coefficient applied to the spring element 51 and the damping element 52, the spring constant applied to the spring element 51 is identified based on the applied excitation force and the measured relative displacement. The damping coefficient to be given to the damping element 52 is identified based on the identified spring constant, the delay angle of the measured relative displacement with respect to the applied excitation force, and the excitation angular frequency of the applied excitation force.

例えば、図7に示すように、面圧付与手段13により結合面に面圧が付与された状態で、加振力付与手段14により第2の試験片12に加振角振動数ωの正弦波形の加振力F=F0sin(ωt)を付与された場合、結合面に減衰が存在するならば、相対変位Xには加振力Fに対して遅れが生じる。その遅れ角度をδと定義すれば、相対変位はX=X0sin(ωt−δ)で定義される。ここで、F0は最大加振力、X0は最大相対変位、tは時間である。 For example, as shown in FIG. 7, a sinusoidal waveform having an excitation angular frequency ω is applied to the second test piece 12 by the excitation force applying unit 14 in a state where the surface pressure is applied to the coupling surface by the surface pressure applying unit 13. When the excitation force F = F 0 sin (ωt) is applied, the relative displacement X is delayed with respect to the excitation force F if there is damping on the coupling surface. If the delay angle is defined as δ, the relative displacement is defined as X = X 0 sin (ωt−δ). Here, F 0 is the maximum excitation force, X 0 is the maximum relative displacement, and t is time.

この場合のばね定数kと減衰係数Cは以下の式(1)で定義される。   The spring constant k and the damping coefficient C in this case are defined by the following formula (1).

このばね定数kと減衰係数Cは、結合面の平均面圧に対して図8に示すような変化を示す。   The spring constant k and the damping coefficient C change as shown in FIG. 8 with respect to the average surface pressure of the coupling surface.

つまり、結合面動特性計測装置10を用いて、面圧付与手段13により結合面に付与する面圧を変化させていき、図8に示したような図を完成させた後に、この図と面圧の分布とに基づいて、有限要素モデルの節点間のばね要素51と減衰要素52とに与える適切なばね定数kと減衰係数Cとを同定する。   That is, the surface pressure imparted to the coupled surface is changed by the surface pressure imparting means 13 using the coupled surface dynamic characteristic measuring device 10, and after completing the diagram as shown in FIG. Based on the pressure distribution, an appropriate spring constant k and damping coefficient C to be given to the spring element 51 and the damping element 52 between the nodes of the finite element model are identified.

結合面動特性計測装置10による計測結果から、ばね定数kと減衰係数Cとが同定されたならば、第1の試験片11と第2の試験片12との結合面積と実機の複数の部品間の結合面積との比率に応じて、有限要素モデルの節点間に同定されたばね定数kと減衰係数Cとが与えられたばね要素51と減衰要素52とを配置していけば良い。   If the spring constant k and the damping coefficient C are identified from the measurement result by the coupling surface dynamic characteristic measuring device 10, the coupling area between the first test piece 11 and the second test piece 12 and a plurality of parts of the actual machine The spring element 51 and the damping element 52 to which the spring constant k and the damping coefficient C identified between the nodes of the finite element model are given may be arranged in accordance with the ratio of the coupling area between them.

これにより、実機に極めて近い特性を持つ有限要素モデルを作製することができるため、複数の部品が結合された解析対象物を有限要素モデル化して、有限要素法によって解析を行う際に、解析精度の向上を図ることが可能となる。   This makes it possible to create a finite element model that has characteristics that are very close to those of the actual machine. Can be improved.

これまで説明したように、本発明によれば、複数の部品が結合された解析対象物を有限要素モデル化する際に、複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を高精度に同定することができる結合面動特性計測装置及び結合面動特性計測方法を提供することができる。   As described above, according to the present invention, when an analysis object in which a plurality of parts are combined is formed into a finite element model, a spring element and a damping element that combine the plurality of parts and express the characteristics of the connection are provided. It is possible to provide a coupled plane dynamic characteristic measuring apparatus and a coupled plane dynamic characteristic measuring method capable of identifying a variable given to the above with high accuracy.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

図9(a)〜(d)に示すように、図4のエンジン単シリンダを有限要素モデル化し、1次モードから4次モードの4つのモードの固有振動数を解析した。解析結果を表1に示す。   As shown in FIGS. 9A to 9D, the engine single cylinder of FIG. 4 was modeled as a finite element, and the natural frequencies of the four modes from the primary mode to the quaternary mode were analyzed. The analysis results are shown in Table 1.

ここで、実施例とは、複数の部品の結合部に結合面動特性計測装置10によりばね定数と減衰係数とを同定したばね要素と減衰要素とを配置して有限要素モデル化を行った場合であり、比較例とは、複数の部品の結合部を節点結合として有限要素モデル化を行った場合である。   Here, the embodiment is a case where the finite element modeling is performed by arranging the spring element and the damping element whose spring constant and damping coefficient are identified by the coupling surface dynamic characteristic measuring device 10 at the coupling portion of a plurality of parts. The comparative example is a case where finite element modeling is performed by using a joint portion of a plurality of parts as a node joint.

表1から分かるように、複数の部品の結合部を節点結合として有限要素モデル化を行った比較例に比べて、複数の部品の結合部にばね要素と減衰要素とを配置して有限要素モデル化を行った実施例の方が、解析値と実測値との乖離が小さくなっている。   As can be seen from Table 1, a finite element model in which spring elements and damping elements are arranged at the joints of a plurality of parts as compared to the comparative example in which the joints of a plurality of parts are jointed as node joints. The difference between the analysis value and the actual measurement value is smaller in the embodiment in which the conversion is performed.

以上の結果から、本発明により同定したばね定数と減衰係数とを与えたばね要素と減衰要素とで結合部を有限要素モデル化することで、優れた解析精度を得ることができることが実証された。   From the above results, it was proved that excellent analysis accuracy can be obtained by modeling the coupling portion with the spring element and the damping element given the spring constant and damping coefficient identified by the present invention.

10 結合面動特性計測装置
11 第1の試験片
12 第2の試験片
13 面圧付与手段
14 加振力付与手段
15 相対変位計測手段
16 リニアガイドレール
17 リニアガイド
18 面圧付与部
19 スラストローラベアリング
20 計測器本体
21 ボルト
22 荷重計
23 スタッドボルト
24 リニア単軸ロボット
25 荷重計
26 XYリニアステージ
27 第1の変位センサ
28 第2の変位センサ
DESCRIPTION OF SYMBOLS 10 Coupling surface dynamic characteristic measuring apparatus 11 1st test piece 12 2nd test piece 13 Surface pressure provision means 14 Excitation force provision means 15 Relative displacement measurement means 16 Linear guide rail 17 Linear guide 18 Surface pressure provision part 19 Thrust roller Bearing 20 Measuring instrument body 21 Bolt 22 Load meter 23 Stud bolt 24 Linear single-axis robot 25 Load meter 26 XY linear stage 27 First displacement sensor 28 Second displacement sensor

Claims (6)

複数の部品が結合された解析対象物を有限要素モデル化する際に、前記複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を同定するための結合面動特性計測装置であって、
第1の部品を模した第1の試験片で第2の部品を模した第2の試験片を挟み込むと共に、前記第1の試験片と前記第2の試験片との結合面に予め設定した面圧を付与する面圧付与手段と、
前記面圧付与手段により結合面に面圧が付与された状態で前記第2の試験片に予め設定した加振力を付与する加振力付与手段と、
前記加振力付与手段により加振力が付与されたときの前記第1の試験片と前記第2の試験片との相対変位を計測する相対変位計測手段と、
前記加振力付与手段により付与された加振力と前記相対変位計測手段により計測された相対変位とに基づいて、前記面圧付与手段により付与された面圧毎に前記ばね要素と前記減衰要素とに与える変数を同定する処理手段と、
を備えることを特徴とする結合面動特性計測装置。
Coupling surface motion characteristics for identifying a variable given to a spring element and a damping element that combine the plurality of parts and represent the characteristics of the coupling when modeling an analysis object in which a plurality of parts are coupled A measuring device,
The second test piece simulating the second part is sandwiched between the first test piece simulating the first part, and the bonding surface between the first test piece and the second test piece is set in advance. Surface pressure applying means for applying surface pressure;
An excitation force applying means for applying a preset excitation force to the second test piece in a state in which a surface pressure is applied to the coupling surface by the surface pressure applying means;
Relative displacement measuring means for measuring relative displacement between the first test piece and the second test piece when the excitation force is applied by the excitation force applying means;
Based on the excitation force applied by the excitation force applying means and the relative displacement measured by the relative displacement measuring means, the spring element and the damping element for each surface pressure applied by the surface pressure applying means. And a processing means for identifying a variable to be given to
A combined plane dynamic characteristic measuring device comprising:
前記第1の試験片の表面状態は、前記第1の部品の表面状態と同一であり、前記第2の試験片の表面状態は、前記第2の部品の表面状態と同一である請求項1に記載の結合面動特性計測装置。   The surface state of the first test piece is the same as the surface state of the first part, and the surface state of the second test piece is the same as the surface state of the second part. The combined surface dynamic characteristic measuring device described in 1. 前記処理手段は、前記加振力付与手段により付与された加振力と前記相対変位計測手段により計測された相対変位とに基づいて、前記ばね要素に与えるばね定数を同定すると共に、同定されたばね定数と前記加振力付与手段により付与された加振力に対する前記相対変位計測手段により計測された相対変位の遅れ角度と前記加振力付与手段により付与された加振力の加振角振動数とに基づいて、前記減衰要素に与える減衰係数を同定する請求項1又は2に記載の結合面動特性計測装置。   The processing means identifies a spring constant to be given to the spring element based on the excitation force applied by the excitation force application means and the relative displacement measured by the relative displacement measurement means, and the identified spring A constant and a delay angle of relative displacement measured by the relative displacement measuring unit with respect to the excitation force applied by the excitation force applying unit and an excitation angular frequency of the excitation force applied by the excitation force applying unit. The coupling surface dynamic characteristic measuring device according to claim 1, wherein the damping coefficient given to the damping element is identified based on 複数の部品が結合された解析対象物を有限要素モデル化する際に、前記複数の部品を結合すると共に結合の特性を表すばね要素と減衰要素とに与える変数を同定するための結合面動特性計測方法であって、
第1の部品を模した第1の試験片で第2の部品を模した第2の試験片を挟み込むと共に、前記第1の試験片と前記第2の試験片との結合面に予め設定した面圧を付与する工程と、
結合面に面圧が付与された状態で前記第2の試験片に予め設定した加振力を付与する工程と、
加振力が付与されたときの前記第1の試験片と前記第2の試験片との相対変位を計測する工程と、
付与された加振力と計測された相対変位とに基づいて、付与された面圧毎に前記ばね要素と前記減衰要素とに与える変数を同定する工程と、
を備えることを特徴とする結合面動特性計測方法。
Coupling surface motion characteristics for identifying a variable given to a spring element and a damping element that combine the plurality of parts and represent the characteristics of the coupling when modeling an analysis object in which a plurality of parts are coupled Measuring method,
The second test piece simulating the second part is sandwiched between the first test piece simulating the first part, and the bonding surface between the first test piece and the second test piece is set in advance. Applying a surface pressure;
Applying a preset excitation force to the second test piece in a state in which a surface pressure is applied to the coupling surface;
Measuring a relative displacement between the first test piece and the second test piece when an excitation force is applied;
Identifying a variable to be given to the spring element and the damping element for each applied surface pressure based on the applied excitation force and the measured relative displacement;
A method for measuring a coupled surface dynamic characteristic, comprising:
前記第1の試験片の表面状態を前記第1の部品の表面状態と同一とし、前記第2の試験片の表面状態を前記第2の部品の表面状態と同一とする請求項4に記載の結合面動特性計測方法。   The surface state of the first test piece is the same as the surface state of the first part, and the surface state of the second test piece is the same as the surface state of the second part. Bonded surface dynamics measurement method. 前記ばね要素と前記減衰要素とに与える変数を同定する工程では、付与された加振力と計測された相対変位とに基づいて、前記ばね要素に与えるばね定数を同定すると共に、同定されたばね定数と付与された加振力に対する計測された相対変位の遅れ角度と付与された加振力の加振角振動数とに基づいて、前記減衰要素に与える減衰係数を同定する請求項4又は5に記載の結合面動特性計測方法。   In the step of identifying the variable to be given to the spring element and the damping element, the spring constant to be given to the spring element is identified based on the applied excitation force and the measured relative displacement, and the identified spring constant The damping coefficient to be given to the damping element is identified based on the measured relative displacement delay angle with respect to the applied excitation force and the excitation angular frequency of the applied excitation force. The bonded surface dynamic characteristic measurement method described.
JP2012191964A 2012-08-31 2012-08-31 Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method Expired - Fee Related JP5978862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191964A JP5978862B2 (en) 2012-08-31 2012-08-31 Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191964A JP5978862B2 (en) 2012-08-31 2012-08-31 Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2014048928A JP2014048928A (en) 2014-03-17
JP5978862B2 true JP5978862B2 (en) 2016-08-24

Family

ID=50608525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191964A Expired - Fee Related JP5978862B2 (en) 2012-08-31 2012-08-31 Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method

Country Status (1)

Country Link
JP (1) JP5978862B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784305B (en) * 2016-03-28 2018-09-25 南京理工大学 Measure the sensor of faying face normal dynamic characteristics
CN106570264B (en) * 2016-10-28 2019-10-25 南京航空航天大学 The method for adjusting exciting force is quickly fitted in pure modal test
CN108052756B (en) * 2017-12-22 2021-04-06 太原科技大学 Method for determining joint surface contact parameters based on FFT
CN110389024A (en) * 2019-06-17 2019-10-29 浙江大学 A kind of all composite fatigue experimental rigs of turbine engine rotor mortise structure height and method
CN115372134B (en) * 2022-07-29 2023-11-28 中国航发沈阳发动机研究所 Aeroengine main installation joint strength test device and loading method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068669A (en) * 1996-06-20 1998-03-10 Ricoh Co Ltd System and method for characteristic analysis system
JP3644292B2 (en) * 1999-03-15 2005-04-27 株式会社日立製作所 Structure vibration test apparatus and vibration test method

Also Published As

Publication number Publication date
JP2014048928A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5978862B2 (en) Bonded surface dynamic characteristic measuring apparatus and bonded surface dynamic characteristic measuring method
Ismail et al. An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation
Mahmoodi et al. An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams
CN102095574B (en) Joint surface dynamic characteristic parameter testing device of rolling guide rail and testing method thereof
CN102183363A (en) Dynamic characteristic parameter test device and method of sliding guide rail junction surface
Rupitsch et al. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models
CN102053061A (en) Large joint surface experiment device
Denkena et al. Design and analysis of a prototypical sensory Z-slide for machine tools
Chesne et al. Distributed piezoelectric sensors for boundary force measurements in Euler–Bernoulli beams
Sayyad et al. Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams
Wysmulski et al. Effect of load eccentricity on the buckling of thin-walled laminated C-columns
Salari-Sharif et al. Accurate stiffness measurement of ultralight hollow metallic microlattices by laser vibrometry
JP6215182B2 (en) Fatigue test method, fatigue test piece, and fatigue test apparatus
Wang et al. Online deflection estimation of X-axis beam on positioning machine
Tabaddor Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam
García-Barruetabeña et al. Experimental analysis of the vibrational response of an adhesively bonded beam
Culler et al. Developing a reduced order model from structural kinematic measurements of a flexible finite span wing in stall flutter
Wang et al. Modified and simplified sectional flexibility of a cracked beam
Korayem et al. GDQEM analysis for free vibration of V-shaped atomic force microscope cantilevers
Maruyama et al. Modal interaction in chaotic vibrations of a shallow double-curved shell-panel
Heaney et al. Distributed sensing of a cantilever beam and plate using a fiber optic sensing system
Gevinski et al. Prediction of dynamic strain using modal parameters
Ali et al. Active Vibration Suppression of Aerobatic Aircraft Wing by Acceleration Feedback Controller
CN110308061A (en) The measurement method and system of elasticity modulus of materials and density based on three-dimensional structure
JP2017116452A (en) Jig for laser displacement meter and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees