JP5978807B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5978807B2
JP5978807B2 JP2012149383A JP2012149383A JP5978807B2 JP 5978807 B2 JP5978807 B2 JP 5978807B2 JP 2012149383 A JP2012149383 A JP 2012149383A JP 2012149383 A JP2012149383 A JP 2012149383A JP 5978807 B2 JP5978807 B2 JP 5978807B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blown
blast furnace
combustion
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149383A
Other languages
Japanese (ja)
Other versions
JP2014009402A (en
Inventor
大樹 藤原
大樹 藤原
明紀 村尾
明紀 村尾
勤 桑田
勤 桑田
山本 泰之
泰之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012149383A priority Critical patent/JP5978807B2/en
Publication of JP2014009402A publication Critical patent/JP2014009402A/en
Application granted granted Critical
Publication of JP5978807B2 publication Critical patent/JP5978807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉羽口から微粉炭などの固体還元材を吹き込んで、生産性の向上及び還元材原単位の低減を図る高炉の操業方法に関するものである。   The present invention relates to a method for operating a blast furnace in which a solid reducing material such as pulverized coal is blown from a blast furnace tuyere to improve productivity and reduce the reducing material basic unit.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当たりの、羽口からの吹き込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークス及び羽口から吹き込む微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークスなどを廃プラ、LNG、重油等の水素含有率の高い還元材で置換する方策が有効である。下記特許文献1では、羽口から吹き込む微粉炭に、結晶水を含む石炭を配合し、結晶水の気化膨張を利用して微粉炭を分散させ、微粉炭の燃焼性を向上することが提案されている。 In recent years, global warming due to an increase in carbon dioxide emission has become a problem, and the suppression of exhausted CO 2 is an important issue even in the steel industry. As a result, in recent blast furnace operations, the ratio of low reducing agent ratio (low RAR: Abbreviation for Reduction Agent Ratio, the total amount of reducing material blown from the tuyere and coke charged from the top of the furnace per 1 ton of pig iron production. ) Operation is strongly promoted. Blast furnaces mainly use coke and pulverized coal blown from the tuyere as a reducing material. In order to achieve a low reducing material ratio, and in turn, to suppress carbon dioxide emission, coke is used as waste plastic, LNG, heavy oil and other hydrogen. A method of replacing with a reducing material having a high content is effective. In the following Patent Document 1, it is proposed that coal containing crystallization water is blended with pulverized coal blown from the tuyere, and the pulverized coal is dispersed by utilizing the vaporization expansion of crystallization water to improve the combustibility of the pulverized coal. ing.

特許第3450206号公報Japanese Patent No. 3450206

前記特許文献1に記載される高炉操業方法は、従来の微粉炭だけを羽口から吹き込む方法に比べれば、燃焼温度の向上や還元材原単位の低減に効果があり、特に固体状の還元材を吹き込む場合には有効である。しかしながら、前記特許文献1に記載されるように結晶水を含む石炭を用いる場合、結晶水の分解・蒸発にエネルギーが必要となり、還元材原単位の低減効果が小さくなってしまう。   The blast furnace operation method described in Patent Document 1 is more effective in improving the combustion temperature and reducing the reduction material basic unit than the conventional method of blowing only pulverized coal from the tuyere. It is effective when blowing in. However, when coal containing crystallization water is used as described in Patent Document 1, energy is required for the decomposition and evaporation of crystallization water, and the reduction effect of the reducing material basic unit is reduced.

本発明は、上記のような問題点に着目してなされたものであり、エネルギーの損失なく、固体還元材の燃焼率向上を可能とする高炉操業方法を提供することを目的とするものである。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a blast furnace operating method capable of improving the combustion rate of a solid reducing material without loss of energy. .

上記課題を解決するために、本発明の高炉操業方法は、羽口から固体還元材を吹き込む高炉操業方法において、前記羽口から吹き込む固体還元材に対し、融点が100℃以上で且つ沸点が400℃以下である分散材を重量割合で1〜15%混合することを特徴とするものである。
また、前記分散材は、炭素、水素、酸素、窒素の何れかの元素の組合せからなる化合物であることを特徴とするものである。
In order to solve the above problems, a blast furnace operating method of the present invention is a blast furnace operating method in which a solid reducing material is blown from a tuyere, and a melting point is 100 ° C. or higher and a boiling point is 400 with respect to the solid reducing material blown from the tuyere It is characterized in that 1 to 15% by weight of a dispersing material having a temperature of not more than 0 ° C. is mixed.
Furthermore, the dispersion material is characterized in that a compound-carbon, hydrogen, oxygen, a combination of any of the elements of nitrogen.

また、前記化合物が安息香酸又は無水フタル酸であることを特徴とするものである。   The compound is benzoic acid or phthalic anhydride.

而して、本発明の高炉操業方法によれば、羽口から固体還元材を吹き込む場合に、羽口から吹き込む固体還元材に対し、分散材を重量割合で1〜15%混合することにより、熱エネルギーを損失することなく、固体還元材の燃焼性を向上することができる。
また、分散材は、融点が100℃以上で且つ沸点が400℃以下であり、炭素、水素、酸素、窒素の何れかの元素の組合せからなる化合物であることにより、微粉炭などの固体還元材の燃焼性をより一層向上することができる。
Thus, according to the blast furnace operating method of the present invention, when the solid reducing material is blown from the tuyere, by mixing 1 to 15% by weight with respect to the solid reducing material blown from the tuyere, The combustibility of the solid reducing material can be improved without losing heat energy.
Further, the dispersion material has a melting point of 100 ° C. or more and a boiling point of 400 ° C. or less, and is a compound composed of a combination of any element of carbon, hydrogen, oxygen, and nitrogen, so that a solid reducing material such as pulverized coal The flammability can be further improved.

また、化合物が安息香酸又は無水フタル酸であることにより、微粉炭などの固体還元材の燃焼性をより一層向上することができる。   Further, when the compound is benzoic acid or phthalic anhydride, the combustibility of a solid reducing material such as pulverized coal can be further improved.

本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the blast furnace operating method of this invention was applied. 図1のランスから微粉炭だけを吹き込んだときの燃焼状態の説明図である。It is explanatory drawing of a combustion state when only pulverized coal is blown in from the lance of FIG. 図2の微粉炭の燃焼メカニズムの説明図である。It is explanatory drawing of the combustion mechanism of the pulverized coal of FIG. 微粉炭のみ及び微粉炭と分散材とを吹き込んだときの燃焼メカニズムの説明図である。It is explanatory drawing of a combustion mechanism when only pulverized coal and pulverized coal and a dispersion material are blown. 燃焼実験装置の説明図である。It is explanatory drawing of a combustion experiment apparatus. 燃焼実験結果の説明図である。It is explanatory drawing of a combustion experiment result. 燃焼実験結果の説明図である。It is explanatory drawing of a combustion experiment result. 燃焼実験結果の説明図である。It is explanatory drawing of a combustion experiment result.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で鉄鉱石の還元、即ち造銑が行われる。
Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. A combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and iron ore is reduced, that is, ironmaking is mainly performed in this combustion space.

図2には、ランス4から微粉炭6だけを吹き込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹き込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー8として排出される。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウエイ5内におけるOの存在領域は約0.3〜0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及びOとの接触効率(分散性)の改善が必要となる。 FIG. 2 shows a combustion state when only pulverized coal 6 is blown from the lance 4. The pulverized coal 6 that has passed through the tuyere 3 from the lance 4 and is blown into the raceway 5, together with the coke 7, combusts its volatile matter and fixed carbon, and remains unburned, generally called char. The aggregate of ash is discharged as unburned char 8 from the raceway. The hot air velocity at the tip of the tuyere 3 in the direction of blowing hot air is about 200 m / sec, and the region where O 2 exists in the raceway 5 from the tip of the lance 4 is about 0.3 to 0.5 m. In particular, it is necessary to improve the temperature rise of the pulverized coal particles and the contact efficiency (dispersibility) with O 2 at a level of 1/1000 second.

図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹き込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹き込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。   FIG. 3 shows a combustion mechanism when only pulverized coal (PC: Pulverized Coal in the figure) 6 is blown into the blow pipe 2 from the lance 4. The pulverized coal 6 blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal 6 is rapidly increased by the radiant heat transfer and conduction heat transfer. The thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame, and the combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, the above-described char 8 is obtained. Since the char 8 is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction.

図4は、ランス4から送風管2内に微粉炭6と共に分散材9を吹き込んだ場合の燃焼メカニズムを示す。図4aは、ランス4から微粉炭6のみを吹き込み、図4bは、ランス4から微粉炭9と分散材9を混合して吹き込んでいる。ランス4から微粉炭6のみを吹き込んだ場合には送風管2の内部に微粉炭流が集中しており、微粉炭6が送風中の酸素と混合する混合領域10が狭い。一方、ランス4から微粉炭6と分散材9を混合して吹き込んだ場合には、分散材9の気化膨張に伴って微粉炭6が分散し、微粉炭6が送風中の酸素と混合する混合領域10が広がり、分散材9が燃焼し、この燃焼熱によって微粉炭6が急速に加熱、昇温すると考えられ、これによりランス4に近い位置で燃焼温度が更に上昇する。   FIG. 4 shows a combustion mechanism when the dispersion material 9 is blown together with the pulverized coal 6 from the lance 4 into the blower pipe 2. FIG. 4 a blows only the pulverized coal 6 from the lance 4, and FIG. 4 b blows the pulverized coal 9 and the dispersion material 9 mixed from the lance 4. When only the pulverized coal 6 is blown from the lance 4, the pulverized coal flow is concentrated inside the blower pipe 2, and the mixing region 10 where the pulverized coal 6 mixes with the oxygen being blown is narrow. On the other hand, when the pulverized coal 6 and the dispersion material 9 are mixed and blown from the lance 4, the pulverized coal 6 is dispersed as the dispersion material 9 is vaporized and expanded, and the pulverized coal 6 is mixed with the oxygen being blown. It is considered that the region 10 spreads and the dispersion material 9 burns, and the pulverized coal 6 is heated and heated rapidly by this combustion heat, whereby the combustion temperature further rises at a position close to the lance 4.

分散材には、融点が100℃以上で且つ沸点が400℃以下であることが望ましい。分散材の融点が100℃未満では、微粉炭の温度で溶融し、微粉炭がランスに付着して詰まりの原因となる。一方、分散材の沸点が400℃を超えると、微粉炭の揮発分の放出とタイミングが同じとなり、微粉炭の分散促進の効果が低い。また、分散材は、炭素、水素、酸素、窒素の何れかの元素の組合せからなる化合物が望ましく、例としては安息香酸や無水フタル酸が挙げられる。安息香酸の融点は122.35℃、沸点は249℃である。また、無水フタル酸の融点は131℃、沸点は284℃である。   The dispersion material preferably has a melting point of 100 ° C. or higher and a boiling point of 400 ° C. or lower. When the melting point of the dispersion material is less than 100 ° C., the dispersion material melts at the temperature of the pulverized coal, and the pulverized coal adheres to the lance and causes clogging. On the other hand, when the boiling point of the dispersing material exceeds 400 ° C., the timing of releasing the volatile matter of the pulverized coal becomes the same, and the effect of promoting the dispersion of the pulverized coal is low. The dispersing material is preferably a compound composed of a combination of any of carbon, hydrogen, oxygen, and nitrogen, and examples thereof include benzoic acid and phthalic anhydride. Benzoic acid has a melting point of 122.35 ° C and a boiling point of 249 ° C. Further, phthalic anhydride has a melting point of 131 ° C. and a boiling point of 284 ° C.

このような知見に基づき、図5に示す燃焼実験装置を用いて燃焼実験を行った。実験炉11内にはコークスが充填されており、覗き窓からレースウエイ15の内部を観察することができる。送風管12にはランス14が差し込まれ、燃焼バーナ13で生じた熱風を実験炉11内に所定の送風量で送風することができる。また、この送風管12では、送風の酸素富化量を調整することも可能である。ランス14は、微粉炭及び分散材の何れか一方又は双方を送風管12内に吹き込むことができる。微粉炭及び分散材を同時にランス14から吹き込む場合には、微粉炭と分散材は混合された状態で吹き込まれる。また、実験炉11内で生じた排ガスは、サイクロンと呼ばれる分離装置16で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱17に捕集される。   Based on such knowledge, a combustion experiment was performed using the combustion experiment apparatus shown in FIG. The experimental furnace 11 is filled with coke, and the inside of the raceway 15 can be observed from the viewing window. A lance 14 is inserted into the blower tube 12, and hot air generated in the combustion burner 13 can be blown into the experimental furnace 11 with a predetermined blowing amount. Moreover, in this ventilation pipe 12, it is also possible to adjust the oxygen enrichment amount of ventilation. The lance 14 can blow either one or both of pulverized coal and a dispersing material into the blower pipe 12. When the pulverized coal and the dispersion material are simultaneously blown from the lance 14, the pulverized coal and the dispersion material are blown in a mixed state. Further, the exhaust gas generated in the experimental furnace 11 is separated into exhaust gas and dust by a separation device 16 called a cyclone, the exhaust gas is sent to an exhaust gas treatment facility such as an auxiliary combustion furnace, and the dust is collected in a collection box 17. The

燃焼実験には、ランス14に単管ランスを用い、単管ランスを用いて微粉炭のみを吹き込んだ場合、微粉炭と分散材を混合して吹き込んだ場合の夫々について、燃焼位置、未燃チャー、拡散性を測定した。未燃チャーは、レースウエイ15の後方からプローブで回収して測定した。微粉炭の諸元は、固定炭素(FC:Fixed Carbon)71.3%、揮発分(VM:Volatile Matter)19.6%、灰分(Ash)9.1%で、吹き込み条件は50kg/h(製銑原単位で158kg/t相当)とした。また、分散材の吹き込み条件は、3.6kg/h(5.0Nm/h、製銑原単位で11kg/t相当)とした。送風条件は、送風温度1100℃、流量350Nm/h、流速80m/s、O富化+3.7(酸素濃度24.7%、空気中酸素濃度21%に対し、3.7%の富化)とした。実験結果の評価は、一本の単管ランスから微粉炭のみ(媒体としてNを使用)を吹き込んだ場合の燃焼位置、燃焼率を基準とし、微粉炭に対する分散材の混合率を種々に変更して、微粉炭の分散角度、微粉炭の燃焼位置、微粉炭の燃焼率について評価した。燃焼率は、回収したチャーの灰分の重量割合を化学分析により測定し、この灰分が不変として、燃焼前の灰分の重量割合との差から算出した。 In the combustion experiment, a single pipe lance was used as the lance 14, and only the pulverized coal was blown using the single pipe lance, and the combustion position and unburned char were each mixed and blown into the mixture. The diffusivity was measured. Unburned char was collected from the rear of the raceway 15 with a probe and measured. The specifications of pulverized coal are 71.3% of fixed carbon (FC), 19.6% of volatile matter (VM), 9.1% of ash (Ash), and the blowing condition is 50 kg / h ( 158 kg / t equivalent). Moreover, the blowing conditions of the dispersing material were 3.6 kg / h (5.0 Nm 3 / h, corresponding to 11 kg / t in the ironmaking base unit). The blowing conditions are as follows: blowing temperature 1100 ° C., flow rate 350 Nm 3 / h, flow rate 80 m / s, O 2 enrichment +3.7 (oxygen concentration 24.7%, air oxygen concentration 21%, 3.7% wealth) ). The evaluation of the experimental results is based on the combustion position and combustion rate when only pulverized coal is blown from a single pipe lance (using N 2 as the medium), and the mixing ratio of the dispersion material with respect to pulverized coal is variously changed. Then, the dispersion angle of pulverized coal, the combustion position of pulverized coal, and the combustion rate of pulverized coal were evaluated. The combustion rate was calculated from the difference from the weight ratio of the ash before combustion, with the weight ratio of the collected char ash measured by chemical analysis, assuming that this ash was unchanged.

図6には、燃焼実験による分散材の混合率と微粉炭の分散角度の結果を示す。また、図7には、燃焼実験による分散材の混合率と微粉炭の燃焼位置(着火距離)の結果を示す。微粉炭の燃焼位置は、ランス14の吹き込み先端部から微粉炭の着火位置までの距離で表す。図8には、燃焼実験による分散率の混合率と微粉炭の燃焼率の結果を示す。図6より、分散材の混合率が1%以上で微粉炭の分散角度が増大し、混合率10%程度で飽和している。この傾向は、図8の微粉炭の燃焼率も同様である。これは、分散材の混合率が10%程度で微粉炭流の広がりが羽口の内径に達し、それ以上分散できなくなったためである。一方、微粉炭の燃焼位置(着火距離)も分散材の混合率が1%以上で増大し、分散材の混合率が15%程度で飽和している。これらの結果から、ランスから吹き込まれる微粉炭に対する分散材の混合率は1〜15%とするのが良好である。   In FIG. 6, the result of the mixing rate of the dispersing material by the combustion experiment and the dispersion angle of pulverized coal is shown. FIG. 7 shows the results of the mixing ratio of the dispersion material and the combustion position (ignition distance) of the pulverized coal in the combustion experiment. The combustion position of the pulverized coal is represented by the distance from the blowing tip of the lance 14 to the ignition position of the pulverized coal. In FIG. 8, the result of the mixing rate of the dispersion rate by the combustion experiment and the combustion rate of pulverized coal is shown. From FIG. 6, the dispersion angle of pulverized coal increases when the mixing ratio of the dispersing material is 1% or more, and is saturated at a mixing ratio of about 10%. This tendency is similar to the combustion rate of pulverized coal in FIG. This is because when the mixing ratio of the dispersing material is about 10%, the spread of the pulverized coal flow reaches the inner diameter of the tuyere, and the dispersion becomes impossible. On the other hand, the combustion position (ignition distance) of pulverized coal also increases when the mixing ratio of the dispersing material is 1% or more, and is saturated when the mixing ratio of the dispersing material is about 15%. From these results, it is preferable that the mixing ratio of the dispersion material with respect to the pulverized coal blown from the lance is 1 to 15%.

このように、本実施形態の高炉操業方法では、羽口3から微粉炭(固体還元材)6を吹き込む場合に、羽口3から吹き込む微粉炭(固体還元材)6に対し、分散材9を重量割合で1〜15%混合することにより、熱エネルギーを損失することなく、固体還元材の燃焼性を向上することができる。
また、分散材9は、融点が100℃以上で且つ沸点が400℃以下であり、炭素、水素、酸素、窒素の何れかの元素の組合せからなる化合物であることにより、微粉炭6などの固体還元材の燃焼性をより一層向上することができる。
Thus, in the blast furnace operating method of the present embodiment, when the pulverized coal (solid reducing material) 6 is blown from the tuyere 3, the dispersion material 9 is applied to the pulverized coal (solid reducing material) 6 blown from the tuyere 3. By mixing 1 to 15% by weight, the combustibility of the solid reducing material can be improved without losing heat energy.
Dispersant 9 has a melting point of 100 ° C. or higher and a boiling point of 400 ° C. or lower, and is a compound composed of a combination of any of carbon, hydrogen, oxygen, and nitrogen, so that solids such as pulverized coal 6 can be obtained. The combustibility of the reducing material can be further improved.

また、化合物が安息香酸又は無水フタル酸であることにより、微粉炭6などの固体還元材の燃焼性をより一層向上することができる。   Moreover, when the compound is benzoic acid or phthalic anhydride, the combustibility of a solid reducing material such as pulverized coal 6 can be further improved.

1は高炉、2は送風管、3は羽口、4はランス、5はレースウエイ、6は微粉炭(固体還元材)、7はコークス、8はチャー、9は分散材   1 is a blast furnace, 2 is a blow pipe, 3 is a tuyere, 4 is a lance, 5 is a raceway, 6 is pulverized coal (solid reducing material), 7 is coke, 8 is char, 9 is a dispersion material

Claims (3)

羽口から固体還元材を吹き込む高炉操業方法において、前記羽口から吹き込む固体還元材に対し、融点が100℃以上で且つ沸点が400℃以下である分散材を重量割合で1〜15%混合することを特徴とする高炉操業方法。 In the blast furnace operating method in which a solid reducing material is blown from a tuyere , a dispersion material having a melting point of 100 ° C. or higher and a boiling point of 400 ° C. or lower is mixed by 1 to 15% by weight with respect to the solid reducing material blown from the tuyere. A blast furnace operating method characterized by the above. 前記分散材は、炭素、水素、酸素、窒素の何れかの元素の組合せからなる化合物であることを特徴とする請求項1に記載の高炉操業方法。 The dispersed material is blast furnace operation method according to claim 1, characterized in that a compound-carbon, hydrogen, oxygen, a combination of any of the elements of nitrogen. 前記化合物が安息香酸又は無水フタル酸であることを特徴とする請求項2に記載の高炉操業方法。   The method for operating a blast furnace according to claim 2, wherein the compound is benzoic acid or phthalic anhydride.
JP2012149383A 2012-07-03 2012-07-03 Blast furnace operation method Active JP5978807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149383A JP5978807B2 (en) 2012-07-03 2012-07-03 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149383A JP5978807B2 (en) 2012-07-03 2012-07-03 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2014009402A JP2014009402A (en) 2014-01-20
JP5978807B2 true JP5978807B2 (en) 2016-08-24

Family

ID=50106364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149383A Active JP5978807B2 (en) 2012-07-03 2012-07-03 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5978807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826181A (en) * 2020-07-14 2020-10-27 邢台旭阳科技有限公司 Coal composition containing phthalic anhydride slag for coking and method for coking by using phthalic anhydride slag blended with coal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951854B2 (en) * 1994-09-30 1999-09-20 株式会社神戸製鋼所 Pulverized coal transportability improver
JPH09256016A (en) * 1996-03-25 1997-09-30 Kobe Steel Ltd Improver for conveyability of pulverized fine coal
JPH09256015A (en) * 1996-03-25 1997-09-30 Kobe Steel Ltd Improving agent for conveyability of pulverized fine coal
JPH09256013A (en) * 1996-03-25 1997-09-30 Kobe Steel Ltd Improver for conveyability of pulverized fine coal
JPH09256014A (en) * 1996-03-25 1997-09-30 Kobe Steel Ltd Pluverized fine coal and method for improving its conveyability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826181A (en) * 2020-07-14 2020-10-27 邢台旭阳科技有限公司 Coal composition containing phthalic anhydride slag for coking and method for coking by using phthalic anhydride slag blended with coal

Also Published As

Publication number Publication date
JP2014009402A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5263430B2 (en) Blast furnace operation method
JP5824810B2 (en) Blast furnace operation method
JP5699834B2 (en) Blast furnace operation method
JP5699833B2 (en) Blast furnace operation method
JP5974687B2 (en) Blast furnace operation method
JP5522325B1 (en) Blast furnace operation method
JP5699832B2 (en) Blast furnace operation method
JP5978807B2 (en) Blast furnace operation method
JP6260555B2 (en) Reducing material blowing device
WO2015029424A1 (en) Method for operating blast furnace
JP5824812B2 (en) Blast furnace operation method
JP6269532B2 (en) Blast furnace operation method
JP6269533B2 (en) Blast furnace operation method
JP2011168886A (en) Blast furnace operation method
JP5824811B2 (en) Blast furnace operation method
JP6061107B2 (en) Blast furnace operation method
JP5983293B2 (en) Blast furnace operating method and lance
JP2011168885A (en) Blast furnace operation method
JP5824813B2 (en) Blast furnace operation method
JP5983294B2 (en) Blast furnace operating method and lance
JP2015160993A (en) blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250