JP5975817B2 - Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article - Google Patents

Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article Download PDF

Info

Publication number
JP5975817B2
JP5975817B2 JP2012209615A JP2012209615A JP5975817B2 JP 5975817 B2 JP5975817 B2 JP 5975817B2 JP 2012209615 A JP2012209615 A JP 2012209615A JP 2012209615 A JP2012209615 A JP 2012209615A JP 5975817 B2 JP5975817 B2 JP 5975817B2
Authority
JP
Japan
Prior art keywords
polyurethane resin
thermoplastic polyurethane
particles
foamed
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209615A
Other languages
Japanese (ja)
Other versions
JP2014062213A (en
Inventor
皓平 田積
皓平 田積
皓樹 大脇
皓樹 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2012209615A priority Critical patent/JP5975817B2/en
Publication of JP2014062213A publication Critical patent/JP2014062213A/en
Application granted granted Critical
Publication of JP5975817B2 publication Critical patent/JP5975817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、熱可塑性ポリウレタン樹脂発泡粒子とその製造方法及び熱可塑性ポリウレタン樹脂発泡成形体に関する。具体的には、本発明は、寸法変化率が抑制された熱可塑性ポリウレタン樹脂発泡成形体を得ることができる熱可塑性ポリウレタン樹脂発泡粒子とその製造方法及び熱可塑性ポリウレタン樹脂発泡成形体に関する。本発明の熱可塑性ポリウレタン樹脂発泡成形体は、例えば軽量成形体、緩衝材、防振材、断熱材等に使用できる。   The present invention relates to foamed thermoplastic polyurethane resin particles, a method for producing the same, and a foamed molded article of thermoplastic polyurethane resin. Specifically, the present invention relates to a thermoplastic polyurethane resin foamed particle capable of obtaining a thermoplastic polyurethane resin foamed molded article having a suppressed dimensional change rate, a method for producing the same, and a thermoplastic polyurethane resin foamed molded article. The thermoplastic polyurethane resin foam molded article of the present invention can be used, for example, as a lightweight molded article, a cushioning material, a vibration isolating material, a heat insulating material and the like.

熱可塑性ポリウレタン樹脂は、耐摩耗性及び樹脂の引張り伸び率が高く、耐寒性に優れた樹脂であり、その樹脂を使用した発泡成形体には、シーリング材、充填剤、自動車用部材等の各種分野での使用が期待されている。
熱可塑性ポリウレタン樹脂を原料とする発泡成形体の製造方法としては、種々の方法が挙げられるが、例えば、特許文献1に記載された方法がある。この方法では、発泡成形前の発泡粒子に無機の気体の発泡剤を含浸させることで、発泡粒子に内圧を付与し、次いで、発泡成形することで、発泡成形体を得ている。
Thermoplastic polyurethane resin is a resin with high wear resistance and high tensile elongation rate of resin, and excellent cold resistance. For foamed molded products using the resin, various materials such as sealing materials, fillers, and automotive parts are used. Expected to be used in the field.
Various methods can be used as a method for producing a foamed molded article using a thermoplastic polyurethane resin as a raw material. For example, there is a method described in Patent Document 1. In this method, the foamed particles before foam molding are impregnated with an inorganic gaseous foaming agent to apply internal pressure to the foamed particles, and then foam molded to obtain a foam molded article.

特開平8−113664号公報Japanese Patent Laid-Open No. 8-113664

発泡成形体には、成形後ある程度の時間を経過しても、成形型の寸法と大きく変わらない寸法を有していることが望まれている。言い換えると、寸法変化率が小さいことが望まれている。特許文献1では、内圧付与を施すことである程度寸法変化率の小さな発泡成形体が得られているが、更に寸法変化率を小さくすることが望まれていた。   The foamed molded body is desired to have dimensions that do not greatly differ from the dimensions of the mold even after a certain amount of time has elapsed after molding. In other words, it is desired that the dimensional change rate is small. In Patent Document 1, a foam molded body having a small dimensional change rate is obtained by applying an internal pressure, but it has been desired to further reduce the dimensional change rate.

本発明者らは、寸法変化率の低い熱可塑性ポリウレタン樹脂発泡成形体について鋭意検討した結果、意外にも、発泡成形体を構成する基材樹脂に圧縮永久歪の高い熱可塑性ポリウレタン樹脂を含ませることで上記の課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies on a thermoplastic polyurethane resin foam molded article having a low dimensional change rate, the present inventors surprisingly include a thermoplastic polyurethane resin having a high compression set in the base resin constituting the foam molded article. Thus, the inventors have found that the above problems can be solved, and have completed the present invention.

かくして、本発明によれば、基材樹脂が熱可塑性ポリウレタン樹脂であり、前記基材樹脂が、JIS K6262で測定したときに40%以上の圧縮永久歪を有する高圧縮永久歪熱可塑性ポリウレタン樹脂を含むことを特徴とする熱可塑性ポリウレタン樹脂発泡粒子が提供される。
また、本発明によれば、JIS K6262で測定したときに40%以上の圧縮永久歪を有する高圧縮永久歪熱可塑性ポリウレタン樹脂を含む熱可塑性ポリウレタン樹脂の粒子に発泡剤を含浸させて発泡性粒子を得、前記発泡性粒子を発泡させることを特徴とする熱可塑性ポリウレタン樹脂発泡粒子の製造方法が提供される。
また、本発明によれば、上記のような熱可塑性ポリウレタン樹脂発泡粒子を型内発泡成形させることにより得られた熱可塑性ポリウレタン樹脂発泡成形体(以下、単に発泡成形体ともいう)が提供される。
Thus, according to the present invention, the base resin is a thermoplastic polyurethane resin, and the base resin has a high compression set thermoplastic polyurethane resin having a compression set of 40% or more as measured by JIS K6262. A thermoplastic polyurethane resin expanded particle characterized by comprising is provided.
Further, according to the present invention, a foaming agent is obtained by impregnating a foaming agent into particles of a thermoplastic polyurethane resin containing a high compression set thermoplastic polyurethane resin having a compression set of 40% or more as measured by JIS K6262. And producing a foamed thermoplastic polyurethane resin particle characterized by foaming the expandable particle.
Further, according to the present invention, there is provided a thermoplastic polyurethane resin foam molded body (hereinafter also simply referred to as a foam molded body) obtained by foam-molding the above-mentioned thermoplastic polyurethane resin expanded particles. .

本発明によれば、基材樹脂が高圧縮永久歪熱可塑性ポリウレタン樹脂を含むことより、内圧付与を省いても寸法変化率が抑制された発泡成形体を提供可能な熱可塑性ポリウレタン樹脂発泡粒子を得ることができる。また、発泡成形前に発泡粒子へ内圧を付与する工程を省くことができるので、生産性を向上させることができる。更に、熱可塑性ポリウレタン樹脂由来の性質を備えた寸法安定性の良い発泡成形体を提供することができる。   According to the present invention, since the base resin contains a high compression set thermoplastic polyurethane resin, it is possible to provide thermoplastic polyurethane resin expanded particles capable of providing a foam molded article in which the rate of dimensional change is suppressed even if internal pressure is not applied. Can be obtained. In addition, since the step of applying an internal pressure to the foamed particles before foam molding can be omitted, productivity can be improved. Furthermore, it is possible to provide a foam molded article having good dimensional stability having properties derived from a thermoplastic polyurethane resin.

また、高圧縮永久歪熱可塑性ポリウレタン樹脂が、基材樹脂中に80〜100質量%存在する場合、上記の効果をより発揮する発泡成形体を提供できる。
また、熱可塑性ポリウレタン樹脂が、ASTM D 6866で測定される植物度が1%以上の植物由来熱可塑性ポリウレタン樹脂を含有する場合、上記の効果を発揮するだけでなく、一般的な石油由来樹脂と比較して石油枯渇や採掘地域の偏りによる供給懸念がなく、植物由来樹脂なので焼却時に実質的にCO2が排出されたことにはならず自然環境への影響が少ない発泡成形体を提供できる。
Moreover, when 80-100 mass% of high compression set thermoplastic polyurethane resins exist in base resin, the foaming molding which exhibits said effect more can be provided.
In addition, when the thermoplastic polyurethane resin contains a plant-derived thermoplastic polyurethane resin having a plant degree measured by ASTM D 6866 of 1% or more, not only the above effects are exhibited, but also a general petroleum-derived resin and In comparison, there is no concern about supply due to oil depletion or bias in the mining area, and since it is a plant-derived resin, CO 2 is not substantially discharged during incineration, and a foamed molded product that has little influence on the natural environment can be provided.

(1)発泡粒子
本発明の熱可塑性ポリウレタン樹脂発泡粒子(以下、「発泡粒子」ともいう)は、熱可塑性ポリウレタン樹脂を基材樹脂としている。この基材樹脂は、JIS K6262で測定したときに40%以上の圧縮永久歪を有する高圧縮永久歪熱可塑性ポリウレタン樹脂を含んでいる。発泡粒子は、クッションの充填材等の用途ではそのまま使用でき、更に型内発泡成形によって発泡成形体を得るための型内発泡成形用の原料として使用できる。
(1) Foamed particles The thermoplastic polyurethane resin foamed particles of the present invention (hereinafter also referred to as “foamed particles”) use a thermoplastic polyurethane resin as a base resin. This base resin contains a high compression set thermoplastic polyurethane resin having a compression set of 40% or more as measured by JIS K6262. The expanded particles can be used as they are for applications such as cushioning fillers, and can also be used as a raw material for in-mold foam molding for obtaining a foamed molded article by in-mold foam molding.

(1−1)高圧縮永久歪熱可塑性ポリウレタン樹脂
本発明で用いられる高圧縮永久歪熱可塑性ポリウレタン樹脂とは、熱可塑性ポリウレタン樹脂のうち、JIS K6262で測定したときに40%以上の圧縮永久歪を有するものをいう。この40%以上の圧縮永久歪を有する熱可塑性ポリウレタン樹脂を含むことで、寸法変化率の小さな発泡成形体を製造しうる発泡粒子を提供できる。圧縮永久歪は、45%以上であることが好ましく、50%以上であることがより好ましい。圧縮永久歪の上限は100%である。
(1-1) High compression set thermoplastic polyurethane resin The high compression set thermoplastic polyurethane resin used in the present invention is 40% or more of compression set when measured by JIS K6262 among thermoplastic polyurethane resins. The thing which has. By including the thermoplastic polyurethane resin having a compression set of 40% or more, it is possible to provide expanded particles capable of producing a expanded molded article having a small dimensional change rate. The compression set is preferably 45% or more, and more preferably 50% or more. The upper limit of compression set is 100%.

本発明で用いられる高圧縮永久歪熱可塑性ポリウレタン樹脂は、線状構造を有していてもよいし、一部架橋した構造を有していてもよい。
高圧縮永久歪熱可塑性ポリウレタン樹脂は、イソシアネート化合物とポリオール化合物との縮重合体からなる。
イソシアネート化合物としては、特に限定されないが、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ナフタレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート等が挙げられる。
The high compression set thermoplastic polyurethane resin used in the present invention may have a linear structure or a partially crosslinked structure.
The high compression set thermoplastic polyurethane resin is composed of a condensation polymer of an isocyanate compound and a polyol compound.
Although it does not specifically limit as an isocyanate compound, For example, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, naphthalene diisocyanate, isophorone diisocyanate, xylene diisocyanate etc. are mentioned.

ポリオール化合物としては、エステル系、アジペート系、エーテル系、ラクトン系、カーボネート系のポリオール化合物が挙げられる。
エステル系及びアジペート系のポリオール化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ブテンジオール、ヘキサンジオール、ペンタンジオール、ネオペンチルジオール、ペンタンジオール等の多価アルコールと、アジピン酸、セバシン酸、アゼライン酸、テレフタル酸、イソフタル酸、マレイン酸、芳香族カルボン酸等の2塩基酸との縮合反応により得られる化合物が挙げられる。
Examples of the polyol compound include ester-based, adipate-based, ether-based, lactone-based, and carbonate-based polyol compounds.
The ester-based and adipate-based polyol compounds are not particularly limited. For example, polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, butenediol, hexanediol, pentanediol, neopentyldiol, and pentanediol; Examples thereof include compounds obtained by condensation reaction with dibasic acids such as acid, sebacic acid, azelaic acid, terephthalic acid, isophthalic acid, maleic acid and aromatic carboxylic acid.

また、エーテル系のポリオール化合物としては、特に限定されないが、例えば、ポリエチレングリコール、ポリプロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。
また、ラクトン系のポリオール化合物としては、特に限定されないが、例えば、ポリカプロラクトングリコール、ポリプロピオラクトングリコール、ポリバレロラクトングリコール等が挙げられる。
更に、カーボネート系のポリオール化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、オクタンジオール、ノナンジオール等から選択される少なくとも1つの多価アルコールと、ジエチレンカーボネート、ジプロピレンカーボネート等から選択される少なくとも1つのカーボネートとの脱アルコール反応により得られる化合物等が挙げられる。
The ether-based polyol compound is not particularly limited, and examples thereof include polyethylene glycol, polypropylene ether glycol, polytetramethylene ether glycol, and polyhexamethylene ether glycol.
The lactone-based polyol compound is not particularly limited, and examples thereof include polycaprolactone glycol, polypropiolactone glycol, and polyvalerolactone glycol.
Furthermore, the carbonate-based polyol compound is not particularly limited. For example, at least one polyhydric alcohol selected from ethylene glycol, propylene glycol, butanediol, pentanediol, octanediol, nonanediol, and the like, diethylene carbonate, Examples thereof include compounds obtained by dealcoholization reaction with at least one carbonate selected from dipropylene carbonate and the like.

高圧縮永久歪熱可塑性ポリウレタン樹脂としては、JIS K6262で測定したときに40%以上の圧縮永久歪を有するものであれば特に限定されず、市販品を用いることができる。例えば、株式会社クラレ製の「クラミロン」シリーズU−1180、U−1185、U−1190、U−1195、U−1198、U−3180、U−3185、U−3195、U−3190、U−3195、U−3197、U−9180、U−9185、U−9190、U−9195、EF−195、大日精化株式会社製「レザミン」シリーズP−1288、P−1090、P−1078、P−6165、P−7282、P−7285、P−2275、P−880等が挙げられる。   The high compression set thermoplastic polyurethane resin is not particularly limited as long as it has a compression set of 40% or more as measured by JIS K6262, and a commercially available product can be used. For example, “Kuramylon” series U-1180, U-1185, U-1190, U-1195, U-1198, U-3180, U-3185, U-3195, U-3190, U-3195 manufactured by Kuraray Co., Ltd. U-3197, U-9180, U-9185, U-9190, U-9195, EF-195, “Rezamin” series P-1288, P-1090, P-1078, P-6165, manufactured by Dainichi Seika Co., Ltd. , P-7282, P-7285, P-2275, P-880 and the like.

熱可塑性ポリウレタン樹脂は、ASTM D6866に準拠して測定される植物度の高い樹脂であることが好ましい。植物度の高い樹脂を使用することで、環境に優しい発泡成形体を提供できる。具体的には、1%以上の植物度であることが好ましく、例えば、株式会社クラレ製の「クラミロン」シリーズEF−195等が挙げられる。   The thermoplastic polyurethane resin is preferably a resin having a high plant degree measured in accordance with ASTM D6866. By using a resin with a high plant degree, an environmentally friendly foamed molded article can be provided. Specifically, the plant degree is preferably 1% or more, and examples thereof include “Kuramylon” series EF-195 manufactured by Kuraray Co., Ltd.

高圧縮永久歪熱可塑性ポリウレタン樹脂の含有量は、基材樹脂中80〜100質量%であることが好ましい。含有量が、80質量%より少ないと、寸法変化率の抑制効果が劣ることがある。より好ましい含有量は90〜100質量%であり、更に好ましい含有量は95〜100質量%である。
高圧縮永久歪熱可塑性ポリウレタン樹脂の含有量が、100質量%でない場合高圧縮永久歪熱可塑性ポリウレタン樹脂以外の他の樹脂が含まれる。
The content of the high compression set thermoplastic polyurethane resin is preferably 80 to 100% by mass in the base resin. When the content is less than 80% by mass, the effect of suppressing the dimensional change rate may be inferior. A more preferable content is 90 to 100% by mass, and a still more preferable content is 95 to 100% by mass.
When the content of the high compression set thermoplastic polyurethane resin is not 100% by mass, other resins than the high compression set thermoplastic polyurethane resin are included.

(1−2)他の樹脂
他の樹脂としては、特に限定されず、40%未満の圧縮永久歪を有する熱可塑性ポリウレタン樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂等が挙げられる。この内、40%未満の圧縮永久歪を有する熱可塑性ポリウレタン樹脂が好ましい。
熱可塑性ポリウレタン樹脂としては、特に限定されないが、上記イソシアネート化合物及びポリオール化合物を重縮合させた樹脂を用いることができる。
(1-2) Other resins The other resins are not particularly limited, and examples thereof include thermoplastic polyurethane resins, polystyrene resins, and polyolefin resins having a compression set of less than 40%. Of these, a thermoplastic polyurethane resin having a compression set of less than 40% is preferred.
The thermoplastic polyurethane resin is not particularly limited, and a resin obtained by polycondensation of the isocyanate compound and the polyol compound can be used.

(1−3)発泡粒子の形状
発泡粒子の形状は、特に限定されず、多面体、球体、不定形等が挙げられる。発泡粒子の形状は、成形容易性の観点から、球体であることが好ましい。
(1-3) Shape of expanded particles The shape of expanded particles is not particularly limited, and examples thereof include polyhedrons, spheres, and irregular shapes. The shape of the expanded particles is preferably a sphere from the viewpoint of ease of molding.

(1−4)発泡粒子の粒径
発泡粒子の粒径は、2.0〜10.0mmであることが好ましい。粒径が、2.0mm未満であると、成型時の取り扱いが困難である。一方、10.0mmを超えると、金型内への充填性を損なう可能性がある。より好ましい粒径は2.0〜7.0mmである。なお、発泡粒子が球体でない場合、発泡粒子の粒径とは、近似により発泡粒子を球体と仮定したときの粒径を意味する。
(1-4) Particle size of expanded particles The particle size of the expanded particles is preferably 2.0 to 10.0 mm. When the particle size is less than 2.0 mm, handling during molding is difficult. On the other hand, when it exceeds 10.0 mm, the filling property into the mold may be impaired. A more preferable particle size is 2.0 to 7.0 mm. When the expanded particles are not spheres, the particle diameter of the expanded particles means the particle diameter when the expanded particles are assumed to be spherical by approximation.

(1−5)発泡粒子の嵩密度
発泡粒子の嵩密度は、0.03〜0.6g/cm3であることが好ましい。嵩密度が0.03g/cm3より小さいと、型内発泡成形において融着性が不十分となったり、得られた発泡成形体の収縮が大きくなることがある。一方、0.6g/cm3より大きいと、発泡粒子を型内発泡成形させて得られる発泡成形体の軽量性が不十分となる。より好ましい嵩密度は0.1〜0.4g/cm3である。
嵩密度の測定方法は、以下の実施例において説明する。
(1-5) Bulk density of expanded particles The bulk density of the expanded particles is preferably 0.03 to 0.6 g / cm 3 . When the bulk density is less than 0.03 g / cm 3 , the melt-bonding property may be insufficient in the in-mold foam molding, or the shrinkage of the obtained foam molded article may be increased. On the other hand, when it is larger than 0.6 g / cm 3 , the lightweight property of the foamed molded product obtained by foam-molding the foamed particles in the mold becomes insufficient. A more preferable bulk density is 0.1 to 0.4 g / cm 3 .
The bulk density measurement method is described in the following examples.

(1−6)発泡粒子の製造方法
発泡粒子の製造方法は、特に限定されず、例えば、以下のようにして製造することができる。
(1-6) Manufacturing method of expanded particle The manufacturing method of expanded particle is not specifically limited, For example, it can manufacture as follows.

まず、上記高圧縮永久歪熱可塑性ポリウレタン樹脂を含む基材樹脂をワーナー型ニーダー、バンバリーミキサー、ミキシングロール、単軸押出機、二軸押出機等の混練機を使用することにより、丸状、楕円状、ペレット状又は粉末状の熱可塑性ポリウレタン樹脂の粒子を得る。丸状、楕円状又はペレット状で使用する場合、その粒径は、1〜5mm程度が好ましく、1〜3mm程度がより好ましい。   First, by using a kneading machine such as a Warner kneader, Banbury mixer, mixing roll, single-screw extruder, twin-screw extruder, etc., the base resin containing the high compression set thermoplastic polyurethane resin is round, elliptical -Like, pellet-like or powdery thermoplastic polyurethane resin particles are obtained. When used in a round, oval or pellet form, the particle size is preferably about 1 to 5 mm, more preferably about 1 to 3 mm.

熱可塑性ポリウレタン樹脂の粒子の表面は、発泡剤を含浸させる前に、表面処理剤で処理されていてもよい。表面処理剤としては、発泡粒子製造時の合着を防止する合着防止剤、発泡成形時の融着を促進する融着促進剤、成形型への充填性を良くする滑剤、帯電防止剤、着色剤等が挙げられる。より具体的には、タルク、炭酸カルシウム、シリカ−アルミナ(コロイド状及びスラリー状)、エチレンビスステアロアミド、高級脂肪酸、高級脂肪族アルコール、食用油、高級脂肪酸トリグリセライド、パラフィン、ポリエチレンワックス、金属石鹸変性ポリシロキサン(例えばジンクステアレート)等が挙げられる。かかる表面処理は、上記粒子にリボンブレンダー、タンブラー、ナウターミキサー、スーパーミキサー、レーディゲミキサー等で行うことが好ましい。なお、発泡剤含浸容器が回転もしくは攪拌できるものであれば、含浸時に同時に表面処理を行うこともできる。   The surface of the thermoplastic polyurethane resin particles may be treated with a surface treatment agent before impregnating the foaming agent. As the surface treatment agent, an anti-fusing agent that prevents fusing during the production of expanded particles, a fusing accelerator that promotes fusing at the time of foam molding, a lubricant that improves the filling ability in the mold, an antistatic agent, A coloring agent etc. are mentioned. More specifically, talc, calcium carbonate, silica-alumina (colloidal and slurry), ethylene bisstearamide, higher fatty acid, higher aliphatic alcohol, edible oil, higher fatty acid triglyceride, paraffin, polyethylene wax, metal soap Examples thereof include modified polysiloxane (for example, zinc stearate). Such surface treatment is preferably performed on the particles with a ribbon blender, tumbler, nauter mixer, super mixer, Ladige mixer or the like. If the foaming agent impregnated container can be rotated or stirred, the surface treatment can be performed simultaneously with the impregnation.

次いで、熱可塑性ポリウレタン樹脂の粒子に発泡剤を含浸させる。発泡剤としては、無機の気体、有機の気体又は低沸点液体が挙げられる。無機の気体の発泡剤としては、窒素、炭酸ガス、空気等が挙げられる。有機の気体の発泡剤としては、プロパン、メチルエーテル、ブタン等の炭化水素系、二塩化エチレン、三塩化フッ化メタン、二塩化二フッ化メタン、F−134a等のハロゲン化脂肪族炭化水素が挙げられる。また低沸点液体の発泡剤としては、エーテル、石油エーテル、アセトン、シクロペンタン、ヘキサン、ベンゼン等が挙げられる。なお、発泡剤は単独又は混合して使用できる。   Next, the thermoplastic polyurethane resin particles are impregnated with a foaming agent. Examples of the foaming agent include inorganic gas, organic gas, and low boiling point liquid. Examples of the inorganic gas blowing agent include nitrogen, carbon dioxide gas, and air. Examples of organic gas blowing agents include hydrocarbons such as propane, methyl ether, and butane, and halogenated aliphatic hydrocarbons such as ethylene dichloride, trifluorochloromethane, dichloromethane difluoride, and F-134a. Can be mentioned. Examples of the low-boiling liquid blowing agent include ether, petroleum ether, acetone, cyclopentane, hexane, and benzene. In addition, a foaming agent can be used individually or in mixture.

これら発泡剤は、樹脂の種類、含浸温度、所望する含浸量等を考慮してその種類が選択される。有機の気体であるブタンは、含浸量を多くすることができる点で優れている。含浸処理は、発泡剤の種類によって異なるが、一般的に密閉容器内で行われる。   These foaming agents are selected in consideration of the type of resin, the impregnation temperature, the desired amount of impregnation, and the like. Butane, which is an organic gas, is excellent in that the amount of impregnation can be increased. The impregnation treatment varies depending on the type of foaming agent, but is generally performed in a sealed container.

発泡剤が有機の気体又は低沸点液体の場合、乾式含浸法、湿式含浸法等を使用することができる。
乾式含浸法は、粒子が合着しない緩和な温度下で行うことが好ましく、発泡剤、樹脂の種類等によって異なるが、60〜120℃が好ましく、60〜100℃がより好ましい。更に、発泡剤は、常圧でも粒子に十分含浸されるが、含浸時間を短縮するために、適当な圧力を付与してもよい。
When the foaming agent is an organic gas or a low boiling point liquid, a dry impregnation method, a wet impregnation method, or the like can be used.
The dry impregnation method is preferably performed at a moderate temperature at which particles do not coalesce, and varies depending on the type of foaming agent, resin, etc., but is preferably 60 to 120 ° C, more preferably 60 to 100 ° C. Further, the foaming agent is sufficiently impregnated into the particles even at normal pressure, but an appropriate pressure may be applied in order to shorten the impregnation time.

湿式含浸法は、密閉容器内に水、樹脂の粒子及び発泡剤を仕込み、適当な含浸温度及び圧力を付与することにより行われる。含浸温度は、粒子が合着しない緩和な温度とすることが好ましく、発泡剤、樹脂の種類等によって異なるが、60〜120℃が好ましく、60〜100℃がより好ましい。更に、発泡剤は、常圧でも樹脂の粒子に十分含浸されるが、含浸時間を短縮するために、適当な圧力を付与してもよい。なお、この方法で製造された発泡性熱可塑性ポリウレタン樹脂粒子は、放置すると粒子中に存在する水分によりベタ付くので、乾燥状態を維持することを所望する場合は、適当な脱水処理を行うことが好ましい。   The wet impregnation method is performed by charging water, resin particles, and a foaming agent in an airtight container and applying an appropriate impregnation temperature and pressure. The impregnation temperature is preferably a moderate temperature at which particles do not coalesce, and varies depending on the type of foaming agent, resin, etc., but is preferably 60 to 120 ° C, more preferably 60 to 100 ° C. Furthermore, the foaming agent is sufficiently impregnated into the resin particles even at normal pressure, but an appropriate pressure may be applied to shorten the impregnation time. Note that the foamable thermoplastic polyurethane resin particles produced by this method are sticky due to moisture present in the particles when left standing, and therefore, if it is desired to maintain a dry state, an appropriate dehydration treatment can be performed. preferable.

各含浸方法における含浸時間は、発泡剤の種類、含浸圧力、樹脂の種類、樹脂の粒子径等によって異なるが、発泡剤が1質量%以上含浸されるまで行うことが好ましい。含浸時間は、乾式含浸法では2〜10時間、湿式含浸法では2〜10時間とすることが好ましい。特に、高品質の発泡粒子を得るためには、発泡剤を2〜10質量%含浸させることが好ましい。   The impregnation time in each impregnation method varies depending on the type of foaming agent, the impregnation pressure, the type of resin, the particle size of the resin, etc., but it is preferable to carry out until the foaming agent is impregnated by 1 mass% or more. The impregnation time is preferably 2 to 10 hours in the dry impregnation method and 2 to 10 hours in the wet impregnation method. In particular, in order to obtain high-quality expanded particles, it is preferable to impregnate 2 to 10% by mass of a foaming agent.

発泡剤の含浸により、発泡剤が含浸された発泡性熱可塑性ポリウレタン樹脂粒子(以下、単に「発泡性粒子」ともいう)を得ることができる。
その後、発泡性粒子は、発泡工程に付される。発泡性粒子は、発泡剤の含浸後、直ちに発泡処理に付すことが好ましい。
By impregnating the foaming agent, expandable thermoplastic polyurethane resin particles impregnated with the foaming agent (hereinafter, also simply referred to as “expandable particles”) can be obtained.
Thereafter, the expandable particles are subjected to a foaming process. The foamable particles are preferably subjected to foaming treatment immediately after impregnation with the foaming agent.

発泡性粒子は、当業者に公知の任意の発泡方法に従って発泡粒子とすることができる。例えば、発泡粒子は、加圧発泡槽内に発泡性粒子を仕込み、水蒸気等の加熱媒体により加熱することにより得られる。発泡条件は、発泡剤及び樹脂の種類によって異なるが、発泡温度は80〜145℃程度、発泡圧力は0.05〜0.3MPa程度、発泡時間は10〜120秒程度である。加熱媒体としては、特に限定されないが、水蒸気が好ましい。水蒸気を加熱媒体として使用する場合、60〜100℃の露点を有する水蒸気、又は70〜100℃の露点を有する水蒸気−空気混合媒体を用いることが適している。露点が60℃未満の水蒸気は、高発泡倍率の発泡粒子を得難いことがある。更に、加熱の均一性及び発泡粒子の合着を防止するために回転羽根等により攪拌することが好ましい。   The expandable particles can be expanded particles according to any expansion method known to those skilled in the art. For example, foamed particles can be obtained by charging foamable particles in a pressure foaming tank and heating them with a heating medium such as water vapor. The foaming conditions vary depending on the type of foaming agent and resin, but the foaming temperature is about 80 to 145 ° C., the foaming pressure is about 0.05 to 0.3 MPa, and the foaming time is about 10 to 120 seconds. Although it does not specifically limit as a heating medium, Water vapor | steam is preferable. When using water vapor as a heating medium, it is suitable to use water vapor having a dew point of 60 to 100 ° C. or a water vapor-air mixed medium having a dew point of 70 to 100 ° C. Water vapor with a dew point of less than 60 ° C. may make it difficult to obtain expanded particles with a high expansion ratio. Furthermore, it is preferable to stir with a rotating blade or the like in order to prevent heating uniformity and coalescence of the expanded particles.

(2)発泡成形体
発泡成形体は、当業者に公知の任意の型内発泡成形方法により製造することができる。発泡成形体は、例えば、発泡粒子を多数の小孔を有する閉鎖金型内に充填し、再び加熱媒体で加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させることにより一体化させることで、製造できる。加熱媒体としては、前記露点を有する水蒸気および水蒸気−空気混合媒体を用いることができる。成形温度としては80〜160℃、成形圧力は0.05〜0.5MPa、成形時間は20〜180秒程度である。
その際、発泡成形体の倍数は、例えば、金型内への発泡粒子の充填量を調製する等して調製できる。
(2) Foam molded article The foam molded article can be produced by any in-mold foam molding method known to those skilled in the art. For example, the foamed molded article is formed by filling foamed particles in a closed mold having a large number of small holes, and again heat-foaming with a heating medium to fill the voids between the foamed particles and fuse the foamed particles to each other. It can manufacture by integrating by. As the heating medium, water vapor having a dew point and a water vapor-air mixed medium can be used. The molding temperature is 80 to 160 ° C., the molding pressure is 0.05 to 0.5 MPa, and the molding time is about 20 to 180 seconds.
At that time, the multiple of the foamed molded product can be prepared, for example, by adjusting the filling amount of the foamed particles in the mold.

一般的に、発泡粒子から発泡成形体を得る場合、発泡成形工程の前に、発泡粒子に発泡剤を含浸して内圧を付与する工程(内圧付与工程)が必要である。しかしながら、本発明の発泡成形体は、このような内圧付与工程を行わなくても、発泡粒子を発泡成形工程に付すことによって得ることが可能である。したがって、内圧付与工程の省略が可能となるので、生産性を高めることができる。   Generally, when obtaining a foam-molded product from foamed particles, a step of impregnating the foamed particles with a foaming agent and applying an internal pressure (internal pressure applying step) is required before the foam-forming step. However, the foam molded article of the present invention can be obtained by subjecting the foamed particles to the foam molding process without performing such an internal pressure application process. Accordingly, the internal pressure application step can be omitted, and productivity can be increased.

なお、発泡成形体に含まれる、基材樹脂、高圧縮永久歪熱可塑性ポリウレタン樹脂等の量は、発泡粒子中のそれらの量とほぼ同一である。   The amounts of the base resin, the high compression set thermoplastic polyurethane resin, and the like contained in the foamed molded product are substantially the same as those in the foamed particles.

(2−1)発泡成形体の密度
発泡成形体の密度は、0.02〜0.6g/cm3であることが好ましい。発泡成形体の密度は、0.02g/cm3より低いと、破泡により、十分な強度の発泡成形体が得られないことがある。一方、0.6g/cm3より高いと、発泡成形体の軽量性が十分でないことがある。より好ましい密度は0.05〜0.5g/cm3であり、更に好ましい密度は0.1〜0.4g/cm3である。
(2-1) Density of foam molded article The density of the foam molded article is preferably 0.02 to 0.6 g / cm 3 . If the density of the foamed molded product is lower than 0.02 g / cm 3 , a foamed molded product having sufficient strength may not be obtained due to foam breakage. On the other hand, if it is higher than 0.6 g / cm 3 , the lightweight property of the foamed molded product may not be sufficient. A more preferable density is 0.05 to 0.5 g / cm 3 , and a more preferable density is 0.1 to 0.4 g / cm 3 .

以下の実施例において本発明の一実施態様を具体的に記載するが、これは本発明の単なる例示に過ぎず、本発明は以下の実施例に限定されるものではない。   In the following examples, one embodiment of the present invention will be specifically described. However, this is merely an example of the present invention, and the present invention is not limited to the following examples.

(3−1)熱可塑性ポリウレタン樹脂の圧縮永久歪の測定方法
熱可塑性ポリウレタン樹脂の圧縮永久歪は、JIS K6262:2006年「加硫ゴム及び熱可塑性ゴム−常温、高温及び低温における圧縮永久ひずみの求め方」に準拠して測定する。
具体的には直径29.0mm、厚さ12.7mmの円柱状の試験片を、スペーサを用いて70℃で22時間25%圧縮した状態に保ち、圧縮解放後30分後の試験片厚みを測定し、次式により圧縮永久歪(CS(%))を測定する。
圧縮永久歪率CS(%)={(t0−t1)/(t0−t2)×100}
t0;試験片の原厚み(mm)
t1;試験片を圧縮装置から取り出し30分経過した後の厚さ(mm)
t2;スペーサの厚さ(mm)
(3-1) Measuring method of compression set of thermoplastic polyurethane resin The compression set of thermoplastic polyurethane resin is determined according to JIS K6262: 2006 "vulcanized rubber and thermoplastic rubber-compression set at normal temperature, high temperature and low temperature. Measured according to “How to obtain”.
Specifically, a cylindrical test piece having a diameter of 29.0 mm and a thickness of 12.7 mm was kept in a state of being compressed by 25% at 70 ° C. for 22 hours using a spacer, and the thickness of the test piece after 30 minutes after compression was released. Measure the compression set (CS (%)) by the following formula.
Compression set CS (%) = {(t0−t1) / (t0−t2) × 100}
t0: Original thickness of test piece (mm)
t1: Thickness (mm) after the test piece was taken out of the compression apparatus and 30 minutes passed
t2: Spacer thickness (mm)

(3−2)熱可塑性ポリウレタン樹脂の硬度の測定方法
熱可塑性ポリウレタン樹脂の硬度は、JIS K7311:1995年「ポリウレタン系熱可塑性エラストマーの試験方法」に準拠して測定する。Aデュロメータを用いて測定した値を硬度とする。
(3-2) Method for Measuring Hardness of Thermoplastic Polyurethane Resin The hardness of the thermoplastic polyurethane resin is measured in accordance with JIS K7311: 1995 “Testing Method for Polyurethane Thermoplastic Elastomer”. The value measured using the A durometer is taken as the hardness.

(3−3)発泡粒子の嵩密度の測定方法
メスシリンダを水平方向から目視しながら発泡粒子をメスシリンダに充填し、メスシリンダの500cm3の目盛りに達したときに充填を終了する。次に、メスシリンダに充填した発泡粒子の質量を秤量し、四捨五入して小数点以下2位を有効数字とした値をW(g)とする。次式により発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
(3-3) Method for measuring the bulk density of the expanded particles The expanded particles are filled into the graduated cylinder while visually observing the graduated cylinder from the horizontal direction, and the filling ends when the graduated cylinder reaches the 500 cm 3 scale. Next, the mass of the expanded particles filled in the graduated cylinder is weighed, rounded off, and the value with the second decimal place as a significant figure is defined as W (g). The bulk density of the expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500

(3−4)発泡成形体の密度の測定方法
発泡成形体の密度は、JIS K7122:1999年「発泡プラスチック及びゴム−見掛け密度の測定」に準拠して測定する。
具体的には、発泡成形体の密度は、50cm3以上(半硬質及び軟質材料の場合は100cm3以上)の試験片を材料のセル構造を変えないように切断し、切片の質量を測定し、次式により算出する。
密度(g/cm3)=試験片質量(g)/試験片体積(cm3
(3-4) Method for Measuring Density of Foam Molded Body The density of the foam molded body is measured according to JIS K7122: 1999 “Measurement of Foamed Plastic and Rubber—Apparent Density”.
Specifically, the density of the foamed molded product is cut to 50 cm 3 or more (100 cm 3 or more for semi-hard and soft materials) without changing the cell structure of the material, and the mass of the slice is measured. Calculated by the following equation.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )

(3−5)発泡成形体の寸法変化率の測定方法
内寸150mm(縦)×150mm(横)×30mm(高さ)の成形金型で型内発泡成形し、常温で15分間放置冷却後に金型より取り出した発泡成形体を常温で放置し、1時間後および24時間後の寸法を各辺(縦、横および高さ)について測定する。各辺について、下記式に基づいて寸法変化率を計算し、得られた値のうち最大の値を発泡成形体の寸法変化率とする。
寸法変化率(%)={(金型内寸法−測定寸法値(発泡成形体))/金型内寸法}×100
(3-5) Method for Measuring Dimensional Change Rate of Foam Molded Body In-mold foam molding is performed with a molding die having an inner dimension of 150 mm (vertical) x 150 mm (horizontal) x 30 mm (height), followed by cooling at room temperature for 15 minutes. The foamed molded product taken out from the mold is allowed to stand at room temperature, and the dimensions after 1 hour and 24 hours are measured for each side (vertical, horizontal and height). For each side, the dimensional change rate is calculated based on the following formula, and the maximum value among the obtained values is taken as the dimensional change rate of the foamed molded product.
Dimensional change rate (%) = {(in-mold dimension−measured dimension value (foam molded body)) / in-mold dimension} × 100

実施例1
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「クラミロンU−1195」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪55%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.27MPaに保ち、141℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.30g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.4MPaで、152℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置し、その後寸法を測定した。得られた発泡成形体は、寸法が148mm×148mm×29.3mm、密度は0.36g/cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が148mm×148mm×29.3mm、密度は0.36g/cm3であった。
Example 1
A 5 liter capacity autoclave was charged with 1000 g of a thermoplastic polyurethane resin (trade name “Cramiron U-1195” (manufactured by Kuraray), 2.0 mm diameter, 2.5 mm long pellets, 55% compression set), and a foaming agent. 218 g of butane was injected under pressure, and the temperature was kept at 70 ° C. and impregnation was performed for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, kept at a water vapor pressure of 0.27 MPa, and heated at 141 ° C. for 60 seconds for foaming to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin expanded particles was 0.30 g / cm 3 .
A molding die having a water vapor hole (inner dimensions: 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles and molded by heating at 152 ° C. for 60 seconds at a water vapor pressure of 0.4 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The taken-out foam molding was left at room temperature for 1 hour, and then the dimensions were measured. The obtained foamed molded product had dimensions of 148 mm × 148 mm × 29.3 mm and a density of 0.36 g / cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foam molded article had dimensions of 148 mm × 148 mm × 29.3 mm and a density of 0.36 g / cm 3 .

実施例2
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「クラミロンU−1190」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪55%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。
得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.07MPaに保ち、115℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.31g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.36MPaで148℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置し、その後寸法を測定した。得られた発泡成形体は、寸法が145mm×146mm×29mm、密度は0.38g/cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が145mm×146mm×29mm、密度は0.38g/cm3であった。
Example 2
A 5 liter autoclave is charged with 1000 g of a thermoplastic polyurethane resin (trade name “Cramiron U-1190” (manufactured by Kuraray Co., Ltd.), diameter 2.0 mm, length 2.5 mm pellets, compression set 55%), foaming agent 218 g of butane was injected under pressure, and the temperature was kept at 70 ° C. and impregnation was performed for 4 hours.
The obtained expandable particles were put into a pressure foaming tank, the water vapor pressure was kept at 0.07 MPa, and the foamed particles were heated and heated at 115 ° C. for 60 seconds to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin expanded particles was 0.31 g / cm 3 .
A molding die having a water vapor hole (inner dimensions: 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles, and molded by heating at 148 ° C. for 60 seconds at a water vapor pressure of 0.36 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The taken-out foam molding was left at room temperature for 1 hour, and then the dimensions were measured. The obtained foamed molded product had dimensions of 145 mm × 146 mm × 29 mm and a density of 0.38 g / cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foamed molded product had dimensions of 145 mm × 146 mm × 29 mm and a density of 0.38 g / cm 3 .

実施例3
5L容量のオートクレーブに植物由来原料比率が40%である熱可塑性ポリウレタン樹脂(商品名「クラミロンEF−195」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪55%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.27MPaに保ち、141℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.32g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.4MPaで152℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置後に寸法を測定した。得られた発泡成形体は、寸法が145mm×144mm×28.9mm、密度は0.40g/cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が145mm×144mm×28.9mm、密度は0.40g/cm3であった。
Example 3
Thermoplastic polyurethane resin (trade name “Cramiron EF-195” (manufactured by Kuraray Co., Ltd.) with a plant-derived raw material ratio of 40% in a 5 L capacity autoclave, pellets with a diameter of 2.0 mm and a length of 2.5 mm, compression set 55%) was charged in an amount of 218 g of butane as a foaming agent, and the temperature was kept at 70 ° C. for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, kept at a water vapor pressure of 0.27 MPa, and heated at 141 ° C. for 60 seconds for foaming to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin foamed particles was 0.32 g / cm 3 .
A molding die having a water vapor hole (inner dimensions: 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles, and molded by heating at 152 ° C. for 60 seconds at a water vapor pressure of 0.4 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The dimension was measured after leaving the foamed molded article taken out at room temperature for 1 hour. The obtained foamed molded product had dimensions of 145 mm × 144 mm × 28.9 mm and a density of 0.40 g / cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foam molded article had dimensions of 145 mm × 144 mm × 28.9 mm and a density of 0.40 g / cm 3 .

実施例4
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「クラミロンU−3185」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪45%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.07MPaに保ち、115℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.32g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.25MPaで139℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置後に寸法を測定した。得られた発泡成形体は、寸法が142mm×143mm×28.4mm、密度は0.42g/cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が142mm×143mm×28.4mm、密度は0.42g/cm3であった。
Example 4
A 5 liter capacity autoclave is charged with 1000 g of a thermoplastic polyurethane resin (trade name “Clamiron U-3185” (manufactured by Kuraray Co., Ltd.), 2.0 mm diameter, 2.5 mm long pellets, 45% compression set), a foaming agent 218 g of butane was injected under pressure, and the temperature was kept at 70 ° C. and impregnation was performed for 4 hours. The obtained expandable particles were put into a pressure foaming tank, the water vapor pressure was kept at 0.07 MPa, and the foamed particles were heated and heated at 115 ° C. for 60 seconds to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin foamed particles was 0.32 g / cm 3 .
A molding die having a water vapor hole (inner dimensions 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles, and molded by heating at 139 ° C. for 60 seconds at a water vapor pressure of 0.25 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The dimension was measured after leaving the foamed molded article taken out at room temperature for 1 hour. The obtained foamed molded product had dimensions of 142 mm × 143 mm × 28.4 mm and a density of 0.42 g / cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foam molded article had dimensions of 142 mm × 143 mm × 28.4 mm and a density of 0.42 g / cm 3 .

比較例1
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「クラミロンU−8165」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪37%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.05MPaに保ち、111℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.32g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.18MPaで131℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より内容物を取り出した。発泡粒子の融着が悪く、発泡成形体を得ることができなかった。
Comparative Example 1
A 5 liter autoclave is charged with 1000 g of a thermoplastic polyurethane resin (trade name “Curamylon U-8165” (Kuraray Co., Ltd.), diameter 2.0 mm, length 2.5 mm pellets, compression set 37%), foaming agent 218 g of butane was injected under pressure, and the temperature was kept at 70 ° C. and impregnation was performed for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, and the water vapor pressure was kept at 0.05 MPa, and the foamed particles were heated and foamed at 111 ° C. for 60 seconds to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin foamed particles was 0.32 g / cm 3 .
A molding die having a water vapor hole (inner dimensions 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles, and molded by heating at 131 ° C. for 60 seconds at a water vapor pressure of 0.18 MPa. After cooling at room temperature for 15 minutes, the contents were taken out from the mold. The fusion of the foamed particles was poor, and a foamed molded product could not be obtained.

比較例2
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「ミラクトランE−190」(日本ポリウレタン社製)、直径2.6mm、長さ2.8mmのペレット状、圧縮永久歪32%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.17MPaに保ち、130℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.30g/cm3であった。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に発泡粒子を800cm3充填し、水蒸気圧力0.33MPaで146℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より内容物を取り出した。発泡粒子の融着が悪く、発泡成形体を得ることができなかった。
Comparative Example 2
1000 g of thermoplastic polyurethane resin (trade name “Milactolan E-190” (manufactured by Nippon Polyurethane), pellets with a diameter of 2.6 mm and a length of 2.8 mm, compression set 32%) is charged into a 5 L autoclave and foamed. 218 g of butane was injected as an agent, and the temperature was kept at 70 ° C. for impregnation for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, kept at a water vapor pressure of 0.17 MPa, heated at 130 ° C. for 60 seconds and foamed to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin expanded particles was 0.30 g / cm 3 .
A molding die having a water vapor hole (inner dimensions 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of foamed particles and molded by heating at 146 ° C. for 60 seconds at a water vapor pressure of 0.33 MPa. After cooling at room temperature for 15 minutes, the contents were taken out from the mold. The fusion of the foamed particles was poor, and a foamed molded product could not be obtained.

比較例3
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「クラミロンU−8165」(クラレ社製)、直径2.0mm、長さ2.5mmのペレット状、圧縮永久歪37%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.05MPaに保ち、111℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.32g/cm3であった。
この発泡粒子をオートクレーブに入れ発泡剤としてCO2を用い0.8MPaに加圧し(内圧付与し)、室温で2時間放置含浸した。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に含浸後の発泡粒子を800cm3充填し、水蒸気圧力0.15MPaで127℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置後に寸法を測定した。得られた発泡成形体は、寸法が123mm×121mm×24.2mm、密度は0.69cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が103mm×102mm×20.1mm、密度は1.19g/cm3であった。
Comparative Example 3
A 5 liter autoclave is charged with 1000 g of a thermoplastic polyurethane resin (trade name “Curamylon U-8165” (Kuraray Co., Ltd.), diameter 2.0 mm, length 2.5 mm pellets, compression set 37%), foaming agent 218 g of butane was injected under pressure, and the temperature was kept at 70 ° C. and impregnation was performed for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, and the water vapor pressure was kept at 0.05 MPa, and the foamed particles were heated and foamed at 111 ° C. for 60 seconds to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin foamed particles was 0.32 g / cm 3 .
The foamed particles were put in an autoclave, pressurized to 0.8 MPa (applied with internal pressure) using CO 2 as a foaming agent, and left to impregnate at room temperature for 2 hours.
A molding die having a water vapor hole (inner dimensions: 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of the impregnated foamed particles, and molded by heating at 127 ° C. for 60 seconds at a water vapor pressure of 0.15 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The dimension was measured after leaving the foamed molded article taken out at room temperature for 1 hour. The obtained foamed molded product had a size of 123 mm × 121 mm × 24.2 mm and a density of 0.69 cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foam molded article had dimensions of 103 mm × 102 mm × 20.1 mm and a density of 1.19 g / cm 3 .

比較例4
5L容量のオートクレーブに熱可塑性ポリウレタン樹脂(商品名「ミラクトランE−190」(日本ポリウレタン社製)、直径2.6mm、長さ2.8mmのペレット状、圧縮永久歪32%)を1000g仕込み、発泡剤としてブタンを218g圧入し、温度を70℃に保ち、4時間含浸を行った。得られた発泡性粒子を加圧発泡槽に入れ、水蒸気圧力を0.20MPaに保ち、134℃で60秒間加熱して発泡させて熱可塑性ポリウレタン樹脂発泡粒子を得た。得られた熱可塑性ポリウレタン樹脂発泡粒子の嵩密度は0.30g/cm3であった。
この発泡粒子をオートクレーブに入れ発泡剤としてCO2を用い0.8MPaに加圧し(内圧付与し)、室温で2時間放置含浸した。
水蒸気孔を有する成形用金型(内寸150mm×150mm×30mm)に含浸後の発泡粒子を800cm3充填し、水蒸気圧力0.33MPaで146℃で60秒間加熱し成形した。常温で15分放置冷却後、金型より発泡成形体を取り出した。取り出した発泡成形体を常温で1時間放置後に寸法を測定した。得られた発泡成形体は、寸法が126mm×123mm×24.8mm、密度は0.59cm3であった。
さらに、この発泡成形体の常温で24時間放置後の寸法を測定した。発泡成形体は、寸法が111mm×109mm×21.6mm、密度は0.90g/cm3であった。
Comparative Example 4
1000 g of thermoplastic polyurethane resin (trade name “Milactolan E-190” (manufactured by Nippon Polyurethane), pellets with a diameter of 2.6 mm and a length of 2.8 mm, compression set 32%) is charged into a 5 L autoclave and foamed. 218 g of butane was injected as an agent, and the temperature was kept at 70 ° C. for impregnation for 4 hours. The obtained expandable particles were put into a pressurized foaming tank, the water vapor pressure was kept at 0.20 MPa, and the foamed particles were heated at 134 ° C. for 60 seconds to be foamed to obtain thermoplastic polyurethane resin expanded particles. The bulk density of the obtained thermoplastic polyurethane resin expanded particles was 0.30 g / cm 3 .
The foamed particles were placed in an autoclave, pressurized to 0.8 MPa (applied with internal pressure) using CO 2 as a foaming agent, and allowed to stand for 2 hours at room temperature.
A mold for molding having water vapor holes (inner dimensions 150 mm × 150 mm × 30 mm) was filled with 800 cm 3 of the impregnated foamed particles, and molded by heating at 146 ° C. for 60 seconds at a water vapor pressure of 0.33 MPa. After cooling at room temperature for 15 minutes, the foamed molded product was taken out of the mold. The dimension was measured after leaving the foamed molded article taken out at room temperature for 1 hour. The obtained foamed molded product had dimensions of 126 mm × 123 mm × 24.8 mm and a density of 0.59 cm 3 .
Further, the dimensions of the foamed molded product after being left at room temperature for 24 hours were measured. The foamed molded product had dimensions of 111 mm × 109 mm × 21.6 mm and a density of 0.90 g / cm 3 .

実施例1〜4及び比較例1〜4における基材樹脂、発泡粒子及び発泡成形体の物性を以下に示す。
The physical properties of the base resin, the expanded particles and the expanded molded body in Examples 1 to 4 and Comparative Examples 1 to 4 are shown below.

表1の実施例から、圧縮永久歪が40%以上の熱可塑性ポリウレタン樹脂からなる発泡成形体は、発泡成形前に発泡性粒子に内圧を付与しなくても、寸法変化率を低減できていることが分かる。
また、比較例1及び2から、圧縮永久歪が40%以上の熱可塑性ポリウレタン樹脂を内圧を付与せず発泡成形した場合、融着が不十分なため十分に成形することができないことが分かる。
更に、比較例3及び4から、圧縮永久歪が40%以上の熱可塑性ポリウレタン樹脂を内圧を付与して発泡成形しても、寸法変化率を十分低減できないことが分かる。
From the examples in Table 1, the foam molded body made of a thermoplastic polyurethane resin having a compression set of 40% or more can reduce the dimensional change rate without applying internal pressure to the foamable particles before foam molding. I understand that.
Further, it can be seen from Comparative Examples 1 and 2 that when a thermoplastic polyurethane resin having a compression set of 40% or more is foam-molded without applying an internal pressure, it cannot be sufficiently molded because of insufficient fusion.
Furthermore, it can be seen from Comparative Examples 3 and 4 that even if a thermoplastic polyurethane resin having a compression set of 40% or more is subjected to foam molding by applying an internal pressure, the dimensional change rate cannot be sufficiently reduced.

Claims (7)

JIS K6262で測定したときに40%以上の圧縮永久歪を有する高圧縮永久歪熱可塑性ポリウレタン樹脂を含む熱可塑性ポリウレタン樹脂の粒子に発泡剤を含浸させて発泡性粒子を得、前記発泡性粒子を発泡させることによる熱可塑性ポリウレタン樹脂発泡粒子の製造方法であって前記熱可塑性ポリウレタン樹脂発泡粒子が、当該発泡粒子取得後発泡成形前に内圧を付与せずに、5.3%以下の寸法変化率を有する発泡成形体を与えることを特徴とする熱可塑性ポリウレタン樹脂発泡粒子の製造方法。 A foaming agent is obtained by impregnating a thermoplastic polyurethane resin particle containing a high compression set thermoplastic polyurethane resin having a compression set of 40% or more as measured by JIS K6262 with a foaming agent. a method of manufacturing a by that the thermoplastic polyurethane resin foam particles be foamed, the thermoplastic polyurethane resin expanded particles without giving the internal pressure before the post-expanded beads obtaining foam molding, the following 5.3% method for producing a thermoplastic polyurethane resin foam particles, wherein the benzalkonium give a foam molded article having a dimensional change rate. 前記発泡剤が、有機系発泡剤である請求項に記載の熱可塑性ポリウレタン樹脂発泡粒子の製造方法。 The blowing agent, method for producing a thermoplastic polyurethane resin foamed particles according to claim 1 is an organic foaming agent. 前記熱可塑性ポリウレタン樹脂発泡粒子が、2.0〜10.0mmの粒径を有する請求項1又は2に記載の熱可塑性ポリウレタン樹脂発泡粒子の製造方法The method for producing foamed thermoplastic polyurethane resin particles according to claim 1 or 2, wherein the foamed thermoplastic polyurethane resin particles have a particle size of 2.0 to 10.0 mm. 前記高圧縮永久歪熱可塑性ポリウレタン樹脂が、基材樹脂中に80〜100質量%存在する請求項1〜3のいずれか1つに記載の熱可塑性ポリウレタン樹脂発泡粒子の製造方法The method for producing expanded thermoplastic polyurethane resin particles according to any one of claims 1 to 3, wherein the high compression set thermoplastic polyurethane resin is present in an amount of 80 to 100% by mass in the base resin. 前記熱可塑性ポリウレタン樹脂が、ASTM D6866に準拠して測定される植物度が1%以上の植物由来熱可塑性ポリウレタン樹脂である請求項1〜4のいずれか1つに記載の熱可塑性ポリウレタン樹脂発泡粒子の製造方法The thermoplastic polyurethane resin foamed particle according to any one of claims 1 to 4, wherein the thermoplastic polyurethane resin is a plant-derived thermoplastic polyurethane resin having a plant degree measured according to ASTM D6866 of 1% or more. Manufacturing method . 請求項1〜5のいずれか1つに記載の熱可塑性ポリウレタン樹脂発泡粒子を型内発泡成形させることによ熱可塑性ポリウレタン樹脂発泡成形体の製造方法 Method for producing a thermoplastic polyurethane resin foam thermoplastic particles that by the be mold foaming a polyurethane resin foam molded article according to any one of claims 1 to 5. 前記熱可塑性ポリウレタン樹脂発泡成形体の密度が0.02〜0.6g/cm3である請求項に記載の熱可塑性ポリウレタン樹脂発泡成形体の製造方法 Method for producing the thermoplastic density polyurethane resin foam molded article, a thermoplastic polyurethane resin foam molded article according to 0.02~0.6g / cm 3 der Ru請 Motomeko 6.
JP2012209615A 2012-09-24 2012-09-24 Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article Active JP5975817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209615A JP5975817B2 (en) 2012-09-24 2012-09-24 Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209615A JP5975817B2 (en) 2012-09-24 2012-09-24 Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article

Publications (2)

Publication Number Publication Date
JP2014062213A JP2014062213A (en) 2014-04-10
JP5975817B2 true JP5975817B2 (en) 2016-08-23

Family

ID=50617750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209615A Active JP5975817B2 (en) 2012-09-24 2012-09-24 Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article

Country Status (1)

Country Link
JP (1) JP5975817B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614583B (en) * 2015-06-01 2020-08-14 株式会社Jsp Thermoplastic polyurethane foam particle and molded article of thermoplastic polyurethane foam particle
JP2017185771A (en) * 2016-03-30 2017-10-12 積水化成品工業株式会社 Interior material for vehicle
JP6761658B2 (en) * 2016-03-31 2020-09-30 株式会社ジェイエスピー Thermoplastic polyurethane foam particles
JP6186033B1 (en) * 2016-03-31 2017-08-23 株式会社ジェイエスピー Thermoplastic polyurethane foam particles and method for producing thermoplastic polyurethane foam particles
CN109312100B (en) 2016-06-29 2022-06-24 株式会社Jsp Thermoplastic polyurethane foam particle molded body, method for producing same, and thermoplastic polyurethane foam particle
WO2018012089A1 (en) 2016-07-13 2018-01-18 積水化成品工業株式会社 Molded foam of ester-based elastomer, uses thereof, and expanded beads of ester-based elastomer
JP6371821B2 (en) * 2016-11-28 2018-08-08 株式会社ジェイエスピー Thermoplastic polyurethane expanded particles and molded articles of thermoplastic polyurethane expanded particles
JP6869017B2 (en) * 2016-12-07 2021-05-12 株式会社ジェイエスピー Urethane-based thermoplastic elastomer foamed particle molded product
JP6397949B2 (en) 2017-03-06 2018-09-26 株式会社ジェイエスピー Foamed particle molding
KR20180103665A (en) * 2017-03-09 2018-09-19 (주)엘지하우시스 Thermoplastic polyurethane particles and method for preparing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100844B2 (en) * 1994-10-18 2000-10-23 積水化成品工業株式会社 Thermoplastic polyurethane foam molded article and method for producing the same
JP2001138377A (en) * 1999-11-10 2001-05-22 Achilles Corp Method for foam molding thermoplastic resin
JP2007091840A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, thermoplastic resin pre-expanded particle, method for producing the same and expanded molding
JP5398174B2 (en) * 2008-05-30 2014-01-29 株式会社イックス Resin foam sheet, laminated resin sheet provided with the resin foam sheet, and method for producing the same
JP2010106060A (en) * 2008-10-28 2010-05-13 Kyowa Co Ltd Two-layered, foamed flame-retardant adhesive tape and two-layered, foamed flame-retardant sheet
JP2011252039A (en) * 2010-05-31 2011-12-15 Sanyo Chem Ind Ltd Polyol component for manufacturing soft polyurethane foam and method of manufacturing soft polyurethane foam using the same
US20120065341A1 (en) * 2010-09-10 2012-03-15 Basf Se Silicon dioxide dispersions
JP5609658B2 (en) * 2011-01-13 2014-10-22 東ソー株式会社 Thermoplastic polyurethane resin composition

Also Published As

Publication number Publication date
JP2014062213A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5975817B2 (en) Thermoplastic polyurethane resin foamed particles, method for producing the same, and thermoplastic polyurethane resin foam molded article
JP6033295B2 (en) Method for producing organic foam composites containing airgel particles
Raps et al. Past and present developments in polymer bead foams and bead foaming technology
JP6828979B2 (en) Thermoplastic polyurethane foam particles and thermoplastic polyurethane foam particle moldings
Eaves Handbook of polymer foams
JP3100844B2 (en) Thermoplastic polyurethane foam molded article and method for producing the same
JP2014518299A5 (en)
CN107828205B (en) Vulcanized and crosslinked foamed polyurethane rubber compound particle and preparation method and forming process thereof
JP2019535873A (en) Expanded thermoplastic polyurethane beads, method for producing the same and method for producing molded parts
KR101768263B1 (en) Polylactic acid resin foam particle and polylactic acid resin foam particle molding
US11318647B2 (en) Method of microcellular foam molding
EP2940070B1 (en) Molded article of polylactic acid-based resin expanded beads
US11458657B2 (en) Method of microcellular foam molding
KR101440217B1 (en) Polypropylene composition to improve a low temperature impact strength and its articles
US20190099927A1 (en) Foaming method by effusing SCF through plastic granules
TWI740010B (en) Foamed particle molded article
US11208537B2 (en) Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article
KR20210028187A (en) Expanded thermoplastic polyurethane and microwave molded article thereof
Defonseka Practical guide to water-blown cellular polymers
JP2003082150A (en) Polylactic acid expandable resin particle
JP2009061754A (en) Foam molding machine of thermoplastic resin
Taskin Polymeric Foams: Materials, Technology, and Applications
JP2023012721A (en) Non-crosslinked olefinic thermoplastic elastomer foam molding, method for producing the same, and foam particle and resin particle used in production of the foam molding
US20220267553A1 (en) Novel particle foams
JPH0632934A (en) Expandable thermoplastic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150