JP5975709B2 - Manufacturing method for underground structures - Google Patents

Manufacturing method for underground structures Download PDF

Info

Publication number
JP5975709B2
JP5975709B2 JP2012092986A JP2012092986A JP5975709B2 JP 5975709 B2 JP5975709 B2 JP 5975709B2 JP 2012092986 A JP2012092986 A JP 2012092986A JP 2012092986 A JP2012092986 A JP 2012092986A JP 5975709 B2 JP5975709 B2 JP 5975709B2
Authority
JP
Japan
Prior art keywords
soil
partition material
fluidized
rotation transmission
transmission cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012092986A
Other languages
Japanese (ja)
Other versions
JP2013221302A (en
Inventor
徹 神崎
徹 神崎
Original Assignee
徹 神崎
徹 神崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 神崎, 徹 神崎 filed Critical 徹 神崎
Priority to JP2012092986A priority Critical patent/JP5975709B2/en
Publication of JP2013221302A publication Critical patent/JP2013221302A/en
Application granted granted Critical
Publication of JP5975709B2 publication Critical patent/JP5975709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は地下構造物の製造方法に関し、特に、ビルディングなどの建造物に使用された支持杭を撤去した後に行われる埋戻作業の際に適用して好適なものである。   The present invention relates to a method for manufacturing an underground structure, and is particularly suitable when applied to a backfilling operation performed after removing a support pile used for a building such as a building.

従来、地盤が掘削され形成された掘削孔に、土に固化材と水とを混練し流動化させた流動化処理土を打設し、当該流動化処理土の上に建設発生土でなる埋戻土を埋め戻すことにより、層状に構成された地下構造物を形成し、地盤を元に近い状態に戻す埋戻作業が行われている(特許文献1参照)。   Conventionally, a fluidized soil obtained by kneading and fluidizing a solidified material and water in a soil is placed in the excavation hole formed by excavating the ground, and the construction-generated soil is buried on the fluidized soil. By backfilling the backsoil, an underground structure configured in a layered manner is formed, and backfilling work is performed to return the ground to its original state (see Patent Document 1).

特開2001−221369公報JP 2001-221369 A

このような埋戻作業においては、流動化処理土と埋戻土とが互いに直接接触しているため、流動化処理土に埋戻土が混ざってしまい、流動化処理土と埋戻土との境界付近における地下構造物の品質を安定化させることができない可能性があるため、品質を安定化させることが望ましい。   In such a backfilling operation, the fluidized soil and the backfilled soil are in direct contact with each other, so the backfilled soil is mixed with the fluidized treated soil, and the fluidized treated soil and the backfilled soil are mixed. Since it may not be possible to stabilize the quality of underground structures near the boundary, it is desirable to stabilize the quality.

本発明は以上の点を考慮してなされたもので、品質を向上し得る地下構造物の製造方法を提案しようとするものである。   The present invention has been made in view of the above points, and intends to propose a method of manufacturing an underground structure that can improve quality.

かかる問題を解決するため本発明の地下構造物の製造方法においては、地盤3中に略円筒形状に上下方向に延びる地下構造物1の製造方法において、所定の特性でなる第1の土14を地盤3中に略円筒形状に延びる筒状部10又は38の内側へ投入することにより下層部11を形成する下層部形成工程と、略円筒形状でなり発泡スチロールにより形成され、水平方向にほぼ沿う回転軸50を中心に筒状部10又は38の内側において回転する際、筒状部10又は38の内壁面に接触して回転が抑止される仕切材12を、下層部11の上部に配置する仕切材配置工程と、仕切材12の上部に第1の土14とは異なる特性でなる第2の土15を投入することにより上層部13を形成する上層部形成工程とを設けるようにした。 In order to solve this problem, in the method for manufacturing an underground structure according to the present invention, the first soil 14 having predetermined characteristics is provided in the method for manufacturing the underground structure 1 extending in the vertical direction in a substantially cylindrical shape in the ground 3. A lower layer portion forming step for forming the lower layer portion 11 by being put inside the cylindrical portion 10 or 38 extending in a substantially cylindrical shape into the ground 3, and a rotation that is substantially cylindrical and formed by polystyrene foam , and substantially follows the horizontal direction. The partition which arrange | positions the partition material 12 which contacts the inner wall face of the cylindrical part 10 or 38, and suppresses rotation when rotating inside the cylindrical part 10 or 38 centering on the axis | shaft 50 in the upper part of the lower layer part 11 The material arranging step and the upper layer portion forming step for forming the upper layer portion 13 by introducing the second soil 15 having a characteristic different from that of the first soil 14 into the upper portion of the partition material 12 are provided.

本発明によれば、第2の土が衝突した衝撃力によって仕切材が回転することを抑止することにより、第2の土と第1の土とを物理的に分離し、第2の土と第1の土との境界付近における両者の混ざり合いを低減することができるので、品質を向上し得る地下構造物の製造方法を実現できる。   According to the present invention, the second soil and the first soil are physically separated by preventing the partition material from rotating due to the impact force with which the second soil collides. Since the mixing of both in the vicinity of the boundary with the first soil can be reduced, an underground structure manufacturing method capable of improving the quality can be realized.

地下構造物の全体構成を示す略線図である。It is a basic diagram which shows the whole structure of an underground structure. 仕切材の構成を示す斜視図である。It is a perspective view which shows the structure of a partition material. 撤去作業の様子を示す略線図である。It is a basic diagram which shows the mode of removal work. 埋戻作業の様子(1)を示す略線図である。It is a basic diagram which shows the mode (1) of a backfilling operation | work. 埋戻作業の様子(2)を示す略線図である。It is a basic diagram which shows the mode (2) of a backfilling operation | work. 埋戻作業の様子(3)を示す略線図である。It is a basic diagram which shows the mode (3) of a backfilling operation | work. 埋戻作業の様子(4)を示す略線図である。It is a basic diagram which shows the mode (4) of a backfilling operation | work. 仕切材に埋戻土が衝突する様子を示す略線図である。It is a basic diagram which shows a mode that backfill soil collides with a partition material. 他の実施の形態による仕切材の構成を示す正面図である。It is a front view which shows the structure of the partition material by other embodiment.

以下図面について、本発明の一実施の形態を詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

(1)実施の形態
図1において、1は全体として、ビルディングなどの建造物に使用された支持杭を撤去するために地盤3が掘削されて形成された掘削孔10に、埋戻作業により土等が埋め戻されることにより形成された地下構造物を示している。
(1) Embodiment In FIG. 1, as a whole, reference numeral 1 denotes a soil by a backfilling operation in an excavation hole 10 formed by excavating the ground 3 in order to remove a support pile used for a building such as a building. The underground structure formed by backfilling etc. is shown.

地下構造物1は、地表2から下方向に向かってほぼ鉛直に延設する円筒形状でなる掘削孔10に、下方から上方へ向かって、下層部11、仕切材12及び上層部13が層状に順次配置されている。   The underground structure 1 has a cylindrical excavation hole 10 extending substantially vertically downward from the ground surface 2, and a lower layer portion 11, a partition material 12, and an upper layer portion 13 are layered from below to above. They are arranged sequentially.

下層部11は、建築発生土に固化材と水とを混練し流動化させた土である流動化処理土14が充填されている。上層部13は、改良土又は土砂等である埋戻土15が充填されている。   The lower layer portion 11 is filled with fluidized soil 14 that is a soil obtained by kneading and fluidizing a solidifying material and water into the building-generated soil. The upper layer portion 13 is filled with backfilling soil 15 such as improved soil or earth and sand.

仕切材12は、下層部11と上層部13との間に位置することにより、当該下層部11と上層部13とを物理的に分離している。   The partition material 12 physically separates the lower layer portion 11 and the upper layer portion 13 by being positioned between the lower layer portion 11 and the upper layer portion 13.

図2に示すように、仕切材12は中実円柱形状でなり、円形の下底面20と、当該下底面20と同等の直径の円形でなり下底面20と平行な上底面22と、下底面20の外周から当該下底面20に対し直角に立設し、上底面22に対し直角となるよう当該上底面22の外周に接する周側面24とを有している。   As shown in FIG. 2, the partitioning member 12 has a solid cylindrical shape, a circular lower bottom surface 20, a circular shape having a diameter equivalent to the lower bottom surface 20, an upper bottom surface 22 parallel to the lower bottom surface 20, and a lower bottom surface 20 has a peripheral side surface 24 which is erected at a right angle from the outer periphery of the lower surface 20 and is in contact with the outer periphery of the upper bottom surface 22 so as to be at a right angle to the upper bottom surface 22.

仕切材12は、横方向の幅である外径が740[mm]、下底面20から上底面22までの高さである厚みが500[mm]に形成されているため、薄板の円板状ではなく、十分な厚みを有する形状となっている。   Since the partition member 12 is formed to have an outer diameter of 740 [mm] as a width in the horizontal direction and a thickness of 500 [mm] as a height from the lower bottom surface 20 to the upper bottom surface 22, Instead, the shape has a sufficient thickness.

また仕切材12は、発泡スチロールにより構成されているため、安価であると共に、厚みを大きく形成したとしても軽量であり作業者により運搬がし易く作業性が高い。また、発泡スチロールは任意の形状を容易に形成されることができる。   Moreover, since the partition material 12 is comprised by the polystyrene foam, it is cheap, and even if it forms thickly, it is lightweight, is easy to carry by an operator, and has high workability | operativity. In addition, the polystyrene foam can be easily formed into an arbitrary shape.

さらに発泡スチロールでなる仕切材12は、年月が経過したとしても風化することなく、下層部11と上層部13とを物理的に分離し続けることができると共に、埋戻作業を行い一旦製造された地下構造物1を再掘削する際には、掘削工具に容易に破壊されることより、再掘削の際の障害にならないようにすることができる。   Furthermore, the partition material 12 made of expanded polystyrene can be physically separated from the lower layer portion 11 and the upper layer portion 13 without being weathered even if the years have passed, and is once manufactured by performing a backfilling operation. When the underground structure 1 is re-excavated, it is easily destroyed by the excavating tool, so that it is possible not to become an obstacle during the re-excavation.

また、地下構造物1を後に再掘削する際、仕切材12は埋戻土15及び流動化処理土14とは明らかに色及び硬度が異なる物体であるため、作業する際の目印になり易く、再掘削している場所が適切であると作業者が容易に確認することができる。   In addition, when the underground structure 1 is re-excavated later, the partitioning material 12 is an object that is clearly different in color and hardness from the backfilling soil 15 and the fluidized soil 14, so it is easy to serve as a mark when working. The operator can easily confirm that the re-excavated location is appropriate.

以上の構成でなる地下構造物1を製造する際、作業者は、以下に述べる作業手順に従って、撤去対象杭100の撤去作業及び当該撤去対象杭100を撤去する際に削孔した掘削孔10の埋戻作業を行う。   When manufacturing the underground structure 1 having the above-described structure, the operator removes the pile to be removed 100 and the excavation hole 10 drilled when removing the pile to be removed 100 according to the procedure described below. Perform backfilling.

図3に示すように、回転駆動機34は、切削用の爪が取り付けられた先端刃先部36の上部に無底円筒形状でなる回転伝達筒部38を順次継ぎ足して装着していき、当該回転駆動機34の回転力を先端刃先部36に伝達することにより、地盤3を切削しながら当該先端刃先部36を地中深く進めて行く。   As shown in FIG. 3, the rotational drive machine 34 sequentially attaches and attaches a rotation transmission cylindrical portion 38 having a bottomless cylindrical shape to the upper portion of the tip blade tip portion 36 to which a cutting claw is attached. By transmitting the rotational force of the driving machine 34 to the tip edge portion 36, the tip edge portion 36 is advanced deeply into the ground while cutting the ground 3.

所定深度までの削孔が完了すると、クローラクレーン30は、掘削工具40により撤去対象杭100を掴み取り、掘削孔10の外部へ排出することにより、撤去対象杭100の撤去が完了する。   When the drilling to the predetermined depth is completed, the crawler crane 30 grasps the removal target pile 100 with the excavation tool 40 and discharges it to the outside of the excavation hole 10, whereby the removal of the removal target pile 100 is completed.

その後図4に示すように、トレミー管でなる打設装置42の先端を回転伝達筒部38の内部へ挿入し、ミキサー車31が当該打設装置42を通して所定の打ち止め高さまで流動化処理土14を打設することにより下層部11を形成する。   Thereafter, as shown in FIG. 4, the tip of the placing device 42 made of a tremy tube is inserted into the rotation transmission cylinder portion 38, and the mixer wheel 31 passes through the placing device 42 to a predetermined stopping height and the fluidized soil 14. The lower layer part 11 is formed by driving.

続いて図5に示すようにクローラクレーン30は、仕切材12を回転伝達筒部38内側へ投入する。仕切材12は、未硬化状態である流動化処理土14の表面の上部に、下底面20(図2)が接触するように載置される。   Subsequently, as shown in FIG. 5, the crawler crane 30 throws the partition material 12 into the rotation transmission cylinder portion 38. The partition material 12 is placed on the upper surface of the fluidized soil 14 in an uncured state so that the lower bottom surface 20 (FIG. 2) is in contact with it.

ここで、回転伝達筒部38の内径は890[mm]となっている。このため仕切材12の外径(740[mm])は回転伝達筒部38の内径よりも150[mm]だけ小さく形成されている。   Here, the inner diameter of the rotation transmission cylinder portion 38 is 890 [mm]. For this reason, the outer diameter (740 [mm]) of the partition member 12 is formed to be smaller by 150 [mm] than the inner diameter of the rotation transmission cylinder portion 38.

このように仕切材12は、回転伝達筒部38の内壁面との間に僅かな間隙を有するため、投入されて落下する途中で回転伝達筒部38の内壁面に引っかかってしまうことなく、流動化処理土14の上面に確実に到達することができる。   Thus, since the partition member 12 has a slight gap between the inner wall surface of the rotation transmission cylinder portion 38, the partition member 12 flows without being caught by the inner wall surface of the rotation transmission cylinder portion 38 while being dropped. It is possible to reliably reach the upper surface of the chemical treatment soil 14.

仕切材12が流動化処理土14の上面に載置されると、作業者は、先端に錘を付けたメジャーを回転伝達筒部38内に鉛直に垂らしていき、仕切材12の上底面22(図2)に当該錘が接触した深さを測定することにより、流動化処理土14の打ち止め高さが予め設計された深度となっていることを確認する。   When the partition material 12 is placed on the upper surface of the fluidized soil 14, the operator hangs a measure with a weight at the tip vertically into the rotation transmission cylinder portion 38, and the upper and lower surfaces 22 of the partition material 12. By measuring the depth at which the weight contacts (FIG. 2), it is confirmed that the stopping height of the fluidized soil 14 is the depth designed in advance.

ここで、従来の埋戻作業において流動化処理土14の打ち止め高さを確認する際、先端に錘を付けたメジャーを回転伝達筒部38内に垂らしていき、当該錘が流動化処理土14の表面に接触しても、流動化処理土14は液状であるため、当該流動化処理土14の内部まで錘が大きな抵抗なく入り込んでしまう。このため従来の埋戻作業では、流動化処理土14の打ち止め高さを確認しにくかった。   Here, when confirming the stopping height of the fluidized soil 14 in the conventional backfilling operation, a measure with a weight attached to the tip is suspended in the rotation transmission cylinder portion 38, and the weight is fluidized ground 14. Even if the fluidized soil 14 is in a liquid state, the weight enters the fluidized soil 14 into the fluidized soil 14 without great resistance. For this reason, in the conventional backfilling operation, it was difficult to confirm the stopping height of the fluidized soil 14.

これに対し本実施の形態による埋戻作業では、回転伝達筒部38内に垂らされた錘が、固体でなる仕切材12の上底面22に接触し、それ以上下方へ降りていかない。このため作業者は、錘が仕切材12に接触したか否かを容易に判断することができ、容易かつ正確に流動化処理土14の打ち止め高さを確認することができる。   On the other hand, in the backfilling operation according to the present embodiment, the weight hung in the rotation transmission cylinder portion 38 contacts the upper bottom surface 22 of the partition material 12 made of solid and does not descend further. For this reason, the operator can easily determine whether or not the weight has contacted the partition member 12, and can easily and accurately confirm the height of the fluidized soil 14 to be stopped.

続いて図6に示すように、ショベルカーでなる埋戻機32は、回転伝達筒部38内に改良土又は土砂等でなる埋戻土15を投入する。埋戻土15は、仕切材12の上底面22(図2)に衝突し、回転伝達筒部38の内側に充填されていく。   Subsequently, as shown in FIG. 6, the backfilling machine 32 made of a shovel car throws backfilling soil 15 made of improved soil or earth and sand into the rotation transmission cylinder portion 38. The backfill 15 collides with the upper bottom surface 22 (FIG. 2) of the partition member 12 and is filled inside the rotation transmission cylinder portion 38.

このとき、図8(a)に示すように仕切材12の上底面22の中央部分に埋戻土15が衝突した場合、仕切材12は回転することなくその姿勢をほぼ保つ。   At this time, as shown in FIG. 8A, when the backfill 15 collides with the center portion of the upper bottom surface 22 of the partition member 12, the partition member 12 maintains its posture without rotating.

一方、図8(b)に示すように仕切材12の上底面22の外周近傍に埋戻土15が衝突すると、埋戻土15の衝撃力により、水平方向に沿って仕切材12の中心を通る回転軸50(図8において紙面に垂直な方向に延びる)を中心として仕切材12が回転しようとする。   On the other hand, as shown in FIG. 8B, when the backfill 15 collides with the outer periphery of the upper bottom surface 22 of the partition member 12, the center of the partition member 12 is aligned along the horizontal direction by the impact force of the backfill soil 15. The partitioning member 12 tries to rotate around a rotating shaft 50 (extending in a direction perpendicular to the paper surface in FIG. 8).

このとき仕切材12は、図8(b)において、回転軸50を軸として反時計回りに若干回転し、右側の周側面24の下端部と、左側の周側面24の上端部とが回転伝達筒部38の内壁面に当接して引っ掛かるため、それ以上の回転が抑止される。   At this time, in FIG. 8B, the partition member 12 slightly rotates counterclockwise about the rotation shaft 50, and the lower end portion of the right peripheral side surface 24 and the upper end portion of the left peripheral side surface 24 transmit rotation. Since it contacts and catches on the inner wall surface of the cylinder part 38, the further rotation is suppressed.

このように仕切材12は、回転伝達筒部38の内壁面に掛止されるため、埋戻土15が中央部分以外の位置に衝突したとしても、姿勢をほぼ一定に保つことができる。   Thus, since the partition material 12 is hooked on the inner wall surface of the rotation transmission cylinder portion 38, the posture can be kept substantially constant even if the backfill 15 collides with a position other than the center portion.

これにより仕切材12は、埋戻土15が投入されている際、流動化処理土14と埋戻土15とを物理的に分離し、当該流動化処理土14と埋戻土15との境界付近における両者の混ざり合いを低減することができ、かくして流動化処理土14の強度を保ち、地下構造物1の品質を向上させることができる。   Thereby, the partition material 12 physically separates the fluidized treated soil 14 and the backfilled soil 15 when the backfilled soil 15 is input, and the boundary between the fluidized treated soil 14 and the backfilled soil 15. The mixing of both in the vicinity can be reduced, and thus the strength of the fluidized soil 14 can be maintained and the quality of the underground structure 1 can be improved.

これに対し、例えばベニヤ板のように厚みが薄い仕切材を用いた場合、埋戻土15を投入する際、当該埋戻土15が仕切材に衝突する衝撃力により、仕切材がバタフライ弁のように回転してしまったり、破損したりしてしまい、埋戻土15が流動化処理土14の表面に落下してしまう可能性があった。   On the other hand, when a partition material with a small thickness such as a plywood plate is used, when the backfill soil 15 is introduced, the partition material is like a butterfly valve due to an impact force that the backfill soil 15 collides with the partition material. Or the backfilling soil 15 may fall on the surface of the fluidized soil 14.

また、例えば塩化ビニールシート等のシート状の仕切材を用いる場合、投入してから丸まってしまったり、端部が折れてしまったりするため、流動化処理土14と埋戻土15とを物理的に分離するように流動化処理土14の表面全体をシート状の仕切材で覆うことが困難だった。   Further, when a sheet-like partition material such as a vinyl chloride sheet is used, the fluidized soil 14 and the backfill soil 15 are physically separated because they are rounded after being inserted or the end portions are broken. It was difficult to cover the entire surface of the fluidized soil 14 with a sheet-like partition material so as to be separated.

さらにシート状の仕切材の表面に埋戻土15を投入すると、シート状の仕切材は変形し易いため形状が崩れ、仕切材から埋戻土15が流れ出て、流動化処理土14に混入してしまう可能性があった。   Further, when the backfill 15 is put on the surface of the sheet-like partitioning material, the shape of the sheet-like partitioning material is easily deformed, so that the shape collapses, and the backfilling soil 15 flows out from the partitioning material and is mixed into the fluidized soil 14. There was a possibility.

これに対し本実施の形態による仕切材12は、十分な厚みを有するため、埋戻土15が上底面22に衝突した際、回転伝達筒部38の内壁面に掛止されて回転を抑止されると共に、埋戻土15の衝撃力により破損しにくくなされている。   On the other hand, since the partition material 12 according to the present embodiment has a sufficient thickness, when the backfill 15 collides with the upper bottom surface 22, the partition material 12 is hooked on the inner wall surface of the rotation transmission cylinder portion 38 and is prevented from rotating. In addition, it is difficult to be damaged by the impact force of the backfilling soil 15.

さらに仕切材12は、シート状ではなく十分な厚みを有する発泡スチロールであるため、回転伝達筒部38内側に投入されてから形状が変化せずに流動化処理土14の上面に到達すると共に、埋戻土15の衝撃力が加わっても変形しにくくなされている。   Furthermore, since the partitioning member 12 is not a sheet but is a foamed polystyrene having a sufficient thickness, it reaches the upper surface of the fluidized soil 14 without changing its shape after being inserted into the rotation transmission cylinder 38 and is embedded. Even if the impact force of the return soil 15 is applied, it is difficult to be deformed.

ところで、流動化処理土14に埋戻土15が混ざり込まないようにするためには、流動化処理土14を打設した後所定時間待機し、当該流動化処理土14の表面が硬化した後に埋戻土15を投入することも考えられる。   By the way, in order to prevent the backfilling soil 15 from being mixed into the fluidized soil 14, after placing the fluidized soil 14 and waiting for a predetermined time, after the surface of the fluidized soil 14 has hardened. It is also conceivable to put backfill soil 15.

しかしながらその場合、流動化処理土14が硬化する(通常3日程度要する)まで待機しなければならないため、埋戻作業が極めて非効率的になり、作業効率が悪化してしまう。   However, in that case, since it is necessary to wait until the fluidized soil 14 is hardened (usually it takes about 3 days), the backfilling operation becomes extremely inefficient and the work efficiency is deteriorated.

これに対し本実施の形態による埋戻作業では、流動化処理土14を打設した後に、当該流動化処理土14が硬化する前に仕切材12を投入し、埋戻土15を投入するため、作業効率を保ちつつ、地下構造物1の品質を向上させることができる。   On the other hand, in the backfilling operation according to the present embodiment, after placing the fluidized soil 14, the partition material 12 is introduced and the backfill soil 15 is introduced before the fluidized soil 14 is cured. The quality of the underground structure 1 can be improved while maintaining work efficiency.

また上述したように、仕切材12の外径は、回転伝達筒部38の内径よりも僅かに小さく形成されている。   Further, as described above, the outer diameter of the partition member 12 is slightly smaller than the inner diameter of the rotation transmission cylinder portion 38.

ここで、仕切材12の外径は、回転伝達筒部38の内径を上限として可能な限り大きい方が回転伝達筒部38の内壁面と仕切材12との間隙を小さくすることができるため、当該間隙を通って埋戻土15が流動化処理土14の表面に落下しにくくなり、流動化処理土14と埋戻土15とを物理的に分離することができる。   Here, since the outer diameter of the partition member 12 is as large as possible with the inner diameter of the rotation transmission cylinder portion 38 as the upper limit, the gap between the inner wall surface of the rotation transmission cylinder portion 38 and the partition member 12 can be reduced. The backfilling soil 15 is less likely to fall onto the surface of the fluidized soil 14 through the gap, and the fluidized soil 14 and the backfilled soil 15 can be physically separated.

しかしながら仕切材12の外径が大き過ぎると、回転伝達筒部38に仕切材12を投入する際、回転伝達筒部38の内壁面に仕切材12が引っかかってしまい、流動化処理土14の表面まで降りていかない可能性がある。   However, if the outer diameter of the partition material 12 is too large, the partition material 12 is caught on the inner wall surface of the rotation transmission cylinder portion 38 when the partition material 12 is put into the rotation transmission cylinder portion 38, and the surface of the fluidized soil 14. There is a possibility not to get down.

このため仕切材12は、流動化処理土14の表面まで確実に降下し、且つ埋戻土15と流動化処理土14とを物理的に可能な限り分離する外径に設計されている。   For this reason, the partition material 12 is designed to have an outer diameter that surely descends to the surface of the fluidized soil 14 and that physically separates the backfill soil 15 and the fluidized soil 14 as much as possible.

図6に示した埋戻土15の充填が完了した後は、図7に示すように、クローラクレーン30が回転伝達筒部38及び先端刃先部36を引き抜く。その後所定時間が経過することにより、流動化処理土14が硬化し、地下構造物1が完成する。   After the filling of the backfill 15 shown in FIG. 6 is completed, the crawler crane 30 pulls out the rotation transmission cylinder part 38 and the tip edge part 36 as shown in FIG. Thereafter, the fluidized soil 14 is cured by elapse of a predetermined time, and the underground structure 1 is completed.

以上の構成によれば、流動化処理土14により構成された下層部11と、当該流動化処理土14とは異なる特性でなる埋戻土15により構成された上層部13との間に、略円筒形状でなり、水平方向にほぼ沿う回転軸50を中心に回転伝達筒部38の内側において回転する際、当該回転伝達筒部38の内壁面に接触して回転が抑止される仕切材12を配置するようにした。   According to the above configuration, between the lower layer portion 11 constituted by the fluidized soil 14 and the upper layer portion 13 constituted by the backfill soil 15 having different characteristics from the fluidized soil 14, approximately The partition member 12 is cylindrical and has a partitioning member 12 that is prevented from rotating by contacting the inner wall surface of the rotation transmission cylinder portion 38 when rotating inside the rotation transmission cylinder portion 38 around the rotation shaft 50 that extends substantially in the horizontal direction. It was arranged.

これにより仕切材12は、埋戻土15が衝突した衝撃力によって回転することを抑止されることにより、流動化処理土14と埋戻土15とを物理的に分離し、当該流動化処理土14と当該埋戻土15との境界付近における両者の混ざり合いを低減することができるので、品質を向上し得る地下構造物1の製造方法を実現できる。   As a result, the partition material 12 is prevented from rotating by the impact force with which the backfilling soil 15 collides, thereby physically separating the fluidized soil 14 and the backfilled soil 15, and the fluidized ground soil. 14 can be reduced in the vicinity of the boundary between the backfill soil 15 and the backfill soil 15, so that the manufacturing method of the underground structure 1 that can improve the quality can be realized.

(2)他の実施の形態
上述の実施の形態においては、仕切材12における下底面20と周側面24とが直角に接することにより、下底面20と周側面24とが接する辺をエッジ形状とする場合について述べた。
(2) Other Embodiments In the above-described embodiments, the lower bottom surface 20 and the peripheral side surface 24 of the partition member 12 are in contact with each other at a right angle, whereby the side where the lower bottom surface 20 and the peripheral side surface 24 are in contact with each other has an edge shape. Said about the case.

本発明はこれに限らず、図9に示す仕切材112のように、下底面20と周側面24とが接する辺のエッジを落とし、丸みをもたせた形状としても良い。   The present invention is not limited to this, and it is also possible to form a rounded shape by dropping the edge of the side where the lower bottom surface 20 and the peripheral side surface 24 are in contact, as in the partition material 112 shown in FIG.

この場合、回転伝達筒部38内に投入された仕切材112は、仕切材12と比べて、落下する際に回転伝達筒部38の内壁面に引っかかり難くなり、より確実に流動化処理土14の表面まで到達することができる。   In this case, the partition material 112 put into the rotation transmission cylinder portion 38 is less likely to be caught by the inner wall surface of the rotation transmission cylinder portion 38 when falling, compared to the partition material 12, and the fluidization treated soil 14 is more reliably secured. Can reach the surface.

また、下底面20と周側面24とが接する辺のエッジを落としすぎてしまうと、埋戻土15が衝突して仕切材112が回転しようとした際に、当該下底面20と当該周側面24とが接する辺が回転伝達筒部38の内壁面に十分に当接しない可能性があるが、上底面22と周側面24とが接する辺は仕切材12と同様にエッジ形状に形成されているため、周側面24の上端部が回転伝達筒部38の内壁面に当接することにより、仕切材112の回転が抑止される。   Further, if the edge of the side where the lower bottom surface 20 and the peripheral side surface 24 are in contact with each other is dropped too much, when the backfill 15 collides and the partition material 112 is about to rotate, the lower bottom surface 20 and the peripheral side surface 24 will be rotated. There is a possibility that the side in contact with the inner wall surface of the rotation transmission cylinder portion 38 is not sufficiently in contact with the inner wall surface of the rotation transmission cylinder portion 38, but the side in contact with the upper bottom surface 22 and the peripheral side surface 24 is formed in an edge shape like the partition material 12. For this reason, the upper end portion of the peripheral side surface 24 abuts against the inner wall surface of the rotation transmission cylinder portion 38, thereby suppressing the rotation of the partition member 112.

また仕切材は、上底面よりも下底面の方が僅かに小さい直径でなり、全体としてテーパー形状となっていても良い。この場合も、仕切材は落下する際に回転伝達筒部38の内壁面に引っかかり難くなり、より確実に流動化処理土14の表面まで到達することができる。   The partition member may have a slightly smaller diameter on the lower bottom surface than on the upper bottom surface, and may have a tapered shape as a whole. Also in this case, the partition material is less likely to be caught on the inner wall surface of the rotation transmission cylinder portion 38 when falling, and can reach the surface of the fluidized soil 14 more reliably.

さらに上述の実施の形態においては、発泡スチロールにより仕切材12を形成する場合について述べた。   Furthermore, in the above-mentioned embodiment, the case where the partition material 12 was formed by the expanded polystyrene was described.

本発明はこれに限らず、例えば中実円柱形状の合成樹脂や中空円筒形状のゴム等、種々の材質により仕切材を形成しても良く、要は厚みを持って形成することが可能で、埋戻土15が投入された際の衝撃が加わっても大きく変形することなく、且つ年月が経過しても流動化処理土14及び埋戻土15と一体化しない材質であれば良い。   The present invention is not limited to this, for example, the partition material may be formed of various materials such as a solid columnar synthetic resin or a hollow cylindrical rubber, and in short, it can be formed with a thickness. Any material may be used as long as it does not deform greatly even when an impact is applied when the backfilling soil 15 is added and does not integrate with the fluidized soil 14 and the backfilling soil 15 over the years.

さらに上述の実施の形態においては、仕切材12を円柱形状とする場合について述べたが、本発明はこれに限らず、例えば八角柱等の種々の形状でも良く、要は厚みを有し、且つ流動化処理土14を埋戻土15から物理的に分離することができると共に、投入された際に回転伝達筒部38の内壁面に引っかからない形状であれば良い。   Furthermore, in the above-described embodiment, the case where the partitioning member 12 has a cylindrical shape has been described. However, the present invention is not limited thereto, and may be various shapes such as an octagonal prism, and has a thickness. The fluidized soil 14 may be a shape that can be physically separated from the backfill soil 15 and that does not catch on the inner wall surface of the rotation transmission cylinder portion 38 when it is introduced.

さらに上述の実施の形態においては、下層部11を流動化処理土14により構成し、上層部13を埋戻土15により構成する場合について述べたが、本発明はこれに限らず、例えば固化材の混合割合が多い流動化処理土により下層部11を構成すると共に固化材の混合割合が少ない流動化処理土により上層部13を構成する等、上層部13及び下層部11を種々の土により構成しても良く、要は互いに特性が異なる土により上層部13及び下層部11を構成すれば良い。   Further, in the above-described embodiment, the case where the lower layer portion 11 is configured by the fluidized soil 14 and the upper layer portion 13 is configured by the backfill soil 15 has been described. However, the present invention is not limited thereto, and for example, the solidified material. The upper layer portion 13 and the lower layer portion 11 are composed of various soils, such as the lower layer portion 11 is composed of the fluidized soil having a large mixing ratio and the upper layer portion 13 is composed of the fluidized soil having a small mixing ratio of the solidified material. In short, the upper layer portion 13 and the lower layer portion 11 may be formed of soil having different characteristics.

さらに上述の実施の形態においては、回転伝達筒部38を地盤3に立て込んだ状態で、当該回転伝達筒部38の内側に流動化処理土14、仕切材12及び埋戻土15を投入する場合について述べた。   Furthermore, in the above-described embodiment, when the rotation transmission cylinder portion 38 is stood on the ground 3, the fluidized soil 14, the partition material 12, and the backfill soil 15 are put inside the rotation transmission cylinder portion 38. Said.

本発明はこれに限らず、回転伝達筒部38及び先端刃先部36を引き抜くことにより掘削孔10が形成された状態で、当該掘削孔10の内側に流動化処理土14、仕切材12及び埋戻土15を投入しても良い。   The present invention is not limited to this, and in the state where the excavation hole 10 is formed by pulling out the rotation transmission cylinder portion 38 and the tip blade tip portion 36, the fluidized soil 14, the partition material 12, and the buried material are placed inside the excavation hole 10. The return soil 15 may be thrown in.

この場合仕切材12は、埋戻土15が衝突して回転しようとした際、筒状部としての掘削孔10の内壁面に当接し回転が抑止されることとなる。   In this case, when the backfill soil 15 collides and tries to rotate, the partition member 12 comes into contact with the inner wall surface of the excavation hole 10 serving as a cylindrical portion and rotation is suppressed.

1……地下構造物、2……地表、3……地盤、10……掘削孔、11……下層部、12……仕切材、13……上層部、14……流動化処理土、15……埋戻土、20……下底面、22……上底面、24……周側面、30……クローラクレーン、31……ミキサー車、32……埋戻機、34……回転駆動機、36……先端刃先部、38……回転伝達筒部、40……掘削工具、42……打設装置、50……回転軸、100……撤去対象杭。   DESCRIPTION OF SYMBOLS 1 ... Underground structure, 2 ... Ground surface, 3 ... Ground, 10 ... Excavation hole, 11 ... Lower layer part, 12 ... Partition material, 13 ... Upper layer part, 14 ... Fluidized soil, 15 …… Backfill, 20 …… Lower bottom surface, 22 …… Upper bottom surface, 24 …… Surrounding side surface, 30 …… Crawler crane, 31 …… Mixer truck, 32 …… Backfill machine, 34 …… Rotation drive machine, 36... Tip edge portion 38... Rotation transmission cylinder portion 40. Excavation tool 42. Placing device 50.

Claims (2)

地盤中に略円筒形状に上下方向に延びる地下構造物の製造方法において、
所定の特性でなる第1の土を上記地盤中に略円筒形状に延びる筒状部の内側へ投入することにより下層部を形成する下層部形成工程と、
略円筒形状でなり発泡スチロールにより形成され、水平方向にほぼ沿う回転軸を中心に上記筒状部の内側において回転する際、上記筒状部の内壁面に接触して回転が抑止される仕切材を、上記下層部の上部に配置する仕切材配置工程と、
上記仕切材の上部に上記第1の土とは異なる特性でなる第2の土を投入することにより上層部を形成する上層部形成工程と
を有する地下構造物の製造方法。
In the manufacturing method of the underground structure extending in the vertical direction in a substantially cylindrical shape in the ground,
A lower layer part forming step of forming a lower layer part by throwing the first soil having predetermined characteristics into the inside of the cylindrical part extending in a substantially cylindrical shape in the ground;
A partition material that is formed in a substantially cylindrical shape and is formed of polystyrene foam , and that rotates on the inner side of the cylindrical portion around a rotation axis that extends substantially in the horizontal direction, and that prevents rotation by contacting the inner wall surface of the cylindrical portion. , A partition material placement step to be placed on top of the lower layer,
An upper layer portion forming step of forming an upper layer portion by introducing a second soil having a characteristic different from that of the first soil into the upper portion of the partition material.
上記筒状部は、下端部に地盤を掘削する刃先が設けられ、回転駆動機によって回転される円筒状回転伝達部である
請求項1に記載の地下構造物の製造方法。
The method for manufacturing an underground structure according to claim 1, wherein the cylindrical portion is a cylindrical rotation transmission portion provided with a cutting edge for excavating the ground at a lower end portion and rotated by a rotary driving machine.
JP2012092986A 2012-04-16 2012-04-16 Manufacturing method for underground structures Active JP5975709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092986A JP5975709B2 (en) 2012-04-16 2012-04-16 Manufacturing method for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092986A JP5975709B2 (en) 2012-04-16 2012-04-16 Manufacturing method for underground structures

Publications (2)

Publication Number Publication Date
JP2013221302A JP2013221302A (en) 2013-10-28
JP5975709B2 true JP5975709B2 (en) 2016-08-23

Family

ID=49592492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092986A Active JP5975709B2 (en) 2012-04-16 2012-04-16 Manufacturing method for underground structures

Country Status (1)

Country Link
JP (1) JP5975709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863274B (en) * 2021-09-29 2023-02-10 台州立昌工程建设有限公司 Construction method of stable foundation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576019A (en) * 1980-06-12 1982-01-12 Tenotsukusu:Kk Installating method for foundation pile
JPH0365733U (en) * 1989-10-26 1991-06-26
JPH0492015A (en) * 1990-08-07 1992-03-25 Nippon Concrete Ind Co Ltd Removing of hardened object in hollow of pile
JP4005836B2 (en) * 2002-04-17 2007-11-14 大成建設株式会社 Method for placing soil mortar piles

Also Published As

Publication number Publication date
JP2013221302A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
CA2906244C (en) A machine and a method for making columns in ground
KR101441929B1 (en) Foundation method for complex pile
JP5975709B2 (en) Manufacturing method for underground structures
JP6333058B2 (en) Ground improvement device
KR101424736B1 (en) Pile molding apparatus
JP6645098B2 (en) Removal method of existing pile
KR20150079070A (en) Method for reinforcing soil and device to perform the method
JP6555849B2 (en) Ground improvement device
JP5041960B2 (en) Method for processing surplus concrete and surplus concrete processing tool
JP3077747B2 (en) Method and apparatus for removing concrete at pile head extra
JP6278366B2 (en) Pile hole drilling management method
JP4814839B2 (en) Pile cap
JP3173063U (en) Pile for injecting fluidized solidifying material
JP6847176B1 (en) Pile construction method
JP6284119B2 (en) Excavation method for pile holes with expanded head
KR101440470B1 (en) Pile with slime removing device in the bottom end and piling method using the same
PH12016500508B1 (en) Soil-volume reduction method technical field
JP6667277B2 (en) Construction method of foundation pile reinforced with pile head
JP2017089319A (en) Vertical shaft construction method
JP3236582B2 (en) Concrete drilling method
JP2003306934A (en) Placing method for soil mortar pile
JPH089225Y2 (en) Pile making machine
KR101495293B1 (en) Method construction pile large rotary
JP2002115249A (en) Device and method for treating pile head
JP2017101521A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250