JP5973531B2 - Measuring device, measuring method - Google Patents

Measuring device, measuring method Download PDF

Info

Publication number
JP5973531B2
JP5973531B2 JP2014229924A JP2014229924A JP5973531B2 JP 5973531 B2 JP5973531 B2 JP 5973531B2 JP 2014229924 A JP2014229924 A JP 2014229924A JP 2014229924 A JP2014229924 A JP 2014229924A JP 5973531 B2 JP5973531 B2 JP 5973531B2
Authority
JP
Japan
Prior art keywords
pipe
measurement
longitudinal direction
moving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014229924A
Other languages
Japanese (ja)
Other versions
JP2016095162A (en
Inventor
荒川 大輔
大輔 荒川
西田 秀高
秀高 西田
栄郎 松村
栄郎 松村
啓司 森下
啓司 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014229924A priority Critical patent/JP5973531B2/en
Publication of JP2016095162A publication Critical patent/JP2016095162A/en
Application granted granted Critical
Publication of JP5973531B2 publication Critical patent/JP5973531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、測定装置、測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method.

火力発電所のボイラーには、過熱器、再熱器の伝熱管や、これらで加熱された蒸気をタービンに送るためのパイプ等、蒸気を循環させる細い配管(例えば、直径50mm)が無数に通っている。これらの配管は、高温高圧(例えば、600℃、20MPa)の水蒸気等が流入出するとともに、高温環境下におかれるため、クリープ損傷が生じやすい。一方、これらの配管がクリープ損傷により破断した場合、大事故につながるため、定期的な余寿命検査がなされ、余寿命に応じて交換、修繕がなされている。このような背景にあって、これらの配管の余寿命検査は、種々、検討がなされており、例えば、特許文献1には、配管の使用環境に応じた余寿命の予測方法が記載されている。   The boiler of a thermal power plant has an infinite number of thin pipes (for example, 50 mm in diameter) that circulate steam, such as superheater and reheater heat transfer tubes, and pipes for sending steam heated by these to the turbine. ing. These pipes are subjected to high-temperature and high-pressure (for example, 600 ° C., 20 MPa) steam and the like, and are placed in a high-temperature environment, so that creep damage is likely to occur. On the other hand, when these pipes are broken due to creep damage, a serious accident is caused. Therefore, a periodic remaining life inspection is performed, and replacement and repair are performed according to the remaining life. Against this background, various examinations have been made on the remaining life inspection of these pipes. For example, Patent Document 1 describes a method for predicting the remaining life according to the use environment of the pipes. .

特開平6−331622号公報JP-A-6-331622

しかし、特許文献1には、配管の使用環境や配管の肉厚の測定結果等を夫々パラメータとして用いて、配管の余寿命の予測値を算出する方法が記載されているものの、配管の現状を認識するために適した測定装置は、何ら開示されていない。   However, although Patent Document 1 describes a method of calculating a predicted value of the remaining life of a pipe by using a piping usage environment, a pipe thickness measurement result, and the like as parameters, the current state of the pipe is described. No measuring device suitable for recognition is disclosed.

他方、これらの配管は、配管の内部に蒸気による酸化被膜が形成されたり、配管の外部に付着物が存在すると、局所的に温度上昇し、クリープ損傷が進行する場合がある。このようなクリープ損傷は、損傷箇所を予測するのは困難であるため、現状では、作業員が目視にて、クリープ損傷の度合いを示す指標の一つである配管の膨出の度合いを、長手方向の複数箇所に亘って確認するという作業を行っている。しかし、配管の膨出の度合いを目視にて判断するのは限界があり、又、クリープ損傷は一定量を超えてから急激に進行することを考慮すると、判断に誤りのない定量的な測定方法が求められる。加えて、過熱器、再熱器の伝熱管や、これらで加熱された蒸気をタービンに送るためのパイプは、密集して無数に配置されているため、大型の測定装置を使用することや、手作業で測定装置の較正(位置あわせ)をすることが困難である。   On the other hand, in these pipes, when an oxide film due to steam is formed inside the pipes, or when deposits are present outside the pipes, the temperature locally rises and creep damage may progress. Since such creep damage is difficult to predict the damage location, at present, the operator visually confirms the degree of bulging of the pipe, which is one of the indexes indicating the degree of creep damage. The work of confirming over a plurality of locations in the direction is performed. However, there is a limit to visually judging the degree of bulging of pipes, and in consideration of the fact that creep damage proceeds rapidly after exceeding a certain amount, a quantitative measurement method with no judgment error Is required. In addition, the heat transfer tubes of the superheater and reheater, and the pipes for sending steam heated by these to the turbine are densely arranged, so use a large measuring device, It is difficult to calibrate (align) the measuring device manually.

そこで、本発明は、配管の外径又は外形、特にボイラーに用いられる配管の膨出量を、連続的、かつ、定量的に測定することを可能とする測定装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a measuring apparatus capable of continuously and quantitatively measuring the outer diameter or outer shape of a pipe, particularly the amount of swelling of a pipe used in a boiler. .

前述した課題を解決する主たる本発明は、測定対象配管と略平行に伸延する第1配管により案内され、前記第1配管の長手方向に沿って移動可能な第1移動部と、前記測定対象配管を跨いで前記第1配管と反対側に、前記測定対象配管と略平行に伸延する第2配管により案内され、前記第2配管の長手方向に沿って移動可能な第2移動部と、前記第1移動部と前記第2移動部との位置関係が一定に維持されるように、前記第1移動部と前記第2移動部とを接続する支持部材と、前記支持部材に支持されて、前記第1移動部、前記第2移動部及び前記支持部材とともに移動し、前記測定対象配管の長手方向の各地点で、前記測定対象配管の外径と外形の少なくとも一方を測定する測定部と、を備え、前記第1移動部は、前記第1配管の長手方向に沿って前側と後側とに配置され、前記第1配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第1配管の長手方向に沿って移動する第1の前側移動体及び後側移動体と、前記第1の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第1の接続部材と、を備え、前記第2移動部は、前記第2配管の長手方向に沿って前側と後側とに配置された前記第2配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第2配管の長手方向に沿って移動する第2の前側移動体及び後側移動体と、前記第2の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第2の接続部材と、を備え、
前記支持部材は、前記第1移動部と前記第2移動部との位置関係が一定に維持されるように、前記第1の接続部材と前記第2の接続部材とを接続することを特徴とする測定装置である。本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
The main present invention that solves the above-described problems is a first moving portion that is guided by a first pipe extending substantially parallel to a measurement target pipe and is movable along a longitudinal direction of the first pipe, and the measurement target pipe. A second moving part that is guided by a second pipe extending substantially in parallel with the measurement target pipe on the opposite side of the first pipe and is movable along the longitudinal direction of the second pipe, A support member that connects the first moving unit and the second moving unit, and is supported by the support member so that the positional relationship between the first moving unit and the second moving unit is maintained constant; A measuring unit that moves with the first moving unit, the second moving unit, and the support member, and measures at least one of an outer diameter and an outer shape of the measurement target pipe at each point in the longitudinal direction of the measurement target pipe; wherein the first moving unit, the longitudinal direction of the first pipe Along the front side and the rear side, and through the elastic member disposed so as to surround the periphery of the cross section in the direction substantially perpendicular to the longitudinal direction of the first pipe, The first front moving body and the rear moving body that move along the longitudinal direction of one pipe, and the first front moving body and the rear moving body are connected so that the positional relationship between them is maintained constant. A cross-section in a direction substantially perpendicular to the longitudinal direction of the second pipe disposed on the front side and the rear side along the longitudinal direction of the second pipe. A second front side moving body and a rear side moving body that move along the longitudinal direction of the second pipe while sandwiching the periphery of the elastic member disposed so as to surround the periphery of the second pipe, The two front-side moving bodies and the rear-side moving bodies are connected so that the positional relationship between them is maintained constant. Comprising a second connecting member,
The support member, as described above the first moving part positional relationship between the second moving part is maintained constant, characterized that you connect the second connecting member and the first connecting member Is a measuring device. Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明の測定装置によれば、配管の長手方向の各地点における外径又は外形を、連続的、かつ、定量的に測定することができる。そして、本発明の測定装置は、配管が密集するような環境下において、周囲の配管を利用して、測定位置に対する測定基準位置、測定基準方向が一定に維持されるように移動することができ、移動の前後で、測定前の較正が不要となり、作業効率が大幅に改善される。   According to the measuring apparatus of the present invention, the outer diameter or the outer shape at each point in the longitudinal direction of the pipe can be measured continuously and quantitatively. The measurement apparatus of the present invention can move so that the measurement reference position and the measurement reference direction with respect to the measurement position are kept constant using the surrounding pipes in an environment where the pipes are densely packed. Before and after the movement, calibration before measurement is unnecessary, and work efficiency is greatly improved.

本発明の第1実施形態における測定対象の配管の構成を示す図である。It is a figure which shows the structure of piping of the measuring object in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す側面図である。It is a side view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の車輪の構成を示す図である。It is a figure which shows the structure of the wheel of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の移動の動作を示す図である。It is a figure which shows the operation | movement of the movement of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置による演算処理を説明する図である。It is a figure explaining the arithmetic processing by the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における配管の膨出量と余寿命の関係を示す図である。It is a figure which shows the relationship between the amount of swelling of piping, and the remaining life in 1st Embodiment of this invention. 本発明の第2実施形態における測定装置の構成を示す側面図である。It is a side view which shows the structure of the measuring apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 2nd Embodiment of this invention. 本発明のその他の実施形態における測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus in other embodiment of this invention.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

<第1実施形態>
===測定装置の構成===
本実施形態では、測定装置を用いて、ボイラーに用いられる配管(以下、「ボイラーチューブ」又は単に「配管」と言う)の膨出量を長手方向に、連続的に測定する態様について説明する。
<First Embodiment>
=== Configuration of measuring device ===
In the present embodiment, a mode in which a bulging amount of piping (hereinafter referred to as “boiler tube” or simply “piping”) used in a boiler is continuously measured in the longitudinal direction using a measuring apparatus will be described.

図1に、本実施形態に係る測定対象である配管Pの一例を示す。ボイラーに用いられる配管Pは、多数の略平行に伸延する細い配管(例えば、直径50mm)から構成され、夫々の配管同士の間隔も配管の径と同程度で、配管が密集した状態となっている。配管Pは、例えば、低合金鋼等の材料から構成され、クリープ損傷が生じた場合、長手方向と略垂直な方向の断面の径が広がる(以下、「膨出」と言う)という特性を有する。本実施形態に係る測定装置は、これらの測定対象の配管の周囲(例えば、隣接位置)の配管をガイドとして利用して、配管の膨出量を、連続的に測定する。尚、本実施形態に係る測定装置が測定する「外径」とは、配管の膨出量を測定するための配管の長手方向と略垂直な方向の断面の周囲(以下、「配管の周囲」と言う)の径の一部又は全部を意味する。   In FIG. 1, an example of the piping P which is a measuring object which concerns on this embodiment is shown. The pipe P used for the boiler is composed of a large number of thin pipes (for example, a diameter of 50 mm) extending substantially in parallel. The distance between the pipes is about the same as the pipe diameter, and the pipes are in a dense state. Yes. The pipe P is made of, for example, a material such as low alloy steel, and has a characteristic that when creep damage occurs, the diameter of a cross section in a direction substantially perpendicular to the longitudinal direction is expanded (hereinafter referred to as “bulging”). . The measuring apparatus according to the present embodiment continuously measures the amount of swelling of the pipe using the pipe around the pipe to be measured (for example, adjacent position) as a guide. The “outer diameter” measured by the measuring apparatus according to the present embodiment is the circumference of the cross section in the direction substantially perpendicular to the longitudinal direction of the pipe for measuring the amount of swelling of the pipe (hereinafter referred to as “the circumference of the pipe”). Means part or all of the diameter.

以下、図2A〜図2Cを参照して、本実施形態に係る測定装置の構成の一例を示す。尚、図2Aは測定装置の側面図、図2Bは測定装置の平面図、図2Cは測定装置の有する車輪を示す図である。図2A〜図2Cにおいて、Z軸は、測定対象の配管P3の長手方向に沿う軸である。又、X軸は、測定対象の配管P3の長手方向と垂直な方向のうち、測定対象の配管P3と、測定装置がガイドとする配管P1及び配管P2とが隣接する方向に沿う軸である。又、Y軸は、X軸及びZ軸に対して直交する軸を示すものである。以下の説明では、夫々、単に「X方向」、「Y方向」、「Z方向」と表し、矢印の示す方向を+方向、矢印と逆の方向を−方向を表す。又、図2B中の矢印Mは、測定装置の移動方向を表す。   Hereinafter, an example of the configuration of the measurement apparatus according to the present embodiment will be described with reference to FIGS. 2A to 2C. 2A is a side view of the measuring device, FIG. 2B is a plan view of the measuring device, and FIG. 2C is a diagram showing wheels of the measuring device. 2A to 2C, the Z axis is an axis along the longitudinal direction of the pipe P3 to be measured. Further, the X axis is an axis along the direction in which the measurement target pipe P3 and the pipe P1 and the pipe P2 which the measurement apparatus guides are adjacent to each other in the direction perpendicular to the longitudinal direction of the measurement target pipe P3. The Y axis represents an axis orthogonal to the X axis and the Z axis. In the following description, they are simply expressed as “X direction”, “Y direction”, and “Z direction”, respectively, the direction indicated by the arrow indicates the + direction, and the direction opposite to the arrow indicates the − direction. Moreover, the arrow M in FIG. 2B represents the moving direction of the measuring apparatus.

本実施形態に係る測定装置は、測定対象の配管P3の両側に配設された配管P1、配管P2長手方向に沿って移動する第1台車R及び第2台車Lと、第1台車Rと第2台車Lとを接続する支持部材Sと、支持部材Sに取り付けられ配管P3の外径を測定する測定部T1、T2とを備えて構成される。 The measurement apparatus according to the present embodiment includes a pipe P1 disposed on both sides of a pipe P3 to be measured, a first carriage R and a second carriage L that move along the longitudinal direction of the pipe P2 , and a first carriage R. A support member S that connects the second carriage L, and measuring units T1 and T2 that are attached to the support member S and measure the outer diameter of the pipe P3 are configured.

測定対象の配管P3は、図1で示した密集したボイラーに用いられる配管Pのいずれか一であり、配管P1、配管P2は、測定対象の配管P3の周囲の配管、例えば、隣接して配設された配管である。配管P1、配管P2は、配管P3と略平行(Z方向)に伸延するように配設されている。そして、これらの配管の位置関係は、測定対象の配管P3を跨いで、配管P1と配管P2とが反対側に配設されたものとなっている。尚、「測定対象の配管P3を跨いで、配管P1と配管P2とが反対側に配設された」とは、配管P1、配管P2、測定対象の配管P3が、X方向に沿って一直線上に配設される態様のみならず、配管P1が測定対象の配管P3に対して+X方向の側に配設され、配管P2が測定対象の配管P3に対して−X方向の側に配設された種々の位置関係の態様を含む語義である。例えば、配管P1及び配管P2が、測定対象の配管P3に対して手前位置(−Y方向)に配設されていてもよい。   The pipe P3 to be measured is any one of the pipes P used in the dense boiler shown in FIG. 1, and the pipes P1 and P2 are pipes around the pipe P3 to be measured, for example, adjacent to each other. It is a installed pipe. The pipe P1 and the pipe P2 are disposed so as to extend substantially parallel to the pipe P3 (Z direction). The positional relationship of these pipes is such that the pipe P1 and the pipe P2 are disposed on the opposite side across the pipe P3 to be measured. Note that “the piping P1 and the piping P2 are disposed on the opposite side across the piping P3 to be measured” means that the piping P1, the piping P2, and the piping P3 to be measured are in a straight line along the X direction. The pipe P1 is arranged on the + X direction side with respect to the measurement target pipe P3, and the pipe P2 is arranged on the −X direction side with respect to the measurement target pipe P3. It is a meaning including various aspects of positional relationships. For example, the pipe P1 and the pipe P2 may be disposed at a front position (−Y direction) with respect to the pipe P3 to be measured.

第1台車R(第1移動部)は、配管P1に取り付けられたガイド機構である。第1台車Rは、配管P1の長手方向に沿って、前側(+Z方向)の移動体R10と、後側(−Z方向)の移動体R20と、これらを接続する接続部材R30と、により構成される(図2Aを参照)。前側の移動体R10と後側の移動体R20は、同様の構成を有しており、いずれも、配管P1の周囲を、弾性部材(例えば、バネ部材)を囲むように配設して、弾性部材を介して挟持しながら、配管P1の長手方向に沿って移動する(詳細は後述する)。   The first cart R (first moving unit) is a guide mechanism attached to the pipe P1. The first carriage R is configured by a front side (+ Z direction) moving body R10, a rear side (−Z direction) moving body R20, and a connecting member R30 connecting them along the longitudinal direction of the pipe P1. (See FIG. 2A). The front-side moving body R10 and the rear-side moving body R20 have the same configuration, and both are arranged around the pipe P1 so as to surround an elastic member (for example, a spring member). It moves along the longitudinal direction of the pipe P1 while being pinched via the member (details will be described later).

接続部材R30は、前側の移動体R10と後側の移動体R20の位置関係(相対的な座標及び方向を表す。以下同じ。)を一定に維持するように、これらを接続する。接続部材R30は、棒状の部材であり、例えば、その一端を前側の移動体R10に螺子で固定し、他端を後側の移動体R20に螺子で固定することにより、これらを接続する。このため、前側の移動体R10と後側の移動体R20とは、移動の前後で、略同一の位置関係に維持される。   The connecting member R30 connects the front moving body R10 and the rear moving body R20 so that the positional relationship (representing relative coordinates and direction; the same applies hereinafter) is maintained constant. The connecting member R30 is a rod-like member, and for example, one end thereof is fixed to the front moving body R10 with a screw, and the other end is fixed to the rear moving body R20 with a screw to connect them. For this reason, the front-side moving body R10 and the rear-side moving body R20 are maintained in substantially the same positional relationship before and after movement.

第2台車L(第2移動部)は、配管P2に取り付けられたガイド機構である。配管P2の長手方向に沿って、前側(+Z方向)の移動体L10と、後側(−Z方向)の移動体L20と、前側の移動体L10と後側の移動体L20とを接続する接続部材L30と、により構成される(図2Aを参照)。前側の移動体L10と後側の移動体L20は、第1台車Rの前側の移動体R10と後側の移動体R20と同様に、いずれも、配管P2の周囲を、弾性部材(例えば、バネ部材)を囲むように配設して、弾性部材を介して挟持しながら、配管P2の長手方向に沿って移動する。又、接続部材L30は、接続部材R30と同様に、前側の移動体L10と後側の移動体L20の位置関係を固定するように、これらを接続し、これらが移動の前後で、同一の位置関係となるように維持する。   The second cart L (second moving unit) is a guide mechanism attached to the pipe P2. A connection connecting the front side (+ Z direction) moving body L10, the rear side (−Z direction) moving body L20, and the front side moving body L10 and the rear side moving body L20 along the longitudinal direction of the pipe P2. And a member L30 (see FIG. 2A). As with the front moving body R10 and the rear moving body R20 of the first carriage R, the front moving body L10 and the rear moving body L20 are both elastic members (for example, springs) around the pipe P2. It is arranged so as to surround the member) and moves along the longitudinal direction of the pipe P2 while being sandwiched through the elastic member. Similarly to the connection member R30, the connection member L30 connects them so as to fix the positional relationship between the front-side moving body L10 and the rear-side moving body L20. Maintain a relationship.

尚、第1台車R、第2台車Lは、測定対象の配管P3の測定位置を把握するため、それらを構成する車輪(後述するR13等)の一にロータリーエンコーダを有し、Z方向の位置を検出することができる構成となっている(図示せず)。尚、第1台車R、第2台車Lは、配管に沿って移動する移動機構(移動部)の一例である。   Note that the first carriage R and the second carriage L have a rotary encoder on one of the wheels (R13 and the like described later) constituting the measurement target pipe P3 in order to grasp the measurement position of the measurement target pipe P3. It is the structure which can detect (not shown). The first cart R and the second cart L are examples of a moving mechanism (moving unit) that moves along the pipe.

支持部材Sは、第1台車Rと第2台車Lとを、それらの位置関係が一定に維持されるように接続する部材である。支持部材Sは、例えば、X方向に伸延する棒状の部材であり、その一端を第1台車Rの接続部材R30に螺子で固定し、他端を第2台車Lの接続部材L30に螺子で固定することにより、これらを接続する。そして、第1台車Rと第2台車Lが測定対象の配管P3の長手方向に対して略垂直な方向(X方向)の位置に維持されるようにしている。尚、支持部材S、接続部材R30、接続部材L30を構成する材料は、外形が変形しにくい材料であれば、任意である。   The support member S is a member that connects the first carriage R and the second carriage L so that their positional relationship is maintained constant. The support member S is, for example, a rod-like member extending in the X direction. One end of the support member S is fixed to the connection member R30 of the first carriage R with a screw, and the other end is fixed to the connection member L30 of the second carriage L with a screw. To connect them. The first carriage R and the second carriage L are maintained at a position in a direction (X direction) substantially perpendicular to the longitudinal direction of the pipe P3 to be measured. In addition, if the material which comprises the supporting member S, connecting member R30, and connecting member L30 is a material which an external shape cannot change easily, it is arbitrary.

第1台車Rと第2台車Lの位置関係は、支持部材Sに接続されることにより、第1台車R及び第2台車Lの移動の前後で、一定に維持される。即ち、当該構成により、第1台車R、第2台車L、支持部材Sは、位置関係を一定に維持しながら、配管P3の長手方向に沿って移動する。尚、「位置関係が一定に維持される」とは、複数の構成要素の、構成要素同士を結ぶ線分の距離が一定の範囲内にあり、構成要素同士を結ぶ線分間で形成される角度が一定の範囲内であることを意味する(以下同じ)。   The positional relationship between the first carriage R and the second carriage L is maintained constant before and after the movement of the first carriage R and the second carriage L by being connected to the support member S. That is, by the said structure, the 1st trolley | bogie R, the 2nd trolley | bogie L, and the supporting member S move along the longitudinal direction of the piping P3, maintaining a positional relationship constant. Note that “the positional relationship is kept constant” means that an angle formed by a line segment connecting the component elements within a certain range of the distance between the line segments connecting the component elements of a plurality of component elements. Means within a certain range (the same applies hereinafter).

測定部T1、T2は、支持部材Sに支持され、測定対象の配管P3の測定箇所の外径を、レーザ光を用いて測定する装置である。より詳細には、測定部T1、T2は、夫々、支持部材Sの第1台車Rの側に取り付けられた3Dレーザースキャナ装置T1と、支持部材Sの第2台車Lの側に取り付けられた3Dレーザースキャナ装置T2である。即ち、測定部T1、T2は、測定対象の配管P3を+X方向側と−X方向側から挟むように配設される。そして、測定部T1、T2は、第1台車R、第2台車L、支持部材Sとともに、一体となって、位置関係を一定に維持しながら配管P3の長手方向に沿って移動する。当該構成により、測定部T1、T2の、配管P3の測定位置に対する基準とする座標(以下、測定基準位置TC1、TC2と言う)、及び、配管P3の測定位置に対する基準とする方向(以下、測定基準方向TB1、TB2と言う)は、移動の前後で一定に維持される(詳細は後述する)。尚、測定基準位置TC1、TC2とは、例えば、3Dレーザースキャナ装置T1、T2が、配管P3を測定する際の、配管P3の測定位置に対するレーザの出射位置を表す。又、測定基準方向TB1、TB2とは、例えば、3Dレーザースキャナ装置T1、T2の測定基準位置TC1、TC2から、配管P3の測定位置に対して出射するレーザの方向(中心となる方向)を表す。   The measurement units T1 and T2 are devices that are supported by the support member S and measure the outer diameter of the measurement portion of the pipe P3 to be measured using laser light. More specifically, the measurement units T1 and T2 are respectively a 3D laser scanner device T1 attached to the first carriage R side of the support member S and a 3D attached to the second carriage L side of the support member S. This is a laser scanner device T2. That is, the measurement units T1 and T2 are arranged so as to sandwich the measurement target pipe P3 from the + X direction side and the −X direction side. And the measurement parts T1 and T2 move with the 1st trolley R, the 2nd trolley L, and the support member S along the longitudinal direction of the piping P3, keeping a positional relationship constant. With this configuration, the coordinates (hereinafter referred to as measurement reference positions TC1 and TC2) of the measurement units T1 and T2 with respect to the measurement position of the pipe P3 and the reference direction (hereinafter referred to as measurement) with respect to the measurement position of the pipe P3. The reference directions TB1 and TB2) are kept constant before and after the movement (details will be described later). Note that the measurement reference positions TC1 and TC2 represent, for example, laser emission positions with respect to the measurement position of the pipe P3 when the 3D laser scanner devices T1 and T2 measure the pipe P3. Further, the measurement reference directions TB1 and TB2 represent, for example, directions (center directions) of laser beams emitted from the measurement reference positions TC1 and TC2 of the 3D laser scanner devices T1 and T2 to the measurement position of the pipe P3. .

本実施形態に係る測定装置は、第1台車R、第2台車L、支持部材S、及び測定部T1、T2を一体として移動させ、測定対象の配管P3の長手方向の各地点で、測定部T1、T2を用いて当該配管P3の外径を測定する。そして、最終的に、これらの測定結果を合成(画像合成等)することにより、測定対象の配管P3の周囲の外径について、測定部T1、T2のいずれか一を用いた場合よりも広い周囲(例えば、配管の全周囲)に亘って算出する。   The measurement apparatus according to the present embodiment moves the first carriage R, the second carriage L, the support member S, and the measurement units T1 and T2 as a unit, and at each point in the longitudinal direction of the pipe P3 to be measured, the measurement unit The outer diameter of the pipe P3 is measured using T1 and T2. Finally, by combining these measurement results (image composition or the like), the outer diameter around the pipe P3 to be measured is wider than when one of the measurement units T1 and T2 is used. (E.g., the entire circumference of the pipe).

=移動体の構成=
第1台車R、第2台車Lの移動体R10、R20、L10、L20は、夫々、同様の構成を有する。そのため、移動体R10について、一例として説明する。移動体R10は、第1枠部材R11、第2枠部材R12、第1車輪R13、第2車輪R14、第3車輪R15、第4車輪R16、ヒンジR17、枠体結合部R18を備えて、構成される。
= Configuration of mobile body =
The moving bodies R10, R20, L10, and L20 of the first carriage R and the second carriage L have the same configuration. Therefore, the moving body R10 will be described as an example. The moving body R10 includes a first frame member R11, a second frame member R12, a first wheel R13, a second wheel R14, a third wheel R15, a fourth wheel R16, a hinge R17, and a frame coupling portion R18. Is done.

第1枠部材R11は、配管P1の+X方向の側に配置された、配管P1の周囲の外形(円筒形状)に沿う形状を呈する枠部材であり、第2枠部材R12は、配管P1の−X方向の側に配置された、配管P1の周囲の外形(円筒形状)に沿う形状を呈する枠部材であり、配管P1は、第1枠部材R11と第2枠部材R12により、全周囲を囲繞される。より詳細には、第1枠部材R11及び第2枠部材R12は、配管P1の周囲の外形よりも大きい径を有する円筒を、円筒の高さ方向(Z方向)に沿って略二分割にしたうちの一方及び他方の形状をなす部材である。そして、第1枠部材R11と第2枠部材R12とにより配管P1の周囲を囲繞した状態で、第1枠部材R11のY方向における一端及び他端と、第2枠部材R12のY方向における一端及び他端とが、ヒンジR17及び枠体結合部R18により接続されて、配管P1の周囲の外形に沿う円筒形状を呈する枠体を形成する。即ち、当該枠体は、XY平面において、配管P1の周囲を囲んで、配管P1の周囲との間に一定の間隔が形成されるように構成される。尚、第1枠部材R11、第2枠部材R12は、外形が変形しにくい材料であれば、任意である。   The first frame member R11 is a frame member that is disposed on the + X direction side of the pipe P1 and has a shape along the outer shape (cylindrical shape) around the pipe P1, and the second frame member R12 is the − of the pipe P1. It is a frame member having a shape along the outer shape (cylindrical shape) around the pipe P1 disposed on the X direction side, and the pipe P1 surrounds the entire periphery by the first frame member R11 and the second frame member R12. Is done. More specifically, in the first frame member R11 and the second frame member R12, a cylinder having a larger diameter than the outer shape around the pipe P1 is substantially divided into two along the height direction (Z direction) of the cylinder. It is the member which makes the shape of one and the other of them. The first frame member R11 and the second frame member R12 surround the periphery of the pipe P1, and one end and the other end of the first frame member R11 in the Y direction and one end of the second frame member R12 in the Y direction. And the other end is connected by hinge R17 and frame coupling | bond part R18, and forms the frame which exhibits the cylindrical shape in alignment with the external periphery of piping P1. That is, the frame body is configured so as to surround the circumference of the pipe P1 in the XY plane and to form a constant interval with the circumference of the pipe P1. The first frame member R11 and the second frame member R12 are arbitrary as long as the outer shape is difficult to deform.

ヒンジR17は、第1枠部材R11の一端に高さ方向(Z方向)に沿って形成された穴と、第2枠部材R12の一端に高さ方向(Z方向)に沿って形成された穴とを、連結ピンにより連結することにより、それらを連結ピンの位置で回転自在に接続して、それらを配管P1に取り付け自在とする。   The hinge R17 has a hole formed along the height direction (Z direction) at one end of the first frame member R11 and a hole formed along the height direction (Z direction) at one end of the second frame member R12. Are connected by a connecting pin so as to be rotatable at the position of the connecting pin so that they can be attached to the pipe P1.

又、枠体結合部R18は、第1枠部材R11と第2枠部材R12とにより配管P1の周囲を囲繞した状態で、第1枠部材R11の他端と第2枠部材R12の他端とを接続するための固定部材である。即ち、配管P1に移動体R10を取り付ける際は、ヒンジR17を中心として、第1枠部材R11と第2枠部材R12とを回転させる。そして、第1枠部材R11の他端と第2枠部材R12の他端とが接した状態で、枠体結合部R18を用いてこれらを固定することにより、これらが第1車輪R13、第2車輪R14、第3車輪R15、第4車輪R16を介して配管P1の周囲を押圧するように配管P1の周囲の外径に沿う円筒形状の枠体を形成する(以下、単に「枠体」と言う)。尚、本実施形態では、枠体の配管P1の周囲と対向する面(内周面)を、配管P1の周囲の外形に沿う形状を呈することにより、第1車輪R13、第2車輪R14、第3車輪R15、第4車輪R16が、配管P1の長手方向に沿って回転移動しやすいように配設されるとともに、枠体R11、R12がこれらを介して配管P1の周囲を挟持しやすい構成としている。尚、「挟持」とは、枠体R11、R12で配管P1の周囲を押圧して、移動体R10を配管P1の所定の位置に保持することを意味する。   Further, the frame coupling portion R18 is configured so that the other end of the first frame member R11 and the other end of the second frame member R12 are surrounded by the first frame member R11 and the second frame member R12. It is a fixing member for connecting. That is, when the moving body R10 is attached to the pipe P1, the first frame member R11 and the second frame member R12 are rotated about the hinge R17. And in the state which the other end of 1st frame member R11 and the other end of 2nd frame member R12 contacted, these are fixed using frame body coupling | bond part R18, these are 1st wheel R13, 2nd. A cylindrical frame body is formed along the outer diameter of the pipe P1 so as to press the circumference of the pipe P1 through the wheel R14, the third wheel R15, and the fourth wheel R16 (hereinafter simply referred to as “frame body”). say). In the present embodiment, the surface (inner peripheral surface) facing the periphery of the pipe P1 of the frame body has a shape along the outer shape of the periphery of the pipe P1, whereby the first wheel R13, the second wheel R14, The configuration is such that the three wheels R15 and the fourth wheel R16 are arranged so as to easily rotate and move along the longitudinal direction of the pipe P1, and the frame bodies R11 and R12 easily hold the periphery of the pipe P1 through these. Yes. Note that “clamping” means holding the movable body R10 at a predetermined position of the pipe P1 by pressing the periphery of the pipe P1 with the frame bodies R11 and R12.

第1車輪R13、第2車輪R14、第3車輪R15及び第4車輪R16は、配管P1を囲むように、バネ機構を介して枠体R11、R12に取り付けられ、配管P1と接しながら枠体R11、R12をZ方向に移動させる。   The first wheel R13, the second wheel R14, the third wheel R15, and the fourth wheel R16 are attached to the frame bodies R11 and R12 via spring mechanisms so as to surround the pipe P1, and the frame body R11 while being in contact with the pipe P1. , R12 is moved in the Z direction.

図2Cに、第1車輪R13の構成の一例を示す。尚、第1車輪R13、第2車輪R14、第3車輪R15及び第4車輪R16は、同様の構成を有するため、ここでは、第1車輪R13の構成についてのみ説明する。第1車輪R13は、車輪R131、車輪軸受R132、接続板R133、接続バネR134及び接続部R135により構成される。そして、車輪R131が配管P1に接しながら、配管P1の長手方向(Z方向)に沿って回転移動するように、これらは配設される。即ち、車輪軸受R132は、車輪R131が配管P1の長手方向(Z方向)に沿って当接するように車輪R131を支持し、これらは、接続板R133に固定され、接続板R133、接続バネR134を介して、接続部R135により枠体R11、R12に取り付けられる。そして、車輪R131、車輪軸受R132及び接続板R133は、接続バネR134を介して、枠体R11、R12に取り付けられることで、接続バネR134の伸縮にあわせて上下動する(図2C中ではH方向で表す)。   FIG. 2C shows an example of the configuration of the first wheel R13. In addition, since 1st wheel R13, 2nd wheel R14, 3rd wheel R15, and 4th wheel R16 have the same structure, only the structure of 1st wheel R13 is demonstrated here. The first wheel R13 includes a wheel R131, a wheel bearing R132, a connection plate R133, a connection spring R134, and a connection portion R135. And these are arrange | positioned so that the wheel R131 may rotate and move along the longitudinal direction (Z direction) of the piping P1, contacting the piping P1. That is, the wheel bearing R132 supports the wheel R131 so that the wheel R131 abuts along the longitudinal direction (Z direction) of the pipe P1, and these are fixed to the connection plate R133, and the connection plate R133 and the connection spring R134 are connected. And is attached to the frame bodies R11 and R12 by the connecting portion R135. The wheel R131, the wheel bearing R132, and the connection plate R133 are attached to the frame bodies R11 and R12 via the connection spring R134, thereby moving up and down in accordance with the expansion and contraction of the connection spring R134 (the H direction in FIG. 2C). ).

接続バネR134は、移動体R10が移動する前後で、配管P1に対して枠体R11、R12の位置を安定化させるとともに、第1台車Rと第2台車Lの位置関係を一定に維持する役割を有する。   The connection spring R134 serves to stabilize the positions of the frame bodies R11 and R12 relative to the pipe P1 before and after the moving body R10 moves, and to maintain a constant positional relationship between the first carriage R and the second carriage L. Have

=測定装置の移動の動作=
図3に、測定装置の移動の動作の一例を示す。図3中のM1、M2、M3は、測定装置がM1から順にM2、M3へと移動したときの測定装置の位置を時系列に表したものである。又、図3中のPP1、PP2は、配管P1の途中の膨出している箇所を表す。
= Movement of measuring device movement =
FIG. 3 shows an example of the movement operation of the measuring apparatus. M1, M2, and M3 in FIG. 3 represent the positions of the measurement device in time series when the measurement device moves from M1 to M2 and M3 in order. Further, PP1 and PP2 in FIG. 3 represent bulging portions in the middle of the pipe P1.

測定装置は、配管P1の長手方向に沿って第1台車Rが移動し、配管P2の長手方向に沿って第2台車Lが移動し、支持部材Sにより、これらの位置関係が一定に維持されるように一体となって移動する。このとき、測定装置は、移動体R10、R20、L10、L20の車輪に設けられた接続バネにより、配管P1、配管P2の外形の変化に応ずる動作をし、測定部T1、T2の測定基準位置TC1、TC2及び測定基準方向TB1、TB2を一定に維持するように移動する。   In the measuring apparatus, the first carriage R moves along the longitudinal direction of the pipe P1, the second carriage L moves along the longitudinal direction of the pipe P2, and these positional relationships are maintained constant by the support member S. Move together. At this time, the measuring apparatus operates in accordance with changes in the outer shapes of the pipes P1 and P2 by connection springs provided on the wheels of the moving bodies R10, R20, L10, and L20, and the measurement reference positions of the measuring units T1 and T2 It moves so as to keep TC1, TC2 and measurement reference directions TB1, TB2 constant.

具体的には、測定装置は、配管の外径が一定の位置を移動するとき(M1の位置)、移動体(R10等)の枠体(R11、R12等)と配管の周囲との間の間隔を一定に維持した状態で移動する。このとき、測定装置の第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係も同様に、一定に維持した状態となる。   Specifically, the measuring device moves between a frame (R11, R12, etc.) of the moving body (R10, etc.) and the circumference of the pipe when the outer diameter of the pipe moves at a certain position (position M1). Move with the interval kept constant. At this time, the positional relationship of the first carriage R, the second carriage L, and the support member S of the measuring device with respect to the pipe P3 is similarly maintained constant.

そして、測定装置は、配管P1の一部が周方向(+X、−X、+Y、−Y方向)に膨出している位置(膨出位置PP1)を移動するとき(M2の位置)、当該膨出位置PP1では、移動体R10の接続バネが上下動することにより、枠体R11、R12と配管P1の周囲との間の間隔を短くして、枠体R11、R12の位置は、一定に保持される。これにより、第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係は、一定に維持され、測定部T1、T2の測定基準位置TC1、TC2及び測定基準方向TB1、TB2も一定に維持される。尚、図3中の矢印N1、N2は、このときに測定装置に働く力を表す。   Then, when the measuring apparatus moves at a position (the bulging position PP1) where a part of the pipe P1 bulges in the circumferential direction (+ X, -X, + Y, -Y direction) (the position of M2), At the extended position PP1, the connection spring of the moving body R10 moves up and down to shorten the distance between the frame bodies R11 and R12 and the periphery of the pipe P1, and the positions of the frame bodies R11 and R12 are kept constant. Is done. Accordingly, the positional relationship of the first carriage R, the second carriage L, and the support member S with respect to the pipe P3 is kept constant, and the measurement reference positions TC1 and TC2 and the measurement reference directions TB1 and TB2 of the measurement units T1 and T2 are also constant. Maintained. Note that arrows N1 and N2 in FIG. 3 represent forces acting on the measuring device at this time.

そして、測定装置は、配管P1の一部が一方向(+X方向)に偏って膨出している位置(膨出位置PP2)を移動するとき(M3の位置)、当該膨出位置PP2では、移動体R10の接続バネが+X方向に動作し、第1台車Rが向く方向をずらすように力(N3)が働く。しかし、このとき、支持部材Sの抗力(N4)が働くことにより、第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係は、一定に維持されることになる。そして、測定部T1、T2の測定基準位置TC1、TC2及び測定基準方向TB1、TB2も一定に維持される。尚、図3中の矢印N3、N4は、このときに測定装置に働く力を表す。   Then, when the measuring device moves at a position where the part of the pipe P1 bulges in one direction (+ X direction) (the bulging position PP2) (the position of M3), the measuring apparatus moves at the bulging position PP2. The connection spring of the body R10 operates in the + X direction, and a force (N3) acts so as to shift the direction in which the first carriage R faces. However, at this time, the drag (N4) of the support member S works, so that the positional relationship of the first carriage R, the second carriage L, and the support member S with respect to the pipe P3 is maintained constant. And the measurement reference positions TC1, TC2 and the measurement reference directions TB1, TB2 of the measurement units T1, T2 are also maintained constant. Note that arrows N3 and N4 in FIG. 3 represent forces acting on the measuring device at this time.

本実施形態に係る測定装置は、第1台車R及び第2台車Lが、夫々、配管P1及び配管P2の周囲を囲むように弾性部材(接続バネ)を配設して挟持する構成となっているため、測定部T1、T2、支持部材Sの配管P3に対する位置関係、及び測定部T1、T2の測定基準位置TC1、TC2、測定基準方向TB1、TB2を一定に維持した状態で、測定対象の配管P3の長手方向に沿って移動することが可能となる。尚、本実施形態に係る測定装置は、上記のような膨出した位置のみならず、配管が湾曲した箇所においても、第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係を維持しながら、円滑に移動することができる。尚、本実施形態に係る測定装置は、第1台車R及び第2台車Lを、夫々、前側(+Z方向)の移動体R10、L10と、後側(−Z方向)の移動体R20、L20と、これらを接続する接続部材R30、L30とで構成することによりX軸回りに働くモーメント及びY軸回りに働くモーメントに対して、安定化させる構成としている。   The measurement apparatus according to the present embodiment has a configuration in which the first carriage R and the second carriage L are provided with elastic members (connection springs) so as to surround the pipes P1 and P2, respectively. Therefore, the measurement object T1, T2, the positional relationship of the support member S with respect to the pipe P3, and the measurement reference positions TC1, TC2, measurement reference directions TB1, TB2 of the measurement parts T1, T2 are maintained constant. It becomes possible to move along the longitudinal direction of the pipe P3. Note that the measuring apparatus according to the present embodiment has a positional relationship with respect to the pipe P3 of the first carriage R, the second carriage L, and the support member S not only at the bulged position as described above but also at a place where the pipe is curved. It is possible to move smoothly while maintaining the above. In the measurement apparatus according to the present embodiment, the first carriage R and the second carriage L are respectively moved to the front (+ Z direction) moving bodies R10 and L10 and the rear (−Z direction) moving bodies R20 and L20. And the connecting members R30 and L30 that connect them to each other, the moment acting around the X axis and the moment acting around the Y axis are stabilized.

===測定装置の測定方法===
次に、図4を参照して、測定装置の測定方法について説明する。
=== Measuring method of measuring device ===
Next, with reference to FIG. 4, the measuring method of the measuring device will be described.

本実施形態に係る測定装置は、3Dレーザースキャナ装置T1、T2により、測定対象の配管P3の外径を測定する。3Dレーザースキャナ装置T1、T2は、夫々、出射部TA、受光部TB、駆動部TCを有し、それらを用いて、測定対象の配管P3の座標位置、即ち、外径(及び外形)を測定する。   The measuring apparatus according to the present embodiment measures the outer diameter of the pipe P3 to be measured by the 3D laser scanner apparatuses T1 and T2. Each of the 3D laser scanner devices T1 and T2 includes an emitting unit TA, a light receiving unit TB, and a driving unit TC, and using these, the coordinate position of the pipe P3 to be measured, that is, the outer diameter (and outer shape) is measured. To do.

具体的には、出射部TAは、例えば、変調信号発振器、半導体発光素子を含んで構成され、高周波で強度変調をかけたHe−Neレーザを出射する。そして、受光部TBは、例えば、光検出器、位相計を含んで構成され、レーザの反射光と内部の参照基準との間でのそれぞれの変調波の位相差を測定し、これにより、レーザを照射した地点と、3Dレーザースキャナ装置T1、T2の距離を算出する(位相差方式)。そして、駆動部TCが、出射部TAから出射するレーザの方向を回転させることにより、一定範囲の測定対象の座標位置、即ち、外形及び外径を測定する。   Specifically, the emission unit TA includes, for example, a modulation signal oscillator and a semiconductor light emitting element, and emits a He—Ne laser subjected to intensity modulation at a high frequency. The light receiving unit TB includes, for example, a photodetector and a phase meter, and measures the phase difference of each modulated wave between the reflected light of the laser and the internal reference standard, thereby the laser. The distance between the spot irradiated with 3D laser scanner devices T1 and T2 is calculated (phase difference method). Then, the drive unit TC measures the coordinate position of the measurement target within a certain range, that is, the outer shape and the outer diameter, by rotating the direction of the laser beam emitted from the emission unit TA.

ここで、測定装置は、上記したとおり、移動する各地点において、3Dレーザースキャナ装置T1、T2の出射部TAのレーザの出射方向の測定基準方向TB1、TB2、測定基準位置TC1、TC2が一定に維持されるように動作する。このため、3Dレーザースキャナ装置T1、T2の初期の座標軸が確定し、移動する各地点で較正作業(位置決め作業)を行うことなく、配管P3の長手方向の各地点に亘って、連続的に外形及び外径を測定することができる。尚、本実施形態では、測定対象の配管P3を長手方向に対して、10cm移動させるごとに、3Dレーザースキャナ装置T1、T2により、外径測定を行うものとする。   Here, as described above, the measurement apparatus has the measurement reference directions TB1 and TB2 and the measurement reference positions TC1 and TC2 of the laser emission direction of the emission part TA of the 3D laser scanner apparatuses T1 and T2 constant at each moving point. Operates to be maintained. For this reason, the initial coordinate axes of the 3D laser scanner devices T1 and T2 are determined, and the outer shape is continuously extended over each point in the longitudinal direction of the pipe P3 without performing calibration work (positioning work) at each moving point. And the outer diameter can be measured. In this embodiment, every time the pipe P3 to be measured is moved 10 cm in the longitudinal direction, the outer diameter is measured by the 3D laser scanner devices T1 and T2.

又、本実施形態では、第1台車Rの側に設置された3Dレーザースキャナ装置T1から配管P3の+X側の外形を測定し、第2台車Lの側に設置された3Dレーザースキャナ装置T2から配管P3の−X側の外形を測定することにより、配管P3の略全周囲に亘って膨出量を測定する。即ち、本実施形態に係る測定装置は、3Dレーザースキャナ装置T1、T2の夫々の外形及び外径の測定結果に基づいて、配管P3の略全周囲に亘る膨出量の測定結果を算出する。   In the present embodiment, the + X side outer shape of the pipe P3 is measured from the 3D laser scanner device T1 installed on the first carriage R side, and the 3D laser scanner device T2 installed on the second carriage L side is measured. By measuring the external shape of the pipe P3 on the −X side, the bulging amount is measured over substantially the entire circumference of the pipe P3. That is, the measurement device according to the present embodiment calculates the measurement result of the bulging amount over substantially the entire circumference of the pipe P3 based on the measurement results of the outer and outer diameters of the 3D laser scanner devices T1 and T2.

図4に、配管P3の略全周囲に亘る外形及び外径の測定結果の算出方法の一例を示す。尚、図4中のAT1は、ある地点における3Dレーザースキャナ装置T1の測定結果を表す。AT2は、AT1に対応する地点における3Dレーザースキャナ装置T2の測定結果を表す。AT3は、AT1とAT2とに基づいて算出した測定結果を表す。Z0は、配管P3の膨出が検出された位置を表す。   In FIG. 4, an example of the calculation method of the measurement result of the external shape and outer diameter covering the perimeter of the piping P3 is shown. Note that AT1 in FIG. 4 represents a measurement result of the 3D laser scanner device T1 at a certain point. AT2 represents the measurement result of the 3D laser scanner device T2 at a point corresponding to AT1. AT3 represents a measurement result calculated based on AT1 and AT2. Z0 represents the position where the bulging of the pipe P3 is detected.

3Dレーザースキャナ装置T1の測定結果AT1と、3Dレーザースキャナ装置T2の測定結果AT2は、夫々、配管P3の座標情報として取得される。又、3Dレーザースキャナ装置T1の測定と、3Dレーザースキャナ装置T2の測定は、配管P3の周囲に対して一部が重複するように行われ、3Dレーザースキャナ装置T1の測定結果AT1のAT1’領域と、3Dレーザースキャナ装置T2の測定結果AT2のAT2’領域とが重複した座標情報として取得される。このとき、配管P3の膨出が検出された位置Z0における、配管P3の形状は、配管P3の他の領域とは区別できる形状を呈することから、測定結果AT1のAT1’領域の形状と測定結果AT2のAT2’領域の形状とを比較して、両者が、配管P3の膨出の検出位置Z0において重なるように座標変換を行う。   The measurement result AT1 of the 3D laser scanner device T1 and the measurement result AT2 of the 3D laser scanner device T2 are respectively acquired as coordinate information of the pipe P3. Further, the measurement of the 3D laser scanner device T1 and the measurement of the 3D laser scanner device T2 are performed so as to partially overlap the periphery of the pipe P3, and the AT1 ′ region of the measurement result AT1 of the 3D laser scanner device T1. And the coordinate information obtained by overlapping the AT2 ′ region of the measurement result AT2 of the 3D laser scanner device T2. At this time, the shape of the pipe P3 at the position Z0 where the bulge of the pipe P3 is detected exhibits a shape that can be distinguished from the other areas of the pipe P3. Therefore, the shape of the AT1 ′ region of the measurement result AT1 and the measurement result The shape of the AT2 ′ area of AT2 is compared, and coordinate conversion is performed so that both overlap at the bulging detection position Z0 of the pipe P3.

これにより、3Dレーザースキャナ装置T1の測定結果AT1と、3Dレーザースキャナ装置T2の測定結果AT2とを合成し、配管P3の膨出が検出された位置Z0の付近の外形AT3を算出することができる。即ち、配管P3の略全周囲に亘っての膨出量を算出することができる。本実施形態に係る測定装置は、以上の工程を繰り返すことにより、配管P3の長手方向の各地点の膨出が検出される位置で、膨出量を算出する。   Thereby, the measurement result AT1 of the 3D laser scanner device T1 and the measurement result AT2 of the 3D laser scanner device T2 are synthesized, and the outer shape AT3 near the position Z0 where the bulging of the pipe P3 is detected can be calculated. . That is, it is possible to calculate the bulging amount over substantially the entire circumference of the pipe P3. The measurement apparatus according to the present embodiment calculates the bulge amount at a position where the bulge of each point in the longitudinal direction of the pipe P3 is detected by repeating the above steps.

尚、配管P3の膨出量は、配管P3の外径が設計規格上、長さ方向に亘って一定である場合は、上記の配管P3から当該一定値を減算することにより算出することができる。又、一定でない場合は、配管P3の外径を、膨出が生じる前に長さ方向(Z方向)の各地点において予め測定し、当該地点と対応付けて記憶しておき、予め測定した配管P3の当該地点と対応付けられた外径と、膨出後の外径とを比較することにより、膨出量を算出することができる。このとき、配管P3の長手方向の各地点におけるZ座標の位置は、例えば、第1台車R、第2台車Lのロータリーエンコーダに基づいて算出する。   In addition, when the outer diameter of the pipe P3 is constant over the length direction in the design standard, the bulge amount of the pipe P3 can be calculated by subtracting the constant value from the pipe P3. . Further, if not constant, the outer diameter of the pipe P3 is measured in advance at each point in the length direction (Z direction) before the bulging occurs, stored in association with the point, and the pipe measured in advance. The bulge amount can be calculated by comparing the outer diameter associated with the point of P3 and the outer diameter after the bulge. At this time, the position of the Z coordinate at each point in the longitudinal direction of the pipe P3 is calculated based on the rotary encoders of the first carriage R and the second carriage L, for example.

ここで、当該演算処理を行う構成(演算装置)は、3Dレーザースキャナ装置T1、又は3Dレーザースキャナ装置T2が備えていても、他の装置が備えていてもよい。例えば、配管P3の長手方向の各地点について測定を行った後に、演算装置が、配管P3の長手方向の各地点の測定結果AT1と、測定結果AT2とを合成して、当該算出結果に基づいて、画像の再構成を行って、表示出力する構成としてもよい。又、3Dレーザースキャナ装置T1の測定結果AT1と、3Dレーザースキャナ装置T2の測定結果AT2とを合成する際に基準とする形状は、他の領域とは区別できる形状であれば、膨出された位置に代えて、他の位置であってもよい。   Here, the configuration (arithmetic apparatus) that performs the arithmetic processing may be included in the 3D laser scanner apparatus T1 or the 3D laser scanner apparatus T2, or may be included in another apparatus. For example, after performing measurement at each point in the longitudinal direction of the pipe P3, the arithmetic unit synthesizes the measurement result AT1 and the measurement result AT2 at each point in the longitudinal direction of the pipe P3, and based on the calculation result. The image may be reconstructed and output for display. In addition, when the measurement result AT1 of the 3D laser scanner device T1 and the measurement result AT2 of the 3D laser scanner device T2 are combined, the shape used as a reference is bulged if it can be distinguished from other regions. Instead of the position, another position may be used.

===余寿命予測===
本実施形態では、上記したとおり、配管P3の膨出量に基づいて、配管P3の余寿命を算出する。図5に、配管の膨出量と余寿命の関係の一例を示す。配管の膨出量と余寿命の関係は、例えば、予め、測定対象の配管P3と同一種類(例えば、同一の材料、同一の膜厚)の配管について実験を行うことにより算出しておく。このときに基準とする配管の膨出量は、例えば、設計規格の配管の外径に対して膨出した量、設計規格の配管の外径に対する膨出の度合い(比率)である。又、余寿命は、例えば、当該配管を使用可能な年数である(破断するまでの年数)。
=== Predicting remaining life ===
In the present embodiment, as described above, the remaining life of the pipe P3 is calculated based on the bulging amount of the pipe P3. FIG. 5 shows an example of the relationship between the bulge amount of the pipe and the remaining life. The relationship between the bulge amount of the pipe and the remaining life is calculated in advance by, for example, conducting an experiment on a pipe of the same type (for example, the same material and the same film thickness) as the pipe P3 to be measured. The bulge amount of the pipe used as a reference at this time is, for example, the bulge amount with respect to the outer diameter of the design standard pipe, or the degree (ratio) of the bulge with respect to the outer diameter of the design standard pipe. The remaining life is, for example, the number of years that the pipe can be used (the number of years until breakage).

そして、配管P3の長手方向の各地点における、配管の膨出量の測定結果と、配管の膨出量と余寿命の関係に基づいて、各地点の余寿命を算出して、交換・修繕の時期を判断する。尚、当該演算処理は、作業者が行ってもよいし、3Dレーザースキャナ装置T1、3Dレーザースキャナ装置T2、又は、他の装置がその機能構成として備えていてもよい。例えば、測定装置は、配管の膨出量の測定結果と、配管の膨出量と余寿命の関係を示すデータに基づいて、配管の長手方向の各地点における配管の余寿命を識別可能に表示する構成を備えていてもよい。   Then, based on the measurement result of the bulge amount of the pipe at each point in the longitudinal direction of the pipe P3 and the relationship between the bulge amount of the pipe and the remaining life, the remaining life of each point is calculated, and replacement / repair Determine when. The calculation process may be performed by an operator, or the 3D laser scanner device T1, the 3D laser scanner device T2, or another device may be provided as the functional configuration. For example, the measuring device can display the remaining life of the pipe at each point in the longitudinal direction of the pipe based on the measurement result of the amount of swelling of the pipe and the data indicating the relationship between the amount of swelling of the pipe and the remaining life You may have the structure to do.

又、測定装置は、配管の膨出量と余寿命の関係を示すデータに基づいて、交換、修繕の時期を示す閾値となる膨出量を設定し、測定対象の位置の膨出量が当該膨出量を超えていると判断した場合、音等により警告を発する機能(警告部)を備えていてもよい。これによって、作業者は、極めて簡易な作業により、余寿命を判断することができる。尚、配管のクリープ損傷は、図5に示すように、その進行に伴い、進行度合いが速くなり、又、膨出が急激に増加し破断するに至る。そのため、例えば、進行度合いが速くなる時期の膨出量を、警告を発する閾値として設定しておくことにより、配管の破断を確実に防止することができる。   In addition, the measuring device sets a bulge amount that serves as a threshold value indicating the timing of replacement and repair based on data indicating the relationship between the bulge amount of the pipe and the remaining life, and the bulge amount at the position to be measured When it is determined that the bulging amount is exceeded, a function (warning unit) that issues a warning by sound or the like may be provided. Thereby, the worker can determine the remaining life by an extremely simple work. As shown in FIG. 5, the creep damage of the pipe increases with progress, and the bulging increases rapidly and breaks. Therefore, for example, by setting the bulging amount at the time when the progress degree becomes fast as a threshold value for issuing a warning, it is possible to reliably prevent the pipe from being broken.

以上、本実施形態に係る測定装置によれば、配管の長手方向の各地点における外径又は外形を、連続的、かつ、定量的に測定することができる。特に、本実施形態に係る測定装置は、測定対象の配管P3の両側に配設された配管P1、P2をガイドとして、配管P3の周囲を囲むように配設された弾性部材(接続バネR134等)を介して配管P1、P2を挟持しながら移動する構成となっている。そのため、測定装置は、一部に膨出による形状変化が生じていたり、湾曲する部分を有する配管P1、P2においても、第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係を維持しながら、円滑に移動することができる。即ち、測定装置は、特に配管が密集するような環境下において、配管そのものを利用して、測定位置に対する測定基準位置、測定基準方向(例えば、3Dレーザースキャナ装置T1、T2のレーザの出射位置、出射するレーザの中心となる方向)が一定に維持されるように移動することができ、移動の前後で、測定前の較正が不要(又は極めて少ない較正量)となり、作業効率が大幅に改善される。   As mentioned above, according to the measuring device concerning this embodiment, the outside diameter or external shape in each point of the longitudinal direction of piping can be measured continuously and quantitatively. In particular, the measuring apparatus according to the present embodiment uses an elastic member (such as a connection spring R134) that surrounds the pipe P3 with pipes P1 and P2 arranged on both sides of the pipe P3 to be measured as a guide. ) Through the pipes P1 and P2. Therefore, the measuring apparatus has a positional relationship with respect to the pipe P3 of the first carriage R, the second carriage L, and the support member S even in the pipes P1 and P2 that are partially deformed due to bulging or have curved portions. It is possible to move smoothly while maintaining the above. That is, the measurement apparatus uses the pipe itself, particularly in an environment where the pipes are densely packed, and the measurement reference position with respect to the measurement position, the measurement reference direction (for example, the laser emission positions of the 3D laser scanner devices T1 and T2, It is possible to move so that the center of the emitted laser) is maintained constant, and before and after the movement, calibration before measurement is unnecessary (or very little calibration amount), and work efficiency is greatly improved. The

特に、配管P3の外径又は外形の測定に、3Dレーザースキャナ装置を用いた場合は、3Dレーザースキャナ装置自体が、測定対象の一定領域を測定することを可能とするため、上記のガイド機構と相まって、測定前の較正は不要となる。   In particular, when a 3D laser scanner device is used to measure the outer diameter or outer shape of the pipe P3, the 3D laser scanner device itself can measure a certain area of the measurement target. Coupled with this, calibration before measurement is unnecessary.

加えて、本実施形態に係る測定装置は、第1台車Rの側から配管の外径を測定する3Dレーザースキャナ装置T1と、第2台車Lの側から配管の外径を測定する3Dレーザースキャナ装置T2とにより、測定部T1、T2を構成したため、一方向のみから外径を測定する場合に比して、広範囲(例えば、略全周囲)に配管の外径を測定することが可能となる。配管の膨出は、配管の外部の付着物や配管の内部の酸化被膜の状態に応じて、配管の一方向(+X方向、−X方向、+Y方向、−Y方向等)に対してのみ膨出が進行する場合があるが、当該構成により、その場合における膨出をも検出することが可能となる。   In addition, the measuring apparatus according to this embodiment includes a 3D laser scanner device T1 that measures the outer diameter of the pipe from the first cart R side, and a 3D laser scanner that measures the outer diameter of the pipe from the second cart L side. Since the measuring units T1 and T2 are configured by the apparatus T2, it is possible to measure the outer diameter of the pipe over a wider range (for example, substantially the entire circumference) than when measuring the outer diameter from only one direction. . Piping bulges only in one direction of the piping (+ X direction, -X direction, + Y direction, -Y direction, etc.) depending on the state of deposits outside the piping and the state of the oxide film inside the piping. In some cases, the bulge progresses, but this configuration can also detect the bulge in that case.

又、本実施形態に係る測定装置は、測定対象の配管P3に対して、非接触で測定を行うことができるため、測定対象の配管P3の強度が小さい場合であっても、測定対象の配管P3に歪を生じさせることなく、精度の高い測定を行うことができる。   In addition, since the measuring apparatus according to the present embodiment can perform non-contact measurement on the pipe P3 to be measured, the pipe to be measured even when the strength of the pipe P3 to be measured is small. High-precision measurement can be performed without causing distortion in P3.

<第2実施形態>
本実施形態では、測定部T1、T2の構成として、3Dレーザースキャナ装置を用いる態様に代えて、デジタルノギスを用いる点で、第1実施形態と異なっている。尚、第1実施形態と共通する構成については説明を省略する(以下、第1実施形態に係る測定装置と異なる構成については、「’」を付して表す)。
Second Embodiment
This embodiment is different from the first embodiment in that a digital caliper is used instead of an aspect using a 3D laser scanner device as a configuration of the measurement units T1 and T2. In addition, description is abbreviate | omitted about the structure which is common in 1st Embodiment (Hereafter, "'" is attached | subjected and shown about the structure different from the measuring apparatus which concerns on 1st Embodiment).

以下、図6A、図6Bを参照して、本実施形態に係る測定装置の構成の一例を示す。尚、図6Aは測定装置の側面図、図6Bは測定装置の平面図を示す図である。X軸、Y軸、Z軸は、夫々、図2A、図2Bと同様の定義である。   Hereinafter, with reference to FIGS. 6A and 6B, an example of the configuration of the measurement apparatus according to the present embodiment will be described. 6A is a side view of the measuring apparatus, and FIG. 6B is a diagram showing a plan view of the measuring apparatus. The X-axis, Y-axis, and Z-axis have the same definitions as in FIGS. 2A and 2B, respectively.

本実施形態に係る測定部は、第1基準部材T1’、第2基準部材T2’、距離測定装置T3’、第1付勢バネT4’、第2付勢バネT5’を備えて構成される。そして、これらは、支持部材Sに支持され、支持部材Sと一体となって移動する。又、測定部T1、T2の構成と同様、第1台車R、第2台車L、支持部材Sの配管P3に対する位置関係は、一定に維持されることから、測定対象の位置に対する第1基準部材T1’及び第2基準部材T2’の位置(測定基準位置TC1’、TC2’)、並びに方向(測定基準方向TB’)は一定に維持される。尚、本実施形態では、測定基準位置TC1 ‘、TC2’は、配管P3の測定対象の位置に対する第1基準部材T1’、第2基準部材T2’の位置を表し、測定基準方向TB’は、配管P3の測定対象の位置に対する第1基準部材T1’、第2基準部材T2’の当接する面がなす角度を表す。   The measurement unit according to the present embodiment includes a first reference member T1 ′, a second reference member T2 ′, a distance measurement device T3 ′, a first biasing spring T4 ′, and a second biasing spring T5 ′. . These are supported by the support member S and move together with the support member S. Similarly to the configuration of the measurement units T1 and T2, the positional relationship of the first carriage R, the second carriage L, and the support member S with respect to the pipe P3 is maintained constant, so that the first reference member with respect to the position of the measurement target is maintained. The positions of T1 ′ and the second reference member T2 ′ (measurement reference positions TC1 ′ and TC2 ′) and the direction (measurement reference direction TB ′) are kept constant. In the present embodiment, the measurement reference positions TC1 ′ and TC2 ′ represent the positions of the first reference member T1 ′ and the second reference member T2 ′ with respect to the measurement target position of the pipe P3, and the measurement reference direction TB ′ is The angle which the surface which 1st reference member T1 'and 2nd reference member T2' contact | abut with respect to the position of the measuring object of the piping P3 makes is represented.

第1基準部材T1’、第2基準部材T2’は、距離測定装置T3’に取り付けられ、これらのX方向の間隔に基づいて、距離測定装置T3’に測定対象の配管P3のX方向の外径を測定させるための部材である。又、第1基準部材T1’及び第2基準部材T2’は、X方向に対向するように配置され、これらが対向する側の面が略平行となるような形状を呈する、ステンレス等の剛性が高い材料で構成された部材である。   The first reference member T1 ′ and the second reference member T2 ′ are attached to the distance measuring device T3 ′, and based on the distance in the X direction, the distance measuring device T3 ′ has the outside of the pipe P3 to be measured in the X direction. This is a member for measuring the diameter. Further, the first reference member T1 ′ and the second reference member T2 ′ are arranged so as to face each other in the X direction, and have a shape such that the surfaces on which the first reference member T1 ′ and the second reference member T2 ′ face each other are substantially parallel. It is a member made of a high material.

又、第1基準部材T1’、第2基準部材T2’は、その一部が、X方向に沿って距離測定装置T3’の内部に挿入されるように取り付けられ、X方向に沿って自由に移動が可能な構成となっている。そして、第1基準部材T1’及び第2基準部材T2’は、夫々、支持部材Sに取り付けられた第1付勢バネT4’、第2付勢バネT5’により、測定対象の配管P3に当接する方向(X方向)に付勢され、第1基準部材T1’及び第2基準部材T2’が対向する側の面は、移動の前後で、測定対象の配管P3に当接するように維持される。   The first reference member T1 ′ and the second reference member T2 ′ are attached so that a part thereof is inserted into the distance measuring device T3 ′ along the X direction, and freely along the X direction. It can be moved. Then, the first reference member T1 ′ and the second reference member T2 ′ are respectively brought into contact with the pipe P3 to be measured by the first biasing spring T4 ′ and the second biasing spring T5 ′ attached to the support member S, respectively. The surface on the side where the first reference member T1 ′ and the second reference member T2 ′ are opposed to each other is biased in the contact direction (X direction) and is maintained so as to contact the pipe P3 to be measured before and after the movement. .

距離測定装置T3’は、内部に挿入されるように取り付けられた第1基準部材T1’及び第2基準部材T2’の間隔を測定する装置である。距離測定装置T3’は、例えば、距離測定装置T3’の内部に備える一の電極と、第1基準部材T1’の挿入された部分を他の電極とにより第1コンデンサを形成し、第1コンデンサの容量に基づいて、第1基準部材T1’のX方向の座標を確定する。又、同様に、距離測定装置T3’の内部に備える一の電極と、第2基準部材T2’の挿入された部分を他の電極とにより第2コンデンサを形成し、第2コンデンサの容量に基づいて、第2基準部材T2’のX方向の座標を確定する。距離測定装置T3’は、これにより、第1基準部材T1’及び第2基準部材T2’の間隔を測定して、測定対象の配管P3の外径を測定する。   The distance measuring device T3 'is a device that measures the distance between the first reference member T1' and the second reference member T2 'attached so as to be inserted therein. The distance measuring device T3 ′ includes, for example, a first capacitor formed by one electrode provided inside the distance measuring device T3 ′ and a portion where the first reference member T1 ′ is inserted as another electrode. Based on the capacity of the first reference member T1 ′, the coordinate in the X direction is determined. Similarly, the second capacitor is formed by one electrode provided in the distance measuring device T3 ′ and the other electrode at the portion where the second reference member T2 ′ is inserted, and based on the capacitance of the second capacitor. Thus, the coordinate in the X direction of the second reference member T2 ′ is determined. Thus, the distance measuring device T3 'measures the outer diameter of the pipe P3 to be measured by measuring the distance between the first reference member T1' and the second reference member T2 '.

以上のように、本実施形態に係る測定装置によれば、第1実施形態に係る測定装置と同様に、測定位置に対する測定基準位置、測定基準方向を一定に維持しながら移動することができ、配管の長手方向の各地点における外径を、連続的、かつ、定量的に測定することができる。   As described above, according to the measurement apparatus according to the present embodiment, as in the measurement apparatus according to the first embodiment, the measurement reference position with respect to the measurement position and the measurement reference direction can be moved while being maintained constant. The outer diameter at each point in the longitudinal direction of the pipe can be measured continuously and quantitatively.

<その他の実施形態>
尚、上記各実施形態に係る測定装置は、測定対象の配管P3に隣接する配管P1、P2をガイドとして利用した。しかし、ガイドとして利用する配管は、必ずしも隣接する配管でなくともよく、多数の略平行に伸延する周囲の配管のうち、測定対象の配管P3の両側に配設された配管であればよい。
<Other embodiments>
In the measurement apparatus according to each of the above embodiments, the pipes P1 and P2 adjacent to the pipe P3 to be measured are used as a guide. However, the pipes used as guides are not necessarily adjacent pipes, and may be pipes provided on both sides of the pipe P3 to be measured among a large number of surrounding pipes extending in parallel.

又、多数の略平行に伸延する配管がある場合、測定装置は、複数の配管を一括して測定を行ってもよい。図7に、複数の配管を一括して測定する態様の一例を示す。図7では、配管P3に加えて、配管P4も測定対象としている。この場合、測定装置は、配管P4を跨いで配管P1と反対側に配設され、配管P4と略平行に伸延する配管P5を更にガイドとする。そして、配管P5に上記と同様の構成を有する第3台車Qを設置し、第1台車Rと第3台車Qとの位置関係が一定に維持されるように、支持部材S2により接続するとともに、支持部材S2により、測定部T3、T4を支持する構成とすればよい。この場合であっても、上記と同様に、測定装置がレーザの出射部等の測定位置に対する測定基準位置及び測定基準方向が一定に維持されるように、移動する構成とすることができる。これによって、余寿命検査の作業効率をより改善することができる。   In addition, when there are a large number of pipes extending substantially in parallel, the measuring apparatus may measure a plurality of pipes collectively. In FIG. 7, an example of the aspect which measures several piping collectively is shown. In FIG. 7, in addition to the pipe P3, the pipe P4 is also a measurement target. In this case, the measuring apparatus is arranged on the opposite side of the pipe P1 across the pipe P4, and further uses the pipe P5 extending substantially parallel to the pipe P4 as a guide. Then, the third carriage Q having the same configuration as described above is installed in the pipe P5, and connected by the support member S2 so that the positional relationship between the first carriage R and the third carriage Q is maintained constant. What is necessary is just to set it as the structure which supports measurement part T3, T4 by support member S2. Even in this case, similarly to the above, the measurement apparatus can be configured to move so that the measurement reference position and the measurement reference direction with respect to the measurement position of the laser emission part or the like are maintained constant. Thereby, the work efficiency of the remaining life inspection can be further improved.

又、上記各実施形態では、配管の周囲を囲むように配設された接続バネ(R134等)により、配管P1に対して移動体(R10等)の位置を安定化させるとともに、第1台車Rと第2台車Lとの位置関係を一定に維持する構成としたが、当該機能を確保することができれば、他の構成であってもよい。例えば、車輪(R131等)をゴム材料で構成したり、クッション材を配管の周囲と枠体(R11、R12等)の間に介在させる構成であってもよい。   In the above embodiments, the position of the moving body (R10, etc.) is stabilized with respect to the pipe P1 by the connection spring (R134, etc.) arranged so as to surround the circumference of the pipe, and the first cart R However, other configurations may be used as long as the function can be ensured. For example, the wheel (R131, etc.) may be made of a rubber material, or the cushion material may be interposed between the periphery of the pipe and the frame (R11, R12, etc.).

又、上記各実施形態では、第1台車Rと第2台車Lの車輪(R131等)は、円筒形状を呈する部材としたが、第1台車Rと第2台車Lを配管に沿って円滑に移動させることができればよく、球形状を呈する部材を用いてもよい。この場合、車輪(R131等)は、ボール軸受に接続することで回転可能とする構成とすればよい。 又、上記各実施形態では、移動体を構成する枠体(R11、R12等)を配管の周囲の外形に沿って配管の周囲の全周を囲む形状としたが、配管の周囲を挟持することができる構成であれば、他の構成であってもよい。例えば、一方向(例えば、+Y方向)に開口を有する矩形の形状として、接続バネ(R134等)により配管を挟持するものであってもよい。   In each of the above embodiments, the wheels (R131, etc.) of the first carriage R and the second carriage L are cylindrical members. However, the first carriage R and the second carriage L can be smoothly moved along the pipe. Any member that has a spherical shape may be used as long as it can be moved. In this case, the wheel (R131 or the like) may be configured to be rotatable by being connected to a ball bearing. Further, in each of the above embodiments, the frame (R11, R12, etc.) constituting the moving body is shaped to surround the entire circumference of the pipe along the outer circumference of the pipe, but the circumference of the pipe is sandwiched. Any other configuration may be used as long as it can be configured. For example, as a rectangular shape having an opening in one direction (for example, + Y direction), the pipe may be sandwiched by connection springs (R134, etc.).

又、上記各実施形態では、支持部材Sを、一端を第1台車Rの接続部材R30に螺子で固定し、他端を第2台車Lの接続部材L30に螺子で固定する構成としたが、第1台車Rと第2台車Lを接続するための構成は、それらの位置関係が一定に維持されるようにすることができる構成であれば、他の構成であってもよい。例えば、配管P1と配管P2のX方向の距離に応じて、X方向の長さを伸縮できる構成を備えるものとしてもよいし、第1台車Rと第2台車Lとの接続部分に付勢機構を設けて、それらの位置関係が一定に維持される機能を高めるような構成としてもよい。   In each of the above embodiments, the support member S has a structure in which one end is fixed to the connection member R30 of the first carriage R with a screw and the other end is fixed to the connection member L30 of the second carriage L with a screw. The configuration for connecting the first cart R and the second cart L may be another configuration as long as the positional relationship can be maintained constant. For example, it is good also as a thing provided with the structure which can expand-contract the length of a X direction according to the distance of the X direction of the piping P1 and the piping P2, and a biasing mechanism in the connection part of the 1st cart R and the 2nd cart L It is good also as a structure which raises and raises the function in which those positional relationships are maintained constant.

又、上記各実施形態では、作業者が手作業により、第1台車Rと第2台車Lとを夫々、配管P1、配管P2に沿って移動させる構成としたが、モータにより移動させる構成としてもよい。例えば、モータにより、第1台車Rと第2台車Lの枠体(R11、R12等)に対して、配管P1、配管P2に沿う方向に駆動力を働かせて、Z方向に移動させる構成としてもよい。その場合、Z方向の位置の測定は、モータの駆動量により行うこともできる。   In each of the above embodiments, the operator manually moves the first carriage R and the second carriage L along the pipe P1 and the pipe P2, respectively. Good. For example, a configuration may be adopted in which the driving force is applied to the frame (R11, R12, etc.) of the first carriage R and the second carriage L by the motor in the direction along the pipes P1 and P2 and moved in the Z direction. Good. In that case, the measurement of the position in the Z direction can also be performed by the driving amount of the motor.

又、上記各実施形態では、配管の膨出量を測定するため、測定部T1、T2により配管の外径を測定する構成としたが、3Dレーザースキャナ装置等により、配管の一側面の外形のみを測定する構成としてもよい。この場合であっても、他の領域との外形の変化から、配管が一部で膨出していることを検出することができる。   Moreover, in each said embodiment, in order to measure the bulging amount of piping, it was set as the structure which measures the outer diameter of piping by measuring part T1, T2, but only the external shape of one side of piping was carried out by 3D laser scanner apparatus etc. It is good also as a structure which measures. Even in this case, it is possible to detect that the pipe is partially bulged from a change in the outer shape with respect to another region.

又、上記各実施形態では、支持部材Sは、第1台車Rと第2台車Lとの位置関係が、測定対象の配管P3の長手方向に対して略垂直な方向の位置に一定に維持されるように、第1台車Rと第2台車Lとを接続する構成とした。しかし、第1台車Rと第2台車Lとの位置関係は、支持部材Sにより一定に維持されさえすれば、測定対象の配管P3の長手方向に対して略垂直な方向の位置でない場合であっても、上記各実施形態と同様の効果を得ることができる。   Further, in each of the above embodiments, the support member S is maintained at a constant positional relationship between the first carriage R and the second carriage L in a direction substantially perpendicular to the longitudinal direction of the pipe P3 to be measured. As described above, the first cart R and the second cart L are connected. However, as long as the positional relationship between the first carriage R and the second carriage L is kept constant by the support member S, the positional relationship between the first carriage R and the second carriage L is not a position in a direction substantially perpendicular to the longitudinal direction of the pipe P3 to be measured. However, the same effects as those of the above embodiments can be obtained.

上記各実施形態は、以下の記載により特定される発明を開示するものである。   Each of the above embodiments discloses an invention specified by the following description.

前述した課題を解決する主たる本発明は、測定対象配管P3と略平行に伸延する第1配管P1により案内され、第1配管P1の長手方向に沿って移動可能な第1移動部Rと、測定対象配管P3を跨いで第1配管P1と反対側に、測定対象配管P3と略平行に伸延する第2配管P2により案内され、第2配管P2の長手方向に沿って移動可能な第2移動部Lと、第1移動部Rと第2移動部Lとの位置関係が一定に維持されるように、第1移動部Rと第2移動部Lとを接続する支持部材Sと、支持部材Sに支持されて、第1移動部R、第2移動部L及び支持部材Sとともに移動し、測定対象配管P3の長手方向の各地点で、測定対象配管P3の外径と外形の少なくとも一方を測定する測定部(T1、T2、T1’、T2’、T3’、T4、T5等)と、を備え、第1移動部Rは、第1配管P1の長手方向に沿って前側と後側とに配置され、第1配管P1の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材(R134等)を介して、その周囲を挟持しながら、第1配管P1の長手方向に沿って移動する第1の前側移動体R10及び後側移動体R20と、第1の前側移動体R10及び後側移動体R20の位置関係が一定に維持されるようにそれらを接続する第1の接続部材R30と、を備え、第2移動部Lは、第2配管P2の長手方向に沿って前側と後側とに配置された第2配管P2の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材(R134等)を介して、その周囲を挟持しながら、第2配管P2の長手方向に沿って移動する第2の前側移動体L10及び後側移動体L20と、第2の前側移動体L10及び後側移動体L20の位置関係が一定に維持されるようにそれらを接続する第2の接続部材L30と、を備え、支持部材Sは、第1移動部Rと第2移動部Lとの位置関係が一定に維持されるように、第1の接続部材R30と第2の接続部材L30とを接続することを特徴とする測定装置である。これによって、配管の長手方向の各地点における外径又は外形を、連続的、かつ、定量的に測定することができる。そして、配管が密集するような環境下において、配管そのものを利用して、測定位置に対する測定基準位置、測定基準方向が一定に維持されるように移動することができ、移動の前後で、測定前の較正が不要となり、作業効率が大幅に改善される。又、測定対象の配管P3に対して、非接触で測定を行うことができるため、測定対象の配管P3の強度が小さい場合であっても、測定対象の配管P3に歪を生じさせることなく、精度の高い測定を行うことができる。これによって、測定装置のX軸回りのモーメント、Y軸回りのモーメントに対する安定化をより向上することができる。 The main present invention that solves the above-described problem is guided by a first pipe P1 extending substantially parallel to the measurement target pipe P3 and is movable along the longitudinal direction of the first pipe P1, and the measurement. A second moving part that is guided by a second pipe P2 that extends substantially parallel to the measurement target pipe P3 across the target pipe P3 and is movable along the longitudinal direction of the second pipe P2. L, a support member S that connects the first moving unit R and the second moving unit L, and a supporting member S so that the positional relationship between the first moving unit R and the second moving unit L is maintained constant. Is moved together with the first moving part R, the second moving part L, and the support member S, and at least one of the outer diameter and the outer shape of the measurement target pipe P3 is measured at each point in the longitudinal direction of the measurement target pipe P3. Measuring units (T1, T2, T1 ′, T2 ′, T3 ′, T4, T5, etc.) The provided, first moving portion R is disposed on the front and rear sides along the longitudinal direction of the first pipe P1, distribution so as to surround the longitudinal direction around a substantially vertical direction of the cross-section of the first pipe P1 The first front moving body R10 and the rear moving body R20 that move along the longitudinal direction of the first pipe P1 while sandwiching the periphery thereof through the provided elastic member (R134, etc.), and the first A first connecting member R30 that connects the front moving body R10 and the rear moving body R20 so that the positional relationship between them is maintained constant, and the second moving portion L is in the longitudinal direction of the second pipe P2. The circumference of the second pipe P2 arranged on the front side and the rear side along the longitudinal direction of the second pipe P2 is sandwiched by an elastic member (such as R134) disposed so as to surround the circumference of the cross section. Meanwhile, the second front moving body L that moves along the longitudinal direction of the second pipe P2 And a second connecting member L30 for connecting the second moving member L20 and the second moving member L20 so that the positional relationship between the second moving member L10 and the second moving member L20 is maintained constant. S, as the positional relationship between the first moving portion R and the second moving portion L is kept constant, characterized that you connected to the first connecting member R30 and the second connecting member L30 It is a measuring device. Thereby, the outer diameter or the outer shape at each point in the longitudinal direction of the pipe can be measured continuously and quantitatively. Then, in an environment where the pipes are densely packed, the pipe itself can be used to move so that the measurement reference position and the measurement reference direction with respect to the measurement position are kept constant. Calibration is unnecessary, and the working efficiency is greatly improved. In addition, since the measurement target pipe P3 can be measured in a non-contact manner, even if the measurement target pipe P3 has a low strength, the measurement target pipe P3 is not distorted. Highly accurate measurement can be performed. This can further improve the stabilization of the measuring device with respect to the moment about the X axis and the moment about the Y axis.

このとき、第1移動部Rは、第1配管P1の長手方向と略垂直な方向の断面の周囲を囲むように配設された接続バネ(R134等)を有する車輪を介して、その周囲を挟持しながら、第1配管P1の長手方向に沿って移動し、第2移動部Lは、第2配管P2の長手方向と略垂直な方向の断面の周囲を囲むように配設された接続バネ(R134等)を有する車輪を介して、その周囲を挟持しながら、第2配管P2の長手方向に沿って移動するものであってもよい。   At this time, the first moving part R is surrounded by a wheel having a connection spring (such as R134) disposed so as to surround the periphery of the cross section in the direction substantially perpendicular to the longitudinal direction of the first pipe P1. The connecting spring is disposed along the longitudinal direction of the first pipe P1 while being sandwiched, and the second moving portion L is disposed so as to surround the periphery of the cross section in a direction substantially perpendicular to the longitudinal direction of the second pipe P2. It may be one that moves along the longitudinal direction of the second pipe P2 while sandwiching the periphery thereof via a wheel having (R134 etc.).

又、測定部(T1、T2)は、3Dレーザースキャナ装置であってもよい。これによって、3Dレーザースキャナ装置自体が、測定対象の一定領域を測定することを可能とするため、上記のガイド機構と相まって、測定前の較正は不要となる。   The measurement units (T1, T2) may be 3D laser scanner devices. As a result, the 3D laser scanner device itself can measure a certain area of the measurement target, and therefore, calibration before measurement is not necessary in combination with the guide mechanism.

又、測定部は、第1移動部Rの側から測定対象配管P3の外径と外形の少なくとも一方を測定する第1の測定部T1と、第2移動部Lの側から、第1の測定部の測定位置と一部が重複するように測定対象配管P3の外径と外形の少なくとも一方を測定する第2の測定部T2と、を有し、測定装置は、第1の測定部T1の測定結果と、第2の測定部T2の測定結果と、に基づいて、第1の測定部T1の測定結果よりも広範囲に亘る、測定対象配管P3の外径と外形の少なくとも一方の測定結果を算出する演算装置、を更に備えるものであってもよい。これによって、一方向のみから外径を測定する場合に比して、広範囲(例えば、略全周囲)に配管の外径を測定することが可能となる。   Further, the measurement unit includes a first measurement unit T1 that measures at least one of an outer diameter and an outer shape of the measurement target pipe P3 from the first moving unit R side, and a first measurement unit from the second moving unit L side. A second measuring unit T2 that measures at least one of the outer diameter and the outer shape of the measurement target pipe P3 so as to partially overlap the measurement position of the unit, and the measuring device includes the first measuring unit T1. Based on the measurement result and the measurement result of the second measurement unit T2, the measurement result of at least one of the outer diameter and the outer shape of the measurement target pipe P3 over a wider range than the measurement result of the first measurement unit T1 is obtained. An arithmetic device for calculation may be further provided. Accordingly, it is possible to measure the outer diameter of the pipe over a wide range (for example, substantially the entire circumference) as compared with the case where the outer diameter is measured from only one direction.

又、測定装置は、測定対象配管P3の外径と外形の少なくとも一方の測定結果に基づいて算出される余寿命に応じて警告を発する警告部を、更に備えるものであってもよい。これによって、作業者は、極めて簡易な作業により、余寿命を判断することができる。   The measuring device may further include a warning unit that issues a warning according to the remaining life calculated based on the measurement result of at least one of the outer diameter and the outer shape of the measurement target pipe P3. Thereby, the worker can determine the remaining life by an extremely simple work.

又、測定対象配管P3、第1配管P1及び第2配管P2は、ボイラー内部に設けられたボイラーチューブであってもよい。   Moreover, the measurement object piping P3, the 1st piping P1, and the 2nd piping P2 may be a boiler tube provided in the boiler inside.

又、支持部材Sは、第1移動部Rと第2移動部Lとの位置関係が、測定対象配管P3の長手方向に対して略垂直な方向の位置に一定に維持されるように、第1移動部Rと第2移動部Lとを接続するものであってもよい。   In addition, the support member S is configured so that the positional relationship between the first moving part R and the second moving part L is constantly maintained at a position in a direction substantially perpendicular to the longitudinal direction of the measurement target pipe P3. The first moving unit R and the second moving unit L may be connected.

又、第1配管P1を跨いで測定対象配管P3と反対側に、測定対象配管P3と略平行に伸延する第2の測定対象配管P4と、第2の測定対象配管P4を跨いで第1配管P1と反対側に、第2の測定対象配管P4と略平行に伸延する第3配管P5と、第3配管P5の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材(R134等)を介して、その周囲を挟持しながら、第3配管P5の長手方向に沿って移動する第3移動部Qと、第1移動部R、第3移動部Qとの位置関係が一定に維持されるように、第1台車と第3台車とを接続する第2の支持部材Sと、第2の支持部材Sに支持されて、第1移動部R、第3移動部Q及び第2の支持部材Sとともに移動し、第2の測定対象配管P4の長手方向の各地点で、第2の測定対象配管P4の外径と外形の少なくとも一方を測定する第3の測定部と、を更に備えるものであってもよい。これによって、複数の配管を一括して余寿命検査することが可能となり作業効率をより改善することができる。   Further, the second measurement target pipe P4 extending substantially parallel to the measurement target pipe P3 and the second measurement target pipe P4 are straddled across the first pipe P1 on the side opposite to the measurement target pipe P3. On the opposite side to P1, a third pipe P5 extending substantially parallel to the second measurement target pipe P4 and an elasticity arranged so as to surround the periphery of a cross section in a direction substantially perpendicular to the longitudinal direction of the third pipe P5 The positional relationship between the third moving part Q that moves along the longitudinal direction of the third pipe P5, the first moving part R, and the third moving part Q while sandwiching the periphery thereof via a member (R134, etc.) Is maintained constant, the second support member S connecting the first cart and the third cart, and the first support R and the third mover Q supported by the second support member S. And the second support member S, and the second measurement target at each point in the longitudinal direction of the second measurement target pipe P4. A third measuring unit for measuring at least one of the outer diameter and the outer shape of the pipe P4, may further comprise a. This makes it possible to inspect the remaining life of a plurality of pipes in a lump and further improve work efficiency.

前述した課題を解決する主たる本発明は、測定対象配管P3の外径と外形の少なくとも一方を測定する測定方法であって、測定対象配管P3と略平行に伸延する第1配管P1、及び、測定対象配管P3を跨いで第1配管P1と反対側において測定対象配管P3と略平行に伸延する第2配管P2に、夫々、第1配管P1により案内されて第1配管P1の長手方向に沿って移動可能な第1移動部R、及び、第2配管P2により案内されて第2配管P2の長手方向に沿って移動可能な第2移動部Lとを、第1移動部Rと第2移動部Lとの位置関係が一定に維持されるように設け、第1移動部R及び第2移動部Lとともに移動する測定部(T1、T2、T1’、T2’、T3’、 T4、T5等)により、測定対象配管P3の長手方向の各地点で、測定対象配管P3の外径と外形の少なくとも一方を測定することを特徴とする測定方法である。   The main present invention for solving the above-described problem is a measurement method for measuring at least one of the outer diameter and the outer shape of the measurement target pipe P3, the first pipe P1 extending substantially parallel to the measurement target pipe P3, and the measurement Along the longitudinal direction of the first pipe P1 is guided by the first pipe P1 to the second pipe P2 extending across the target pipe P3 and substantially parallel to the measurement target pipe P3 on the opposite side of the first pipe P1. The first moving unit R and the second moving unit are referred to as a movable first moving unit R and a second moving unit L guided by the second pipe P2 and movable along the longitudinal direction of the second pipe P2. Measuring units (T1, T2, T1 ′, T2 ′, T3 ′, T4, T5, etc.) that are provided so that the positional relationship with L is maintained constant and move together with the first moving unit R and the second moving unit L By measuring at each point in the longitudinal direction of the measurement target pipe P3 It is a measuring method characterized by measuring at least one of the outer diameter and the outer shape of the target pipe P3.

このとき、測定対象配管P3は、互いに略並行に配置された3本以上の配管のうちの何れか1本の配管であり、第1配管P1及び第2配管P2は、3本以上の配管のうち、測定対象配管P3に隣接する配管であってもよい。   At this time, the measurement target pipe P3 is any one of three or more pipes arranged substantially parallel to each other, and the first pipe P1 and the second pipe P2 are three or more pipes. Of these, a pipe adjacent to the measurement target pipe P3 may be used.

又、3本以上の配管は、ボイラー内部に設けられたボイラーチューブであってもよい。   Further, the three or more pipes may be a boiler tube provided inside the boiler.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

P1、P2、P3、P4、P5 配管
R、L、Q 台車
T1、T2、T3、T4、T1’、T2’ 、T3’、T4’、T5’ 測定部
S、S2 支持部材
P1, P2, P3, P4, P5 Piping R, L, Q Bogie T1, T2, T3, T4, T1 ′, T2 ′, T3 ′, T4 ′, T5 ′ Measuring unit S, S2 Support member

Claims (11)

測定対象配管と略平行に伸延する第1配管により案内され、前記第1配管の長手方向に沿って移動可能な第1移動部と、
前記測定対象配管を跨いで前記第1配管と反対側に、前記測定対象配管と略平行に伸延する第2配管により案内され、前記第2配管の長手方向に沿って移動可能な第2移動部と、
前記第1移動部と前記第2移動部との位置関係が一定に維持されるように、前記第1移動部と前記第2移動部とを接続する支持部材と、
前記支持部材に支持されて、前記第1移動部、前記第2移動部及び前記支持部材とともに移動し、前記測定対象配管の長手方向の各地点で、前記測定対象配管の外径と外形の少なくとも一方を測定する測定部と、
を備え
前記第1移動部は、前記第1配管の長手方向に沿って前側と後側とに配置され、前記第1配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第1配管の長手方向に沿って移動する第1の前側移動体及び後側移動体と、前記第1の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第1の接続部材と、を備え、
前記第2移動部は、前記第2配管の長手方向に沿って前側と後側とに配置された前記第2配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第2配管の長手方向に沿って移動する第2の前側移動体及び後側移動体と、前記第2の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第2の接続部材と、を備え、
前記支持部材は、前記第1移動部と前記第2移動部との位置関係が一定に維持されるように、前記第1の接続部材と前記第2の接続部材とを接続す
ことを特徴とする測定装置。
A first moving part that is guided by a first pipe extending substantially parallel to the pipe to be measured and is movable along the longitudinal direction of the first pipe;
A second moving portion that is guided by a second pipe that extends substantially parallel to the measurement target pipe on the opposite side of the first pipe across the measurement target pipe and is movable along the longitudinal direction of the second pipe When,
A support member that connects the first moving unit and the second moving unit such that the positional relationship between the first moving unit and the second moving unit is maintained constant;
It is supported by the support member and moves together with the first moving unit, the second moving unit, and the support member, and at each point in the longitudinal direction of the measurement target pipe, at least the outer diameter and the outer shape of the measurement target pipe A measuring unit for measuring one;
Equipped with a,
The first moving part is disposed on the front side and the rear side along the longitudinal direction of the first pipe, and is disposed so as to surround the periphery of the cross section in a direction substantially perpendicular to the longitudinal direction of the first pipe. A first front moving body and a rear moving body that move along the longitudinal direction of the first pipe while sandwiching the periphery thereof via an elastic member, and the first front moving body and the rear moving body. And a first connecting member that connects them so that the positional relationship is maintained constant,
The second moving part is disposed so as to surround a periphery of a cross section in a direction substantially perpendicular to the longitudinal direction of the second pipe disposed on the front side and the rear side along the longitudinal direction of the second pipe. A second front side moving body and a rear side moving body that move along the longitudinal direction of the second pipe while sandwiching the periphery thereof via an elastic member; and the second front side moving body and the rear side moving body. And a second connecting member for connecting them so that the positional relationship is maintained constant,
The support member, as described above the first moving part positional relationship between the second moving part is maintained constant, characterized in that to connect with said second connecting member and the first connecting member A measuring device.
前記第1移動部は、前記第1配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された接続バネを有する車輪を介して、その周囲を挟持しながら、前記第1配管の長手方向に沿って移動し、
前記第2移動部は、前記第2配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された接続バネを有する車輪を介して、その周囲を挟持しながら、前記第2配管の長手方向に沿って移動する
ことを特徴とする請求項1に記載の測定装置。
The first moving unit is configured to sandwich the periphery of the first moving part via a wheel having a connection spring disposed so as to surround the periphery of a cross section in a direction substantially perpendicular to the longitudinal direction of the first pipe. Move along the length of the pipe,
The second moving unit is configured to sandwich the periphery of the second moving portion via a wheel having a connection spring disposed so as to surround the periphery of the cross section in a direction substantially perpendicular to the longitudinal direction of the second pipe. It moves along the longitudinal direction of piping. The measuring device according to claim 1 characterized by things.
前記測定部は、3Dレーザースキャナ装置である
ことを特徴とする請求項1又は2に記載の測定装置。
The measurement device according to claim 1, wherein the measurement unit is a 3D laser scanner device.
前記測定部は、前記第1移動部の側から前記測定対象配管の外径と外形の少なくとも一方を測定する第1の測定部と、前記第2移動部の側から、前記第1の測定部の測定位置と一部が重複するように前記測定対象配管の外径と外形の少なくとも一方を測定する第2の測定部と、を有し、
前記測定装置は、前記第1の測定部の測定結果と、前記第2の測定部の測定結果と、に基づいて、前記第1の測定部の測定結果よりも広範囲に亘る、前記測定対象配管の外径と外形の少なくとも一方の測定結果を算出する演算装置、を更に備える
ことを特徴とする請求項1乃至3のいずれか一項に記載の測定装置。
The measuring unit includes a first measuring unit that measures at least one of an outer diameter and an outer shape of the pipe to be measured from the first moving unit side, and the first measuring unit from the second moving unit side. A second measuring unit that measures at least one of an outer diameter and an outer shape of the pipe to be measured so as to partially overlap the measurement position of
The measurement apparatus is configured to measure the piping to be measured over a wider range than the measurement result of the first measurement unit based on the measurement result of the first measurement unit and the measurement result of the second measurement unit. The measuring device according to any one of claims 1 to 3, further comprising an arithmetic device that calculates a measurement result of at least one of an outer diameter and an outer shape.
前記測定対象配管の外径と外形の少なくとも一方の測定結果に基づいて算出される余寿命に応じて警告を発する警告部を、更に備える
ことを特徴とする請求項1乃至4のいずれか一項に記載の測定装置。
The alarm part which issues a warning according to the remaining life calculated based on the measurement result of at least one of the outer diameter and the outer shape of the pipe to be measured is further provided. The measuring device described in 1.
前記測定対象配管、前記第1配管及び前記第2配管は、ボイラー内部に設けられたボイラーチューブである
ことを特徴とする請求項1乃至のいずれか一項に記載の測定装置。
The measurement target pipe, the first pipe and the second pipe, measuring device according to any one of claims 1 to 5, characterized in that a boiler tube provided inside the boiler.
前記支持部材は、前記第1移動部と前記第2移動部との位置関係が、前記測定対象配管の長手方向に対して略垂直な方向の位置に一定に維持されるように、前記第1移動部と前記第2移動部とを接続する
ことを特徴とする請求項1乃至のいずれか一項に記載の測定装置。
The support member is configured so that the positional relationship between the first moving unit and the second moving unit is constantly maintained at a position in a direction substantially perpendicular to a longitudinal direction of the measurement target pipe. measurement apparatus according to any one of claims 1 to 6, characterized in that for connecting the moving part and the second moving portion.
前記第1配管を跨いで前記測定対象配管と反対側に、前記測定対象配管と略平行に伸延する第2の測定対象配管と、
前記第2の測定対象配管を跨いで前記第1配管と反対側に、前記第2の測定対象配管と略平行に伸延する第3配管と、
前記第3配管により案内され、前記第3配管の長手方向に沿って移動可能な第3移動部と、
前記第1移動部、前記第3移動部との位置関係が一定に維持されるように、前記第1移動部と前記第3移動部とを接続する第2の支持部材と、
前記第2の支持部材に支持されて、前記第1移動部、前記第3移動部及び前記第2の支持部材とともに移動し、前記第2の測定対象配管の長手方向の各地点で、前記第2の測定対象配管の外径と外形の少なくとも一方を測定する第3の測定部と、を更に備える
ことを特徴とする請求項1乃至のいずれか一項に記載の測定装置。
A second measuring pipe extending across the first pipe on the opposite side of the measuring pipe and extending substantially parallel to the measuring pipe;
A third pipe extending across the second measurement target pipe on the opposite side of the first pipe and substantially parallel to the second measurement target pipe;
A third moving part guided by the third pipe and movable along the longitudinal direction of the third pipe;
A second support member connecting the first moving unit and the third moving unit so that the positional relationship between the first moving unit and the third moving unit is maintained constant;
Supported by the second support member and moved together with the first moving unit, the third moving unit and the second support member, and at each point in the longitudinal direction of the second measurement target pipe, measurement apparatus according to any one of claims 1 to 7 and the third measurement unit for measuring at least one of the outer diameter and the outer shape of the second measurement target pipe, characterized in that it further comprises to.
測定対象配管の外径と外形の少なくとも一方を測定する測定方法であって、
測定対象配管と略平行に伸延する第1配管、及び、前記測定対象配管を跨いで前記第1配管と反対側において前記測定対象配管と略平行に伸延する第2配管に、夫々、前記第1配管により案内されて前記第1配管の長手方向に沿って移動可能な第1移動部、及び、前記第2配管により案内されて前記第2配管の長手方向に沿って移動可能な第2移動部とを、前記第1移動部と前記第2移動部との位置関係が一定に維持されるように設け、
前記第1移動部は、前記第1配管の長手方向に沿って前側と後側とに配置され、前記第1配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第1配管の長手方向に沿って移動する第1の前側移動体及び後側移動体と、前記第1の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第1の接続部材と、を備え、
前記第2移動部は、前記第2配管の長手方向に沿って前側と後側とに配置された前記第2配管の長手方向と略垂直な方向の断面の周囲を囲むように配設された弾性部材を介して、その周囲を挟持しながら、前記第2配管の長手方向に沿って移動する第2の前側移動体及び後側移動体と、前記第2の前側移動体及び後側移動体の位置関係が一定に維持されるようにそれらを接続する第2の接続部材と、を備え、
前記第1移動部及び前記第2移動部とともに移動する測定部により、前記測定対象配管の長手方向の各地点で、前記測定対象配管の外径と外形の少なくとも一方を測定することを特徴とする測定方法。
A measurement method for measuring at least one of an outer diameter and an outer shape of a pipe to be measured,
A first pipe extending substantially parallel to the measurement target pipe, and a second pipe extending across the measurement target pipe and substantially parallel to the measurement target pipe on the opposite side of the first pipe, respectively. A first moving part guided by a pipe and movable along the longitudinal direction of the first pipe, and a second moving part guided by the second pipe and movable along the longitudinal direction of the second pipe Is provided so that the positional relationship between the first moving unit and the second moving unit is maintained constant,
The first moving part is disposed on the front side and the rear side along the longitudinal direction of the first pipe, and is disposed so as to surround the periphery of the cross section in a direction substantially perpendicular to the longitudinal direction of the first pipe. A first front moving body and a rear moving body that move along the longitudinal direction of the first pipe while sandwiching the periphery thereof via an elastic member, and the first front moving body and the rear moving body. And a first connecting member that connects them so that the positional relationship is maintained constant,
The second moving part is disposed so as to surround a periphery of a cross section in a direction substantially perpendicular to the longitudinal direction of the second pipe disposed on the front side and the rear side along the longitudinal direction of the second pipe. A second front side moving body and a rear side moving body that move along the longitudinal direction of the second pipe while sandwiching the periphery thereof via an elastic member; and the second front side moving body and the rear side moving body. And a second connecting member for connecting them so that the positional relationship is maintained constant,
At least one of an outer diameter and an outer shape of the measurement target pipe is measured at each point in the longitudinal direction of the measurement target pipe by the measurement unit that moves together with the first movement unit and the second movement unit. Measuring method.
前記測定対象配管は、互いに略平行に配置された3本以上の配管のうちの何れか1本の配管であり、前記第1配管及び前記第2配管は、前記3本以上の配管のうち、前記測定対象配管に隣接する配管である
ことを特徴とする請求項に記載の測定方法。
The measurement target pipe is any one of three or more pipes arranged substantially parallel to each other, and the first pipe and the second pipe are among the three or more pipes. It is piping adjacent to the said measurement object piping. The measuring method of Claim 9 characterized by the above-mentioned.
前記3本以上の配管は、ボイラー内部に設けられたボイラーチューブである
ことを特徴とする請求項10に記載の測定方法。
The measurement method according to claim 10 , wherein the three or more pipes are boiler tubes provided inside the boiler.
JP2014229924A 2014-11-12 2014-11-12 Measuring device, measuring method Expired - Fee Related JP5973531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229924A JP5973531B2 (en) 2014-11-12 2014-11-12 Measuring device, measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229924A JP5973531B2 (en) 2014-11-12 2014-11-12 Measuring device, measuring method

Publications (2)

Publication Number Publication Date
JP2016095162A JP2016095162A (en) 2016-05-26
JP5973531B2 true JP5973531B2 (en) 2016-08-23

Family

ID=56071747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229924A Expired - Fee Related JP5973531B2 (en) 2014-11-12 2014-11-12 Measuring device, measuring method

Country Status (1)

Country Link
JP (1) JP5973531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319791A (en) * 2019-07-26 2019-10-11 长春工程学院 A kind of train bogie parallelism measuring apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375439B2 (en) * 1994-11-10 2003-02-10 日本アビオニクス株式会社 Three-dimensional measuring device for object by light section method
US6371696B1 (en) * 1997-08-21 2002-04-16 Russell James Eathorne Pylon servicing apparatus
JP3762156B2 (en) * 1999-08-30 2006-04-05 バブコック日立株式会社 Pipe inspection device
JP2009281925A (en) * 2008-05-23 2009-12-03 Mitsubishi Heavy Ind Ltd Inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319791A (en) * 2019-07-26 2019-10-11 长春工程学院 A kind of train bogie parallelism measuring apparatus and method

Also Published As

Publication number Publication date
JP2016095162A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
Peng et al. Residual stress measurement combining blind-hole drilling and digital image correlation approach
EP2381214A1 (en) Optical measurement system
CN101858736B (en) Multifocal holographic differential confocal super-large curvature radius measuring method and device
JP4722107B2 (en) Creep test apparatus and creep test method
CN103163219A (en) System and method for inspection of a part with dual multi-axis robotic devices
CN102216728B (en) Inspection device and inspection method for evaporation pipe in boiler furnace
TWI457534B (en) Vision inspection system and method for converting coordinates using the same
US9182499B2 (en) Inspection device of radioactive waste body and inspection method of radioactive waste body
Ye et al. Three-dimensional inner surface inspection system based on circle-structured light
JP5973531B2 (en) Measuring device, measuring method
JP6217343B2 (en) Curved plate shape inspection device
CN105371782A (en) Rotary-type spherical interference splicing measuring device and regulation method thereof
JP5072635B2 (en) Outside diameter measuring apparatus and outside diameter measuring method using the same
Liebrich et al. New concept of a 3D-probing system for micro-components
JP2010145340A (en) Device and method for measuring size of large component
CN206523466U (en) A kind of outer corrosion default residual intensity measurement apparatus of oil-gas pipeline
JP2012145441A (en) Workpiece dimension measuring apparatus
JP2009047424A (en) Radiographic inspection device and piping inspection method using the device
JP2012159209A (en) Inspection system and inspection method for heat transfer pipe
KR101513805B1 (en) Ultrasonic inspection device for small bore pipe
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
ES2638900T3 (en) Misalignment Calculation System
JP4644190B2 (en) Curvature radius measuring device
CN205786103U (en) A kind of biasing effect detection device and strain detecting system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees