JP5971907B2 - Air conditioner using direct expansion coil - Google Patents
Air conditioner using direct expansion coil Download PDFInfo
- Publication number
- JP5971907B2 JP5971907B2 JP2011202329A JP2011202329A JP5971907B2 JP 5971907 B2 JP5971907 B2 JP 5971907B2 JP 2011202329 A JP2011202329 A JP 2011202329A JP 2011202329 A JP2011202329 A JP 2011202329A JP 5971907 B2 JP5971907 B2 JP 5971907B2
- Authority
- JP
- Japan
- Prior art keywords
- direct expansion
- coil
- coils
- expansion coil
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Central Air Conditioning (AREA)
Description
本発明は、複数の直膨コイルを使用した空気調和機に関し、特に、直列2段の直膨コイル群をそれぞれ複数の並列する直膨コイルとする空気調和機に関する。 The present invention relates to an air conditioner that uses a plurality of directly expanded coils, and more particularly to an air conditioner that uses a series of two directly expanded coils as a plurality of parallel expanded coils.
従来、水コイルを使用する空気調和機の熱媒は冷水、温水、蒸気などであるが、直膨コイルの空気調和機の冷媒コイルの熱媒は水以外の冷媒である。
従来、クリーンルームでは厳格な空調管理が要求されているが、通常、設定温度・湿度の許容範囲は、温度では±3℃以内、湿度では10%以内の制御が求められている。
ところで、水コイルを使用する空気調和機の熱媒は冷水、温水、蒸気などであり、直膨コイルの空気調和機の冷媒コイルの熱媒は冷媒であるが、以下に述べるように、それぞれに利点や欠点がある。
Conventionally, the heat medium of an air conditioner using a water coil is cold water, hot water, steam, or the like, but the heat medium of the refrigerant coil of the air conditioner of a direct expansion coil is a refrigerant other than water.
Conventionally, strict air conditioning management is required in clean rooms, but normally, the allowable range of set temperature and humidity is controlled within ± 3 ° C. for temperature and within 10% for humidity.
By the way, the heat medium of the air conditioner using a water coil is cold water, hot water, steam, etc., and the heat medium of the refrigerant coil of the air conditioner of the direct expansion coil is a refrigerant, but as described below, There are advantages and disadvantages.
クリーンルームでの水コイル使用の基本的な空調システムは、図1に示すようなものであるが、戸外からの空気OAは、冷水コイルaをバルブiで制御して熱交換され、目標の大凡の温度・湿度以下に冷房(暖房)され、再熱コイルbと加湿器cとで微調整して求められる供気SAを得ている。
この場合の空気の状態変化を、図2の空気線図を参照して図1のシステムを説明すると、外気OAが図2でのA点の状態であると、水コイルaは冷凍機hやチラーから冷水(温水、蒸気)が供給されていて、バルブdを制御することにより、コイル出口空気温度を設定した露点温度、実際は、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度まで(図2の目標絶対湿度線以下)温度をさげ、B点に移行する。
その後、ボイラeにより高温の温水或いは蒸気をバルブfにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。 更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
The basic air conditioning system using a water coil in a clean room is as shown in FIG. 1, but the air OA from the outside is heat-exchanged by controlling the cold water coil a with a valve i, and the target is roughly Air supply SA obtained by cooling (heating) below the temperature and humidity and finely adjusting by the reheating coil b and the humidifier c is obtained.
The air state change in this case will be described with reference to the air diagram of FIG. 2. When the outside air OA is in the state of point A in FIG. 2, the water coil a is connected to the refrigerator h or Cold water (hot water, steam) is supplied from the chiller, and by controlling the valve d, the dew point temperature where the coil outlet air temperature is set, in fact, the dew point temperature setting value is lower than the target absolute humidity with a margin The temperature is lowered to (until the target absolute humidity line in FIG. 2) and the process moves to point B.
Thereafter, hot water or steam at a high temperature is controlled by the valve f by the boiler e and supplied to the reheating coil b, reheated from the dew point temperature to a humidifiable temperature, and the air temperature is raised to the point C in FIG. Further, the steam from the boiler e is sprayed from the humidifier c to reach the final target humidity, which is raised to the point D in FIG.
しかしながら、図1に示すような、従来の水コイル使用の基本的な空調システムは、(1)冷却・再熱のための熱源機器を設置するための熱源機械室が必要であり、(2)バックアップを考えた場合もう1セットのシステム設置が必要であり、(3)分散している空気調和機の運転台数に関わらず大型の熱源機器が運転し、冷水の搬送動力が低減し難く、(4)熱源機器、冷水・再熱コイル・加湿のバルブ制御が異なる工事区分となり、施工後の管理項目が煩雑となるといった問題点があった。 However, the basic air conditioning system using a conventional water coil as shown in FIG. 1 requires (1) a heat source machine room for installing a heat source device for cooling and reheating, and (2) When considering backup, another system must be installed. (3) Regardless of the number of distributed air conditioners, large heat source equipment operates and it is difficult to reduce the chilled water transport power. 4) There is a problem that the heat source equipment, cold water, reheat coil, and humidification valve control are in different construction categories, and the management items after construction become complicated.
また、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回させるはずであるが、直膨コイルは水以外の冷媒であることから、液体や気体といった異なった相にするための圧力・温度の制御が難しく、きめ細かい制御の管理が厄介であるといった問題点があった。
例えば、クリーンルームでの直膨コイル使用の基本的な空調システムは、図3に示すようなものであるが、図1の水コイルaの使用と異なるのは、水コイルaの変わりに、3台の直膨コイルg1,g2,g3を並列配置し構成である。直膨コイルで広範囲な空調制御が難しく、そこで、直膨コイルを3台並列にして、低負荷の場合は1台稼働にし、高負荷の場合には全台を稼働して、広範囲の空調制御を可能としている。
In addition, since the direct expansion coil has no indirect heat transfer, the heating and cooling efficiency of the direct expansion coil system should exceed the water coil. However, since the direct expansion coil is a refrigerant other than water, There is a problem that it is difficult to control pressure and temperature for different phases such as gas and gas, and it is difficult to manage fine control.
For example, the basic air conditioning system using a direct expansion coil in a clean room is as shown in FIG. 3, but the use of the water coil a in FIG. The directly expanded coils g1, g2, and g3 are arranged in parallel. It is difficult to control a wide range of air conditioning with a direct expansion coil. Therefore, three units of the direct expansion coil are arranged in parallel, one unit is operated when the load is low, and all units are operated when the load is high. Is possible.
この場合の空気の状態変化を、図2の空気線図を参照して図3のシステムを説明すると、外気OAが図4でのA点の状態であると、ファンと圧縮機からなる室外機k1,k2,k3の全機運転し、直膨コイルg1,g2,g3のコイル出口空気温度を設定した露点温度以下、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度にさげ、B点に移行する。
その後は、水コイルの空調機と同様に、ボイラeにより高温の温水或いは蒸気をバルブfにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
The air state change in this case will be described with reference to the air diagram of FIG. 2 and the system of FIG. 3 will be described. When the outside air OA is in the state of point A in FIG. Operate all units k1, k2, and k3, set the coil outlet air temperature of the direct expansion coils g1, g2, and g3 below the set dew point temperature, and set the dew point temperature to a dew point temperature lower than the target absolute humidity with a margin, Move to point B.
After that, as with the water coil air conditioner, hot water or steam is controlled by the valve e by the boiler e, supplied to the reheating coil b, reheated from the dew point temperature to the humidifiable temperature, and the air temperature is shown in FIG. To C point. Further, the steam from the boiler e is sprayed from the humidifier c to reach the final target humidity, which is raised to the point D in FIG.
しかしながら、図3に示すような、直膨コイル使用の基本的な空調システムは、(1)直膨コイルが並列設置の為、除湿能力を考慮すると負荷による室外機の停止が困難となり、台数制御運転やメンテナンス時・故障時の対応が出来ない。例えば、図4の空気線図で説明すると、直膨コイルg2,g3が停止してバイパス状態であって、直膨コイルg1だけが稼働してる場合は、直膨コイルg1の出口空気温度はB点にはなるが、直膨コイルg2,g3がバイパス状態であるので、これらを混合した空気は、Bmix点となり設定した露点温度以下にはならない。したがって、常時全数運転する必要がある。
また、(2)直膨コイル出口温度を目標露点温度以下にするため、常時すべての室外機が運転が必要となり、低負荷時はコイル出口空気温度は目標値よりもかなり低くなる。そのため、B→Cの再熱能力及びC→Dの加湿能力が大きくなる為、結果として、省エネルギー運転とならない。
However, the basic air conditioning system using a direct expansion coil as shown in FIG. 3 is: (1) Since the direct expansion coil is installed in parallel, it is difficult to stop the outdoor unit due to the load, considering the dehumidification capacity. Cannot handle during operation, maintenance or failure. For example, referring to the air diagram of FIG. 4, when the direct expansion coils g2 and g3 are stopped and in a bypass state, and only the direct expansion coil g1 is operating, the outlet air temperature of the direct expansion coil g1 is B. However, since the directly expanded coils g2 and g3 are in the bypass state, the air in which these coils are mixed becomes the Bmix point and does not fall below the set dew point temperature. Therefore, it is necessary to always operate all of them.
Further, (2) since the direct expansion coil outlet temperature is set to be equal to or lower than the target dew point temperature, all outdoor units are always required to operate, and the coil outlet air temperature is considerably lower than the target value at low load. Therefore, since the reheating capability of B → C and the humidification capability of C → D are increased, as a result, energy saving operation is not performed.
このため、直膨コイルは空気の温度・湿度管理の要求が厳格ではない家庭用の空気調和機等の室内機1個に対し室外機も1個ずつ使っている小型のエアコンを部屋ごとに設置する方法がむしろ好まれる傾向にあり、直膨コイルだけの空調設備は大きな工場等では採用され難い傾向にあり、特許文献1、2に開示されているように、直膨コイルと水コイルとの併用によって大きな工場等でも採用できる空気調和システムが提案されている。
For this reason, the direct expansion coil has a small air conditioner for each room that uses one outdoor unit for each indoor unit such as a home air conditioner that does not require strict control of air temperature and humidity. However, air conditioning equipment with only a direct expansion coil tends to be difficult to be adopted in large factories, etc., and as disclosed in
本発明は、上述した問題点に鑑みてなされたもので、直膨コイルだけを使用した空気調和機として、水コイルのための冷水をつくる熱源機が不要で省スペース化とし、ローテーション運転を可能として耐久性を向上させ、また、故障時のバックアップ運転が容易に対応でき、かつ、従来の冷水コイルや並列配置と同様に、広範囲での温度・湿度をきめ細かく制御が可能で、再熱コイル・加湿器を設置し恒温恒湿条件を満足できる空気調和機を提供しようとするものである。 The present invention has been made in view of the above-mentioned problems, and as an air conditioner using only a direct expansion coil, a heat source device for generating cold water for the water coil is unnecessary, and space saving is possible, enabling rotation operation. As a result, it can easily handle backup operation at the time of failure, and can control temperature and humidity over a wide range in the same way as conventional cold water coils and parallel arrangements. It is intended to provide an air conditioner that can be installed with a humidifier and satisfy constant temperature and humidity conditions.
上記課題を解決するために、請求項1の発明は、外気を導入して冷媒により冷却あるいは加熱する第1直膨コイル群を配置するとともに、その下流に第2直膨コイル群を配置し、
前記第1直膨コイル群は複数並列に配列し、前記第2直膨コイル群も複数並列に配列し、
前記第1直膨コイル群の複数の直膨コイル、及び、前記第2直膨コイル群の複数の直膨コイルはそれぞれ独立して制御可能とし、
前記第1直膨コイル群又は前記第2直膨コイル群の一方のコイル群の一部の直膨コイルが故障した場合、故障していない他方のコイル群の直膨コイルの全てを稼動させることを特徴とする直膨コイルを使用した空気調和機である。
請求項2の発明は、請求項1に記載の直膨コイルを使用した空気調和機において、前記第2直膨コイル群の下流には再熱コイル及び加湿器を配置したことを特徴とする。
請求項3の発明は、請求項1又は2に記載の直膨コイルを使用した空気調和機において、前記第1直膨コイル群は2台の直膨コイルを並列に配置したことを特徴とする。
請求項4の発明は、請求項1又は2又は3に記載の直膨コイルを使用した空気調和機において、前記第2直膨コイル群は4台の直膨コイルを並列に配置したことを特徴とする。
In order to solve the above-mentioned problem, the invention of
A plurality of first direct expansion coil groups arranged in parallel; a plurality of the second direct expansion coil groups arranged in parallel;
The plurality of direct expansion coils of the first direct expansion coil group and the plurality of direct expansion coils of the second direct expansion coil group can be independently controlled,
When a part of the direct expansion coils of one of the first direct expansion coil group or the second direct expansion coil group fails, all the direct expansion coils of the other non-failing coil group are operated. Is an air conditioner using a direct expansion coil characterized by
According to a second aspect of the present invention, in the air conditioner using the direct expansion coil according to the first aspect, a reheating coil and a humidifier are disposed downstream of the second direct expansion coil group .
The invention of
A fourth aspect of the present invention is the air conditioner using the direct expansion coil according to the first, second, or third aspect, wherein the second direct expansion coil group includes four direct expansion coils arranged in parallel. And
本発明の直膨コイルを使用した空気調和機によれば、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要となくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり冷熱源の機械室が不要になる。
また、並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにより、ローテーション運転を可能として、1部の直膨コイル群や室外機等の運転を休ませることにより装置の長寿命化が可能となり、更に、一部の直膨コイルの故障時のバックアップ運転が容易に対応できる。
しかも、従来の冷水コイルや並列配置の直膨コイルに代えて、複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。
特に、請求項1の直膨コイルを使用した空気調和機によれば、図3で説明したように、バイパス状態の直膨コイルがあると、これらを混合した空気が設定した露点温度以下には下がらないとういう不都合があったが、第1直膨コイル群又は第2直膨コイル群の一方のコイル群の一部の直膨コイルが故障した場合、故障していない他方のコイル群の直膨コイルの全てを稼動させるので、外気から給気に至る過程でバイパス状態になる直膨コイルが存在することがなく、設定した露点温度以下にすることができ、除湿が可能となる。
According to the air conditioner using the direct expansion coil of the present invention, unlike a conventional air coil using an air coil, there is no need for cooling with cold water, so there is no need for a heat source device for producing cold water. Only a space for installing the machine, and a machine room for a cold heat source is unnecessary.
Also, by rotating the direct expansion coil group arranged in parallel and the direct expansion coil group arranged in parallel in two stages in series, the rotation operation can be performed and the operation of one part of the direct expansion coil group or the outdoor unit can be stopped. This makes it possible to extend the life of the apparatus, and can easily handle backup operation when some of the directly expanded coils fail.
Moreover, instead of the conventional chilled water coil and the parallel expansion coil, a plurality of parallel expansion coils are arranged in series in two stages to control the supply air dew point temperature, so that the upstream direct expansion coils After performing rough cooling control, the temperature and humidity can be finely controlled in the downstream direct expansion coil group, and a wide range of temperature and humidity management is possible. It can be controlled to satisfy the same manner established the reheat coil humidifier accurately constant temperature and humidity conditions that Do.
In particular, according to the air conditioner using a direct expansion coil of
本発明の直膨コイルを使用した空気調和機の好適な実施例を図面に沿って説明する。
[実施例1]
図5は、実施例1の直膨コイルを使用したクリーンルーム用の空気調和機1の全体の系統図で、外気OA(図5で右側から)を導入し、まず、上流側に冷媒により冷却する第1直膨コイル群2を配置し、下流に第2直膨コイル群3を配置し、更に、その下流に再熱コイル4と加湿器5を配置している。なお、本実施例の空気調和機1はクリーンルームに用いるが、通常、室内には加熱機器等が存在して室内温度を上昇させるので、冷却機能を使用した場合で説明する。なお、本発明で「外気」とは、戸外の空気のみを意味するものではなく、空調を対象の空気調和機の外から取り入れる空気のことである。
前記第1直膨コイル群2は、2台の直膨コイルである直膨コイル21と直膨コイル22を空気流の対して並列2段に配置したもので、この2台の直膨コイルにはそれぞれ制御弁211と221を介して圧縮機231とファン232等からなる室外機23に接続され、それぞれ独立して制御される。
A preferred embodiment of an air conditioner using a direct expansion coil of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 5 is an overall system diagram of the
The first direct
前記第1直膨コイル2の下流には前記第2直膨コイル群3が配置されるが、この直膨コイル群3は4台の直膨コイルである直膨コイル31乃至34が空気流の対して並列4段に配置されるが、そのうち2台の直膨コイル31と32は、それぞれ制御弁311と321を介して圧縮機351とファン352等からなる室外機35に接続され、それぞれ独立して制御される。同様に、他の2台の直膨コイル33と34は、それぞれ制御弁331と341を介して圧縮機361とファン362等からなる室外機36に接続され、それぞれ独立して制御される。
前記第2直膨コイル群3の下流には 空調状態を微調整して目標の温度・湿度にするために、再熱コイル4と加湿器5が配備されるが、ボイラ6の水を加熱して温水或いは蒸気を作り、これらを制御弁(バルブ)41を介して再熱コイル4に供給し、供給空気SAを加熱し、また、蒸気を制御弁(バルブ)51を介して加湿器5のノズルから噴射して供給空気SAを加湿する。
The second direct
A reheating
ここで、本実施例1での上記の構成での実験結果を説明する。
運転実験例
設計風量:5000m3/h (外気取入量:20%)
給気目標:12.6℃
コイル組み合わせ:直列・・・2列
段数・・・ (風上側)室外機1台・2段
(風下側)室外機2台・4段
一般に、直膨コイルは、高温源と低温源の温度差が小さいほど理論上の効率は良くなるものであり、定格運転が効率がよい。
Here, experimental results in the above-described configuration in the first embodiment will be described.
Example of operation experiment Design air volume: 5000m 3 / h (Outside air intake: 20%)
Air supply target: 12.6 ℃
Coil combination: In series ... 2 rows Number of stages ... (windward) 1 outdoor unit, 2 stages
(Downward) 2 outdoor units, 4 stages In general, the direct expansion coil has a theoretical efficiency that increases as the temperature difference between the high temperature source and the low temperature source decreases, and the rated operation is efficient.
これを本実施例の6台の直膨コイル21,22,31,32,33,34ついて考えると、図6の空気線図に示すように、外気OAが高温高湿のA領域の状態では、目標温度・湿度にするためには高負荷となり、全直膨コイルを稼働させる。
次に、外気OAが高温高湿のA領域よりも多少湿度が低いB領域の状態では、負荷が多少下がるので、6台のうちどれか1台を休ませることができ、本実施例では直膨コイル34を停止させることができる。
更に、外気OAがB領域よりも更に湿度が低いC領域の状態では、負荷が更に下がるので、6台のうちどれか2台を休ませることができ、本実施例では直膨コイル34,33を停止させることができる。
Considering the six directly expanded coils 21, 22, 31, 32, 33, and 34 of the present embodiment, as shown in the air diagram of FIG. In order to achieve the target temperature and humidity, the load becomes high and the entire direct expansion coil is operated.
Next, when the outside air OA is in the B region where the humidity is slightly lower than the high-temperature and high-humidity A region, the load is slightly reduced, so one of the six units can be rested. The
Further, when the outside air OA is in the C region where the humidity is lower than that in the B region, the load is further reduced, so that any two of the six units can be rested. In this embodiment, the direct expansion coils 34 and 33 are used. Can be stopped.
同様に、外気OAがC領域よりも更に湿度と温度が低いD領域の状態では、負荷が更に下がるので、6台のうちどれか3台を休ませることができ、本実施例では直膨コイル34,33,32を停止させることができる。
同様に、外気OAがD領域よりも更に湿度と温度が低いE領域の状態では、負荷も小さくなるので、6台のうちどれか4台を休ませることができ、本実施例では第2直膨コイル群3の直膨コイル31乃至34を停止させ、第1直膨コイル群2だけを稼働して、省エネを実現している。
Similarly, when the outside air OA is in the D region where the humidity and temperature are lower than those in the C region, the load is further reduced. Therefore, any three of the six units can rest, and in this embodiment, the
Similarly, when the outside air OA is in the E region where the humidity and temperature are lower than those in the D region, the load is also small, so that any four of the six units can be rested. The direct expansion coils 31 to 34 of the
この時の実際の実施例1での運転状態の測定結果をグラフにした図7に沿って説明すると、図7は、空気調和機1での入口空気条件(エンタルピを減少)を変化させた場合の出口での温度・湿度を測定したグラフである。
先ず、湿度について説明すると、図7の上側(細線)は湿度の変化に関するグラフであり、空気調和機1への入口湿度:Vが90〜80%程度であって外気(入口)OAの状態がAからE領域に変化しても、直膨コイル群1,2をこれに対応した運転状態に切り換え、AからE領域に対応して直膨コイルの稼働台数を徐々に減らしていっても、出口湿度:Wは50〜60%を維持していることが判る。
Referring to FIG. 7 which graphs the measurement result of the actual operation state in Example 1 at this time, FIG. 7 shows a case where the inlet air condition (decreasing enthalpy) in the
First, humidity will be described. The upper side (thin line) in FIG. 7 is a graph relating to the change in humidity. The inlet humidity to the
次に、温度について説明すると、図7の下側は温度の変化に関するグラフであるが、空気調和機1の入口温度:Yが33℃から18程度まで下がり、外気(入口)OAの状態がAからE領域に変化し、直膨コイルの稼働状態がしそれに伴って切り換え、直膨コイルの稼働台数を徐々に減らしていっても、途中、領域切換えで新たに直膨コイルの運転を停止する際に多少温度が上昇するが、それでも出口温度:Zは10.3〜12.6℃の範囲を維持している。
このように、高温高湿のA領域以外では直膨コイルの1部を停止することができ、ローテンションを組めば効率的に直膨コイルや室外機等を休ませることができ、更に、計画的にローテーション運転を行って直膨コイルや室外機等の長寿命化を実現できる。
Next, the temperature will be described. The lower side of FIG. 7 is a graph relating to the temperature change, but the inlet temperature of the air conditioner 1: Y decreases from 33 ° C. to about 18 and the state of the outside air (inlet) OA is A. Even if the operating state of the direct expansion coil is changed and the number of operating units of the direct expansion coil is gradually reduced, the operation of the direct expansion coil is newly stopped by switching the region on the way. However, the outlet temperature: Z is still in the range of 10.3-12.6 ° C.
In this way, a part of the direct expansion coil can be stopped outside the high-temperature and high-humidity A region, and if the low tension is assembled, the direct expansion coil and the outdoor unit can be efficiently rested. Rotation operation can be performed to extend the service life of directly expanded coils and outdoor units.
また、本実施例によれば、故障時のバックアップ運転が容易に対応できるが、これをローテーションの実例と併せて、図8に沿って説明する。
図8において、高温・高湿のA領域においては6台の全直膨コイルを稼働させるが、負荷が減少したC領域においては、各直膨コイル21,22,31,32,33,34は独立して制御可能であるので2台の直膨コイル及びこれらに付随する室外機等を休ませることができる。この場合、各直膨コイル21,22,31,32,33,34は独立して制御可能であるので、能力が同じ場合には2台の選択は任意であり、例えば、C領域運転1のように直膨コイル31,32を休ませることができ、また、C領域運転2のように直膨コイル33,34及びこれらに付随する室外機等を休ませることができ、次のC領域運転1と2を交互に稼働させるようにしてもよい。
In addition, according to the present embodiment, the backup operation at the time of failure can be easily handled. This will be described along with FIG. 8 together with an example of rotation.
In FIG. 8, six direct expansion coils are operated in the high temperature and high humidity A region, but in the C region where the load is reduced, each
また、故障時について説明すると、通常運転では、図8の中段の両端に示されるように、E領域で直膨コイル21と22を稼働して直膨コイル31乃至34の4台を停止しているが、図8の下段の両端(a)(f)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
同様に、図8のC領域運転1のように直膨コイル31,32を休ませている場合、図8の下段の(b)に示すように、直膨コイル33と34が故障或いは保守で停止せざるを得ない場合は、直膨コイル31、32、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図8の下段の(c)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
In the normal operation, as shown at both ends of the middle stage in FIG. 8, the linear expansion coils 21 and 22 are operated in the E region and the four linear expansion coils 31 to 34 are stopped. However, as shown in the lower ends (a) and (f) of FIG. 8, when the directly expanded
Similarly, when the direct expansion coils 31 and 32 are rested as in
更に、図8のC領域運転2のように直膨コイル33,34を休ませている場合、図8の下段の(d)に示すように、直膨コイル31と32が故障或いは保守で停止せざるを得ない場合は、直膨コイル33、34、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図8の下段の(e)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
Further, when the direct expansion coils 33 and 34 are rested as in the
[実施例2]
次に、実施例2について説明する。実施例2と実施例1との違いは、図9に示すように、第2直膨コイル群3の構成が直膨コイル37、38の2台を並列に配置するもので、他の構成は実施例1と同じであるので説明は省略する。
実施例2の直膨コイルを使用した空気調和機は、直膨コイルは4台で済み、付随する室外機23、39等の部材(圧縮機231,391、ファン232,392)も少なくてすみ、全体のスペースも少なくて済むので、簡単な構成にも拘わらず、基本的には実施例1と同様に作用・効果が得られ、高温高湿の高負荷領域以外では直膨コイルの1部を停止することができ、効率的に直膨コイルや室外機等を休ませ、計画的にローテーション運転を行えば、直膨コイルや室外機等の長寿命化を実現できる。したがって、構成する部材も少なく、省スペースであるので小規模なクリーンルームの空気調和機には最適ある。
[Example 2]
Next, Example 2 will be described. As shown in FIG. 9, the difference between the second embodiment and the first embodiment is that the configuration of the second directly expanded
The air conditioner using the direct expansion coil according to the second embodiment requires only four direct expansion coils, and the associated outdoor units 23, 39 and the like (
以上詳述したように、実施例1及び実施例2によれば、(1)多段(2段)並列の直膨コイル群を更に配置したので、細かな段数制御により直膨コイル出口温度を設定した露点温度に制御可能となる。特に、実施例1では第2直膨コイル群を4段並列としたので、給気に近い位置で正確な温度・湿度の制御が出来る。また、(2)熱源(室外機)やバルブの制御をパッケージ化することができ、施工後の管理が容易、増設・改修に対応しやすい。更に、(3)細かな段数制御により、従来システムよりも少エネルギー成績係数が良く、直膨コイル出口空気温度の誤差が±3℃程度のため、再熱や加湿の使用エネルギーが少ない。なお、この装置では再熱コイルやヒートポンプ(冷媒)にも対応可能である。 As described in detail above, according to the first and second embodiments, (1) since a group of multi-stage (two-stage) parallel direct expansion coils is further arranged, the direct expansion coil outlet temperature is set by fine step number control. The dew point temperature can be controlled. In particular, in the first embodiment, since the second direct expansion coil group is arranged in four stages, accurate temperature / humidity control can be performed at a position close to the supply air. In addition, (2) heat source (outdoor unit) and valve control can be packaged, management after construction is easy, and expansion / repair is easy. Furthermore, (3) a small energy efficiency is better than that of the conventional system due to fine stage number control, and the error of the air temperature at the outlet of the direct expansion coil is about ± 3 ° C., so less energy is used for reheating and humidification. Note that this apparatus is also compatible with reheating coils and heat pumps (refrigerants).
更に、(4)本実施例の直膨コイルを使用した空気調和機は、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要でなくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり、水コイルのための冷熱源の機械室が不要になる。また、(5)並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにすることにより、ローテーション運転が可能で、ローテーション運転により直膨コイル群や室外機の長寿命化が可能となり、また、一部の直膨コイルや室外機が故障時のバックアップ運転が容易に対応できる。しかも、(6)複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
Furthermore, (4) the air conditioner using the direct expansion coil of the present embodiment, unlike the conventional air coil using air coil, does not require cooling with cold water, and therefore does not require a heat source device for producing cold water. Thus, only an outdoor unit installation space is required, and a machine room for a cold heat source for the water coil is not required. In addition, (5) Rotation operation is possible by combining the parallel expansion coil group and the parallel expansion coil group in two stages in series. The service life can be extended, and backup operation when some of the direct expansion coils and outdoor units fail can be easily handled. In addition, (6) since the supply air dew point temperature control is performed by arranging a plurality of parallelly arranged direct expansion coil groups in series in two stages, after performing rough cooling control on the upstream direct expansion coil group, The temperature and humidity can be finely controlled with a group of directly expanded coils, and a wide range of temperature and humidity management is possible. In addition, a reheat coil and humidifier are installed in the lee as in the case of conventional water coils. In addition, it is possible to perform control that satisfies the constant temperature and humidity conditions.
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.
a・・冷水コイル、b・・再熱コイル、c・・加湿器、d・・バルブ、
e・・ボイラ、f・・バルブ、g1,g2,g3・・直膨コイル、
h・・冷凍機、i・・バルブ、k1,k2,k3・・室外機、
1・・空気調和機、
2・・第1の直膨コイル群、21,22・・直膨コイル、
211,221・・制御弁、
23・・室外機、231・・圧縮機、232・・ファン、
3・・第2の直膨コイル群、31,32,33,34・・直膨コイル、
311,321,331,341・・制御弁、
35,36,39・・室外機、351,361,391・・圧縮機、
352,362,392・・ファン、
4・・再熱コイル、41・・制御弁(バルブ)、
5・・加湿器、51・・制御弁(バルブ)、
6・・ボイラ
a ... cold water coil, b ... reheat coil, c ... humidifier, d ... valve,
e ・ Boiler, f ・ Valve, g1, g2, g3 ・ ・ Direct expansion coil,
h ・ ・ Refrigerator, i ・ ・ Valve, k1, k2, k3 ・ ・ Outdoor unit,
1. Air conditioner,
2. First direct expansion coil group, 21, 22 ... Direct expansion coil,
211, 221 .. Control valve,
23..Outdoor unit, 231 ... Compressor, 232 ... Fan,
3. Second direct
311, 321, 331, 341 .. control valve,
35,36,39 .. Outdoor unit, 351,361,391 ..Compressor,
352,362,392 ... Fan,
4. Reheat coil, 41 Control valve (valve)
5 .... Humidifier, 51 ... Control valve (valve),
6. Boiler
Claims (4)
前記第1直膨コイル群は複数並列に配列し、前記第2直膨コイル群も複数並列に配列し、
前記第1直膨コイル群の複数の直膨コイル、及び、前記第2直膨コイル群の複数の直膨コイルはそれぞれ独立して制御可能とし、
前記第1直膨コイル群又は前記第2直膨コイル群の一方のコイル群の一部の直膨コイルが故障した場合、故障していない他方のコイル群の直膨コイルの全てを稼動させることを特徴とする直膨コイルを使用した空気調和機。 While arranging the first direct expansion coil group that introduces outside air and cools or heats it with the refrigerant, arranges the second direct expansion coil group downstream thereof,
A plurality of first direct expansion coil groups arranged in parallel; a plurality of the second direct expansion coil groups arranged in parallel;
The plurality of direct expansion coils of the first direct expansion coil group and the plurality of direct expansion coils of the second direct expansion coil group can be independently controlled,
When a part of the direct expansion coils of one of the first direct expansion coil group or the second direct expansion coil group fails, all the direct expansion coils of the other non-failing coil group are operated. An air conditioner that uses a direct expansion coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011202329A JP5971907B2 (en) | 2011-09-15 | 2011-09-15 | Air conditioner using direct expansion coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011202329A JP5971907B2 (en) | 2011-09-15 | 2011-09-15 | Air conditioner using direct expansion coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013064519A JP2013064519A (en) | 2013-04-11 |
JP5971907B2 true JP5971907B2 (en) | 2016-08-17 |
Family
ID=48188177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011202329A Active JP5971907B2 (en) | 2011-09-15 | 2011-09-15 | Air conditioner using direct expansion coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5971907B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6238057B2 (en) * | 2013-12-06 | 2017-11-29 | 清水建設株式会社 | Clean room air conditioning system |
JP6359440B2 (en) * | 2014-12-15 | 2018-07-18 | 富士医科産業株式会社 | Artificial environment control room for sports science |
JP6433598B2 (en) * | 2015-08-11 | 2018-12-05 | 三菱電機株式会社 | Air conditioning system |
JP2017078525A (en) * | 2015-10-19 | 2017-04-27 | 清水建設株式会社 | Air conditioning system |
JP6370425B2 (en) * | 2017-03-02 | 2018-08-08 | 鹿島建設株式会社 | Air conditioner using direct expansion coil |
JP6994217B2 (en) * | 2017-10-20 | 2022-02-04 | 高砂熱学工業株式会社 | Air conditioning system and air conditioning method |
JP2020085261A (en) * | 2018-11-15 | 2020-06-04 | 新晃工業株式会社 | Air conditioner with reheater |
CN112460696B (en) * | 2020-11-27 | 2022-05-20 | 同济大学 | Temperature and humidity independent control air conditioning system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146820Y2 (en) * | 1972-02-24 | 1976-11-11 | ||
JPH046332A (en) * | 1990-04-23 | 1992-01-10 | Kubota Corp | Air conditioner |
JP3048574B1 (en) * | 1999-09-14 | 2000-06-05 | 株式会社総合設備計画 | Air conditioner |
JP3567459B2 (en) * | 2001-10-24 | 2004-09-22 | 木村工機株式会社 | Heat pump type air conditioner |
JP2007285594A (en) * | 2006-04-17 | 2007-11-01 | Daikin Ind Ltd | Air conditioning system |
JP2010007954A (en) * | 2008-06-26 | 2010-01-14 | Toyo Eng Works Ltd | Dehumidifying air conditioner |
JP2010007961A (en) * | 2008-06-26 | 2010-01-14 | Orion Mach Co Ltd | Temperature-humidity controller |
US20110146306A1 (en) * | 2008-10-02 | 2011-06-23 | Taras Michael F | Start-up for refrigerant system with hot gas reheat |
JP2010159928A (en) * | 2009-01-08 | 2010-07-22 | Tokyo Electric Power Co Inc:The | Air conditioner |
-
2011
- 2011-09-15 JP JP2011202329A patent/JP5971907B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013064519A (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5971907B2 (en) | Air conditioner using direct expansion coil | |
JP6334230B2 (en) | Refrigerator system | |
US11959652B2 (en) | Machine learning apparatus, air conditioning system, and machine learning method | |
JP5363212B2 (en) | Air conditioning system | |
US20120174609A1 (en) | Heat source system | |
US20130274948A1 (en) | Heat source system and method for controlling the number of operated devices in heat source system | |
US20060123810A1 (en) | Method for operating air conditioner | |
JP5984456B2 (en) | Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device | |
JP5294768B2 (en) | Air conditioning heat source system using cooling tower | |
WO2010070842A1 (en) | Heat pump device | |
JP6479210B2 (en) | Air conditioning system and control method of air conditioning system | |
Chen et al. | A direct expansion based enhanced dehumidification air conditioning system for improved year-round indoor humidity control in hot and humid climates | |
US11320213B2 (en) | Furnace control systems and methods | |
JP6250148B2 (en) | Air conditioning system | |
CN111795481A (en) | Air conditioning system and control method therefor | |
JP6105933B2 (en) | Air conditioner using direct expansion coil | |
KR100938820B1 (en) | Thermo humidistat | |
JP3351307B2 (en) | Refrigerant natural circulation heat exchange system | |
JP6134511B2 (en) | Air conditioner using direct expansion coil | |
US20180094824A1 (en) | Method for sequencing compressor operation based on space humidity | |
JP2011226680A (en) | Cooling water producing facility | |
JP2016008740A (en) | Air conditioner | |
JP6370425B2 (en) | Air conditioner using direct expansion coil | |
KR100712857B1 (en) | Refrigerants Control Method For Dual Type Unitary Air Conditioner | |
JP2017172939A (en) | Air conditioning system and control method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160218 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5971907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |