JP5971618B2 - Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery - Google Patents

Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery Download PDF

Info

Publication number
JP5971618B2
JP5971618B2 JP2013008793A JP2013008793A JP5971618B2 JP 5971618 B2 JP5971618 B2 JP 5971618B2 JP 2013008793 A JP2013008793 A JP 2013008793A JP 2013008793 A JP2013008793 A JP 2013008793A JP 5971618 B2 JP5971618 B2 JP 5971618B2
Authority
JP
Japan
Prior art keywords
cell stack
battery
plate
elastic member
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013008793A
Other languages
Japanese (ja)
Other versions
JP2014139905A (en
Inventor
佐藤 亮
亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013008793A priority Critical patent/JP5971618B2/en
Publication of JP2014139905A publication Critical patent/JP2014139905A/en
Application granted granted Critical
Publication of JP5971618B2 publication Critical patent/JP5971618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、レドックスフロー電池(以下、RF電池と呼ぶことがある)の主要構成部材であるRF電池用セルスタック、及びRF電池用セルスタックの製造方法に関するものである。特に、製造性に優れるRF電池用セルスタックに関するものである。   The present invention relates to a cell stack for an RF battery, which is a main component of a redox flow battery (hereinafter sometimes referred to as an RF battery), and a method for manufacturing the cell stack for an RF battery. In particular, the present invention relates to a cell stack for an RF battery excellent in manufacturability.

大容量の蓄電池の一つにRF電池がある。RF電池100は、図5に示す形態のものが知られている。RF電池100は、正極電極104を内蔵する正極セル102と負極電極105を内蔵する負極セル103との間にイオン交換膜101を介在させた電池要素100cと、電池要素100cに電解液を供給する循環機構とを具える。循環機構は、正極電解液を貯留する正極タンク106と、正極タンク106と電池要素100cとの間で正極電解液を流通する正極配管108,110と、負極電解液を貯留する負極タンク107と、負極タンク107と電池要素100cとの間で負極電解液を流通する負極配管109,111と、上流側の配管108,109にそれぞれ配置されるポンプ112,113とを具える。RF電池100は、循環機構により、正極電解液及び負極電解液を電池要素100cに循環供給して充放電を行う。電解液には、代表的には、酸化還元により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。図5においてタンク106,107内のイオンは例示である。また、図5において実線矢印は、充電、破線矢印は放電を意味する。   One of the large-capacity storage batteries is an RF battery. The RF battery 100 is known in the form shown in FIG. The RF battery 100 supplies a battery element 100c having an ion exchange membrane 101 interposed between a positive electrode cell 102 incorporating a positive electrode 104 and a negative electrode cell 103 incorporating a negative electrode 105, and supplying an electrolytic solution to the battery element 100c. With circulation mechanism. The circulation mechanism includes a positive electrode tank 106 that stores the positive electrode electrolyte, positive electrode pipes 108 and 110 that distribute the positive electrode electrolyte between the positive electrode tank 106 and the battery element 100c, a negative electrode tank 107 that stores the negative electrode electrolyte, and a negative electrode tank. Negative electrode pipes 109 and 111 for passing a negative electrode electrolyte between 107 and the battery element 100c, and pumps 112 and 113 arranged in the upstream pipes 108 and 109, respectively, are provided. The RF battery 100 performs charge / discharge by circulating and supplying the positive electrode electrolyte and the negative electrode electrolyte to the battery element 100c by a circulation mechanism. As the electrolytic solution, typically, an aqueous solution containing metal ions such as vanadium ions whose valence changes by oxidation-reduction is used. In FIG. 5, the ions in the tanks 106 and 107 are illustrative. In FIG. 5, the solid line arrow indicates charging, and the broken line arrow indicates discharging.

電池要素100cは、代表的には、図4に示す双極板211を具えるフレーム210を利用して構築される。双極板211は、その表裏にそれぞれ正極電極104,負極電極105が配置される。フレーム210は、この双極板211の外周に形成され、電極104,105に各極の電解液を供給する給液孔213,215及び電極104,105からの各極の電解液を排出する排液孔214,216を有する。そして、電池要素100cは、双極板211を具えるフレーム210、正極電極104、イオン交換膜101、負極電極105、双極板211を有するフレーム210、…と順に繰り返し積層されて構築されたセルスタックと呼ばれる形態で利用される。   The battery element 100c is typically constructed using a frame 210 having a bipolar plate 211 shown in FIG. The bipolar plate 211 is provided with a positive electrode 104 and a negative electrode 105 on the front and back, respectively. The frame 210 is formed on the outer periphery of the bipolar plate 211, and has liquid supply holes 213 and 215 for supplying the electrolytic solution of each electrode to the electrodes 104 and 105, and drain holes 214 and 216 for discharging the electrolytic solution of each electrode from the electrodes 104 and 105. The battery element 100c includes a cell stack constructed by repeatedly laminating a frame 210 having a bipolar plate 211, a positive electrode 104, an ion exchange membrane 101, a negative electrode 105, a frame 210 having a bipolar plate 211,. It is used in a form called.

セルスタックは、上述のようにして積層されてなる積層セルを挟むように一対のエンドプレート(図示せず)が配置され、更に両エンドプレートに複数の棒状体を挿通して、各棒状体の端部をそれぞれ、ナットで締め付けることで組み立てられる(特許文献1参照)。特許文献1では、複数の棒状体をエンドプレートの外周縁に沿って配置すると共に、一方のエンドプレートの外表面と上記ナットとの間において、各棒状体の外周にそれぞれコイルばねを配置する構成を提案している。これらのコイルばねの伸縮によって、積層セル(電池群)の熱伸縮やクリープによる変形などを吸収できる。   In the cell stack, a pair of end plates (not shown) are arranged so as to sandwich the stacked cells stacked as described above, and a plurality of rod-shaped bodies are inserted into both end plates, and each of the rod-shaped bodies is inserted. Each end is assembled by tightening with a nut (see Patent Document 1). In Patent Document 1, a plurality of rod-shaped bodies are arranged along the outer peripheral edge of the end plate, and a coil spring is arranged on the outer periphery of each rod-shaped body between the outer surface of one end plate and the nut. Has proposed. The expansion and contraction of these coil springs can absorb the thermal expansion and contraction of the laminated cell (battery group) and the deformation caused by creep.

特開平2002-367658号公報Japanese Patent Laid-Open No. 2002-367658

セルスタックの製造性の向上が望まれている。   Improvement of manufacturability of the cell stack is desired.

上述のようにエンドプレートの外表面であって、かつ棒状体の外周にコイルばねを配置する従来の構成では、セルスタックの組み立てに時間がかかり、製造性の低下を招く。その理由の一つとして、コイルばね及び棒状体が多いことが挙げられる。   As described above, in the conventional configuration in which the coil spring is arranged on the outer surface of the end plate and on the outer periphery of the rod-shaped body, it takes time to assemble the cell stack, resulting in a decrease in manufacturability. One reason is that there are many coil springs and rods.

ここで、ばね定数が大きなコイルばねを用いると、このコイルばねを所定の量に圧縮させるための締付トルクが大きくなることから、締め付け作業性の低下を招く。従って、各コイルばねは、締め付け作業を容易に行えるばね定数が小さいものが望ましい。しかし、ばね定数が小さいコイルばねを用いると、セルスタックに必要な締付力を得るためには、多数のコイルばねを配置する必要がある。また、コイルばねの使用数に応じて、棒状体もエンドプレートの貫通孔に挿通する必要がある。特に、上述の従来の構成では、エンドプレートの外周縁寄りの領域にコイルばねを配置することから、熱伸縮などによる変形が生じ易いセルスタックの中央領域(上記外周縁から離れた内側寄りの領域)に対して、上記変形(膨れ)を抑制しようとすると、必要な締付力が更に大きくなる。この点からもコイルばねの使用数、及び棒状体の使用数が多くなる。このように部品点数が多いことで、上述の従来の構成では、組立時間が長くなることから、製造性の向上が望まれる。   Here, when a coil spring having a large spring constant is used, a tightening torque for compressing the coil spring to a predetermined amount is increased, resulting in a decrease in tightening workability. Therefore, it is desirable that each coil spring has a small spring constant that can be easily tightened. However, when a coil spring having a small spring constant is used, it is necessary to arrange a large number of coil springs in order to obtain a tightening force necessary for the cell stack. Further, the rod-shaped body needs to be inserted through the through hole of the end plate according to the number of coil springs used. In particular, in the above-described conventional configuration, since the coil spring is disposed in the region near the outer peripheral edge of the end plate, the central region of the cell stack that is likely to be deformed by thermal expansion and contraction (the region closer to the inner side away from the outer peripheral edge). On the other hand, if the deformation (swelling) is to be suppressed, the necessary tightening force is further increased. Also from this point, the number of coil springs used and the number of rods used are increased. Since the number of parts is thus large, the above-described conventional configuration requires a long assembling time, and thus an improvement in manufacturability is desired.

また、上述の従来の構成では、コイルばねの圧縮量の調整にも時間がかかる。この理由は、複数の棒状体に対し、一本ずつナットを締め付けてコイルばねの圧縮量が所定の量となるように調整する必要があるためである。コイルばね及び棒状体の使用数が多いほど、調整時間が長くなり、組立時間の長大化を招く。また、コイルばねの使用数が多くなると、圧縮量のばらつきも生じ易くなり、調整にますます時間がかかる。   In the conventional configuration described above, it takes time to adjust the compression amount of the coil spring. This is because it is necessary to adjust the compression amount of the coil spring to a predetermined amount by tightening the nuts one by one with respect to the plurality of rod-like bodies. The greater the number of coil springs and rods used, the longer the adjustment time and the longer the assembly time. In addition, when the number of coil springs used is increased, the amount of compression tends to vary, and adjustment takes more time.

更に、経時的な使用によって、少なくとも一つのコイルばねが緩んだ場合や交換が必要になった場合、全てのコイルばねについて締め付けを解除し、再度、組み立てにあたり、全てのコイルばねについて一つずつ圧縮量を調整する必要がある。従って、メンテナンス時などでも、セルスタックを再度組み立てるにあたり、作業性の向上が望まれる。   In addition, if at least one coil spring is loosened or needs to be replaced due to use over time, all coil springs are released from tightening and are recompressed one by one for assembly. The amount needs to be adjusted. Therefore, it is desired to improve workability in reassembling the cell stack even during maintenance.

そこで、本発明の目的の一つは、製造性に優れるレドックスフロー電池用セルスタックを提供することにある。また、本発明の他の目的は、レドックスフロー電池用セルスタックを容易に組み立てられるレドックスフロー電池用セルスタックの製造方法を提供することにある。   Then, one of the objectives of this invention is providing the cell stack for redox flow batteries excellent in manufacturability. Another object of the present invention is to provide a method for manufacturing a cell stack for a redox flow battery that can be easily assembled.

本発明は、エンドプレートの構造を工夫する、具体的には弾性部材を具えるユニットを利用することで上記目的を達成する。   The present invention achieves the above-described object by utilizing a unit that devises the structure of the end plate, specifically, an elastic member.

本発明のレドックスフロー電池用セルスタックは、複数の電池要素が積層されてなる電池群と、上記電池群を挟むように配置された一組のプレート部材と、上記一組のプレート部材を連結して、上記電池群の積層状態を保持する複数の連結棒とを具える。上記一組のプレート部材のうち、少なくとも一方は、一対の押え板と、上記一対の押え板間に介在され、かつ上記連結棒に挿通されない少なくとも一つの弾性部材とを具えるユニットである。   A cell stack for a redox flow battery according to the present invention connects a battery group in which a plurality of battery elements are stacked, a set of plate members arranged so as to sandwich the battery group, and the set of plate members. And a plurality of connecting rods for holding the stacked state of the battery group. At least one of the pair of plate members is a unit including a pair of press plates and at least one elastic member that is interposed between the pair of press plates and is not inserted through the connecting rod.

本発明のRF電池用セルスタックに具えるユニットは、一対の押え板の間に弾性部材が挟まれたものであり、押え板に対する弾性部材の配置位置を代表的には押え板の中央領域とすることができる。つまり、電池群に上記ユニットを配置した場合、ユニットの押え板と電池群とが重なることで、電池群の中央領域(上記押え板が配置される端面において外周縁から離れた内側の領域)に弾性部材による付勢力を適切に作用させることができる。そのため、上記ユニットを少なくとも一つ具える本発明のRF電池用セルスタックは、セルスタックに必要な締付力を低減できる結果、弾性部材の使用数や電池群の積層状態を維持する連結棒の使用数を低減できる。また、弾性部材の使用数と連結棒の使用数とを一致させる必要もない。更に、ばね定数が大きな弾性部材を用いた場合でも、上記ユニットを容易に構築でき、セルスタックの組立作業性の低下に影響を与え難いため、ばね定数を任意に選択できる。従って、例えば、ばね定数が大きな弾性部材を使用することで、弾性部材の使用数をより低減できる。更に、弾性部材が連結棒に挿通されないため、連結棒の大きさを弾性部材の大きさに無関係に決定できる。従って、例えば、太い連結棒とすることができ、この場合、連結棒の使用数をより低減できる。このように本発明のRF電池用セルスタックは、連結棒が挿通されない弾性部材を具える特定のユニットを少なくとも一つ具えることで、部品点数を低減できるため、組立時間を短縮でき、製造性を向上できる。   The unit provided in the cell stack for an RF battery according to the present invention is such that an elastic member is sandwiched between a pair of presser plates, and the arrangement position of the elastic member with respect to the presser plate is typically the central region of the presser plate. Can do. In other words, when the unit is arranged in the battery group, the holding plate of the unit and the battery group overlap, so that the central region of the battery group (the inner region away from the outer peripheral edge on the end surface where the holding plate is arranged). The urging force by the elastic member can be applied appropriately. Therefore, the RF battery cell stack of the present invention having at least one of the above units can reduce the tightening force required for the cell stack. As a result, the connecting rod for maintaining the number of elastic members used and the stacked state of the battery group can be reduced. The number of uses can be reduced. Further, it is not necessary to match the number of elastic members used and the number of connecting rods used. Furthermore, even when an elastic member having a large spring constant is used, the unit can be easily constructed, and it is difficult to affect the assembly workability of the cell stack, so that the spring constant can be arbitrarily selected. Therefore, for example, by using an elastic member having a large spring constant, the number of elastic members used can be further reduced. Furthermore, since the elastic member is not inserted through the connecting rod, the size of the connecting rod can be determined regardless of the size of the elastic member. Therefore, for example, a thick connecting rod can be used, and in this case, the number of connecting rods used can be further reduced. As described above, the cell stack for an RF battery according to the present invention can reduce the number of parts by providing at least one specific unit including an elastic member through which the connecting rod is not inserted, thereby reducing the assembly time and improving the productivity. Can be improved.

また、上記ユニットは、上記連結棒の配置とは無関係に、電池群に作用させる付勢力(弾性部材の圧縮量)を調整できる。そして、付勢力の調整は、弾性部材の使用数や各弾性部材のばね定数、ユニットに具える押え板に対する弾性部材の配置位置などを変更することで、容易に行える。このようなユニットを独立した部材とし、別途、組み立てられることからも、本発明のRF電池用セルスタックは、製造性に優れる。   Further, the unit can adjust the urging force (the amount of compression of the elastic member) applied to the battery group regardless of the arrangement of the connecting rods. The biasing force can be easily adjusted by changing the number of elastic members used, the spring constant of each elastic member, the arrangement position of the elastic member with respect to the press plate included in the unit, and the like. Since such a unit is an independent member and is assembled separately, the cell stack for an RF battery of the present invention is excellent in manufacturability.

更に、上記ユニットは、電池群の両側に配置した一方のプレート部材(ユニットの押え板)と他方のプレート部材(別のユニットの押え板、又は単なる押え板)とに連結棒を配置して連結棒を固定することでセルスタックを容易に構築でき、上述の従来の構成のようにコイルばねの圧縮量を一つずつ調整する必要もない。このことからも、本発明のRF電池用セルスタックは、組立時間を短縮でき、製造性に優れる。また、本発明のRF電池用セルスタックは、上記ユニットに対して圧縮量の調整や弾性部材の交換などを行えばよく、メンテナンス時の組み立ても容易に行える。その他、上述の従来の構成では、コイルばねが、エンドプレートの外表面から電池群の積層方向に突出していたため、搬送時や設置時などでコイルばねを引っ掛けて損傷する恐れがあったが、本発明のRF電池用セルスタックでは、弾性部材が押え板の外周縁から突出していない。従って、本発明のRF電池用セルスタックでは、搬送時などで弾性部材を引っ掛けることが無く、弾性部材の損傷も防止できる。   Furthermore, the above unit is connected by connecting a connecting rod between one plate member (unit presser plate) and the other plate member (presser plate of another unit or simple presser plate) arranged on both sides of the battery group. The cell stack can be easily constructed by fixing the rod, and it is not necessary to adjust the compression amount of the coil spring one by one as in the above-described conventional configuration. Also from this, the cell stack for the RF battery of the present invention can shorten the assembly time and is excellent in manufacturability. In addition, the RF battery cell stack of the present invention is only required to adjust the compression amount and replace the elastic member with respect to the unit, and can be easily assembled during maintenance. In addition, in the above-described conventional configuration, the coil spring protrudes from the outer surface of the end plate in the stacking direction of the battery group. Therefore, there is a risk that the coil spring may be caught and damaged during transportation or installation. In the cell stack for an RF battery of the invention, the elastic member does not protrude from the outer peripheral edge of the presser plate. Therefore, in the cell stack for an RF battery according to the present invention, the elastic member is not caught during transportation, and damage to the elastic member can be prevented.

本発明のRF電池用セルスタックの一形態として、上記一対の押え板を連結し、上記弾性部材が上記一対の押え板によって挟持された状態を維持する固定部材を更に具える形態が挙げられる。   As one form of the cell stack for RF batteries of the present invention, there is a form further comprising a fixing member that connects the pair of pressing plates and maintains the state where the elastic member is held between the pair of pressing plates.

上記形態に具えるユニットは、固定部材によって一対の押え板の間に弾性部材が挟まれた状態を維持できるため、取り扱い易い。従って、上記形態は、一対の押え板と弾性部材とが固定部材によって一体化されている上記ユニットを従来のエンドプレートと同様に、電池群の一端、又は両端に簡単に配置でき、製造性に更に優れる。また、上記形態は、上述の付勢力(圧縮量)を調整するパラメータの一つとして、固定部材の大きさ(長さ)も利用できる。   Since the unit provided in the said form can maintain the state by which the elastic member was pinched | interposed between a pair of presser plates with the fixing member, it is easy to handle. Therefore, in the above embodiment, the unit in which the pair of pressing plates and the elastic member are integrated by the fixing member can be easily arranged at one end or both ends of the battery group in the same manner as the conventional end plate. Even better. Moreover, the said form can also utilize the magnitude | size (length) of a fixing member as one of the parameters which adjust the above-mentioned urging | biasing force (compression amount).

本発明のRF電池用セルスタックの一形態として、上記一組のプレート部材のうち、一方が上記ユニットであり、他方は、押え板である形態が挙げられる。   As one form of the cell stack for RF batteries of the present invention, there is a form in which one of the pair of plate members is the unit and the other is a pressing plate.

上記形態は、弾性部材を具えるユニットが一つであるため、部品点数をより低減し易く、製造性に更に優れる。   Since the said form has one unit provided with an elastic member, it is easy to reduce a number of parts more and is further excellent in manufacturability.

本発明のRF電池用セルスタックの一形態として、上記プレート部材に上記連結棒が嵌め込まれる切欠を具える形態が挙げられる。   As one form of the cell stack for RF battery of this invention, the form which provides the notch by which the said connection rod is inserted in the said plate member is mentioned.

上記形態は、プレート部材の押え板(ユニットの押え板、又は単なる押え板)に切欠を具えることで、一方のプレート部材(ユニットの押え板)と電池群と他方のプレート部材(別のユニットの押え板、又は単なる押え板)との組物の外周側から、連結棒を嵌め込めるため、連結棒を容易に配置でき、製造性に優れる。特に、電池群における積層数が多くなると、連結棒を長くする必要があるが、この場合でも、連結棒を容易に配置できる。   In the above configuration, the plate member presser plate (unit presser plate or simple presser plate) is provided with a notch so that one plate member (unit presser plate), the battery group, and the other plate member (another unit). Since the connecting rod is fitted from the outer peripheral side of the assembly with the presser plate or the simple presser plate), the connecting rod can be easily arranged and the productivity is excellent. In particular, when the number of stacked layers in the battery group increases, the connecting rod needs to be lengthened. Even in this case, the connecting rod can be easily arranged.

本発明のRF電池用セルスタックの一形態として、上記弾性部材はいずれも、上記一対の押え板を上記電池群の積層方向に平面視したとき、上記一対の押え板と上記電池群とが重なる領域に配置された形態が挙げられる。   As one form of the RF battery cell stack of the present invention, the elastic member is such that the pair of presser plates and the battery group overlap when the pair of presser plates are viewed in plan in the stacking direction of the battery group. The form arrange | positioned in the area | region is mentioned.

上記形態は、例えば、弾性部材が上述の電池群の中央領域にのみ配置された状態が挙げられる。この場合、上記形態は、弾性部材による付勢力を電池群に良好に作用できるため、弾性部材の使用数をより低減できる。   As for the said form, the state by which the elastic member was arrange | positioned only in the center area | region of the above-mentioned battery group is mentioned, for example. In this case, since the urging | biasing force by an elastic member can act favorably on a battery group in the said form, the usage number of an elastic member can be reduced more.

本発明のRF電池用セルスタックの製造方法として、以下の準備工程、組物作製工程、連結工程を具えるものを提案する。
準備工程 一組のプレート部材を用意し、そのうち、少なくとも一方は、一対の押え板の間に少なくとも一つの弾性部材を配置して、上記弾性部材が上記一対の押え板によって挟持されたユニットを用意する工程。
組物作製工程 複数の電池要素が積層されてなる電池群の両側にそれぞれ、上記プレート部材を配置して、上記一組のプレート部材間に上記電池群を挟んだ組物を得る工程。
連結工程 上記組物が所定の寸法となるように上記組物を加圧装置によって圧縮した状態で、上記組物に複数の連結棒を配置し、上記弾性部材に挿通されないこれらの連結棒によって上記一組のプレート部材を連結すると共に、上記組物の圧縮状態を固定した後、上記加圧装置による加圧を解放する工程。
As a method for manufacturing an RF battery cell stack according to the present invention, a method including the following preparation process, assembly manufacturing process, and connection process is proposed.
Preparation step: preparing a set of plate members, at least one of which arranges at least one elastic member between a pair of pressing plates, and preparing a unit in which the elastic member is sandwiched between the pair of pressing plates .
Assembly production process The process of obtaining the assembly which has arrange | positioned the said plate member on both sides of the battery group in which a some battery element is laminated | stacked, respectively, and pinched | interposed the said battery group between the said 1 set of plate members.
Connecting step In a state where the assembly is compressed by a pressure device so that the assembly has a predetermined size, a plurality of connecting rods are arranged on the assembly, and the connecting rods that are not inserted through the elastic member A step of connecting the set of plate members and releasing the pressurization by the pressurization device after fixing the compressed state of the assembly.

本発明のRF電池用セルスタックの製造方法は、弾性部材を具えるユニットを少なくとも一つ用意しておくことで、上記組物を容易に構築できる。また、本発明のRF電池用セルスタックの製造方法は、この組物に連結棒を配置して、一組のプレート部材同士を連結することで、上述の従来の構成のようにコイルばねの圧縮量を一つずつ調整することなく、上記組物に所定の締付力を付与したセルスタック(代表的には本発明のRF電池用セルスタック)を容易に構築できる。   In the method for manufacturing an RF battery cell stack of the present invention, the assembly can be easily constructed by preparing at least one unit including an elastic member. Further, in the method of manufacturing an RF battery cell stack according to the present invention, a connecting rod is arranged in this assembly, and a pair of plate members are connected to each other, thereby compressing a coil spring as in the conventional configuration described above. A cell stack (typically, a cell stack for an RF battery of the present invention) in which a predetermined tightening force is applied to the assembly can be easily constructed without adjusting the amount one by one.

本発明レドックスフロー電池用セルスタックは、製造性に優れる。本発明のレドックスフロー電池用セルスタックの製造方法は、レドックスロー電池用セルスタックを容易に構築できる。   The cell stack for the redox flow battery of the present invention is excellent in manufacturability. The manufacturing method of the cell stack for redox flow batteries of this invention can construct | assemble the cell stack for redox low batteries easily.

(A)は、実施形態のRF電池用セルスタックの概略斜視図、(B)は正面図である。(A) is a schematic perspective view of the cell stack for RF battery of embodiment, (B) is a front view. 実施形態のRF電池用セルスタックに具えるユニットの概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the unit provided in the cell stack for RF batteries of embodiment. (A)は、実施形態のRF電池用セルスタックに具えるユニットの押え板と連結棒との接続方法を説明する分解斜視図、(B)は、他方の押え板と連結棒との接続方法を説明する分解斜視図である。(A) is an exploded perspective view for explaining a connection method between the holding plate and the connecting rod of the unit included in the RF battery cell stack of the embodiment, (B) is a connection method between the other holding plate and the connecting rod. FIG. 実施形態のRF電池用セルスタックを構築する単セルの概略を示す分解斜視図、及びサブセルスタックの概略を示す斜視図である。It is a disassembled perspective view which shows the outline of the single cell which constructs the cell stack for RF batteries of embodiment, and a perspective view which shows the outline of a subcell stack. RF電池の基本構成及び動作原理を示す説明図である。It is explanatory drawing which shows the basic composition and the principle of operation of RF battery.

以下、図面を参照して、本発明の実施の形態を説明する。図中、同一符号は同一名称物を示す。   Embodiments of the present invention will be described below with reference to the drawings. In the figure, the same reference numerals indicate the same names.

(RF電池)
RF電池は、図5に示すように交流/直流変換機を介して、発電部(例えば、太陽光発電機、風力発電機などの発電機、その他、一般の発電所など)と、電力系統や需要家などの負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。図1に示すレドックスフロー電池(RF電池)用セルスタック1は、このようなRF電池の主要構成部材であり、上述した従来のRF電池と同様に、電解液の循環機構(図5)が組み付けられて、正極電解液及び負極電解液が循環供給されて使用される。セルスタック1は、電池群の両側に配置される一組のプレート部材として、少なくとも一方にユニット10を具える点を特徴とし、その他の基本的構成は、従来のRF電池用セルスタックと同様とすることができる。以下、特徴点を中心に説明する。
(RF battery)
As shown in FIG. 5, the RF battery is connected to a power generation unit (e.g., a generator such as a solar power generator or a wind power generator, other general power plants, etc.) via an AC / DC converter, It is connected to a load such as a consumer, is charged using the power generation unit as a power supply source, and is discharged using the load as a power supply target. A cell stack 1 for a redox flow battery (RF battery) shown in FIG. 1 is a main component of such an RF battery, and an electrolyte circulation mechanism (FIG. 5) is assembled in the same manner as the conventional RF battery described above. The positive electrode electrolyte and the negative electrode electrolyte are circulated and used. The cell stack 1 is characterized in that at least one unit 10 is provided as a set of plate members arranged on both sides of the battery group, and the other basic configuration is the same as that of a conventional cell stack for an RF battery. can do. Hereinafter, the description will focus on feature points.

[RF電池用セルスタック]
RF電池用セルスタック1は、図1に示すように複数の電池要素が積層されてなる電池群と、この電池群を挟むように配置された一組のプレート部材と、電池群を挟んだプレート部材同士を連結する複数の連結棒30とを具える。ここでは、電池群は、積層された複数のサブセルスタック200と、モニタセル220とで構成されている。また、ここでは、一方のプレート部材として、ユニット10を具え、他方のプレート部材として、押え板20を具える。
[Cell stack for RF battery]
The cell stack 1 for an RF battery includes a battery group in which a plurality of battery elements are stacked as shown in FIG. 1, a set of plate members arranged so as to sandwich the battery group, and a plate sandwiching the battery group And a plurality of connecting rods 30 for connecting the members together. Here, the battery group includes a plurality of stacked subcell stacks 200 and monitor cells 220. Here, the unit 10 is provided as one plate member, and the presser plate 20 is provided as the other plate member.

・電池群
サブセルスタック200は、図4に示すように双極板211を具えるフレーム210、正極電極104、イオン交換膜101、負極電極105、双極板211を有するフレーム210、…と順に繰り返し積層された積層セル201と、積層セル201の両側に配置された給排板202,204とを具える。複数のフレーム210が積層されることで、給液孔213,215や排液孔214,216は、筒状の給液路や排液路を構築する。給排板202,204はそれぞれ、フレーム210に設けられた給液孔213,215、排液孔214,216に連結する部分(図示せず)と、各極の電解液の供給配管及び排出配管とを具え、各極の電解液の供給・排出に利用される。また、給排板202,204は、その内面に、端子部205を具える端子板(図示せず)が配置され、サブセルスタック200と外部装置との電気的接続にも利用される。端子板は銅などの導電性材料から構成され、各端子板には、正極電極104又は負極電極105が接触される。図1では、四つのサブセルスタック200を具える形態を示すが、サブセルスタック200の数は適宜選択することができる。また、積層セル201におけるセル数も適宜選択することができる。更に、図1では、積層した四つのサブセルスタック200の一端に、モニタセル220を具える形態を示すが、モニタセル220を省略することもできる。モニタセル220の構成は、サブセルスタック200と同様であり、セル数のみ異なる(ここでは単セルとしている)。
Battery group The subcell stack 200 is repeatedly laminated in sequence with a frame 210 having a bipolar plate 211, a positive electrode 104, an ion exchange membrane 101, a negative electrode 105, a bipolar plate 211, as shown in FIG. The stacked cell 201 and supply / discharge plates 202 and 204 disposed on both sides of the stacked cell 201 are provided. By laminating a plurality of frames 210, the liquid supply holes 213 and 215 and the drainage holes 214 and 216 form a cylindrical liquid supply path and a drainage path. Each of the supply / discharge plates 202, 204 includes a liquid supply hole 213, 215 provided in the frame 210, a portion (not shown) connected to the drain hole 214, 216, and an electrolyte supply pipe and a discharge pipe for each electrode. Used to supply and discharge the electrolyte. Further, terminal plates (not shown) having terminal portions 205 are arranged on the inner surfaces of the supply / discharge plates 202 and 204, and are also used for electrical connection between the subcell stack 200 and an external device. The terminal plate is made of a conductive material such as copper, and the positive electrode 104 or the negative electrode 105 is in contact with each terminal plate. Although FIG. 1 shows a form including four subcell stacks 200, the number of subcell stacks 200 can be appropriately selected. In addition, the number of cells in the stacked cell 201 can be selected as appropriate. Furthermore, although FIG. 1 shows a form in which the monitor cell 220 is provided at one end of the stacked four subcell stacks 200, the monitor cell 220 may be omitted. The configuration of the monitor cell 220 is the same as that of the subcell stack 200, and only the number of cells is different (here, a single cell is used).

・プレート部材
電池群の一端に配置されるユニット10は、一対の押え板11,12と、対向配置された押え板11,12間に介在される弾性部材14とを具える。ここでは、ユニット10は、押え板11,12間を所定の間隔に維持する固定部材16も具える。電池群の他端に配置される押え板20は、平板部材であり、従来のコイルばねが配置されていない側のエンドプレートと同様とすることができる。
Plate member The unit 10 disposed at one end of the battery group includes a pair of pressing plates 11 and 12 and an elastic member 14 interposed between the pressing plates 11 and 12 disposed to face each other. Here, the unit 10 also includes a fixing member 16 that maintains the presser plates 11 and 12 at a predetermined interval. The holding plate 20 disposed at the other end of the battery group is a flat plate member, and can be the same as the end plate on the side where the conventional coil spring is not disposed.

押え板11,12は、従来のエンドプレートと同様に、押え板20と共に電池群を挟むように配置されて、電池群の保護を機能の一つとする。そのため、押え板11,12,20は、サブセルスタック200の外形に相似形状で、かつサブセルスタック200よりも十分に大きな板材で構成されている。ここでは、押え板11,12,20はいずれも、横長の長方形状の平板材である。押え板11,12,20の大きさは、等しくすることもできるし、異ならせることもできる。ここでは、外側に配置される押え板11,20の大きさを等しくし、内側に配置される押え板12を若干小さくしている。押え板11,12,20の材質は、一般構造用鋼などの高強度材が挙げられる。外側に配置されて連結棒30による力が直接作用する一方の押え板11を上述の鋼などとし、内側に配置される押え板12をアルミニウム合金などの軽量材とすることもできる。   The holding plates 11 and 12 are arranged so as to sandwich the battery group together with the holding plate 20 in the same manner as the conventional end plate, and the protection of the battery group is one of the functions. Therefore, the presser plates 11, 12, and 20 are made of a plate material that is similar in shape to the outer shape of the subcell stack 200 and sufficiently larger than the subcell stack 200. Here, each of the presser plates 11, 12, and 20 is a horizontally-long rectangular flat plate material. The sizes of the presser plates 11, 12, and 20 can be equal or different. Here, the size of the press plates 11 and 20 arranged on the outer side is made equal, and the press plate 12 arranged on the inner side is made slightly smaller. Examples of the material of the presser plates 11, 12, and 20 include high-strength materials such as general structural steel. One presser plate 11 arranged on the outer side and directly applied by the force of the connecting rod 30 can be made of the above-described steel or the like, and the presser plate 12 arranged on the inner side can be made of a lightweight material such as an aluminum alloy.

押え板11,12,20は、その外周縁に複数の切欠11b,12b,20bを有する(特に図3参照)。これらの切欠11b,12b,20bに後述する連結棒30が嵌め込まれて、押え板11,12,20は、嵌め込まれた連結棒30によって一体化される。従って、切欠11b,12b,20bはそれぞれ、押え板11,12,20を電池群に組み付けた状態において、同一直線上に並ぶ位置に設けられている。切欠11b,12b,20bに代えて、貫通孔とすることもできる。但し、貫通孔の場合、電池群の積層数が多くなると、連結棒30が長くなるため、一方の外側の押え板11から他方の外側の押え板20に亘って、長い連結棒30を挿通配置させることに時間がかかる恐れがある。一方、押え板11,12,20の外周縁から外方に開口する切欠11b,12b,20bの場合、組物の外周側から連結棒30を嵌め込めるため、連結棒30の長さに関わらず、一方の外側の押え板11から他方の外側の押え板20に亘って、連結棒30を容易に配置できる。   The presser plates 11, 12, and 20 have a plurality of notches 11b, 12b, and 20b on their outer peripheral edges (see particularly FIG. 3). A connecting rod 30, which will be described later, is fitted into these notches 11b, 12b, 20b, and the holding plates 11, 12, 20 are integrated by the fitted connecting rod 30. Accordingly, the notches 11b, 12b, and 20b are provided at positions that are aligned on the same straight line in a state where the presser plates 11, 12, and 20 are assembled to the battery group. Instead of the notches 11b, 12b, and 20b, a through hole may be used. However, in the case of a through hole, the connecting rod 30 becomes longer as the number of stacked battery groups increases, so the long connecting rod 30 is inserted from the outer presser plate 11 to the other outer presser plate 20. It may take time to make it happen. On the other hand, in the case of the notches 11b, 12b, and 20b that open outward from the outer peripheral edges of the presser plates 11, 12, and 20, since the connecting rod 30 is fitted from the outer peripheral side of the assembly, the length of the connecting rod 30 is not affected. The connecting rod 30 can be easily arranged from the outer presser plate 11 to the outer presser plate 20 on the other side.

ユニット10に具える押え板11,12は、電池群に所定の付勢力を付与する弾性部材14を保持することを機能の一つとする。そのため、押え板11,12にはそれぞれ、その対向面(内面)に弾性部材14が嵌め込まれるばね座11s(図2)を具える。ばね座11sを具えることで、弾性部材14を容易に位置決めできる上に、弾性部材14のずれを防止できる。また、図2に示すように複数のばね座11sを具えることで、所望の数の弾性部材14を所望の位置に配置することができる。   One of the functions of the holding plates 11 and 12 included in the unit 10 is to hold an elastic member 14 that applies a predetermined urging force to the battery group. Therefore, each of the presser plates 11 and 12 includes a spring seat 11s (FIG. 2) in which the elastic member 14 is fitted on the opposing surface (inner surface). By providing the spring seat 11s, the elastic member 14 can be easily positioned and the elastic member 14 can be prevented from being displaced. Further, by providing a plurality of spring seats 11s as shown in FIG. 2, a desired number of elastic members 14 can be arranged at desired positions.

ばね座11sの形状、大きさ(直径、深さ)、数、配置位置などは、適宜選択することができる。図2に示すばね座11sはいずれも、同じ直径を有する円形溝としているが、異なる直径を有する円形溝を具えることもできるし、円形以外の形状とすることもできる。また、一つの溝について深さ方向に直径が異なる段差形状の溝とし、この一つの溝に対して、直径が異なる弾性部材14を嵌め込むことが可能な構成とすることもできる。図2に示すばね座11sの数は例示であり、更に多くすることもできるし、少なくすることもできる。   The shape, size (diameter, depth), number, arrangement position, and the like of the spring seat 11s can be appropriately selected. Each of the spring seats 11s shown in FIG. 2 is a circular groove having the same diameter, but may have a circular groove having a different diameter, or may have a shape other than a circular shape. Moreover, it is also possible to adopt a configuration in which one groove is a step-shaped groove having a different diameter in the depth direction, and an elastic member 14 having a different diameter can be fitted into the one groove. The number of spring seats 11s shown in FIG. 2 is merely an example, and can be increased or decreased.

図2に示す例では、押え板11,12における中央領域にばね座11sを具える。従って、ユニット10を組み立てた場合、弾性部材14は、押え板11,12の中央領域に配置される。特に、図2に示す例では、ばね座11sのいずれも、押え板11,12の外周縁よりも十分に内側に位置する。このようなユニット10を具えるRF電池用セルスタック1を組み立てた場合、セルスタック1を電池群の積層方向に平面視したとき、ユニット10の押え板11,12と電池群とが重なる領域(ここでは電池群の中央領域)に、弾性部材14の付勢力に基づく締付力を良好に付与することができる。また、ユニット10を組み立てた場合、弾性部材14は全てユニット10の外表面に突出しない。そのため、セルスタック1を構築途中や搬送する際、設置する際などで、弾性部材14のいずれも、作業者や周辺の部品などに引っ掛かることが無く、この引っ掛かりなどによる弾性部材14の損傷を防止できる。図2に示すばね座11sの位置も例示であり、上述の中央領域だけでなく、例えば、押え板11,12の外周縁寄りの領域にばね座11sを設けることもできる。   In the example shown in FIG. 2, a spring seat 11 s is provided in the central region of the presser plates 11 and 12. Therefore, when the unit 10 is assembled, the elastic member 14 is disposed in the central region of the presser plates 11 and 12. In particular, in the example shown in FIG. 2, all of the spring seats 11s are located sufficiently inside the outer peripheral edges of the presser plates 11 and 12. When the cell stack 1 for an RF battery including such a unit 10 is assembled, when the cell stack 1 is viewed in plan in the stacking direction of the battery group, the area where the holding plates 11 and 12 of the unit 10 and the battery group overlap ( Here, a tightening force based on the urging force of the elastic member 14 can be favorably applied to the central region of the battery group. Further, when the unit 10 is assembled, the elastic members 14 do not all protrude from the outer surface of the unit 10. For this reason, the elastic member 14 is not caught by the operator or surrounding parts during construction, transportation, installation, etc. of the cell stack 1, and damage to the elastic member 14 due to this catching is prevented. it can. The position of the spring seat 11s shown in FIG. 2 is also an example, and the spring seat 11s can be provided not only in the above-described central region but also in a region near the outer peripheral edge of the presser plates 11 and 12, for example.

また、ここでは、ばね座11sはいずれも円形溝としているが、円環溝としてもよい。その他、ばね座11sは溝に代えて、環状に配置した複数の突起、又は環状の突起とすることもできる。   Here, the spring seats 11s are all circular grooves, but may be circular grooves. In addition, the spring seat 11s may be a plurality of annularly arranged protrusions or an annular protrusion instead of the groove.

弾性部材14は、コイルばね(圧縮ばね)を好適に利用できる。弾性部材14のばね定数、ばね径、自由長などは適宜選択することができる。複数の弾性部材14を具えるユニット10を構築する場合、電池群に対して必要な付勢力を発生できれば、各弾性部材14のばね定数やばね径を等しくすることもできるし、異ならせることもできる。また、一定の付勢力を発生する場合にばね定数が大きな弾性部材14を用いると、弾性部材14の使用数を低減できる。ばね定数が小さい弾性部材14を用いる場合には、弾性部材14の使用数を多くする。   As the elastic member 14, a coil spring (compression spring) can be preferably used. The spring constant, spring diameter, free length, and the like of the elastic member 14 can be appropriately selected. When constructing the unit 10 including a plurality of elastic members 14, if the necessary biasing force can be generated for the battery group, the spring constants and spring diameters of the elastic members 14 can be made equal or different. it can. Further, when the elastic member 14 having a large spring constant is used when a constant urging force is generated, the number of the elastic members 14 used can be reduced. When the elastic member 14 having a small spring constant is used, the number of elastic members 14 used is increased.

固定部材16は、対向配置させた一対の押え板11,12を連結すると共に、一対の押え板11,12間に所定の大きさの間隔を保持する部材である。押え板11,12間の間隔が所定の大きさに保持されることで、弾性部材14は、その間隔に応じて圧縮状態に維持される。また、固定部材16は、弾性部材14の更なる圧縮を許容し、かつ伸長を規制するように押え板11,12を連結する。このような固定部材16は、一端側領域がねじ切りされたボルトなどを好適に利用できる。押え板11,12における固定部材16の固定方法は、適宜選択することができる。ここでは、図2に示すように一方の押え板11に、固定部材16のねじ領域が螺合する連結穴11pを具え、他方の押え板12は、図2,図3(A)に示すように固定部材16の頭部を受ける連結台座12pを具える。連結台座12pは、押え板12の外周縁側及び電池群に接する表面側(図3(A)では右側)が開口した溝であり、溝の底部を構成する部分の厚さが押え板12の厚みよりも薄い薄肉部分となっている。この舌片状の薄肉部分に固定部材16が挿通される貫通孔が設けられている。固定部材16をこの連結台座12pの貫通孔に挿通し、固定部材16の一端を押え板11に固定すると、固定部材16の頭部が薄肉部分に掛止されることで、一対の押え板11,12間の間隔が規制される。固定部材16の頭部が薄肉部分に掛止されたときの押え板11,12間の間隔が最大の大きさである。ユニット10を組み立てた状態では、この最大の間隔になっている。弾性部材14の更なる圧縮状態については、連結棒30の項で説明する。   The fixing member 16 is a member that connects the pair of presser plates 11 and 12 that are arranged to face each other and holds a predetermined size interval between the pair of presser plates 11 and 12. Since the distance between the press plates 11 and 12 is maintained at a predetermined size, the elastic member 14 is maintained in a compressed state according to the distance. Further, the fixing member 16 connects the presser plates 11 and 12 so as to allow further compression of the elastic member 14 and restrict extension. As such a fixing member 16, a bolt having a threaded end region can be suitably used. The fixing method of the fixing member 16 in the presser plates 11 and 12 can be selected as appropriate. Here, as shown in FIG. 2, one holding plate 11 is provided with a connecting hole 11p into which the screw region of the fixing member 16 is screwed, and the other holding plate 12 is shown in FIG. 2 and FIG. A connecting base 12p for receiving the head of the fixing member 16 is provided. The connecting pedestal 12p is a groove having an opening on the outer peripheral edge side of the presser plate 12 and the surface side in contact with the battery group (the right side in FIG. The thinner part is thinner. A through-hole through which the fixing member 16 is inserted is provided in the tongue-like thin portion. When the fixing member 16 is inserted into the through hole of the coupling base 12p and one end of the fixing member 16 is fixed to the presser plate 11, the head of the fixing member 16 is hooked on the thin portion, so that the pair of presser plates 11 , 12 spacing is regulated. The distance between the presser plates 11 and 12 when the head of the fixing member 16 is hooked on the thin portion is the largest. This is the maximum interval when the unit 10 is assembled. The further compression state of the elastic member 14 will be described in the section of the connecting rod 30.

固定部材16の大きさ(直径、長さ)、本数などは、適宜選択することができる。弾性部材14の最小の圧縮量(圧縮長さ)が所定の量となるように、つまり、上述の最大の間隔が確保できるように固定部材16の長さを調整する。なお、押え板11,12がばね座11sを有することで、固定部材16を省略しても、RF電池用セルスタック1を構築できるが、固定部材16によって押え板11,12間を予め連結しておく方が、押え板11,12と弾性部材14とがばらばらにならず、ユニット10を取り扱い易く、製造性に更に優れる。   The size (diameter, length), number, etc. of the fixing member 16 can be selected as appropriate. The length of the fixing member 16 is adjusted so that the minimum compression amount (compression length) of the elastic member 14 becomes a predetermined amount, that is, the above-described maximum interval can be secured. Although the holding plates 11 and 12 have the spring seats 11s, the RF battery cell stack 1 can be constructed even if the fixing member 16 is omitted, but the holding plates 16 and 12 are connected in advance by the fixing member 16. In other words, the holding plates 11 and 12 and the elastic member 14 are not separated, the unit 10 is easy to handle, and the manufacturability is further improved.

・連結棒
連結棒30は、長ボルトなどを好適に利用できる。ここでは、各連結棒30は、図3に示すように両端部にねじ穴を有する丸棒状のシャフト31と、各ねじ穴にそれぞれ螺合される二つのボルト33,35と、ボルト33,35の頭部よりも大きな外径を有する環状のカラー33c,35cとで構成している。ボルト33及びカラー33cは、電池群の一端(図1では左端)に配置される押え板11に止め付けられる。ボルト35,カラー35cは、電池群の他端(図1では右端)に配置される押え板20に止め付けられる。RF電池用セルスタック1の中間部に配置される押え板12には、シャフト31が挿通された状態で配置される。
-Connecting rod The connecting rod 30 can use a long volt | bolt etc. suitably. Here, as shown in FIG. 3, each connecting rod 30 includes a round bar-like shaft 31 having screw holes at both ends, two bolts 33 and 35 screwed into the screw holes, and bolts 33 and 35, respectively. And the annular collars 33c and 35c having an outer diameter larger than that of the head. The bolt 33 and the collar 33c are fixed to the presser plate 11 disposed at one end (left end in FIG. 1) of the battery group. The bolt 35 and the collar 35c are fixed to the presser plate 20 disposed at the other end (right end in FIG. 1) of the battery group. A shaft 31 is disposed in a state where the shaft 31 is inserted into the presser plate 12 disposed in the intermediate portion of the cell stack 1 for the RF battery.

連結棒30による連結状態をより詳しく説明する。ここでは、カラー33c,35cとして、その内径が、ボルト33,35の軸部の外径よりも大きいが、シャフト31の外径よりも小さいものを用いている。また、図3(A)に示すように、押え板11の切欠11bは、押え板11の外周縁がU字状に切り欠かれて設けられており、この切欠11bの幅がシャフト31の外径よりも大きい。更に、このU字状の切欠11bにおいて押え板11の外表面(図3(A)では左面)に、U字の湾曲部分よりも大きな径を有するC字状の浅い溝を具える。この浅い溝に環状のカラー33cを嵌め込むと共に、シャフト31の一端部近傍を押え板12の切欠12bに嵌め、シャフト31の一端部を押え板11の内面(図3(A)では右面)側から切欠11bに臨ませる。そして、シャフト31の一端部に、カラー33cを貫通するボルト33を押え板11の外表面側からねじ込む。こうすることで、連結棒30の一端部は、押え板11に止め付けられる。押え板20も、上述の押え板11と同様に、押え板20の外周縁がU字状に切り欠かれ、その幅がシャフト31の外径よりも大きい切欠20bを具える。また、図3(B)に示すように、U字状の切欠20bにおいて押え板20の内面(図3(B)では左面)にC字状の浅い溝が設けられている。この浅い溝にカラー35cを嵌め込み、シャフト31の他端部を押え板20の内面側から切欠20bに臨ませる。そして、ボルト35をカラー35cに挿通させて、更にボルト35をシャフト31の他端部にねじ込むことで、連結棒30の他端部は、押え板20に止め付けられる。このシャフト31に対するボルト33,35の締め付けにより、一つの連結棒30を構築することができる。なお、押え板12の切欠12bの幅も、シャフト31の外径よりも大きい。シャフト31の外周に熱収縮チューブなどからなる絶縁被覆を形成すると、シャフト31と電池群などとの間の絶縁性を高められる。   The state of connection by the connecting rod 30 will be described in more detail. Here, as the collars 33c and 35c, those having an inner diameter larger than the outer diameter of the shaft portion of the bolts 33 and 35 but smaller than the outer diameter of the shaft 31 are used. Further, as shown in FIG. 3 (A), the notch 11b of the presser plate 11 is provided by cutting the outer peripheral edge of the presser plate 11 into a U shape, and the width of the notch 11b is outside the shaft 31. It is larger than the diameter. Further, the U-shaped notch 11b includes a C-shaped shallow groove having a larger diameter than the curved portion of the U-shape on the outer surface of the presser plate 11 (left surface in FIG. 3A). An annular collar 33c is fitted into this shallow groove, and the vicinity of one end of the shaft 31 is fitted into the notch 12b of the presser plate 12. The one end of the shaft 31 is on the inner surface (right side in FIG. 3 (A)) side Make it face the notch 11b. Then, a bolt 33 penetrating the collar 33c is screwed into one end portion of the shaft 31 from the outer surface side of the presser plate 11. By doing so, one end of the connecting rod 30 is fastened to the presser plate 11. Similarly to the above-described presser plate 11, the presser plate 20 also includes a notch 20b in which the outer peripheral edge of the presser plate 20 is cut out in a U shape and the width thereof is larger than the outer diameter of the shaft 31. Further, as shown in FIG. 3 (B), a shallow C-shaped groove is provided on the inner surface (left surface in FIG. 3 (B)) of the presser plate 20 in the U-shaped notch 20b. The collar 35c is fitted into the shallow groove, and the other end of the shaft 31 is made to face the notch 20b from the inner surface side of the presser plate 20. Then, the bolt 35 is inserted into the collar 35c, and the bolt 35 is screwed into the other end portion of the shaft 31, whereby the other end portion of the connecting rod 30 is fixed to the presser plate 20. One connecting rod 30 can be constructed by tightening the bolts 33 and 35 to the shaft 31. The width of the notch 12b of the presser plate 12 is also larger than the outer diameter of the shaft 31. When an insulating coating made of a heat shrinkable tube or the like is formed on the outer periphery of the shaft 31, the insulation between the shaft 31 and the battery group can be improved.

RF電池用セルスタック1では、連結棒30が弾性部材14を挿通しない。つまり、連結棒30の外周に弾性部材14が配置されない。そのため、弾性部材14の大きさ(主として内径)に無関係に連結棒30の大きさを選択できる。例えば、コイルばねに挿通配置されていた従来の棒状体よりも、連結棒30を太くすることができる。その結果、連結棒30の使用数を低減できる。また、太い連結棒30を利用することで、電池群に作用する締付力を大きくできることから、複数のサブセルスタック200の積層状態を維持し易く、サブセルスタック200間の位置ずれが生じ難い。そのため、サブセルスタック200間の位置ずれを防止する支持部材なども省略できる場合がある。ここでは、支持部材を省略した形態を示す。   In the RF battery cell stack 1, the connecting rod 30 does not pass through the elastic member. That is, the elastic member 14 is not disposed on the outer periphery of the connecting rod 30. Therefore, the size of the connecting rod 30 can be selected regardless of the size (mainly the inner diameter) of the elastic member 14. For example, the connecting rod 30 can be made thicker than a conventional rod-like body that is inserted through a coil spring. As a result, the number of connecting rods 30 used can be reduced. In addition, since the tightening force acting on the battery group can be increased by using the thick connecting rod 30, it is easy to maintain the stacked state of the plurality of subcell stacks 200, and misalignment between the subcell stacks 200 hardly occurs. For this reason, a support member or the like that prevents displacement between the subcell stacks 200 may be omitted. Here, a form in which the support member is omitted is shown.

上述のようにシャフト31、ボルト33,35、カラー33c,35cによって連結棒30を構築したとき、押え板12は、連結棒30に挿通されるだけであり、連結棒30に対して、電池群の積層方向に移動可能(図1において左右方向に移動可能)に支持される。例えば、電池群が膨れるように変形する場合、電池群に接する押え板12,20を押圧する。このとき、外側の押え板11,20は、連結棒30が止め付けられていることで移動を規制されている(移動できない)が、中間部の押え板12は、連結棒30をガイドとして移動できる。具体的には、弾性部材14を圧縮するように移動する(図1では左側に向かって移動する)。逆に電池群が収縮するように変形する場合、弾性部材14が押え板12を押圧する。このとき、押え板12は、連結棒30をガイドとして移動でき、弾性部材14の圧縮状態を緩和するように移動する(図1では右側に向かって移動する)。   When the connecting rod 30 is constructed by the shaft 31, the bolts 33 and 35, and the collars 33c and 35c as described above, the presser plate 12 is only inserted through the connecting rod 30, and the battery group is connected to the connecting rod 30. It is supported to be movable in the stacking direction (movable in the left-right direction in FIG. 1). For example, when the battery group is deformed so as to swell, the pressing plates 12 and 20 in contact with the battery group are pressed. At this time, the outer presser plates 11 and 20 are restricted in movement (cannot move) by the connecting rod 30 being fastened, but the intermediate presser plate 12 moves using the connecting rod 30 as a guide. it can. Specifically, the elastic member 14 moves so as to be compressed (in FIG. 1, it moves toward the left side). On the contrary, when the battery group is deformed so as to contract, the elastic member 14 presses the holding plate 12. At this time, the presser plate 12 can move using the connecting rod 30 as a guide, and moves so as to relax the compressed state of the elastic member 14 (moves toward the right side in FIG. 1).

固定部材16に加えて、ガイドピン(図示せず)を具える形態とすることができる。ガイドピンは、上述のように押え板12が移動するときに、両押え板11,12の位置がずれすることなく、平行状態を維持したまま移動することに寄与する。このようなガイドピンは、一端を、連結棒30が止め付けられる押え板11に固定し、他端を、連結棒30に対して移動可能な押え板12に対して固定されないように配置するとよい。例えば、ガイドピンの一端にねじ加工などを施し、一方の押え板11にはガイドピンの一端が螺合されるねじ穴などを設け、他方の押え板12には、ガイドピンの他端が挿通配置される貫通孔を設けることが挙げられる。ガイドピンの長さは、固定部材16と同等以上の長さを有していればよい。このようなガイドピンを利用することで、一対の押え板11,12の平行状態をより確実に維持でき、電池群に対する弾性部材14の位置ずれを防止できる。   In addition to the fixing member 16, a guide pin (not shown) may be provided. The guide pins contribute to moving the presser plates 11 and 12 while maintaining the parallel state without shifting the positions of the presser plates 11 and 12 when the presser plate 12 moves as described above. Such a guide pin is preferably arranged so that one end is fixed to the presser plate 11 to which the connecting rod 30 is fastened and the other end is not fixed to the presser plate 12 movable with respect to the connecting rod 30. . For example, one end of the guide pin is threaded, and one holding plate 11 is provided with a screw hole into which one end of the guide pin is screwed. The other holding plate 12 is inserted with the other end of the guide pin. It is mentioned to provide a through hole to be arranged. The length of the guide pin only needs to be equal to or longer than that of the fixing member 16. By using such a guide pin, the parallel state of the pair of pressing plates 11 and 12 can be more reliably maintained, and the displacement of the elastic member 14 with respect to the battery group can be prevented.

[RF電池用セルスタックの製造方法]
上記構成を具えるRF電池用セルスタック1の製造手順を説明する。このセルスタック1は、一組のプレート部材(ユニット10,押え板20)の用意⇒一組のプレート部材と電池群との組物の作製⇒連結棒30による一組のプレート部材の連結、という手順で構築することができる。
[Method of manufacturing cell stack for RF battery]
A manufacturing procedure of the cell stack 1 for an RF battery having the above configuration will be described. This cell stack 1 is provided with a set of plate members (unit 10, holding plate 20) ⇒ production of a set of plate members and a battery group ⇒ connection of a set of plate members by a connecting rod 30 It can be built in steps.

・準備工程
必要な締付力に応じて、弾性部材14のばね定数や大きさ、使用数を選択して、弾性部材14を用意する。図2に示すように一方の押え板11(又は押え板12)のばね座11sに弾性部材14を嵌め込み、他方の押え板12(又は押え板11)のばね座に上記弾性部材14が嵌め込まれるように、他方の押え板12を一方の押え板11に対向配置させる。このとき、上述のガイドピンを弾性部材14と共に配置することもできる。そして、固定部材16をそれぞれ押え板11,12に配置することで、固定部材16によって押え板11,12と弾性部材14とが一体に保持されたユニット10が得られる。
-Preparation process The elastic member 14 is prepared by selecting the spring constant, size, and number of use of the elastic member 14 according to the required tightening force. As shown in FIG. 2, the elastic member 14 is fitted into the spring seat 11s of one presser plate 11 (or presser plate 12), and the elastic member 14 is fitted into the spring seat of the other presser plate 12 (or presser plate 11). As described above, the other presser plate 12 is disposed opposite to the one presser plate 11. At this time, the above-described guide pin can be disposed together with the elastic member 14. By disposing the fixing member 16 on the presser plates 11 and 12, respectively, the unit 10 in which the presser plates 11 and 12 and the elastic member 14 are integrally held by the fixing member 16 is obtained.

・組物作製工程
所望の数のサブセルスタック200、適宜モニタセル220を用意して積層する。ここでは、積層したサブセルスタック200、適宜モニタセル220は、直方体状に構築される。この直方体における対向する各端面にそれぞれ、ユニット10、及び別途用意した押え板20を配置して、ユニット10と押え板20との間に電池群(複数のサブセルスタック200など)を挟んだ組物を得る。なお、各サブセルスタック200やモニタセル220は、積層セル201と給排板202,204とが位置ずれしないように連結部材(図示せず)などによって一体化しておくと、取り扱い易い。
-Assembly production process A desired number of subcell stacks 200 and appropriate monitor cells 220 are prepared and laminated. Here, the stacked subcell stack 200 and the monitor cell 220 as appropriate are constructed in a rectangular parallelepiped shape. A unit 10 and a separately prepared presser plate 20 are arranged on each opposing end face of this rectangular parallelepiped, and a battery group (such as a plurality of subcell stacks 200) is sandwiched between the unit 10 and the presser plate 20. Get. Note that the subcell stack 200 and the monitor cell 220 are easy to handle if the stacked cell 201 and the supply / discharge plates 202 and 204 are integrated by a connecting member (not shown) or the like so as not to be displaced.

・連結工程
上記組物は、単に積層した状態では、積層方向の寸法がRF電池用セルスタック1(完成品)を構成した後における所定の寸法よりも若干大きい(膨らんでいる)。そこで、上記組物が所定の寸法となるように、上記組物を加圧圧縮する。具体的には、直方体状の組物の一端面(ここでは、ユニット10に具える押え板11の外表面)をプレス装置といった加圧装置(図示せず)によって押圧する。この加圧圧縮した状態を保持しながら、組物の外周側から、押え板11,12,20の切欠11b,12b,20bにそれぞれ、連結棒30を嵌め込む。ここでは、連結棒30の主要部を構成するシャフト31を嵌め込む。一方の押え板11の外表面側(図1,図3(A)では左側)にカラー33cを配置し、他方の押え板20の内側(図1,図3(B)では左側)にカラー35cを配置しておく。そして、シャフト31の各端部にボルト33,35をそれぞれねじ込み、一組のプレート部材(ユニット10と押え板20)を連結棒30によって連結する。また、この連結によって、組物の圧縮状態を固定して、所定の寸法のRF電池用セルスタック1が得られる。上記組物の圧縮状態を固定できてから、上記プレス装置による加圧を除去する。
Connecting Step When the assembly is simply laminated, the dimension in the lamination direction is slightly larger (swells) than the predetermined dimension after the RF battery cell stack 1 (finished product) is constructed. Therefore, the assembly is compressed and compressed so that the assembly has a predetermined size. Specifically, one end surface of the rectangular parallelepiped assembly (here, the outer surface of the holding plate 11 included in the unit 10) is pressed by a pressing device (not shown) such as a pressing device. While maintaining this compressed and compressed state, the connecting rods 30 are fitted into the notches 11b, 12b, and 20b of the presser plates 11, 12, and 20 from the outer peripheral side of the assembly. Here, the shaft 31 constituting the main part of the connecting rod 30 is fitted. The collar 33c is arranged on the outer surface side (left side in FIGS. 1 and 3 (A)) of one presser plate 11, and the collar 35c is arranged on the inner side (left side in FIGS. 1 and 3 (B)) of the other presser plate 11. Is placed. Then, bolts 33 and 35 are respectively screwed into the respective end portions of the shaft 31, and a pair of plate members (unit 10 and presser plate 20) are connected by the connecting rod 30. Further, by this connection, the compressed state of the assembly is fixed, and the cell stack 1 for an RF battery having a predetermined size is obtained. After the compressed state of the assembly can be fixed, the pressure applied by the pressing device is removed.

なお、RF電池用セルスタック1に具える正極電極104,負極電極105には、炭素繊維からなる不織布(カーボンフェルト)が挙げられる。イオン交換膜101は、塩化ビニル、フッ素樹脂、ポリオレフィン(例えば、ポリエチレン:PE、ポリプロピレン:PP)などの樹脂からなる基材に、イオン交換基を有するイオン交換樹脂、又はイオン交換樹脂とマトリクス樹脂との複合樹脂が付着されたものが挙げられる。双極板211は、プラスチックカーボンからなるもの、フレーム210は、塩化ビニルなどの樹脂からなるものが挙げられる。また、セルスタック1を用いてRF電池を構築した場合、正負の各極の活物質となる金属イオンの対は、(正極が鉄イオン、負極がクロムイオン)、(正極及び負極の双方がバナジウムイオン)、(正極がマンガンイオン、負極がチタンイオン)など、が挙げられる。   Examples of the positive electrode 104 and the negative electrode 105 included in the cell stack 1 for an RF battery include a nonwoven fabric (carbon felt) made of carbon fiber. The ion exchange membrane 101 is a base material made of a resin such as vinyl chloride, fluororesin, polyolefin (e.g., polyethylene: PE, polypropylene: PP), an ion exchange resin having an ion exchange group, or an ion exchange resin and a matrix resin. The thing to which the composite resin of this was attached is mentioned. The bipolar plate 211 may be made of plastic carbon, and the frame 210 may be made of resin such as vinyl chloride. In addition, when an RF battery is constructed using the cell stack 1, the pair of metal ions that are the active materials of the positive and negative electrodes are (positive electrode is iron ion, negative electrode is chromium ion), (both positive electrode and negative electrode are vanadium) Ion), (positive electrode is manganese ion, negative electrode is titanium ion), and the like.

(効果)
RF電池用セルスタック1は、少なくとも一つの弾性部材14を具えるユニット10を構成要素とすることで、棒状体の外周にコイルばねを配置していた従来の構成と比較して、弾性部材14及び連結棒30の使用数を低減できる。特に、弾性部材14の大きさに規制されることなく、連結棒30を太いものとした場合、連結棒30の使用数を更に低減できる。また、ユニット10が電池群や連結棒30とは独立した部材であり、連結棒30が弾性部材14に挿通配置されないことから、ユニット10のみを容易に組み立てられる。更に、このユニット10と、電池群と、押え板20とを一体化にするにあたり、上述の従来の構成のようにコイルばねの圧縮量を一つずつ調整しながら棒状体を固定する必要がなく、複数の連結棒30を組物に容易に組み付けられる。加えて、上述のようにコイルばねの圧縮量を一つずつ調整する必要がないため、ばね定数が大きな弾性部材14を用いることができ、この場合、弾性部材14の使用数を更に低減できる。
(effect)
The cell stack 1 for an RF battery has a unit 10 including at least one elastic member 14 as a constituent element, so that the elastic member 14 is compared with a conventional configuration in which a coil spring is disposed on the outer periphery of the rod-shaped body. In addition, the number of connecting rods 30 used can be reduced. In particular, when the connecting rod 30 is made thick without being restricted by the size of the elastic member 14, the number of connecting rods 30 used can be further reduced. Further, since the unit 10 is a member independent of the battery group and the connecting rod 30, and the connecting rod 30 is not inserted into the elastic member 14, only the unit 10 can be easily assembled. Furthermore, in integrating the unit 10, the battery group, and the holding plate 20, there is no need to fix the rod-shaped body while adjusting the compression amount of the coil spring one by one as in the conventional configuration described above. The plurality of connecting rods 30 can be easily assembled to the assembly. In addition, since it is not necessary to adjust the compression amount of the coil spring one by one as described above, the elastic member 14 having a large spring constant can be used. In this case, the number of the elastic members 14 used can be further reduced.

これらの点から、RF電池用セルスタック1は、部品点数が少なく、製造性に優れる。また、弾性部材14に連結棒30を挿通配置させない構成としていることで、連結棒30が長くなったとしても、セルスタック1は、連結棒30の配置・固定なども容易に行える。この点からも、セルスタック1は、製造性に優れる。   From these points, the cell stack 1 for an RF battery has a small number of parts and is excellent in manufacturability. In addition, since the connecting rod 30 is not inserted and arranged in the elastic member 14, the cell stack 1 can easily arrange and fix the connecting rod 30 even if the connecting rod 30 becomes long. Also from this point, the cell stack 1 is excellent in manufacturability.

更に、ユニット10を具える構成とすることで、従来の構成のようにコイルばねを一つずつ圧縮する必要がないため、メンテナンス時などにおいても容易に構築できる。   Furthermore, by adopting a configuration including the unit 10, it is not necessary to compress the coil springs one by one as in the conventional configuration, so that it can be easily constructed even during maintenance.

特に、この実施形態のRF電池用セルスタック1では、連結棒30を組物の外周側から嵌め込む構成であり、連結棒30の配置作業を容易に行える。この点からも、セルスタック1は、製造性に優れる。   In particular, the RF battery cell stack 1 of this embodiment has a configuration in which the connecting rod 30 is fitted from the outer peripheral side of the assembly, and the arrangement work of the connecting rod 30 can be easily performed. Also from this point, the cell stack 1 is excellent in manufacturability.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することができる。例えば、実施形態では、ユニットを一つ具える構成としたが、ユニットを二つ具える構成とすることができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, in the embodiment, the configuration includes one unit, but the configuration may include two units.

本発明のレドックスフロー電池用セルスタックは、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池の要素に好適に利用できる。その他、本発明のレドックスフロー電池用セルスタックは、一般的な発電所や工場などに併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池の要素としても好適に利用することができる。本発明のレドックスフロー電池用セルスタックの製造方法は、上記レドックスフロー電池用セルスタックの構築に好適に利用できる。   The cell stack for the redox flow battery of the present invention aims at stabilizing fluctuations in power generation output, storing electricity when surplus generated power, leveling load, etc., for power generation of new energy such as solar power generation and wind power generation. It can utilize suitably for the element of a large capacity storage battery. In addition, the cell stack for the redox flow battery of the present invention can be suitably used as an element of a large-capacity storage battery that is installed in a general power plant or factory, etc. for the purpose of instantaneous voltage drop, power failure countermeasures and load leveling. can do. The manufacturing method of the cell stack for redox flow batteries of this invention can be utilized suitably for construction | assembly of the said cell stack for redox flow batteries.

1 レドックスフロー電池用セルスタック
10 ユニット
11,12 押え板 11b,12b,20b 切欠 11p 連結孔 11s ばね座
12p 連結台座 14 弾性部材 16 固定部材
20 押え板
30 連結棒 31 シャフト 33,35 ボルト 33c,35c カラー
100 レドックスフロー電池 100c 電池要素 101 イオン交換膜
102 正極セル 103 負極セル 104 正極電極 105 負極電極
106 正極タンク 107 負極タンク 108,110 正極配管 109,111 負極配管
112,113 ポンプ
200 サブセルスタック 201 積層セル 202,204 給排板 205 端子部
210 フレーム 211 双極板 213,215 給液孔 214,216 排液孔
220 モニタセル
1 Cell stack for redox flow battery
10 units
11,12 Presser plate 11b, 12b, 20b Notch 11p Connecting hole 11s Spring seat
12p Connecting base 14 Elastic member 16 Fixed member
20 Presser plate
30 Connecting rod 31 Shaft 33, 35 Bolt 33c, 35c Color
100 Redox flow battery 100c Battery element 101 Ion exchange membrane
102 Positive electrode cell 103 Negative electrode cell 104 Positive electrode 105 Negative electrode
106 Positive tank 107 Negative tank 108,110 Positive piping 109,111 Negative piping
112,113 pump
200 Subcell stack 201 Stacked cell 202,204 Feed / discharge plate 205 Terminal
210 Frame 211 Bipolar plate 213,215 Supply hole 214,216 Drain hole
220 Monitor cell

Claims (5)

複数の電池要素が積層されてなる電池群と、
前記電池群を挟むように配置された一組のプレート部材と、
前記一組のプレート部材を連結して、前記電池群の積層状態を保持する複数の連結棒とを具え、
前記一組のプレート部材のうち、少なくとも一方は、
一対の押え板と、
前記一対の押え板間に介在され、かつ前記連結棒に挿通されない少なくとも一つの弾性部材と、
前記一対の押え板を連結し、前記弾性部材が前記一対の押え板によって挟持された状態を維持する固定部材とを具えるユニットであるレドックスフロー電池用セルスタック。
A battery group in which a plurality of battery elements are laminated;
A set of plate members arranged to sandwich the battery group; and
A plurality of connecting rods for connecting the set of plate members to hold the stacked state of the battery group;
At least one of the set of plate members is
A pair of presser plates;
At least one elastic member interposed between the pair of presser plates and not inserted into the connecting rod ;
A cell stack for a redox flow battery, wherein the cell stack is a unit that includes a fixing member that connects the pair of pressing plates and maintains the elastic member sandwiched between the pair of pressing plates .
前記一組のプレート部材のうち、一方が前記ユニットであり、他方は、押え板である請求項に記載のレドックスフロー電池用セルスタック。 The redox flow battery cell stack according to claim 1 , wherein one of the pair of plate members is the unit, and the other is a holding plate. 前記プレート部材には、前記連結棒が嵌め込まれる切欠を具える請求項1又は請求項2に記載のレドックスフロー電池用セルスタック。 The cell stack for a redox flow battery according to claim 1, wherein the plate member includes a notch into which the connecting rod is fitted. 前記弾性部材はいずれも、前記一対の押え板を前記電池群の積層方向に平面視したとき、前記一対の押え板と前記電池群とが重なる領域に配置されている請求項1から請求項3のいずれか1項に記載のレドックスフロー電池用セルスタック。 Wherein both the elastic member is a plan view of the pair of presser plates in the stacking direction of said cell group, claims 1 to 3, which is located at an area where the pair of the pressing plate and the group of batteries overlap The cell stack for redox flow batteries according to any one of the above. 一組のプレート部材を用意し、そのうち、少なくとも一方は、一対の押え板の間に少なくとも一つの弾性部材を配置すると共に前記一対の押え板を連結する固定部材を配置して、前記固定部材によって前記弾性部材が前記一対の押え板の間に挟持された状態が維持されたユニットを用意する工程と、
複数の電池要素が積層されてなる電池群の両側にそれぞれ、前記プレート部材を配置して、前記一組のプレート部材間に前記電池群を挟んだ組物を得る工程と、
前記組物が所定の寸法となるように前記組物を加圧装置によって圧縮した状態で、前記組物に複数の連結棒を配置し、前記弾性部材に挿通されないこれらの連結棒によって前記一組のプレート部材を連結すると共に、前記組物の圧縮状態を固定した後、前記加圧装置による加圧を解放する工程とを具えるレドックスフロー電池用セルスタックの製造方法。
A pair of plate members is prepared, and at least one of them is arranged with at least one elastic member between a pair of presser plates and a fixing member for connecting the pair of presser plates, and the elastic member is provided by the fixing member. a step member is prepared a unit clamped state is maintained between the pair of the pressing plate,
Arranging each of the plate members on each side of a battery group in which a plurality of battery elements are stacked, and obtaining an assembly in which the battery group is sandwiched between the set of plate members;
A plurality of connecting rods are arranged in the assembly in a state in which the assembly is compressed by a pressurizing device so that the assembly has a predetermined size, and the one set is not inserted through the elastic member. A method for manufacturing a cell stack for a redox flow battery, comprising: connecting the plate members; and releasing the pressurization by the pressurizing device after fixing the compressed state of the assembly.
JP2013008793A 2013-01-21 2013-01-21 Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery Active JP5971618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008793A JP5971618B2 (en) 2013-01-21 2013-01-21 Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008793A JP5971618B2 (en) 2013-01-21 2013-01-21 Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery

Publications (2)

Publication Number Publication Date
JP2014139905A JP2014139905A (en) 2014-07-31
JP5971618B2 true JP5971618B2 (en) 2016-08-17

Family

ID=51416519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008793A Active JP5971618B2 (en) 2013-01-21 2013-01-21 Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery

Country Status (1)

Country Link
JP (1) JP5971618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469436B2 (en) 2017-07-14 2022-10-11 Elringklinger Ag Fuel cell device
KR20230131426A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack for aligning a plurality of battery cells

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575785B (en) 2014-11-06 2019-06-14 住友电气工业株式会社 Battery battery core and redox flow batteries
US10790530B2 (en) 2014-11-06 2020-09-29 Sumitomo Electric Industries, Ltd. Cell frame and redox flow battery
EP3217460B1 (en) 2014-11-06 2018-06-06 Sumitomo Electric Industries, Ltd. Battery cell and redox flow battery
CN105552422B (en) * 2016-02-23 2018-07-06 湖南省银峰新能源有限公司 A kind of vanadium cell pile and its assembly technology
WO2018105091A1 (en) 2016-12-08 2018-06-14 住友電気工業株式会社 Redox flow battery
JP6803004B2 (en) * 2017-03-09 2020-12-23 トヨタ自動車株式会社 Fuel cell inspection device
US11462764B2 (en) 2020-05-15 2022-10-04 Ess Tech, Inc. Double-stack redox flow battery
JP7557381B2 (en) 2021-01-06 2024-09-27 デンカ株式会社 Pressurizing Device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248368A (en) * 1985-04-25 1986-11-05 Mitsubishi Electric Corp Clamping device of layer-built type fuel cell
JPS6231942A (en) * 1985-08-02 1987-02-10 Furukawa Electric Co Ltd:The Stacked battery
JPS6234762U (en) * 1985-08-19 1987-02-28
JPH1197054A (en) * 1997-09-22 1999-04-09 Sanyo Electric Co Ltd Fastening structure and method of layered body
JP3979774B2 (en) * 2000-09-25 2007-09-19 クロリンエンジニアズ株式会社 Redox flow battery
JP4227736B2 (en) * 2001-04-04 2009-02-18 三菱重工業株式会社 Solid polymer water electrolysis cell structure
JP2008060012A (en) * 2006-09-01 2008-03-13 Chuo Spring Co Ltd Cell pressing assembly for fuel cell
CN101542816B (en) * 2007-01-09 2012-04-25 松下电器产业株式会社 Fuel cell
JP5227015B2 (en) * 2007-12-27 2013-07-03 トヨタ自動車株式会社 Fuel cell stack
US10651492B2 (en) * 2010-06-22 2020-05-12 Vrb Energy Inc. Integrated system for electrochemical energy storage system
JP5558502B2 (en) * 2012-02-06 2014-07-23 東芝燃料電池システム株式会社 FUEL CELL, METHOD FOR MANUFACTURING THE SAME

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469436B2 (en) 2017-07-14 2022-10-11 Elringklinger Ag Fuel cell device
KR20230131426A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack for aligning a plurality of battery cells
KR20230131431A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack with belt
KR20230131432A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack that stably fixes a plurality of battery cells
KR20230131429A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack with improved connectivity
KR20230131427A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack capable of aligning a plurality of battery cells
KR20230131430A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack with improved adhesion
KR20230131433A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack in which a plurality of battery cells are stacked in series
KR20230131428A (en) * 2022-03-04 2023-09-13 주식회사 시너지 Fuel cell stack with improved fixing power by preventing shaking of auxiliary members
KR102682426B1 (en) 2022-03-04 2024-07-09 주식회사 시너지 Fuel cell stack with improved fixing power by preventing shaking of auxiliary members
KR102682429B1 (en) 2022-03-04 2024-07-11 주식회사 시너지 Fuel cell stack capable of aligning a plurality of battery cells
KR102682445B1 (en) 2022-03-04 2024-07-11 주식회사 시너지 Fuel cell stack for aligning a plurality of battery cells
KR102685605B1 (en) 2022-03-04 2024-07-18 주식회사 시너지 Fuel cell stack that stably fixes a plurality of battery cells
KR102685610B1 (en) 2022-03-04 2024-07-18 주식회사 시너지 Fuel cell stack with belt
KR102685614B1 (en) 2022-03-04 2024-07-18 주식회사 시너지 Fuel cell stack with improved connectivity
KR102685613B1 (en) 2022-03-04 2024-07-18 주식회사 시너지 Fuel cell stack with improved adhesion
KR102685599B1 (en) 2022-03-04 2024-07-18 주식회사 시너지 Fuel cell stack in which a plurality of battery cells are stacked in series

Also Published As

Publication number Publication date
JP2014139905A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5971618B2 (en) Cell stack for redox flow battery and method for manufacturing cell stack for redox flow battery
DE102008026858B4 (en) Fuel cell system with a flexible belt system to maintain compression of the fuel cells
US10418648B2 (en) Method for producing bipolar plates
CA2989410C (en) Fuel cell stack with compression bands along the planar surfaces of the stack
US10777913B2 (en) Leaf spring compression system design
US20240063418A1 (en) Systems and methods of fuel cell stack compression
JP6328639B2 (en) Fuel cell stack assembly
JP2012099368A (en) Cell stack, cell frame, redox flow battery, and cell stack manufacturing method
JP6123773B2 (en) Fuel cell device
JP5281342B2 (en) Solid polymer water electrolyzer and its assembly method
DE102007059449A1 (en) Fuel cell compression mounting system with planar strips
US10041178B2 (en) End pressure plate for electrolysers
JP2017208178A (en) Cell stack and redox flow battery
JP2010212149A (en) Fuel cell stack
WO2017010150A1 (en) Cell stack and redox flow battery
JP7120088B2 (en) Fastening mechanism for fuel cell stack
AT518279A4 (en) Spacer for cell stack
US20240263322A1 (en) Methods, devices, and systems for controlling compression of an electrochemical cell stack
JP2015032435A (en) Unit cell for fuel battery, fuel battery, method of stacking unit cells for fuel battery, and device for stacking unit cells for fuel battery
KR20130083280A (en) Fastener for stack and fuel cell stack using the same
WO2016117262A1 (en) Redox-flow battery operation method and redox-flow battery
JP2017174686A (en) Redox flow battery, cell frame, and cell stack
WO2024067924A1 (en) Solid-state battery system
DE102020212737A1 (en) fuel cell unit
JP2015053191A (en) Electrolyte circulating battery, supply and discharge plate of electrolyte circulating battery, and connection structure between supply and discharge plate and conduit of electrolyte circulating battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5971618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160703

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250