JP5970560B2 - Method for predicting survival time of patients suffering from solid cancer based on B cell density - Google Patents
Method for predicting survival time of patients suffering from solid cancer based on B cell density Download PDFInfo
- Publication number
- JP5970560B2 JP5970560B2 JP2014552648A JP2014552648A JP5970560B2 JP 5970560 B2 JP5970560 B2 JP 5970560B2 JP 2014552648 A JP2014552648 A JP 2014552648A JP 2014552648 A JP2014552648 A JP 2014552648A JP 5970560 B2 JP5970560 B2 JP 5970560B2
- Authority
- JP
- Japan
- Prior art keywords
- tumor
- density
- cells
- reference value
- predetermined reference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010028980 Neoplasm Diseases 0.000 title claims description 147
- 210000003719 b-lymphocyte Anatomy 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 49
- 230000004083 survival effect Effects 0.000 title claims description 41
- 201000011510 cancer Diseases 0.000 title claims description 16
- 239000007787 solid Substances 0.000 title claims description 6
- 210000004027 cell Anatomy 0.000 claims description 92
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 44
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 44
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 13
- 238000004393 prognosis Methods 0.000 claims description 13
- 210000003071 memory t lymphocyte Anatomy 0.000 claims description 12
- 238000010837 poor prognosis Methods 0.000 claims description 9
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 7
- 206010009944 Colon cancer Diseases 0.000 claims description 6
- 231100000433 cytotoxic Toxicity 0.000 claims 1
- 230000001472 cytotoxic effect Effects 0.000 claims 1
- 230000009545 invasion Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 45
- 239000000523 sample Substances 0.000 description 30
- 201000010099 disease Diseases 0.000 description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 28
- 210000001744 T-lymphocyte Anatomy 0.000 description 24
- 238000012360 testing method Methods 0.000 description 11
- 239000000427 antigen Substances 0.000 description 8
- 230000002688 persistence Effects 0.000 description 8
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 210000002865 immune cell Anatomy 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000002771 cell marker Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000002493 microarray Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 208000006990 cholangiocarcinoma Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 208000005024 Castleman disease Diseases 0.000 description 2
- 208000006332 Choriocarcinoma Diseases 0.000 description 2
- 102100032768 Complement receptor type 2 Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 206010028767 Nasal sinus cancer Diseases 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 201000010208 Seminoma Diseases 0.000 description 2
- 238000011226 adjuvant chemotherapy Methods 0.000 description 2
- 238000011394 anticancer treatment Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 208000026900 bile duct neoplasm Diseases 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 201000003115 germ cell cancer Diseases 0.000 description 2
- 201000011066 hemangioma Diseases 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 208000006468 Adrenal Cortex Neoplasms Diseases 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102100027205 B-cell antigen receptor complex-associated protein alpha chain Human genes 0.000 description 1
- 101710166261 B-cell antigen receptor complex-associated protein beta chain Proteins 0.000 description 1
- 102100027203 B-cell antigen receptor complex-associated protein beta chain Human genes 0.000 description 1
- -1 B220 (CD45R) Proteins 0.000 description 1
- 206010061692 Benign muscle neoplasm Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 208000000527 Germinoma Diseases 0.000 description 1
- 208000002966 Giant Cell Tumor of Bone Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010018498 Goitre Diseases 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 206010019629 Hepatic adenoma Diseases 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- 108010090227 Immunoglobulin kappa-Chains Proteins 0.000 description 1
- 108010004020 Immunoglobulin lambda-Chains Proteins 0.000 description 1
- 238000012351 Integrated analysis Methods 0.000 description 1
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 208000000265 Lobular Carcinoma Diseases 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 201000004458 Myoma Diseases 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 208000001715 Osteoblastoma Diseases 0.000 description 1
- 208000000035 Osteochondroma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 208000003937 Paranasal Sinus Neoplasms Diseases 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 108010079855 Peptide Aptamers Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 206010046799 Uterine leiomyosarcoma Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 206010065867 alveolar rhabdomyosarcoma Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 201000011143 bone giant cell tumor Diseases 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 201000003714 breast lobular carcinoma Diseases 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 201000003908 endometrial adenocarcinoma Diseases 0.000 description 1
- 208000029382 endometrium adenocarcinoma Diseases 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 201000003872 goiter Diseases 0.000 description 1
- 201000000079 gynecomastia Diseases 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000013090 high-throughput technology Methods 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 210000002861 immature t-cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000014899 intrahepatic bile duct cancer Diseases 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 201000010985 invasive ductal carcinoma Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 201000004962 larynx cancer Diseases 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000001806 memory b lymphocyte Anatomy 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000010879 mucinous adenocarcinoma Diseases 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108091008104 nucleic acid aptamers Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 201000005163 papillary serous adenocarcinoma Diseases 0.000 description 1
- 208000024641 papillary serous cystadenocarcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 201000007052 paranasal sinus cancer Diseases 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 201000002511 pituitary cancer Diseases 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 201000009463 pleomorphic rhabdomyosarcoma Diseases 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/7051—T-cell receptor (TcR)-CD3 complex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70517—CD8
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70589—CD45
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70596—Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
発明の属する技術分野
本発明は、固形癌に苦しむ患者の生存時間の予後診断のための方法及びキットに関する。
TECHNICAL FIELD The present invention relates to methods and kits for prognosis of survival time of patients suffering from solid cancer.
発明の背景
癌は、免疫系と腫瘍の間での相互作用を含む複雑な疾患である1。結腸直腸癌における「高い」腫瘍内及び周囲の適応免疫反応と良好な予後との相関が、以前に報告された。対照的に、T細胞の「低い」密度は、不良な予後と相関した2−4。実際に、現在利用可能な全ての種々の臨床的及び組織病理学的基準の内5、6、免疫T細胞浸潤が、生存についての最も重要な予測基準であることが示された2、7−9。これは、また、免疫監視及び免疫編集(immunoediting)のマウスモデルにより支持される10−12。細胞免疫学及び腫瘍生物学における最近の進歩は、養子T細胞治療への新たなアプローチを案内しており13、有望な結果を伴う14。しかし、依然として、患者において癌の転帰を予測するために医師を助けうる、他の信頼できる方法についての必要性がある。
BACKGROUND OF THE INVENTION Cancer is a complex disease that involves interactions between the immune system and tumors 1 . A correlation between a “high” intratumoral and surrounding adaptive immune response in colorectal cancer and a good prognosis has been reported previously. In contrast, the “low” density of T cells correlated with poor prognosis 2-4 . Indeed, of all the various clinical and histopathological criteria currently available 5,6 , immune T cell infiltration has been shown to be the most important predictive criterion for survival 2,7- 9 . This is also supported by a mouse model of immune surveillance and immunoediting 10-12 . Recent advances in cellular immunology and tumor biology have guided a new approach to adoptive T cell therapy 13 with promising results 14 . However, there is still a need for other reliable methods that can help physicians to predict cancer outcomes in patients.
発明の概要
本発明は、固形癌に苦しむ患者の生存時間を予測するための方法に関し、以下からなる工程を含む:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)でB細胞の密度を決定すること、ii)前記密度を所定の参照値と比較すること、ならびにiii)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも高い場合に良好な予後を、及び、腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低い場合に不良な予後を提供すること。
SUMMARY OF THE INVENTION The present invention relates to a method for predicting the survival time of a patient suffering from solid cancer comprising the steps consisting of: i) a tumor invasion margin (im) in a tumor tissue sample obtained from said patient Ii) comparing the density with a predetermined reference value, and iii) if the density of B cells at the infiltrating margin of the tumor is higher than the predetermined reference value Providing a poor prognosis if the B cell density at the infiltrating margin of the tumor is lower than a predetermined reference value.
発明の詳細な説明
統合的分析を適用し、本発明者らは、腫瘍において最も生得的な及び適応性の免疫細胞亜集団を含む28の異なる細胞型からの遺伝子発現及び細胞密度を研究した。本発明者らは、特定の腫瘍ステージに関連付けられた免疫細胞のクラスターを見出した。それらの内、B及びTリンパ球は、コアネットワーク内で組織化され、腫瘍の進行及び好ましい予後と相関する最も顕著な免疫細胞である。特に、本発明者らは、腫瘍の浸潤縁においてB細胞の高い密度を伴う患者が、長期の無病生存を有するのに対し、腫瘍の浸潤縁においてB細胞の低い密度を伴う患者は、不良な予後を有することを実証した。腫瘍の少なくとも1つの領域(im及び/又はct)におけるB細胞マーカーとCD3、CD8、及びCDR45ROからなる群より選択される少なくとも1つのマーカーとの組み合わせは、また、患者のより良好な識別を与えた。
DETAILED DESCRIPTION OF THE INVENTION Applying an integrated analysis, we studied gene expression and cell density from 28 different cell types, including the most innate and adaptive immune cell subpopulations in tumors. The inventors have found a cluster of immune cells associated with a particular tumor stage. Among them, B and T lymphocytes are the most prominent immune cells that are organized in the core network and correlate with tumor progression and favorable prognosis. In particular, we found that patients with high B cell density at the tumor infiltrate have long disease-free survival, whereas patients with low B cell density at the tumor infiltrate are poor. Proven to have a prognosis. The combination of the B cell marker in at least one region of the tumor (im and / or ct) and at least one marker selected from the group consisting of CD3, CD8 and CDR45RO also gives better patient identification It was.
したがって、本発明は、固形癌に苦しむ患者の生存時間を予測するための方法に関し、以下からなる工程を含む:i)前記患者から得られた腫瘍組織サンプル中での腫瘍の浸潤縁(im)でB細胞の密度を決定すること、ii)前記密度を所定の参照値と比較すること、ならびにiii)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも高い場合に良好な予後を、及び、腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低い場合に不良な予後を提供すること。 Accordingly, the present invention relates to a method for predicting the survival time of a patient suffering from solid cancer comprising the steps consisting of: i) a tumor infiltration margin (im) in a tumor tissue sample obtained from said patient Ii) comparing the density with a predetermined reference value, and iii) if the density of B cells at the infiltrating margin of the tumor is higher than the predetermined reference value Providing a poor prognosis if the B cell density at the infiltrating margin of the tumor is lower than a predetermined reference value.
一実施態様において、患者は、以下からなる群より選択される癌に苦しむ:副腎皮質癌、肛門癌、胆管癌(例えば、肺門(periphilar)癌、下部胆管癌、肝内胆管癌)、膀胱癌、骨癌(例えば、骨芽細胞腫、骨軟骨腫(osteochrondroma)、血管腫、軟骨粘液線維腫、骨肉腫、軟骨肉腫、線維肉腫、悪性線維性組織球腫、骨の巨細胞腫、脊索腫、リンパ腫、多発性骨髄腫)、脳及び中枢神経系の癌(例えば、髄膜腫、星状細胞腫(astocytoma)、乏突起膠腫、上衣腫、神経膠腫、髄芽腫、神経節膠腫、神経鞘腫、胚細胞腫、頭蓋咽頭腫)、乳癌(例えば、非浸潤性乳管癌、浸潤性腺管癌、浸潤性小葉癌、非浸潤性小葉癌、女性化乳房)、キャッスルマン病(例えば、巨大リンパ節過形成、血管胞状リンパ節過形成)、子宮頚癌、結腸直腸癌、子宮内膜癌(例えば、子宮内膜腺癌、腺棘細胞腫(adenocanthoma)、乳頭状漿液性腺癌(papillary serous adnocarcinoma)、明細胞)、食道癌、胆嚢癌(粘液腺癌、小細胞癌)、消化管カルチノイド腫瘍(例えば、絨毛癌、破壊性絨毛腺腫)、ホジキン病、非ホジキンリンパ腫、カポジ肉腫、腎臓癌(例えば、腎細胞癌)、喉頭及び下咽頭癌、肝臓癌(例えば、血管腫、肝腺腫、限局性結節性過形成、肝細胞癌)、肺癌(例えば、小細胞肺癌、非小細胞肺癌)、中皮腫、形質細胞腫、鼻腔及び副鼻腔癌(例えば、鼻腔神経芽細胞腫、正中肉芽腫)、上咽頭癌、神経芽腫、口腔及び咽頭癌、卵巣癌、膵臓癌、陰茎癌、下垂体癌、前立腺癌、網膜芽細胞腫、横紋筋肉腫(例えば、胎児性横紋筋肉腫、歯槽横紋筋肉腫、多形性横紋筋肉腫)、唾液腺癌、皮膚癌(例えば、黒色腫、非黒色腫皮膚癌)、胃癌、精巣癌(例えば、セミノーマ、非セミノーマ胚細胞癌)、胸腺癌、甲状腺癌(例えば、濾胞癌、未分化癌、低分化癌、甲状腺髄様癌、甲状腺腫)、膣癌、外陰癌、及び子宮癌(例えば、子宮平滑筋肉腫)。 In one embodiment, the patient suffers from a cancer selected from the group consisting of: adrenocortical cancer, anal cancer, bile duct cancer (eg, peripillar cancer, lower bile duct cancer, intrahepatic bile duct cancer), bladder cancer Bone cancer (eg, osteoblastoma, osteochondroma), hemangioma, chondromyx fibromas, osteosarcoma, chondrosarcoma, fibrosarcoma, malignant fibrous histiocytoma, giant cell tumor of bone, chordoma , Lymphoma, multiple myeloma), cancer of the brain and central nervous system (eg meningioma, astrocytoma, oligodendroglioma, ependymoma, glioma, medulloblastoma, ganglion) , Schwannoma, germinoma, craniopharyngioma), breast cancer (eg, noninvasive ductal carcinoma, invasive ductal carcinoma, invasive lobular carcinoma, noninvasive lobular carcinoma, gynecomastia), Castleman disease (For example, giant lymph node hyperplasia, vascular alveolar lymph Hyperplasia), cervical cancer, colorectal cancer, endometrial cancer (eg, endometrial adenocarcinoma, adenocanthoma, papillary serous adenocarcinoma, clear cell), esophageal cancer Gallbladder cancer (mucinous adenocarcinoma, small cell carcinoma), gastrointestinal carcinoid tumor (eg choriocarcinoma, destructive choriocarcinoma), Hodgkin's disease, non-Hodgkin's lymphoma, Kaposi's sarcoma, kidney cancer (eg renal cell carcinoma), larynx And hypopharyngeal cancer, liver cancer (eg, hemangioma, hepatic adenoma, localized nodular hyperplasia, hepatocellular carcinoma), lung cancer (eg, small cell lung cancer, non-small cell lung cancer), mesothelioma, plasmacytoma, Nasal and paranasal sinus cancer (eg, nasal neuroblastoma, median granulomas), nasopharyngeal cancer, neuroblastoma, oral and pharyngeal cancer, ovarian cancer, pancreatic cancer, penile cancer, pituitary cancer, prostate cancer, retinoblastoma Cell tumor, lateral Myoma (eg, fetal rhabdomyosarcoma, alveolar rhabdomyosarcoma, pleomorphic rhabdomyosarcoma), salivary gland cancer, skin cancer (eg, melanoma, non-melanoma skin cancer), stomach cancer, testicular cancer ( For example, seminoma, non-seminoma germ cell cancer), thymic cancer, thyroid cancer (eg follicular cancer, undifferentiated cancer, poorly differentiated cancer, medullary thyroid cancer, goiter), vaginal cancer, vulvar cancer, and uterine cancer (eg Uterine leiomyosarcoma).
本明細書において使用する通り、用語「腫瘍組織サンプル」は、当技術分野におけるその一般的な意味を有し、外科的腫瘍切除後又は生検のための組織サンプルの収集後を含む、除去された組織の小片又はスライスを包含する。組織腫瘍サンプルは、腫瘍を囲む浸潤縁を含むものとし、腫瘍の中心を含みうる又は含まないであろう。本明細書において使用する通り、「浸潤縁」は、当技術分野におけるその一般的な意味を有し、腫瘍を囲む細胞環境を指す。腫瘍組織サンプルは、もちろん、腫瘍の浸潤縁(im)でB細胞の密度を決定する前に、種々の周知の収集後の調製及び保存技術(例えば、固定、保存、凍結など)に供することができる。典型的には、組織腫瘍サンプルは、パラフィン包埋又は凍結されうる。 As used herein, the term “tumor tissue sample” has its general meaning in the art and is removed, including after surgical tumor resection or after collection of a tissue sample for biopsy. Includes small pieces or slices of tissue. The tissue tumor sample shall include the infiltrating margin surrounding the tumor and may or may not include the center of the tumor. As used herein, “invasive margin” has its general meaning in the art and refers to the cellular environment surrounding a tumor. Tumor tissue samples can of course be subjected to various well-known post-harvest preparation and storage techniques (eg, fixation, storage, freezing, etc.) before determining B cell density at the infiltrating margin (im) of the tumor. it can. Typically, tissue tumor samples can be paraffin embedded or frozen.
本発明の方法は、無病生存(DFS)又は全生存(OS)の持続のために特に適している。 The methods of the invention are particularly suitable for disease free survival (DFS) or overall survival (OS).
本明細書において使用する通り、用語「B細胞」は、当技術分野におけるその一般的な意味を有し、抗原について特異的な膜結合抗体を発現する骨髄において産生された細胞を指す。抗原との相互作用に続き、それは、抗原について特異的な抗体を分泌する形質細胞中に又は記憶B細胞中に分化する。「B細胞」及び「Bリンパ球」は、互換的に使用される。典型的には、B細胞は、それらの細胞表面でのB細胞マーカーの発現により特徴付けられる。本明細書において使用する通り、用語「B細胞マーカー」は、特定のB細胞について特異的な、B細胞上の表面分子を指す。本発明における使用のために適したB細胞マーカーは、しかし、限定されないが、表面IgG、カッパ及びラムダ鎖、Igアルファ(CD79アルファ)、Igベータ(CD79ベータ)、CD19、B220(CD45R)、CD20、CD21、CD22、CD23、CD27、又はB細胞について特異的な任意の他のCD抗原を含む。典型的には、B細胞はCD20+細胞である。 As used herein, the term “B cell” has its general meaning in the art and refers to a cell produced in the bone marrow that expresses a membrane-bound antibody specific for an antigen. Following interaction with the antigen, it differentiates into plasma cells that secrete antibodies specific for the antigen or into memory B cells. “B cells” and “B lymphocytes” are used interchangeably. Typically, B cells are characterized by the expression of B cell markers on their cell surface. As used herein, the term “B cell marker” refers to a surface molecule on a B cell that is specific for a particular B cell. B cell markers suitable for use in the present invention include, but are not limited to, surface IgG, kappa and lambda chains, Ig alpha (CD79 alpha), Ig beta (CD79 beta), CD19, B220 (CD45R), CD20 , CD21, CD22, CD23, CD27, or any other CD antigen specific for B cells. Typically, B cells are CD20 + cells.
腫瘍の浸潤縁でのB細胞の密度を決定することは、当技術分野における任意の周知の方法により決定されうる。典型的には、そのような方法は、腫瘍組織サンプルを、B細胞と選択的に相互作用することが可能な少なくとも1つの選択的な結合薬剤と接触させることを含む。選択的な結合薬剤は、ポリクローナル抗体又はモノクローナル抗体、抗体フラグメント、合成抗体、又は他のタンパク質特異的薬剤(例えば核酸又はペプチドアプタマーなど)でありうる。典型的には、選択的な結合薬剤は、B細胞マーカーのいずれか(例えばこれらの分子のいずれかについて特異的な抗体など)に結合する。好ましいB細胞選択的な結合薬剤は、CD19、CD20、CD21、CD22、又はCD37に結合する。特に好ましいB細胞選択的な結合薬剤は、CD20に結合する。いくつかの抗体が、先行技術において記載されており、多くの抗体が、また、実施例において記載する通りに商業的に利用可能である。B細胞の存在を顕微鏡又は自動解析システムにより検出可能にする抗体の検出のために、抗体を、検出可能な標識(例えば酵素、色素原、又は蛍光プローブなど)を用いて直接的にタグ付けしてもよい、又は検出可能な標識を用いてコンジュゲートされた二次抗体を用いて間接的に検出してもよい。 Determining the density of B cells at the infiltrating margin of the tumor can be determined by any well known method in the art. Typically, such methods involve contacting a tumor tissue sample with at least one selective binding agent capable of selectively interacting with B cells. The selective binding agent can be a polyclonal or monoclonal antibody, an antibody fragment, a synthetic antibody, or other protein-specific agent (such as a nucleic acid or peptide aptamer). Typically, the selective binding agent binds to any of the B cell markers, such as an antibody specific for any of these molecules. Preferred B cell selective binding agents bind to CD19, CD20, CD21, CD22, or CD37. A particularly preferred B cell selective binding agent binds to CD20. Several antibodies have been described in the prior art, and many antibodies are also commercially available as described in the examples. For detection of antibodies that allow the presence of B cells to be detected by a microscope or automated analysis system, the antibodies are directly tagged with a detectable label (such as an enzyme, chromogen, or fluorescent probe). Alternatively, it may be detected indirectly using a secondary antibody conjugated with a detectable label.
本発明に従った好ましい方法は、免疫組織化学である。典型的には、組織腫瘍サンプルを、最初に、目的の1つのB細胞マーカー(例えば、CD20)に対して向けられた標識抗体を用いてインキュベートする。洗浄後、目的の前記B細胞マーカーに結合している標識抗体を、適切な技術により明らかにし、標識の種類に依存して、標識抗体(例えば、放射性、蛍光、又は酵素標識)により生じる。複数の標識を、同時に実施することができる。あるいは、本発明の方法では、増幅システム(染色シグナルを増強するため)及び酵素分子に共役された二次抗体を使用してもよい。そのような共役された二次抗体が、例えば、Dakoから商業的に利用可能である(EnVisionシステム)。対比染色を使用してもよい(例えば、H&E、DAPI、Hoechst)。他の染色方法は、当業者に明らかであろう任意の適した方法又はシステム(自動、半自動、又は手動システムを含む)を使用して達成されうる。 A preferred method according to the present invention is immunohistochemistry. Typically, a tissue tumor sample is first incubated with a labeled antibody directed against one B cell marker of interest (eg, CD20). After washing, the labeled antibody bound to the B cell marker of interest is revealed by appropriate techniques and is generated by a labeled antibody (eg, radioactive, fluorescent, or enzyme label) depending on the type of label. Multiple labels can be performed simultaneously. Alternatively, the method of the invention may use an amplification system (to enhance the staining signal) and a secondary antibody conjugated to an enzyme molecule. Such conjugated secondary antibodies are commercially available from, for example, Dako (EnVision system). Counterstaining may be used (eg, H & E, DAPI, Hoechst). Other staining methods can be achieved using any suitable method or system (including automatic, semi-automatic, or manual systems) that will be apparent to those skilled in the art.
本明細書において使用する通り、B細胞の密度は、組織サンプルの表面積の1単位当たりでカウントされる、これらの細胞の数として(例えば、腫瘍組織サンプルの表面積のcm2又はmm2当たりでカウントされるB細胞の数として)表現されうる。本明細書において使用する通り、B細胞の密度は、また、サンプルの1容積単位当たりのB細胞の数として(例えば、腫瘍組織サンプルのcm3当たりのB細胞の数として)表現されうる。本明細書において使用する通り、B細胞の密度は、また、全細胞(100%に設定)当たりのB細胞のパーセンテージからなりうる。 As used herein, B cell density is counted as the number of these cells counted per unit of tissue sample surface area (eg, counted per cm 2 or mm 2 of tumor tissue sample surface area). As the number of B cells to be expressed). As used herein, B cell density can also be expressed as the number of B cells per volume unit of sample (eg, as the number of B cells per cm 3 of a tumor tissue sample). As used herein, the density of B cells can also consist of the percentage of B cells per total cell (set to 100%).
比較のために使用される所定の参照値は、本明細書において以下に記載する通りに決定されうる「カットオブ(cut−of)」値からなりうる。各々の生物学的マーカーについての各々の参照(「カットオフ」)値は、以下の工程を含む方法を行うことにより、予め決定してもよい:
a)癌患者からの腫瘍組織サンプルの収集を提供すること;
b)工程a)で提供された各々の腫瘍組織サンプルについて、対応する癌患者についての実際の臨床転帰に関連する情報(即ち、無病生存(DFS)又は全生存(OS)の持続)を提供すること;
c)任意の定量値の連続を提供すること;
d)工程a)で提供したコレクション中に含まれる各々の腫瘍組織サンプルについて、腫瘍の浸潤縁でB細胞密度を決定すること;
e)工程c)で提供した1つの特定の任意の定量値について、それぞれ2群において前記腫瘍組織サンプルを分類すること:(i)定量値の前記連続中に含まれる前記の任意の定量値よりも低い前記密度についての定量値を示す組織腫瘍サンプルを含む第1群;(ii)定量値の前記連続中に含まれる前記の任意の定量値よりも高い前記密度についての定量値を示す組織腫瘍サンプルを含む第2群;それにより、腫瘍組織サンプルの2群は、前記の特定の定量値について得られ、それにおいて、各々の群の腫瘍組織サンプルは別々に列挙される;
f)(i)工程e)で得られた定量値と(ii)工程f)で定義された第1及び第2群中に含まれた腫瘍組織サンプルが由来する患者での実際の臨床転帰の間で統計的有意性を算出すること;
g)工程d)で提供されたすべての任意の定量値がテストされるまで、工程f)及びg)を反復すること;
h)前記の所定の参照値(「カットオフ」値)を、最も高い統計的有意性(最も有意な)が工程g)で算出された任意の定量値からなるとして設定すること。
The predetermined reference value used for comparison may comprise a “cut-of” value that can be determined as described herein below. Each reference (“cutoff”) value for each biological marker may be predetermined by performing a method comprising the following steps:
a) providing a collection of tumor tissue samples from cancer patients;
b) For each tumor tissue sample provided in step a), provide information related to the actual clinical outcome for the corresponding cancer patient (ie disease-free survival (DFS) or overall survival (OS) duration) about;
c) providing a series of arbitrary quantitative values;
d) for each tumor tissue sample included in the collection provided in step a), determining the B cell density at the infiltrating margin of the tumor;
e) classifying the tumor tissue sample in each of two groups for one specific arbitrary quantitative value provided in step c): (i) from the arbitrary quantitative value included in the series of quantitative values A first group comprising a tissue tumor sample exhibiting a quantitative value for the density that is lower; (ii) a tissue tumor exhibiting a quantitative value for the density that is higher than the arbitrary quantitative value included in the series of quantitative values A second group comprising samples; thereby two groups of tumor tissue samples are obtained for said specific quantification value, wherein the tumor tissue samples of each group are listed separately;
f) the actual clinical outcome in the patient from which (i) the quantitative values obtained in step e) and (ii) the tumor tissue samples contained in the first and second groups defined in step f) are derived. Calculating statistical significance between them;
g) repeating steps f) and g) until all arbitrary quantitative values provided in step d) have been tested;
h) setting the predetermined reference value (“cutoff” value) as if the highest statistical significance (most significant) consists of any quantitative value calculated in step g).
それは上に開示する通り、前記方法は、不良な及び良好な予後の間の識別を許可する単一「カットオフ」値の設定を許す。実際には、それは、本明細書における実施例中に開示する通り、高い統計的有意値(例えば、低いP値)が、一般的に、連続的な任意の定量値の範囲について(単一の任意の定量値についてだけでなく)得られる。このように、上の「カットオフ」値を決定する方法の1つの代替の実施態様において、最小の統計的有意値(有意性の最小閾値、例えば、最大閾値P値)を任意に設定し、工程g)で算出した統計的有意値がより高い(より有意である、例えば、より低いP値)任意の定量値の範囲が保持され、それにより、定量値の範囲が提供される。定量値の前記範囲は、本発明に従った「カットオフ」値からなる。「カットオフ」値のこの特定の実施態様に従い、不良な又は良好な臨床転帰の予後を、工程i)で決定したB細胞密度を、前記「カットオフ」値を区切る値の範囲と比較することにより決定することができる。特定の実施態様において、定量値の範囲からなるカットオフ値は、最も高い統計的有意値が見出される定量値(例えば、一般的には、見出される最小P値)を中心とする値の範囲からなる。 As disclosed above, the method allows for the setting of a single “cut-off” value that allows discrimination between poor and good prognosis. In practice, as disclosed in the examples herein, it is generally understood that a high statistical significance value (eg, a low P value) is generally over a range of arbitrary quantitative values (single (Not only for any quantitative value). Thus, in one alternative embodiment of the method for determining the “cutoff” value above, optionally setting a minimum statistical significance value (minimum threshold of significance, eg, maximum threshold P value), Any range of quantitative values with a higher statistical significance value calculated in step g) (more significant, eg, lower P value) is retained, thereby providing a range of quantitative values. Said range of quantitative values consists of “cut-off” values according to the invention. According to this particular embodiment of the “cut-off” value, comparing the B cell density determined in step i) with a range of values delimiting said “cut-off” value, the prognosis of a poor or good clinical outcome. Can be determined. In certain embodiments, the cutoff value consisting of a range of quantitative values is from a range of values centered on the quantitative value for which the highest statistical significance value is found (eg, generally the lowest P value found). Become.
典型的には、所定の参照値は、全細胞(100%で設定)当たりのB細胞密度値(例えば、CD20+細胞の密度)からなりうるが、それは、不良な予後(例えば、短い無病生存時間)と相関し、対照的に、良好な予後(例えば、長い無病生存時間)と相関するB細胞密度値からなりうる。 Typically, a given reference value may consist of a B cell density value (eg, CD20 + cell density) per whole cell (set at 100%), which has a poor prognosis (eg, short disease-free survival time). ) And, in contrast, may consist of B cell density values that correlate with a good prognosis (eg, long disease-free survival time).
特定の実施態様において、比較工程は、それぞれ2群において細胞密度について測定した定量値の分類を含みうる:(i)細胞密度についての定量値が、所定の対応する参照値よりも高い場合に「Hi」と呼ばれる第1群及び(ii)細胞密度についての定量値が、所定の対応する参照値よりも低い場合に「Lo」と呼ばれる第2群。実施例から、比較ステップの結果が「Hi」値からなる場合、次に、良好な予後が提供されることが流れる(図1)。逆に、比較ステップの結果が「Lo」値からなる場合、次に、不良な予後が提供される(図1)。スコアは、また、表1に従って決定されうる。 In a particular embodiment, the comparison step may comprise a classification of quantitative values measured for cell density in each of the two groups: (i) if the quantitative value for cell density is higher than a predetermined corresponding reference value. A first group called “Hi” and (ii) a second group called “Lo” when the quantitative value for cell density is lower than a predetermined corresponding reference value. From the example, if the result of the comparison step consists of a “Hi” value, then it flows that a good prognosis is provided (FIG. 1). Conversely, if the result of the comparison step consists of a “Lo” value, then a poor prognosis is provided (FIG. 1). The score can also be determined according to Table 1.
本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で及び/又は腫瘍の中心(ct)で少なくとも1つのさらなる細胞型の密度を決定すること、ならびにii)前記密度を所定の参照値と比較すること。 The method of the invention may further comprise the steps of: i) at least one at the infiltrating margin (im) of the tumor and / or at the center of the tumor (ct) in the tumor tissue sample obtained from said patient. Determining the density of further cell types, and ii) comparing said density to a predetermined reference value.
典型的には、さらなる細胞型は、T細胞からなる群より又はT細胞の特定のサブセット(細胞傷害性T細胞もしくは記憶T細胞を含む)の間で選択される。 Typically, additional cell types are selected from the group consisting of T cells or between a specific subset of T cells, including cytotoxic T cells or memory T cells.
本明細書において使用する通り、用語「T細胞」は、当技術分野におけるその一般的な意味を有し、T細胞系統内の細胞(胸腺細胞、未熟T細胞、成熟T細胞、及び同様のものを含む)を含む。典型的には、T細胞は、それらの細胞表面でのT細胞マーカーの発現により特徴付けられる。本明細書において使用する通り、用語「T細胞マーカー」は、特定のT細胞について特異的であるT細胞上の表面分子を指す。本発明における使用のために適したT細胞マーカーは、しかし、限定されないが、表面CD3、CD4、CD8、CD45RO、又はT細胞について特異的な任意の他のCD抗原を含む。典型的には、T細胞はCD3+細胞である。 As used herein, the term “T cell” has its general meaning in the art and includes cells within the T cell lineage (thymocytes, immature T cells, mature T cells, and the like). Including). Typically, T cells are characterized by the expression of T cell markers on their cell surface. As used herein, the term “T cell marker” refers to a surface molecule on a T cell that is specific for a particular T cell. Suitable T cell markers for use in the present invention include, but are not limited to, surface CD3, CD4, CD8, CD45RO, or any other CD antigen specific for T cells. Typically, T cells are CD3 + cells.
本明細書において使用する通り、用語「細胞傷害性T細胞」は、当技術分野におけるその一般的な意味を有し、T細胞を指し、一度、MHC−抗原複合体により活性化されると、タンパク質パーフォリンを放出し、それは標的細胞の原形質膜中に孔を形成する;これは、イオン及び水が標的細胞中に流れることを起こし、それが膨張し、最終的に溶解するようにする。細胞傷害性T細胞は、また、グランザイム(パーフォリン形成孔を介して標的細胞に入り、アポトーシス(細胞死)を誘導することができるセリンプロテアーゼ)を放出する。大半の細胞傷害性T細胞は、細胞表面上に存在するタンパク質CD8を有し、それは、クラスI MHC分子の部分に誘引される。典型的には、細胞傷害性T細胞はCD8+細胞である。 As used herein, the term “cytotoxic T cell” has its general meaning in the art and refers to a T cell, once activated by an MHC-antigen complex, Releases the protein perforin, which forms pores in the plasma membrane of the target cell; this causes ions and water to flow into the target cell, causing it to swell and eventually lyse. Cytotoxic T cells also release granzyme, a serine protease that can enter target cells through the perforin pore and induce apoptosis (cell death). Most cytotoxic T cells have the protein CD8 present on the cell surface, which is attracted to parts of class I MHC molecules. Typically, cytotoxic T cells are CD8 + cells.
本明細書において使用する通り、用語「記憶T細胞」は、当技術分野におけるその一般的な意味を有し、それらが最初に遭遇する抗原に特異的であり、二次免疫応答の間に求められうるT細胞のサブセットを指す。記憶T細胞は、CDR45ROのそれらの細胞表面での発現により特徴付けられる。典型的には、記憶T細胞はCD45RO+細胞である。 As used herein, the term “memory T cells” has its general meaning in the art and is specific for the antigen it encounters first and is sought during a secondary immune response. Refers to a subset of T cells that can be obtained. Memory T cells are characterized by their expression on the cell surface of CDR45RO. Typically, memory T cells are CD45RO + cells.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)においてT細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the steps of: i) determining the density of T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)でT細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In a particular embodiment, the method of the invention may further comprise the steps of: i) determining the density of T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from said patient. And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)においてT細胞の密度を決定すること、ii)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)でT細胞の密度を決定すること、及びiii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the steps of: i) determining the density of T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. Ii) determining the density of T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from the patient, and iii) comparing the density to a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)において細胞傷害性T細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the step of: determining the density of cytotoxic T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で細胞傷害性T細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In a particular embodiment, the method of the invention may further comprise the step of: determining the density of cytotoxic T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from said patient And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)において細胞傷害性T細胞の密度を決定すること、ii)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で細胞傷害性T細胞の密度を決定すること、及びiii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the steps of: i) determining the density of cytotoxic T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. Determining, ii) determining the density of cytotoxic T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from the patient, and iii) comparing the density to a predetermined reference value about.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)において細胞傷害性T細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the step of: determining the density of cytotoxic T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)において記憶T細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the step of: determining the density of memory T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient; And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で記憶T細胞の密度を決定すること、及びii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the step of: determining the density of memory T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from said patient And ii) comparing the density with a predetermined reference value.
特定の実施態様において、本発明の方法は、さらに、以下からなる工程を含みうる:i)前記患者から得られた腫瘍組織サンプル中の腫瘍の中心(ct)において記憶T細胞の密度を決定すること、ii)前記患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で記憶T細胞の密度を決定すること、及びiii)前記密度を所定の参照値と比較すること。 In certain embodiments, the methods of the invention may further comprise the steps of: i) determining the density of memory T cells at the center of the tumor (ct) in a tumor tissue sample obtained from said patient. Ii) determining the density of memory T cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from the patient, and iii) comparing the density to a predetermined reference value.
前記の追加の細胞密度について、比較工程は、また、それぞれ2群において各々の細胞密度について測定した定量値の分類を含みうる:(i)細胞密度についての定量値が、所定の対応する参照値よりも高い場合に「Hi」と呼ばれる第1群及び(ii)細胞密度についての定量値が、所定の対応する参照値よりも低い場合に「Lo」と呼ばれる第2群。 For said additional cell density, the comparison step may also include a classification of quantitative values measured for each cell density in each of the two groups: (i) the quantitative value for the cell density is a predetermined corresponding reference value A first group called “Hi” when higher than, and (ii) a second group called “Lo” when the quantitative value for cell density is lower than a predetermined corresponding reference value.
B細胞密度について及び追加の密度について行われた分類の複合体であるスコアを、また、表1−9において描写する通りに算出し、比較工程の結果を理解することをより簡単にしうる。 Scores that are a complex of classifications made for B cell density and for additional densities may also be calculated as depicted in Tables 1-9 to make it easier to understand the results of the comparison process.
本発明の方法は、現在使用されるステージング方法(例えば、UICC−TNM)よりも高い精度である。したがって、本発明の方法は、抗癌処置の有効性をモニタリングするために適用することができる。例えば、本発明は、薬剤を用いた被験者の処置の有効性をモニタリングするための方法を提供し、以下の工程を含む:(i)本発明に従った方法を実施することにより、前記薬剤を投与する前に患者の生存時間を予測すること、(ii)本発明に従った方法を実施することにより、前記薬剤を投与した後に患者の生存時間を予測すること、(iii)工程a)の生存時間を、工程b)の生存時間と比較すること、及びiv)薬剤が、工程b)の生存時間が工程a)の生存時間よりも高い場合、癌の処置について効果的であるとの結論を提供すること。結論がネガティブである場合において、次に、医師は、異なる投与量を処方することにより又は投与すべき別の薬剤を処方することにより、処置を適応しうる。本発明の方法は、また、患者が処置(例えば、免疫療法薬剤)への応答者と考えられるか否かを決定するために特に適しうる。典型的には、良好な予後が本発明の方法により提供された場合、患者が処置について適格でありうる。本発明の方法は、また、アジュバント治療(例えば、化学療法)が要求されるか否かを決定するために特に適しうる。例えば、良好な予後が本発明の方法により提供された場合、その後の抗癌処置は、任意のアジュバント化学療法を含まないことがある。しかし、不良な予後が本発明の方法により提供された場合、次に、患者は、アジュバント化学療法について適格でありうる。 The method of the present invention is more accurate than currently used staging methods (eg, UICC-TNM). Thus, the methods of the invention can be applied to monitor the effectiveness of anticancer treatments. For example, the present invention provides a method for monitoring the effectiveness of treatment of a subject with a drug, comprising the following steps: (i) performing the method according to the present invention to Predicting patient survival time prior to administration, (ii) predicting patient survival time after administering said agent by performing a method according to the invention, (iii) of step a) Comparing the survival time with the survival time of step b) and iv) Conclusion that the drug is effective for the treatment of cancer if the survival time of step b) is higher than the survival time of step a) To provide. In the case where the conclusion is negative, the physician can then adapt the treatment by prescribing different dosages or by prescribing another drug to be administered. The methods of the invention may also be particularly suitable for determining whether a patient is considered a responder to a treatment (eg, an immunotherapeutic agent). Typically, a patient can be eligible for treatment if a good prognosis is provided by the methods of the invention. The methods of the invention may also be particularly suitable for determining whether adjuvant treatment (eg, chemotherapy) is required. For example, if a good prognosis is provided by the methods of the present invention, subsequent anti-cancer treatment may not include any adjuvant chemotherapy. However, if a poor prognosis is provided by the methods of the present invention, then the patient may be eligible for adjuvant chemotherapy.
本発明は、上に記載する細胞密度を決定するための手段を含む、本発明の方法を実施するためのキットを含む。例えば、本発明に従ったキットは、抗体の1つ又は組み合わせ又はセットを含みうるが、抗体の各々の種類は1つの細胞型に対して特異的に向けられる。適した手段は、抗体、抗体誘導体、抗体フラグメント、及び同様のものを含む。本発明のキットは、場合により、本発明の方法を実施するために有用な追加の構成成分を含みうる。例として、キットは、体液(例えば、緩衝液)、1つ又は複数のサンプルコンパートメント、本発明の方法の性能を記載する指示資料、及び同様のものを含みうる。 The present invention includes a kit for carrying out the method of the present invention comprising the means for determining the cell density described above. For example, a kit according to the present invention may comprise one or a combination or set of antibodies, each type of antibody being specifically directed to one cell type. Suitable means include antibodies, antibody derivatives, antibody fragments, and the like. The kits of the present invention can optionally include additional components useful for performing the methods of the present invention. By way of example, a kit can include body fluid (eg, buffer), one or more sample compartments, instructional materials that describe the performance of the methods of the invention, and the like.
本発明を、さらに、以下の図面及び実施例により例示する。しかし、これらの実施例及び図面は、本発明の範囲を限定するものとして任意の方法で解釈すべきではない。 The invention is further illustrated by the following figures and examples. However, these examples and drawings should not be construed in any way as limiting the scope of the invention.
実施例1:
材料&方法:
患者:
Laennec/HEGP(Hopital Europpeen George Pompidou)Hospitalで一次切除を受けた結腸直腸癌を伴う患者を、無作為に選択した(N=107)。検証コホート(N=415)は、以前に記載された(Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960-4.)。再発までの時間又は無病時間は、再発患者について手術の日から確認された腫瘍再発日まで及び無病患者について手術の日から最後の経過観察の日までの時間期間として定義した。安全なWebベースのデータベース(TME.db)によって、臨床データ及びハイスループット技術からのデータを統合した(36)。
Example 1:
Materials & methods:
patient:
Patients with colorectal cancer who underwent primary resection at Laennec / HEGP (Hopital Europpeen George Pompidou) Hospital were randomly selected (N = 107). The validation cohort (N = 415) was previously described (Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313 : 1960-4.). Time to recurrence or disease free time was defined as the time period from the date of surgery for the relapsed patient to the date of tumor recurrence confirmed and for the disease free patient from the date of surgery to the date of the last follow-up. A secure web-based database (TME.db) integrated clinical data and data from high-throughput technology (36).
組織マイクロアレイの構築
組織マイクロアレイ機器(Beecher Instruments, Alphelys, Plaisir, France)を使用して、本発明者らは、腫瘍の2つの異なる代表的な領域を選択した。腫瘍の中心(ct)及び浸潤縁(im)を、パラフィン包埋組織ブロックからパンチングした(それぞれ0.6mm及び1mm直径)。組織マイクロアレイを構築し、免疫組織化学的染色のために5μm切片に切断した。
Construction of Tissue Microarray Using tissue microarray equipment (Beecher Instruments, Alphelys, Plaisir, France), we selected two different representative regions of the tumor. Tumor center (ct) and infiltrating margin (im) were punched from paraffin-embedded tissue blocks (0.6 mm and 1 mm diameter, respectively). Tissue microarrays were constructed and cut into 5 μm sections for immunohistochemical staining.
免疫組織化学
抗原回復及び内因性ペルオキシダーゼ活性のクエンチング後、切片を、60分間にわたり室温で、CD3(SP7)、CD8(4B11)、CD45RO(OPD4)、及びCD20に対する抗体(L26;DAKO, Carpinteria, CA)を用いてインキュベートした。Envision+システム(二次抗体に共役させた酵素コンジュゲートポリマー骨格)及びDAB−クロモゲンを適用した(Dako, Copenhagen, Denmark)。組織切片を、Harrisのヘマトキシリンを用いて対比染色した。スライドを、画像分析ワークステーション(SpotBrowser, Alphelys, Plaisir, France)を使用して分析した。密度を、組織の表面積(mm2)当たりの陽性細胞の数として記録した。各々の重複について、平均密度を、さらなる統計分析のために使用した。
Immunohistochemistry After antigen retrieval and quenching of endogenous peroxidase activity, sections were subjected to antibodies against CD3 (SP7), CD8 (4B11), CD45RO (OPD4), and CD20 (L26; DAKO, Carpinteria, CA). Envision + system (enzyme conjugated polymer backbone conjugated to secondary antibody) and DAB-chromogen were applied (Dako, Copenhagen, Denmark). Tissue sections were counterstained with Harris hematoxylin. Slides were analyzed using an image analysis workstation (SpotBrowser, Alphelys, Plaisir, France). Density was recorded as the number of positive cells per tissue surface area (mm 2 ). For each overlap, the average density was used for further statistical analysis.
統計分析
カプランマイヤー曲線を使用し、無病生存に対する免疫パラメータの影響を評価した。これらのパラメータの有意性を、ログランク検定を用いて算出した。本発明者らは、中央値及び「最小P値」アプローチを使用して、患者の無病生存に基づくカットオフを適用し、患者をHi群及びLo群に分けた。対比較のために、ウィルコクソン順位和検定を使用した。P<0.05を統計的に有意と考えた。全ての分析を、統計ソフトウェアR及びStatviewを用いて実施した。
Statistical analysis Kaplan-Meier curves were used to assess the impact of immune parameters on disease-free survival. The significance of these parameters was calculated using a log rank test. We used a median and “minimum P-value” approach to apply a cut-off based on the disease-free survival of the patient, dividing the patient into Hi and Lo groups. The Wilcoxon rank sum test was used for pairwise comparisons. P <0.05 was considered statistically significant. All analyzes were performed using statistical software R and Statview.
結果:
腫瘍の中心及び浸潤縁からの組織マイクロアレイを使用したインサイチュ試験を実施した。B細胞(CD20)、T細胞(CD3)、細胞傷害性T細胞(CD8)、及び記憶T細胞(CD45RO)についての免疫染色を、専用の画像分析ワークステーションを用いて定量化した。腫瘍内の免疫細胞密度の正確な測定を、免疫細胞をカウントし、組織の表面積を測定することにより実施した。本発明者らは、B細胞密度に従って無病生存を評価した。カプランマイヤー曲線は、細胞(CD3)及び細胞傷害性T細胞(CD8)及び記憶T細胞(CD45RO)密度との組み合わせ又は無しにおける患者の生存率に対するCD20の予後相関効果(pejorative effect)を例示した(図1〜図10)。腫瘍の浸潤縁における高いCD20密度を伴う患者は、中心領域における低いCD20密度を伴う患者よりも良好な無病生存率を有した(図1)。CD20及びCD3、CD8及びCDR45ROマーカーの組み合わせは、非常に異なる転帰を伴う患者の群を定義した。例えば、CD20 Lo(im)ならびに、腫瘍の少なくとも1つの領域においてCD3、CD8、及びCDR45ROからなる群より選択される少なくとも1つの「Lo」マーカーを伴う患者は、劇的な転帰を有していた。対照的に、CD20 Hi(im)ならびに、腫瘍の少なくとも1つの領域においてCD3、CD8、及びCDR45ROからなる群より選択される少なくとも1つの「Hi」マーカーを伴う患者は、良好な転帰を有した(表11)。本発明者らは、組織マイクロアレイにより415の結腸直腸癌患者の非依存的コホートを分析することにより、結果を検証した。同様の結果が見出された(図11)。長い無病生存は、腫瘍の浸潤縁において高密度のCD20+細胞(Hi CD20(im))を含む腫瘍を伴う患者の間で観察された。腫瘍(im及び/又はct)の少なくとも1つの領域においてCD3、CD8、及びCDR45ROからなる群より選択される少なくとも1つの「Hi」マーカーを伴う患者は、最良の転帰を有した。同様のハザード比率及びP値が、両コホートにおいて見出された。
result:
In situ testing was performed using tissue microarrays from the tumor center and infiltrating margin. Immunostaining for B cells (CD20), T cells (CD3), cytotoxic T cells (CD8), and memory T cells (CD45RO) was quantified using a dedicated image analysis workstation. Accurate measurement of immune cell density within the tumor was performed by counting immune cells and measuring tissue surface area. We evaluated disease free survival according to B cell density. The Kaplan-Meier curve exemplifies the prognostic effect of CD20 on patient survival in combination with or without cell (CD3) and cytotoxic T cell (CD8) and memory T cell (CD45RO) density ( 1 to 10). Patients with high CD20 density at the infiltrating margin of the tumor had better disease-free survival than patients with low CD20 density in the central region (FIG. 1). The combination of CD20 and CD3, CD8 and CDR45RO markers defined groups of patients with very different outcomes. For example, patients with CD20 Lo (im) and at least one “Lo” marker selected from the group consisting of CD3, CD8, and CDR45RO in at least one region of the tumor had a dramatic outcome. . In contrast, patients with CD20 Hi (im) and at least one “Hi” marker selected from the group consisting of CD3, CD8, and CDR45RO in at least one region of the tumor had a good outcome ( Table 11). We verified the results by analyzing an independent cohort of 415 colorectal cancer patients by tissue microarray. Similar results were found (Figure 11). Long disease-free survival was observed among patients with tumors that contained a high density of CD20 + cells (Hi CD20 (im)) at the infiltrating margin of the tumor. Patients with at least one “Hi” marker selected from the group consisting of CD3, CD8, and CDR45RO in at least one region of the tumor (im and / or ct) had the best outcome. Similar hazard ratios and P values were found in both cohorts.
結論:
結論として、腫瘍の浸潤縁において高密度のB細胞を伴う患者は、長期の無病生存を有していたのに対し、腫瘍の浸潤縁において低密度のB細胞を伴う患者は、不良な予後を有していた。このマーカーと、腫瘍(im及び/又はct)の少なくとも1つの領域においてCD3、CD8、及びCDR45ROからなる群より選択される少なくとも1つのマーカーとの組み合わせは、また、患者のより良好な識別を与えた。免疫学的スコアは次に表1−10に従って算出することができる。
Conclusion:
In conclusion, patients with high density B cells at the tumor infiltrating margin had long disease-free survival, whereas patients with low density B cells at the tumor infiltrating margin had a poor prognosis. Had. The combination of this marker with at least one marker selected from the group consisting of CD3, CD8, and CDR45RO in at least one region of the tumor (im and / or ct) also gives better patient identification It was. The immunological score can then be calculated according to Tables 1-10.
参考文献:
本願を通して、種々の参考文献が、本発明が関係する技術分野の状態を記載する。これらの参考文献の開示は、本開示への参照により、本明細書により組み入れられる。
References:
Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into this disclosure.
Claims (5)
該患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)でCD20+B細胞の密度を決定すること、
該患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)で、及び腫瘍の中心(ct)で、CD8+細胞傷害性T細胞又はCD45RO+記憶T細胞から選択される一つのさらなる細胞型の密度を決定すること、
各密度を所定の参照値と比較すること;及び
a)
a1)腫瘍の浸潤縁でのCD20+B細胞の密度が、所定の参照値よりも高く;そして
a2)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも高く;そして
a3)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも高い場合に良好な予後を;
b)
b1)腫瘍の浸潤縁でのCD20+B細胞の密度が、所定の参照値よりも高く;そして
b2)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも低く;そして
b3)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも高いか;又は
b’1)腫瘍の浸潤縁でのCD20+B細胞の密度が、所定の参照値よりも高く;そして
b’2)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも高く;そして
b’3)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも低いか;
又は
b’’1)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低く;そして
b’’2)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも高く;そして
b’’3)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも高いか;
又は
bi)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも高く;そして
bii)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも低く;そして
biii)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも低いか;
又は
b’i)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低く;そして
b’ii)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも低く;そして
b’iii)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも高いか;
又は
b’’i)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低く;そして
b’’ii)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも高く;そして
b’’iii)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも低い場合に中等度の予後を;
c)
c1)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低く;
c2)腫瘍の浸潤縁(im)での該さらなる細胞型の密度が、所定の参照値よりも低く;そして
c3)腫瘍の中心(ct)での該さらなる細胞型の密度が、所定の参照値よりも低い場合に不良な予後を提供することからなる工程を含む、方法。 A method for assisting in predicting the survival time of a patient suffering from solid cancer, comprising:
Determining the density of CD20 + B cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from the patient;
One additional cell type selected from CD8 + cytotoxic T cells or CD45RO + memory T cells at the tumor's infiltrating margin (im) and at the center of the tumor (ct) in a tumor tissue sample obtained from the patient Determining the density,
Comparing each density with a given reference value; and a)
a1) the density of CD20 + B cells at the infiltrating margin of the tumor is higher than a predetermined reference value; and a2) the density of the additional cell type at the infiltrating margin (im) of the tumor is higher than a predetermined reference value; And a3) good prognosis if the density of the further cell type at the center of the tumor (ct) is higher than a predetermined reference value;
b)
b1) the density of CD20 + B cells at the infiltrating margin of the tumor is higher than a predetermined reference value; and b2) the density of the additional cell type at the infiltrating margin (im) of the tumor is lower than a predetermined reference value; And b3) the density of the additional cell type at the center of the tumor (ct) is higher than a predetermined reference value; or b′1) the density of CD20 + B cells at the invasion border of the tumor is higher than a predetermined reference value And b′2) the density of the additional cell type at the infiltrating margin (im) of the tumor is higher than a predetermined reference value; and b′3) the additional cell type at the center of the tumor (ct) The density of is lower than a predetermined reference value;
Or b ″ 1) the density of B cells at the invasive margin of the tumor is lower than a predetermined reference value; and b ″ 2) the density of the additional cell type at the invasive margin (im) of the tumor And b ″ 3) the density of the additional cell type at the center of the tumor (ct) is higher than a predetermined reference value;
Or bi) the density of B cells at the invasive margin of the tumor is higher than a predetermined reference value; and bii) the density of the additional cell type at the invasive margin (im) of the tumor is lower than a predetermined reference value And biii) the density of the additional cell type at the center of the tumor (ct) is lower than a predetermined reference value;
Or b'i) the density of B cells at the infiltrating margin of the tumor is lower than the predetermined reference value; and b'ii) the density of the additional cell type at the infiltrating margin (im) of the tumor is the predetermined reference Lower than the value; and b'iii) the density of the additional cell type at the center of the tumor (ct) is higher than the predetermined reference value;
Or b ″ i) the density of B cells at the invasive margin of the tumor is lower than a predetermined reference value; and b ″ ii) the density of the additional cell type at the invasive margin (im) of the tumor And b '' iii) moderate prognosis when the density of the additional cell type at the center of the tumor (ct) is lower than a predetermined reference value;
c)
c1) the density of B cells at the infiltrating margin of the tumor is lower than a predetermined reference value;
c2) the density of the additional cell type at the infiltrating margin (im) of the tumor is lower than a predetermined reference value; and c3) the density of the additional cell type at the center of the tumor (ct) is a predetermined reference value A method comprising providing a poor prognosis if lower.
i)該患者から得られた腫瘍組織サンプル中の腫瘍の浸潤縁(im)でCD20+B細胞の密度を決定すること、
ii)該密度を所定の参照値と比較すること;及び
iii)腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも高い場合に良好な予後を;及び腫瘍の浸潤縁でのB細胞の密度が、所定の参照値よりも低い場合に不良な予後を提供することからなる工程を含む、方法。 A method for assisting in predicting the survival time of a patient suffering from colorectal cancer comprising:
i) determining the density of CD20 + B cells at the infiltrating margin (im) of the tumor in a tumor tissue sample obtained from the patient;
ii) comparing the density with a predetermined reference value; and iii) a good prognosis if the density of B cells at the tumor's invasive margin is higher than the predetermined reference value; and at the tumor's invasive margin Providing a poor prognosis when the density of B cells is lower than a predetermined reference value.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12305072 | 2012-01-20 | ||
EP12305072.6 | 2012-01-20 | ||
US201261600752P | 2012-02-20 | 2012-02-20 | |
US61/600,752 | 2012-02-20 | ||
PCT/EP2013/051008 WO2013107900A1 (en) | 2012-01-20 | 2013-01-21 | Methods for predicting the survival time of a patient suffering from a solid cancer based on density of b cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015505607A JP2015505607A (en) | 2015-02-23 |
JP5970560B2 true JP5970560B2 (en) | 2016-08-17 |
Family
ID=48798696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014552648A Active JP5970560B2 (en) | 2012-01-20 | 2013-01-21 | Method for predicting survival time of patients suffering from solid cancer based on B cell density |
Country Status (5)
Country | Link |
---|---|
US (1) | US9945861B2 (en) |
EP (1) | EP2805165B1 (en) |
JP (1) | JP5970560B2 (en) |
ES (1) | ES2671423T3 (en) |
WO (1) | WO2013107900A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015220783B2 (en) | 2014-02-24 | 2021-02-04 | Ventana Medical Systems, Inc. | Methods, kits, and systems for scoring the immune response to cancer by simultaneous detection of CD3, CD8, CD20, and FoxP3 |
EP3341732B1 (en) * | 2015-08-27 | 2023-07-12 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods for predicting the survival time of patients suffering from a lung cancer |
WO2017194556A1 (en) * | 2016-05-09 | 2017-11-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for classifying patients with a solid cancer |
AU2020288603A1 (en) | 2019-06-03 | 2021-12-16 | Assistance Publique - Hôpitaux De Paris | Methods for modulating a treatment regimen |
KR20220094193A (en) | 2019-11-07 | 2022-07-05 | 온세르나 테라퓨틱스, 인크. | Classification of the tumor microenvironment |
WO2022002873A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies |
WO2022002874A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery |
CN113834941B (en) * | 2021-11-02 | 2024-01-05 | 复旦大学附属中山医院 | Marker for prognosis diagnosis of colon cancer based on B cell expression and application thereof |
CN114019163B (en) * | 2021-11-02 | 2024-07-23 | 复旦大学附属中山医院 | Marker for prognosis diagnosis of colon cancer based on activated B cell expression and application thereof |
AU2022447608A1 (en) | 2022-03-17 | 2024-09-26 | Assistance Publique - Hôpitaux De Paris | Methods for predicting response to an immunotherapeutic treatment in a patient with a cancer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1777523A1 (en) * | 2005-10-19 | 2007-04-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | An in vitro method for the prognosis of progression of a cancer and of the outcome in a patient and means for performing said method |
-
2013
- 2013-01-21 JP JP2014552648A patent/JP5970560B2/en active Active
- 2013-01-21 EP EP13701044.3A patent/EP2805165B1/en active Active
- 2013-01-21 WO PCT/EP2013/051008 patent/WO2013107900A1/en active Application Filing
- 2013-01-21 ES ES13701044.3T patent/ES2671423T3/en active Active
- 2013-01-21 US US14/372,757 patent/US9945861B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2805165A1 (en) | 2014-11-26 |
WO2013107900A1 (en) | 2013-07-25 |
JP2015505607A (en) | 2015-02-23 |
EP2805165B1 (en) | 2018-03-14 |
US9945861B2 (en) | 2018-04-17 |
ES2671423T3 (en) | 2018-06-06 |
US20140363472A1 (en) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5970560B2 (en) | Method for predicting survival time of patients suffering from solid cancer based on B cell density | |
Miyamoto et al. | An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer | |
Brown et al. | Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer | |
Munzone et al. | Prognostic value of circulating tumor cells according to immunohistochemically defined molecular subtypes in advanced breast cancer | |
US10823736B2 (en) | Method of assessing disease condition of cancer | |
US20140113310A9 (en) | Cancer detection markers | |
WO2019156568A1 (en) | Methods for predicting treatment outcome and/or for selecting a subject suitable for immune checkpoint therapy | |
Dimou et al. | Measurement of aldehyde dehydrogenase 1 expression defines a group with better prognosis in patients with non-small cell lung cancer | |
KR101943177B1 (en) | Cancer treatment | |
EP3022561B1 (en) | Method for the prognosis of survival time of a patient suffering from a solid cancer | |
Dales et al. | Prognostic significance of angiogenesis evaluated by CD105 expression compared to CD31 in 905 breast carcinomas: correlation with long-term patient outcome | |
US20150004253A1 (en) | Method for the prognosis of survival time of a patient suffering from a solid cancer | |
US20110166030A1 (en) | Prediction of response to docetaxel therapy based on the presence of TMPRSSG2:ERG fusion in circulating tumor cells | |
Hugen et al. | Circulating tumor cells in genitourinary malignancies: an evolving path to precision medicine | |
Dawood et al. | Integrating circulating tumor cell assays into the management of breast cancer | |
US20180055882A1 (en) | Functional immunophenotyping of leukocytes in human tissues | |
Küronya et al. | ERG expression can predict the outcome of docetaxel combinedwith androgen deprivation therapy in metastatic hormone-sensitiveprostate cancer | |
US9645152B2 (en) | Methods for predicting the survival time of a patient suffering from a solid cancer | |
EP4182694A1 (en) | Use of tertiary lymphoid structures for the prognosis of disease progression or treatment in cancer | |
EP2568290B1 (en) | Methods for prognosis of diffuse large B-cell lymphoma | |
EP3832309A1 (en) | Composition for diagnosis of bone metastasis of cancer and kit comprising same | |
Ricciardelli et al. | Comparative biomarker expression and RNA integrity in biospecimens derived from radical retropubic and robot-assisted laparoscopic prostatectomies | |
US11371995B2 (en) | Method for selecting individuals to be administered immune checkpoint inhibitor | |
Cao et al. | Please let us know how this document benefits you. | |
Marzban et al. | THE PRESENCE OF CSCs AND EMT MARKERS ARE POSITIVELY CORRELATED WITH CANINE MALIGNANT MAMMARY GLAND TUMORS IN IRAN. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150202 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150312 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150619 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151020 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5970560 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |