JP5970505B2 - 復旧曲線作成システム、復旧曲線作成方法、及びプログラム - Google Patents

復旧曲線作成システム、復旧曲線作成方法、及びプログラム Download PDF

Info

Publication number
JP5970505B2
JP5970505B2 JP2014155397A JP2014155397A JP5970505B2 JP 5970505 B2 JP5970505 B2 JP 5970505B2 JP 2014155397 A JP2014155397 A JP 2014155397A JP 2014155397 A JP2014155397 A JP 2014155397A JP 5970505 B2 JP5970505 B2 JP 5970505B2
Authority
JP
Japan
Prior art keywords
component
damage probability
damage
recovery
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014155397A
Other languages
English (en)
Other versions
JP2014199680A (ja
Inventor
献一 吉田
献一 吉田
輝 早川
輝 早川
義文 杉村
義文 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2014155397A priority Critical patent/JP5970505B2/ja
Publication of JP2014199680A publication Critical patent/JP2014199680A/ja
Application granted granted Critical
Publication of JP5970505B2 publication Critical patent/JP5970505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、一つの企業の複数の事業所などの地震被害を定量的に評価し、企業全体としての事業の継続性を予測するための復旧曲線作成システム、復旧曲線作成方法及びプログラムに関するものである。
ビジネス影響度分析(BIA:Business Impact Analysis)手法とは、事業継続(BC:Business Continuity)のPDCA(Plan do check act cycle)サイクルでは計画段階に対応し、この段階で初期に行う最も重要な分析の一つで、不測の事態が発生した場合のビジネスへ影響を定量的あるいは定性的に評価する分析手法である。
このBIA手法を用いて、地震等の災害などによる事業への影響を少なくするために事業継続計画(BCP:Business Continuity Plan)が策定されている。
しかし、現在のところ、一般的なBIA手法が確立されていない。このため、コンサルティング会社の多くは、BIAを提供する際に、業種ごとにカスタマイズした質問項目を用いて、経営層やリスク管理者、施設管理者などにヒアリング調査を行っている。
このヒアリング調査の結果を、経験的な指標を用いて点数化することにより、その会社のビジネスへの影響度合いを定量化している。
上述したように、コンサルティング会社が行うBIAにおいては、定量的な計算式などが重要視されている訳ではなく、数値的な根拠が明確でない場合が多い。
このため、コンサルティング会社の判定において、BIAを依頼した会社の経営判断が強く働くことにより、経営方針が反映された重要業務、目標復旧時間、対策優先順位、復旧優先順位が決められる場合が多い。
一方、建築・不動産業界においては、不動産の証券化や企業のリスクマネージメント強化の動きに伴い、建物のリスク分析が行われている。このリスク分析は、将来発生する可能性のある大災害の発生確率に基づいて、保有資産に対して与えられるであろう経済的損失の大きさを分析する。
この際、経済的損失を表す指標として、最大予想損失率(PML:Probable Maximum Loss)を用い、このPMLにより、災害に対する対策効果の定量化、災害に対する最適な対策方法の選定、優先度の判定などが行える(例えば、特許文献1参照)。
特開2007−148547号公報
ビジネスに対するリスク分析という観点から、リスク分析の対象となる施設の復旧時間が、リスクの対応を画策する上で非常に重要なファクターとなる。
一方、特許文献1に示すPMLのみを用いた分析では、施設の復旧を明確に求めることが、災害のビジネスへの影響度合いを推定することができない。
このため、災害及びテロなどの不測の事態が発生した際、この不測の事態による損害のビジネスへの影響を定量的、定性的に評価するために、復旧度を時間経過で示した復旧曲線が必要となる。
しかしながら、上述した経営方針が反映されて経験的に復旧曲線が作成されるため、定量的に精度の高い復旧曲線が作成されていない。
この発明は上述した課題を解決するためになされたもので、リスク分析に用いる復旧曲線を定量的に生成する復旧曲線作成システム、復旧曲線作成方法及びプログラムを提供する。
[1]本発明の復旧曲線作成システムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部とを有し、前記復旧曲線生成部は、前記操業度算出部によって前記ハザードの種類に応じて算出された前記操業度を前記周期毎にプロットし、前記復旧曲線を生成することを特徴とする復旧曲線作成システムである。
[2]本発明の復旧曲線作成システムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部とを有することを特徴とする復旧曲線作成システムである。
[3]本発明の復旧曲線作成システムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部とを有し、前記損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にすることを特徴とする復旧曲線作成システムである。
[4]本発明の復旧曲線作成システムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部と、前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出部とを有し、前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算することを特徴とする復旧曲線作成システムである。
なお、上記[1]から[4]に示す本発明の復旧曲線作成システムに関連する復旧曲線作成システムには、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、前記前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部とを有することを特徴とする復旧曲線作成システムがある。
[5]また、本発明の復旧曲線作成システムにおける前記構成要素は、前記診断対象の施設における事業の継続性に影響する構成要素であることを特徴とする。
[6]また、本発明の復旧曲線作成システムにおける前記構成要素は、前記診断対象の施設における構成要素のうちから選択された構成要素であることを特徴とする。
[7]また、本発明の復旧曲線作成システムにおける前記構成要素は、前記診断対象の施設における少なくとも建物および各収容設備の何れかを含むことを特徴とする。
[8]また、本発明の復旧曲線作成システムにおける前記操業度算出部は、前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額と前記構成要素の再構成費とから、前記操業度を算出することを特徴とする。
[9]また、本発明の復旧曲線作成システムにおける前記操業度算出部は、前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額と前記構成要素の再構成費とから予想損失率を求め、前記予想損失率に応じた操業度を、減算式を用いて算出することを特徴とする。
[10]また、本発明の復旧曲線作成システムは、所定の値から前記予想損失率を減算して前記操業度を算出するように、前記演算式を定めていることを特徴とする。
[11]また、本発明の復旧曲線作成システムにおける前記操業度算出部は、前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額を前記構成要素の再構成費で除算して予想損失率を求め、1から前記予想損失率を減算し、減算結果を操業度として出力することを特徴とする。
[12]また、本発明の復旧曲線作成システムは、前記復旧曲線生成部は、前記ハザードが発生した時点から最大復旧期待時間が経過するまでの期間の復旧曲線を生成することを特徴とする。
[13]また、本発明の復旧曲線作成システムにおける前記復旧曲線生成部は、前記算出された操業度に基づいて復旧曲線を生成し、グラフに表示することを特徴とする。
[14]本発明の復旧曲線作成方法は、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、前記ハザードの種類に応じて前記算出された操業度に基づいて前記操業度を前記周期毎にプロットし、前記復旧曲線を生成する復旧曲線生成過程と、を含むことを特徴とする復旧曲線作成方法である。
[15]本発明の復旧曲線作成方法は、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程とを含むことを特徴とする復旧曲線作成方法である。
[16]本発明の復旧曲線作成方法は、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にして、前記損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程とを含むことを特徴とする復旧曲線作成方法である。
[17]本発明の復旧曲線作成方法は、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程と、前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出過程とを含み、前記操業度算出過程において、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算する過程を含むことを特徴とする復旧曲線作成方法である。
[18]本発明のプログラムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、前記ハザードの種類に応じて前記算出された操業度に基づいて前記操業度を前記周期毎にプロットし、前記復旧曲線を生成する復旧曲線生成処理とをコンピュータに実行させるプログラムである。
[19]本発明のプログラムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理とをコンピュータに実行させるプログラムである。
[20]本発明のプログラムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にして、前記損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理とをコンピュータに実行させるプログラムである。
[21]本発明のプログラムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理と、前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出処理と、前記操業度算出処理において、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算する処理とをコンピュータに実行させるプログラムである。
なお、本発明の復旧曲線作成システムは、前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出部を有し、前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記予想損失率を再度計算することを特徴とするように構成してもよい。
なお、本発明の復旧曲線作成システムにおける前記損傷確率記憶部は、診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率をハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶し、前記復旧曲線生成部は、前記操業度算出部によって前記ハザードの種類に応じて算出された前記操業度を前記周期毎にプロットし、前記復旧曲線を生成することを特徴とするように構成してもよい。
なお、本発明に関連する復旧曲線作成システムは、ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、診断対象の施設における少なくとも建物および各収容設備を構成要素とし、当該構成要素がハザードの大きさにより損傷を受ける損傷確率を、当該構成要素毎に記憶する損傷確率記憶部と、前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出部と、所定の周期毎に、前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額を前記構成要素の再構成費で除算して予想損失率を求め、1から前記予想損失率を減算し、減算結果を操業度として出力する操業度算出部と、前記操業度を前記周期毎にプロットし、復旧曲線を生成する復旧曲線生成部とを有し、前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記予想損失率を再度計算することを特徴とする。
なお、本発明の復旧曲線作成システムは、以下のように構成することができる。例えば、本発明の復旧曲線作成システムは、前記周期の経過毎に経過時間をカウントし、前記構成要素毎に、当該経過時間を前記最大復旧期待時間で除算した結果に対して当該損傷確率を乗算し、この乗算した結果を前記損傷確率から減算して前記経過時間に対応した新たな損傷確率を算出し、当該算出された新たな損傷確率を前記操業度算出部へ出力する損傷確
率計算部をさらに有するようにしてもよい。
本発明の復旧曲線作成システムは、前記操業度算出部が、フォールトツリーにおいて前記操業度を求める際に、複数の構成要素を組み合わせて構成される上位構成要素の最大復旧期待時間を、組み合わせた構成要素の事象に対する上位構成要素の事象がAND事象の場合及びOR事象の場合のいずれにおいても、下位の前記構成要素のいずれか大きい方の最大復旧時間を用いるようにしてもよい。
本発明の復旧曲線作成システムは、前記周期毎の前記構成要素を用いて生産する商品の生産額に対し、各構成要素の前記損傷確率を前記生産額に対して乗じた結果を、前記構成要素の前記最大復旧時間を超えるまでの期間において積算し、売り上げの損失額を求める売上損失額算出部をさらに有するようにしてもよい。
また、本発明に関連する復旧曲線作成方法は、施設に対する地震被害を定量的に評価し、施設における事業の継続性を予測するとともに、地震対策を施した場合の対策効果の予測を行う事業継続予測システムの制御方法であり、PMT算出部が、診断対象の施設における少なくとも建物および各収容設備を構成要素とし、当該構成要素が所定の最大地動加速度で損傷を受ける損傷確率を、当該要素毎に記憶する損傷確率記憶部から、前記構成要素の前記損傷確率を読み出し、前記構成要素の全壊における最大復旧時間に対し、読み出した前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出過程と、操業度算出部が、所定の周期毎に、前記損傷確率記憶部から構成要素の前記損傷確率を読み出し、前記構成要素毎の全壊における最大損失額に対し、読み出した前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額を前記構成要素の再構成費で除算して予想損失率を求め、1から前記予想損失率を減算し、減算結果を操業度として出力する操業度算出過程と、復旧曲線生成部が前記操業度を前記周期毎にプロットし、復旧曲線を生成する復旧曲線生成過程とを有し、前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記予想損失率を再度計算することを特徴とする。
本発明に関連するプログラムは、施設に対する地震被害を定量的に評価し、施設における事業の継続性を予測するとともに、地震対策を施した場合の対策効果の予測を行う事業継続予測システムの動作をコンピュータに実行させるプログラムであり、PMT算出部が、診断対象の施設における少なくとも建物および各収容設備を構成要素とし、当該構成要素が所定の最大地動加速度で損傷を受ける損傷確率を、当該要素毎に記憶する損傷確率記憶部から、前記構成要素の前記損傷確率を読み出し、前記構成要素の全壊における最大復旧時間に対し、読み出した前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出処理と、操業度算出部が、所定の周期毎に、前記損傷確率記憶部から構成要素の前記損傷確率を読み出し、前記構成要素毎の全壊における最大損失額に対し、読み出した前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額を前記構成要素の再構成費で除算して予想損失率を求め、1から前記予想損失率を減算し、減算結果を操業度として出力する操業度算出処理と、復旧曲線生成部が前記操業度を前記周期毎にプロットし、復旧曲線を生成する復旧曲線生成処理と、前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記予想損失率を再度計算する処理とをコンピュータに実行させるプログラムである。
この発明によれば、最大損失額を構成要素の再構成費にて除算し、各構成要素のPMLを所定の周期毎に算出し、このPMLから操業度を算出し、この求めた操業度を周期的にプロットし、復旧曲線を求めるため、経営方針が人為的に反映されることなく、リスク分析に用いる復旧曲線を定量的に、かつ高い精度で生成することができる。
この発明の一実施形態による復旧曲線生成システムの構成例を示すブロック図である。 本実施形態における復旧曲線を推定する対象である工場の構成要素(事業構成要素)のフォールトツリーをモデル化した例を示す図である。 損傷確率と最大地動加速度との関係を示したフラジリティ曲線のグラフを示す図である。 図3に示した建物のフラジリティ曲線を作成するために用いられた基本データを示す表である。 各最大地動加速度での損害額を示すグラフ(地震ロス関数)である。 モデルとしての工場における事業構成要素とサブ事業構成要素との関係を示し、各サブ事業構成要素の再構成費や復旧時間が示された基本データテーブルの構成を示す図である。 本実施形態における復旧曲線を推定する対象である工場の構成要素(事業構成要素)のフォールトツリーをモデル化し、サブ事業構成要素及び事業構成要素の各々の損傷確率を記述した図である。 工場における製造ライン及び電力設備の損傷有りまたは無しの組み合わせ毎の確率を示すイベントツリーのテーブルである。 モデルデータベース19に記憶されているモデルテーブルの構成を示す図である。 本実施形態による復旧曲線作成システムの復旧曲線の生成の動作例を示すフローチャートである。 図10のフローチャートにより作成される復旧曲線である。 本実施形態による復旧曲線作成システムの復旧曲線の生成の他の動作例を示すフローチャートである。 図11のフローチャートにより作成される復旧曲線である。
以下、図面を参照して、本発明の実施の形態について説明する。図1は、この発明の一実施形態による復旧曲線作成システムの構成例を示す概略ブロック図である。
図1に示す復旧曲線作成システム100は、コンピュータに周辺デバイスが接続されており、損傷確率算出部11、PMT算出部12、操業度算出部13、復旧曲線生成部14、入力装置15、表示装置16、損傷確率データベース17、基本情報データベース18及びモデルデータベース19を備えている。ここで、入力装置15は、ユーザーが、復旧曲線作成システム100に与える命令やデータを入力するための装置であって、具体的には、キーボードやマウス等である。表示装置16は、復旧曲線作成システム100の各部によって算出された算出結果等が表示される装置であって、具体的には、CRT(Cathode Ray Tube;陰極線管)ディスプレイや液晶ディスプレイである。
損傷確率算出部11は、最大地動加速度と、事業構成要素が小破、中破、または大破・全壊の損傷を受ける確率である事業構成要素の損傷確率を算出する。また、この事業構成要素の損傷確率は、復旧曲線作成システム100の利用者が入力装置15から、復旧曲線の作成を行う際に逐次入力するようにしても良い。この場合、損傷確率算出部11は、入力される損傷確率を事業構成要素の識別番号とともに損傷確率データベース17に書き込み、記憶させる。ここで、事業構成要素とは、例えば、工場における建物、電源、部品を作成するライン(製造機械)等の製品を製造するために必要なインフラの各要素を示している。ここでは、損傷確率を地震に起因するものとして説明しているが、以下に述べる復旧曲線の生成アルゴリズムは、水害、台風の被害、テロによる破壊行動などのハザードによる損傷確率を求めるフラジリティ曲線を生成し、損傷確率、再構成価格、復旧時間などを定義することにより、いずれのハザードに対しても対応させることができる。
操業度算出部13は、事業構成要素毎に、事業構成要素の最大損失額に対し、損傷確率を乗算することにより、最大予想損失額を算出する。
また、操業度算出部13は、事業構成要素毎に、事業構成要素を新たに構成するための費用である再構成費(部品の再調達額、再工事費、営業損失など)により、すでに求めた最大予想損失額を除算し、除算結果として最大予想損失率を求め、この算出した最大予想損失率を用い、この最大予想損失率(%)を通常の操業率を100%から減算し、すなわち以下の式により操業度(%)を算出する。
操業度(%)=100−最大予想損失率(%)
PMT算出部12は、最大復旧時間に対し、損傷確率を乗算し、乗算結果として最大復旧期待時間(PMT)を求める。この最大復旧期待時間は、各事業構成要素(あるいはサブ事業構成要素)損傷確率に対応した損傷度合いである場合の復旧時間の最大値を示している。
損傷確率データベース17は、工場にある事業構成要素(あるいはサブ事業構成要素)毎の損傷確率が、地震が発生した際の最大地動加速度毎に記憶されている(詳細は後述)。
基本情報データベース18は、各工場の事業構成要素毎の操業度を算出する際に必要な損傷確率を求めるために用いられる、建物のフラジリティ曲線を作成するために用いられる基本データが格納されている(詳細は後述)。
モデルデータベース19は、復旧曲線を生成する際に、損傷確率算出部11が算出した損傷確率や、PMT算出部12が算出した最大復旧期待時間等を含むモデルテーブルが記憶されている。
<損傷確率の算出>
次に、損傷確率算出部11における損傷確率の算出の説明を行う。
復旧曲線作成システムは工場における製造ライン及び電力設備を含めたトータルなリスクからの復旧の推定を対象としている。図2は、本実施形態における復旧曲線を推定する対象である工場の構成要素(事業構成要素)のフォールトツリー(FT)をモデル化した例である。すなわち、この工場は、製造ラインと、電力設備とが事業構成要素(コンポーネント)となっている。さらに、製造ラインは機械1と機械2との下位のサブ事業構成要素(サブコンポーネント)から構成され、電力設備は商用電源と自家発電源との下位のサブ事業構成要素から構成されている。
このフォールトツリーにおいて、製造ラインは機械1及び機械2のいずれか1つが損傷を受けると機能しなくなる。すなわち、機械1及び機械2は、製造ラインに対するOR(オア:論理和)事象となっている。
一方、電力設備は商用電源及び自家発電源の双方ともに損傷を受けた場合に、電力設備としての機能を失う。すなわち、商用電源及び自家発電源は、電力設備に対するAND(アンド:論理積)事象となっている。
次に、図3は損傷確率と最大地動加速度との関係を示したフラジリティ曲線のグラフである。なお、このグラフは、耐震性能を示すIs値(構造耐震指標)が0.6の機械1のフラジリティ曲線の例である。この図3のフラジリティ曲線のデータは、損傷確率データベース17に記憶されている。このグラフの横軸は最大地動加速度PGA(Peak Ground
Acceleration、単位はcm/s)、縦軸は損傷確率である。例えば、Is値=0.6の場合、最大地動加速度PGAが650cm/sでは、損傷の程度が大破・全壊に至る確率は0.339すなわち33.9%である。また、損傷の程度が中破に至る確率は、中破以上となる損傷確率と大破・全壊に至る損傷確率との差であるため、0.24すなわち24%になる。上述では、機械1や機械2が1台であり、それぞれが損傷する確率として損傷確率として求める説明となっているが、例えば機械1がN台あり、このN台の内、M(≦N)台が損傷を受け、(N−M)台が稼動可能な状態の機械1の集合の損傷確率とする場合も含む。
すなわち、損傷確率算出部11は、入力装置から入力される最大地動加速度に対応した損傷確率を、損傷確率データベース17に事業構成要素(あるいはサブ事業構成要素)毎に設定された図3のフラジリティ曲線から読み出し、事業構成要素毎の損傷確率を求める。損傷確率算出部11は、サブ事業構成要素毎に要素識別情報(例えば、サブ事業構成要素名や番号など)を付加し、この要素識別情報とともに、この要素識別情報に対応するフラジリティ曲線のグラフを、損傷確率データベース17へ書き込み、記憶させる。そして、損傷確率算出部11は、損傷確率データベース17から各事業構成要素のフラジリティ曲線のグラフを検索する際、要素識別情報により検索して、要素識別情報に対応するフラジリティ曲線のグラフを読み出す。
また、損傷確率は、上述したように、損傷確率データベース17における各事業構成要素のフラジリティ曲線のグラフを用いずに、事業構成要素毎の構造調査結果に基づいて、復旧曲線を求めようとするBIA実施者が直接に入力装置15から入力するようにしても良い。事業構成要素がサブ事業構成要素に分割されない場合、事業分割要素のフラジリティ曲線が損傷確率データベース17に記憶されて、設定されている。
図4は、上記の図3に示した建物のフラジリティ曲線を作成するために用いられた基本データを示す表である。この基本データも、地震リスク診断プログラムに含まれている。この表は、建物の耐震性能を示すIs値(構造耐震指標)別に、小破、中破、大破・全壊の損傷確率を算出するために用いた中央値と、対数標準偏差とを示している。
この表において、Is=0.6の建物の損傷の程度(損傷度)は、小破、中破または大破・全壊の中央値(最大地動加速度)を、阪神・淡路大震災において建物が受けた損傷の程度と、最大推定地動加速度との関係に基づいて定めている。
また、Is=0.6以外の建物の損傷の程度は、小破、中破または大破・全壊の中央値(最大地動加速度)Aを、下記の式(1)により算出する。
A=Ao×(Is/0.6) …(1)
ただし、Aoは、Is=0.6の場合の、小破、中破または大破・全壊の中央値(最大地動加速度)、Aは、任意のIs値の建物の損傷の程度が、小破、中破または大破・全壊の中央値(最大地動加速度)である。なお、上記の式(1)による、任意のIs値の建物の最大地動加速度Aの算出は、損傷確率算出部11が行う。
例えば、Is=0.3の、小破の中央値(最大地動加速度)Aは、Is=0.6の建物の、小破の中央値(最大地動加速度)Aoが400cm/sなので、A=400×(0.3/0.6)=200cm/sのようにして算出される。
なお、本実施形態における復旧曲線作成システムにおいて、建物の損傷の程度は、Is値以外にも、建物の応答変位(免震建物応答変位)、層間変位、層間変形角などから算出する方法もあり、上述したIs値による場合と同様に、損傷確率を算出する構成としても良い。
また、上述した損傷確率は地震の最大地動加速度との関係のフラジリティ曲線を例にとり説明したが、所定のハザードとして、横軸を洪水の場合の浸水水位、停電の場合の停電時間等、縦軸を損傷確率としたフラジリティ曲線を用い、浸水水位または停電時間から損傷確率を求める構成としても良い。
<操業度の算出>
図5は、各最大地動加速度での損害額を示すグラフ(地震ロス関数)である。この損害額グラフのデータは、損傷確率データベース17にサブ事業構成要素毎に記憶されている。このグラフの横軸は最大地動加速度、縦軸は最大損害額である。例えば、この損失額グラフによれば、最大地動加速度が800cm/sでの最大損害額は約24億円である。この損失額グラフは、予め損傷確率データベース17に、サブ事業構成要素毎に書き込まれ、記憶されている。
すなわち、損傷確率算出部11は、入力装置15から入力される最大地動加速度に対応した損失額を、損傷確率データベース17に事業構成要素毎に設定された図5の損失グラフから読み出し、サブ事業構成要素毎の損害額とする。損傷確率算出部11は、サブ事業構成要素毎に要素識別情報を付加し、この要素識別情報とともに、この要素識別情報に対応する損失グラフを、損傷確率データベース17へ書き込み、記憶させる。そして、損傷確率算出部11は、損傷確率データベース17から各事業構成要素の損失グラフを検索する際、要素識別情報により検索して、要素識別情報に対応する損失グラフを読み出す。
また、損害額は、上述したように、損傷確率データベース17における各事業構成要素の損失額グラフを用いずに、工場の関係者からヒアリングをした結果に基づいて、復旧曲線を求めようとするBIA実施者が直接に入力装置15から入力するようにしても良い。事業構成要素がサブ事業構成要素に分割されない場合、事業分割要素の損失額グラフが損傷確率データベース17に設定されている。
そして、操業度算出部13は、損傷確率算出部11が事業構成要素毎に求めた損失額と損傷確率とを、それぞれ事業構成要素毎に乗算し(損失額(円)×損傷確率)、各事業構成要素の最大予想損失額(円)を算出する。
また、操業度算出部13は、入力装置15から入力される各事業構成要素の再構成費(円:設備の再調達額、設備の再工事額、営業損失など)を事業構成要素毎に、基本情報データベース18に対して、図6に示す基本データテーブルのデータとして予め書き込み、記憶させておく。操業度算出部13は、サブ事業構成要素毎に要素識別情報を付加し、この要素識別情報とともに、この要素識別情報に対応する基本データテーブルの再構成費のデータを、基本情報データベース18へ書き込み、記憶させる。そして、操業度算出部13は、基本情報データベース18から各事業構成要素の再構成費のデータを検索する際、要素識別情報により検索して、要素識別情報に対応する再構成費のデータを読み出す。図6は、モデルとしての工場における事業構成要素(コンポーネント)とサブ事業構成要素(サブコンポーネント)との関係を示し、各サブ事業構成要素の再構成費や復旧時間が示された基本データテーブルの構成を示す図である。
次に、操業度算出部13は、再構成費により最大予想損失額を除算し、除算した結果を最大予想損失率(PML)として算出する。
そして、操業度算出部13は、求めた最大予想損失率を用いて以下の操業度関係式から、すなわち操業が100%行われている状態から最大予想損失率を減算し、減算結果を操業度(%)として算出する。
操業度(%)=100(%)−最大予想損失率(%)
操業度は、一般的に、商品を製造する機器の稼働率により算定されている。しかしながら、稼働率から算定される操業度は、事業継続という観点から考えると、売上げに対する寄与率や材料の仕入れ量、キャッシュフローなどに対するリスクを適格に寄与しているとはいえない。
そこで、本実施形態においては、経営的な地震を含むハザードを考慮した最大予想損失
率を用いることにより、容易に通常時の操業度を表す上記操業度関係式を生成した。この
操業度関係式により、通常時から、ハザードによる被害発生時における操業度までを適格
に表現することができる。
<最大復旧期待時間(PMT:Probable Maximum Time)の算出>
PMT算出部12は、BIA実施者の入力装置15からの操作により、このBIA実施者が予め工場の関係者にヒアリングした全壊した際の復旧時間を、基本情報データベース18に対して、事業構成要素毎に、図6に示す基本データテーブルのデータとして予め書き込み、記憶させておく。PMT算出部12は、サブ事業構成要素毎に要素識別情報を付加し、この要素識別情報とともに、この要素識別情報に対応する基本データテーブルの復旧時間のデータを、基本情報データベース18へ書き込み、記憶させる。そして、PMT算出部12は、基本情報データベース18から各事業構成要素の復旧時間のデータを検索する際、要素識別情報により検索して、要素識別情報に対応する復旧時間のデータを読み出す。
そして、PMT算出部12は、基本情報データベース18の基本データテーブルから読み出した復旧時間(日)に対して、損傷確率を乗算し、乗算した結果を最大復旧期待時間(PMT)とする。
最大の損傷を受けたときの復旧時間(建物の新築や破損した機器の交換など)を用い、この復旧時間に対し、損傷確率を乗算することにより、容易に被害の程度に対応して、復旧に要する時間として最大復旧期待時間を算出することができる。
<復旧曲線の生成−リソース>
[リソース(事業構成要素)に対する操業度の算出]
次に、図2のフォールトツリーにおいて、各フォールトの状態の損傷確率を記述した図7のフォールトツリーを用いて、復旧曲線の生成を説明する。
損傷確率算出部11は、事業構成要素である機械1、機械2、商用電源及び自家発電源の各々の損傷確率を、入力された最大地動加速度に対応させ、損傷確率データベース17に記憶されている機械1、機械2、商用電源及び自家発電源の各々のフラジリティ曲線から読み出す。
ここで、損傷確率算出部11により読み出された損傷確率において、機械1の損傷確率が0.24020であり、機械2の損傷確率が0.0744であり、商用電源の損傷確率が0.00740であり、自家発電源の損傷確率が0.2286である。
次に、損傷確率算出部11は、機械1及び機械2の各々の損傷確率により、製造ラインの損傷確率を求める。
すなわち、損傷確率算出部11は、図7のフォールトツリーにおいて、製造ラインが機械1及び機械2のOR事象として定義されているため、機械1の損傷確率を1から減算した数値(損傷しない確率)と、機械2の損傷確率を1から減算した数値(損傷しない確率)とを乗算し、いずれも損傷しない非損傷確率を算出する。
そして、損傷確率算出部11は、1から求めた非損傷確率を減算し、機械1または機械2のいずれかが損傷する損傷確率(製造ラインの損傷確率)を算出する。
すなわち、以下の式を用いて、機械1の損傷確率P及び機械2の損傷確率Pから製造ラインの損傷確率Pを算出する。
=1−(1−P)・(1−P
=1−(1−0.24020)・(1−0.07440)
=1−0.7598・0.9256
=0.29673
また、同様に、損傷確率算出部11は、図7のフォールトツリーにおいて、電力設備が商用電源及び自家発電源のAND事象として定義されているため、商用電源の損傷確率と、自家発電源の損傷確率とを乗算し、商用電源及び自家発電源の双方が損傷する損傷確率を算出する。
すなわち、以下の式を用いて、商用電源の損傷確率P及び自家発電源の損傷確率Pから電力設備の損傷確率Pを算出する。
=P・P
=0.00740×0.22860
=0.0016916
次に、操業度算出部13は、イベントツリーに基づいて、最大予想損失率(PML)を、以下の様に算出する。
図8は、工場における製造ライン及び電力設備の損傷有りまたは無しの組み合わせ毎の確率を示すイベントツリーのテーブルである。このテーブルにおいて、損傷有りは状態が「Y」で示され、損傷無しは状態が「N」で示されている。
そして、操業度算出部13は、このイベントツリーにおけるN(損傷無し)に、各事業構成要素が所定の最大地動加速度で損傷を受けない確率を当てはめ、Y(損傷有り)に、各事業構成要素が所定の最大地動加速度で損傷を受ける損傷確率を当てはめる。各事業構成要素が損傷を受ける確率とは、すでに説明したフォールトツリーにおいて説明した、各構成要素の損傷確率であり、各構成要素が損傷を受けない確率とは、(1−各構成要素の損傷確率)である。
そして、演算処理装置2は、損傷状態の組み合わせ毎に、各事業構成要素、本実施形態においては、製造ライン及び電力設備の各々の損傷を受けない確率または損傷を受ける確率どうしの積をとり、所定の最大地動加速度による各事業構成要素の各確率により、工場が各損傷モードに至る確率を算出する。
例えば、図8に示すように、操業度算出部13は、製造ラインが損傷が無く、電力設備も損傷が無い場合、以下の確率算出式により、いずれにも損傷が無い確率PNNを算出する。
NN=(1−P)・(1−P
=0.70208
また、操業度算出部13は、製造ラインが損傷が無く、電力設備も損傷がある場合、以下の確率算出式により、いずれにも電力設備のみに損傷がある確率PNYを算出する。
NY=(1−P)・P
=0.00189
また、操業度算出部13は、製造ラインが損傷が有り、電力設備に損傷が無い場合、以下の確率算出式により、製造ラインにのみ損傷がある確率PYNを算出する。
YN=P・(1−P
=0.29622
また、操業度算出部13は、製造ライン及び電力設備の双方に損傷がある場合、以下の確率算出式により、いずれにも損傷がある確率PYYを算出する。
YY=P・P
=0.00050
次に、操業度算出部13は、損傷確率を算出した最大地動加速度による各事業構成要素の損失額を、基本情報データベース18の基本データテーブルから読み出す。
本実施形態の場合、例えば、製造ラインの損失額が2000万円であり、電力設備の損失額が1500万円である。説明を簡単にするため、再構成費も製造ラインが2000万円とし、電力設備が1500万円とする。
そして、操業度算出部13は、製造ラインの損失額と、電力設備の損失額とを加算し、製造ラインと電力設備との双方が全壊した際の総損失額を算出する。
次に、操業度算出部13は、製造ライン及び電力設備の損傷の有無によるそれぞれの組み合わせに対して、組み合わせに対応する損失額を乗算し、全ての組み合わせの乗算結果を加算し、所定の最大地動加速度の地震が発生した際に工場が受ける総損失額の推定値を算出する。
すなわち、操業度算出部13は、以下の式により、工場の受ける総損失額Q(円、本実施形態においては万円)を算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=448
そして、操業度算出部13は、工場全体の再構成費、すなわち製造ライン及び電力設備の再構成費の合計額として総再構成費R(円、本実施形態においては万円)を、製造ラインの再構成費と電力設備の再構成費とを加算して求める。
R=2000+1500=3500
次に、操業度算出部13は、上述のようにして求めた総再構成費Rにより、先に求めた総損失額Qを除算することにより、最大予想損失率(PML)を算出する。
PML=Q/R
=448/3500
=0.128
次に、操業度算出部13は、操業度OP(Operate percentage)を以下の式により、すなわち1から最大予想損失率を減算することにより算出する。
OP=1−PML
=0.872
上記式により、最大予想損失率を用い、操業度を定義している。この最大予想損失率は経営的な地震等のハザードによるリスクを考慮しており、経営的な操業度を表現することができる。
すなわち、本実施形態においては、例えば地震が発生した際に、事業構成要素がどの程度の損失を受けるかを示す損失額の期待値である最大予想損失率を、通常の状態である100%から減算することにより、操業可能な割合として操業度が定義できるとしている。
また、PMT算出部12は、最大復旧期待時間(PMT)の算出を以下の式により、すなわち基本情報データベース18の基本データテーブルから各事業構成要素の復旧時間を読み出す。本実施形態においては、製造ラインにおける機械1の復旧時間が10日、機械2の復旧時間が8日であり、電力設備の商用電源が3日、自家発電源が20日である。
そして、PMT算出部12は、損傷確率算出部11の求めた各事業構成要素の損傷確率を、それぞれ対応する事業構成要素の復旧時間に乗算し、各事業構成要素の復旧時間を算出する。
ここで、損傷確率算出部11により読み出された損傷確率において、機械1の損傷確率が0.24020であり、機械2の損傷確率が0.0744であり、商用電源の損傷確率が0.00740であり、自家発電源の損傷確率が0.2286である。
すなわち、PMT算出部12は、以下の式により、機械1、機械2、商用電源及び自家発電源の最大復旧期待時間PMT(機械1の最大復旧期待時間)、PMT(機械2の最大復旧期待時間)、PMT(商用電源の最大復旧期待時間)、PMT(自家発電源の最大復旧期待時間)を算出する。
PMT=10×0.24020=2.40200
PMT=8×0.0744=0.59520
PMT=3×0.00740=0.02220
PMT=20×0.2286=4057200
次に、以下に示すように、復旧曲線生成部14は、上述した最大復旧期待時間PMLと操業度OPとにより、復旧曲線を生成する。
図9は、モデルデータベース19に記憶されているモデルテーブルの構成を示す図である。このモデルテーブルは、復旧曲線生成部14によりモデル設定時に予め生成され、事業構成要素の単位としてタイプが示され、モデルとしての工場がコンポーネントの製造ライン及び電力設備から構成され、コンポーネントの製造ラインがサブコンポーネントの機械1及び機械2から構成され、コンポーネントの電力設備がサブコンポーネントの商用電源及び自家発電源から構成されていることを示している。また、それぞれのタイプが分解可能、すなわちモデルが下位のコンポーネント、あるいはサブコンポーネントで構成されているか否かを示す事象が示されている。
また、PMT算出部12は、基本情報データベース18から、事業構成要素毎の復旧時間を読み出し、モデルテーブルに対して事業構成要素毎に書き込み、記憶させる。操業度算出部13は、事業構成要素毎の再構成価格を基本情報データベース18から読み出し、モデルテーブルに対して事業構成要素毎に書き込み、記憶させる。損傷確率算出部11は、算出したサブ事業構成要素(機械1、機械2、商用電源及び自家発電源)毎の損傷確率、事業構成要素(製造ライン及び電力設備)毎の損傷確率、工場の損傷確率(事業構成要素の損傷率の合計)を、モデルテーブルに書き込み、記憶させる。また、損傷確率算出部11は、損傷確率の算出に用いたサブ事業構成要素の最大地動加速度の中央値、標準偏差(最大地動加速度の対数標準偏差)、最大地動加速度、及びフラジリティ曲線の形態を、サブ事業構成要素毎にモデルテーブルに書き込み、記憶させる。以下、損傷確率算出部11、操業度算出部13及び復旧曲線生成部14の各部は、モデルテーブルから各事業構成要素の再構成費、損傷確率、PMTを読み出して用いる。
図10及び図11を用いて、復旧曲線生成の処理を説明する。図10は、本実施形態による復旧曲線作成システムの復旧曲線の生成の動作例を示すフローチャートである。図11は、図10のフローチャートにより作成される復旧曲線であり、縦軸が操業度OPであり、横軸が経過日数(日)である。
また、シミュレーションが開始された際、復旧曲線生成部14は、図11に示す復旧曲線の画像を表示装置16に表示する。ここで、復旧曲線生成部14は、ハザードが発生する経過日数を「0」とし、ハザードが発生する経過日数を前日として「−1」とし、ハザードが発生する「−1」日から発生した当日の「0」日までの操業度OPを1として、グラフに表示する。
PMT算出部12は、すでに説明したように、機械1の最大復旧期待時間PMT、機械2の最大復旧期待時間PMT、商用電源の最大復旧期待時間PMT及び自家発電源の最大復旧期待時間PMTを算出し(ステップS1)、算出した最大復旧期待時間PMTからPMTを復旧曲線生成部14へ、それぞれの要素識別情報とともに、この要素識別情報に対応付けて出力する。
ここで、復旧曲線生成部14は、自身の内部に設けられた記憶部に最大復旧期待時間PMTからPMTの各々を、それぞれ要素識別情報に対応付けて書き込み、記憶する。このとき、復旧曲線生成部14は、最大復旧期待時間PMTからPMTの各々の小数点以下を切り上げ、整数値とする。例えば、最大復旧期待時間PMTは3日、最大復旧期待時間PMTは1日、最大復旧期待時間PMTは1日、最大復旧期待時間PMTは5日とされ、記憶されることになる。
また、このとき、復旧曲線生成部14は、最大復旧期待時間PMTからPMTの各々を比較し、最大の経過日数である最大経過日数を求める。
次に、復旧曲線生成部14は、内部記憶部にある経過日数レジスタを初期化、すなわち経過日数レジスタに記憶されている経過日数を「0」とする(ステップS2)。
そして、復旧曲線生成部14は、内部レジスタに記憶されている経過日数と、最大復旧期待時間PMTからPMTにおける最大値である最大経過日数とを比較する(ステップS3)
このとき、復旧曲線生成部14は、経過日数が最大経過日数を超えている場合、復旧曲線の生成を終了し、経過日数が最大経過日数を超えていない場合、処理をステップS4へ進める。したがって、本実施形態の場合、最大経過日数が最大復旧期待時間PMTの5日であるため、経過日数が6日となると、完全に復旧1日後となるため処理を終了する。
次に、復旧曲線生成部14は、内部レジスタに記憶されている経過日数と、最大復旧期待時間PMTからPMTの各々とを比較し、いずれかと一致するか否かの判定を行う(ステップS4)。
このとき、復旧曲線生成部14は、経過日数が最大復旧期待時間PMTからPMTのいずれかと一致した場合、処理をステップS5へ進め、経過日数が最大復旧期待時間PMTからPMTのいずれとも一致しない場合、処理をステップS6へ進める。
次に、復旧曲線生成部14は、現在の経過日数を超える最大復旧期待時間を有するサブ事業構成要素の要素識別情報を付加し、この要素識別情報に対応するサブ事業構成要素の損傷確率により、損傷確率P及びPを算出することを指示する制御信号を、損傷確率算出部11に対して出力する。
このとき、復旧曲線生成部14は、経過日数以下の最大復旧時間を有するサブ事業構成要素の損傷確率を「0」とする情報も、対応する要素識別情報とともに損傷確率算出部11に出力する制御信号に付加する。
これにより、損傷確率算出部11は、入力される制御信号に含まれる要素識別情報に基づき、いずれのサブ事業構成要素の損失確率を用い、またいずれのサブ事業構成要素の損失確率を「0」とするかの情報を用い、すでに説明した式により、損傷確率P及びPを算出する(ステップS5)。そして、損傷確率算出部11は、算出した損傷確率P及びPを、操業度算出部13へ出力する。
次に、操業度算出部13は、損傷確率算出部11から入力される損傷確率P及びPに基づき、すでに説明した確率算出式により、製造ライン及び電力設備の双方に損傷の無い確率PNN、電力設備のみに損傷の有る確率PNY、製造ラインのみに損傷の有る確率PYN、製造ライン及び電力設備の双方に損傷の有る確率PYYを算出する。
そして、操業度算出部13は、算出した確率PNN、PNY、PYN及びPYYと、製造ライン及び電力設備の各々の再構成費とにより、総損失額Qを算出する。
現在の経過日数における総損失額Qを算出すると、操業度算出部13は、算出した総損失額Qを、すでに算出してある工場全体の事業構成要素に対する総再構成費Rにより除算し、現在の経過日数における最大予想損失率を算出する。
次に、操業度算出部13は、算出した最大予想損失率を1から減算し、現在の経過日数における操業度OPを算出し(ステップS6)、算出した操業度OPを復旧曲線生成部14に対して出力する。
操業度OPが供給されると、復旧曲線生成部14は、表示装置16の表示画面に表示している図11に示すグラフにおいて、現在の経過日数の座標点に、供給された操業度OPをプロットして表示する(ステップS7)。
次に、復旧曲線生成部14は、自身内部の記憶部にある経過日数レジスタに記憶されている経過日数をインクリメント(1を加算)し(ステップS8)、インクリメントし経過日数を経過日数レジスタに書き込み、記憶させる。
そして、復旧曲線生成部14は、処理をステップS3へ進める。
次に、図11を用いて、以下に、復旧曲線の生成の処理の実例を説明する。
BIA実施者により入力装置15からシミュレーション開始の制御信号が供給されると、復旧曲線生成部14は、経過日数「−1」から経過日数「0」までの操業度OPを1としてプロットする。
次に、復旧曲線生成部14は、ハザード、例えば地震が発生した際の経過日数「0」における操業度OPの計算を開始する制御信号を、損傷確率算出部11、PMT算出部12及び操業度算出部13に対して出力する。これにより、損傷確率算出部11、PMT算出部12及び操業度算出部13は、指定されたモデルの情報をモデルデータベース19のモデルテーブルに書き込む。
損傷確率算出部11は、製造ライン、電力設備、機械1、機械2、商用電源及び自家発電源の各々の損傷確率(P、P、P、P、P及びP)を算出し、モデルテーブルに書き込み、記憶させる。
PMT算出部12は、機械1、機械2、商用電源及び自家発電源の各々の最大復旧期待時間(PMT、PMT、PMT、PMT)を、それぞれ損傷確率と復旧日数とを乗算することにより算出し、モデルテーブルに書き込み、記憶させる。
このとき、復旧曲線生成部14は、モデルテーブルにある最大復旧期待時間の中から最大の日数(本実施形態においては最大復旧期待時間PMTの5日)を抽出し、内部記憶部に最大経過日数として書き込んで記憶させる。
ここで、機械1、機械2、商用電源及び自家発電源の各々の最大復旧期待時間は、すでに説明したように、それぞれ3日、1日、1日、5日と求められる。
また、操業度算出部13は、損傷確率算出部11が算出した損傷確率により、それぞれの操業度OPを算出する。
この経過日数「0」日における操業度OPは、すでに算出したように、「0.872」である。
このため、復旧曲線生成部14は、得られた操業度OP=0.872を経過日数「0」にプロットし、操業度OPが1から0.872へ低下してことを表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「1」とする。
次に、経過日数「1」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数と一致する最大復旧期待時間の事業構成要素をモデルテーブルにおいて検索する。
ここで、復旧曲線生成部14は、経過日数と一致する最大復旧期待時間を有する事業構成要素として機械2と商用電源とを検出する。
検出後、復旧曲線生成部14は、機械1と自家発電源とが経過日数を超えた事業構成要素とし、機械2と商用電源とが損傷確率を「0」とする事業構成要素とし、それぞれの構成識別情報を含む制御信号を、損傷確率算出部11へ出力する。
そして、損傷確率算出部11は、上述した制御信号が供給されると、機械2と商用電源との損傷確率を「0」とし、以下の式により、製造ラインの損傷確率P及び電力設備の損傷確率Pの算出を行う。
=1−(1−P)・(1−P
=1−(1−0.24020)・(1−0)
=1−0.7598
=0.2402
=P・P
=0.22860×0
=0
そして、損傷確率算出部11は、算出した経過日数「1」における損傷確率P及びPを、操業度算出部13へ出力する。
操業度算出部13は、損傷確率算出部11から供給される損傷確率P及びPにより、製造ラインと電力設備とにおける損傷の有無の組み合わせの確率PNN(製造ライン及び電力設備の双方に損傷無し)、PNY(電力設備のみに損傷有り)、PYN(製造ラインのみに損傷有り)、PYY(製造ライン及び電力設備の双方に損傷有り)の算出を以下の式により行う。
NN=(1−P)・(1−P
=(1−0.2402)×(1−0)
=0.7598
NY=(1−P)・P
=(1−0.2402)×0
=0
YN=P・(1−P
=0.2402×(1−0)
=0.2402
YY=P・P
=0.2402×0
=0
次に、操業度算出部13は、上述のように求めた確率PNN、PNY、PYN、PYYの各々を、以下の式に示すように、対応する事業構成要素の損失額に乗算し、乗算結果を加算して、工場の受ける総損失額Qを算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=0×0.7598+2000×0+1500×0.2402+3500×0
=360.3
≒360
そして、操業度算出部13は、以下の式に示すように、算出した経過日数「1」における総損失額Q=360を、予め計算してある総再構成費R=3500により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=360/3500
=0.102857
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0.102857を減算し、操業度OPを算出する。
OP=1−0.102857
=0.897143
次に、復旧曲線生成部14は、得られた操業度OP=0.897143を経過日数「1」にプロットし、機械2と商用電源とが損傷から可動状態となり、操業度OPが0.872から0.897143へ上昇したことを、表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「2」とする。
次に、経過日数「2」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数と一致する最大復旧期待時間の事業構成要素をモデルテーブルにおいて検索する。
しかしながら、復旧曲線生成部14は、モデルテーブルに2日の最大復旧期待時間がないため、経過日数「2」と一致する最大復旧期待時間を有する事業構成要素を抽出することができない。
このため、復旧曲線生成部14は、新たに損傷状態から稼動状態に遷移した事業構成要素がないので、前回算出した操業度OPから変化がないものとし、前回の操業度OPを表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「3」とする。
次に、経過日数「3」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数と一致する最大復旧期待時間の事業構成要素をモデルテーブルにおいて検索する。
ここで、復旧曲線生成部14は、経過日数と一致する最大復旧期待時間を有する事業構成要素として機械1を検出する。
検出後、復旧曲線生成部14は、自家発電源が経過日数を超えた事業構成要素とし、機械1、機械2及び商用電源とが損傷確率を「0」とする事業構成要素とし、それぞれの構成識別情報を含む制御信号を、損傷確率算出部11へ出力する。
そして、損傷確率算出部11は、上述した制御信号が供給されると、機械1、機械2及び商用電源との損傷確率を「0」とし、以下の式により、製造ラインの損傷確率P及び電力設備の損傷確率Pの算出を行う。
=1−(1−P)・(1−P
=1−(1−0)・(1−0)
=1−0
=0
=P・P
=0.22860×0
=0
そして、損傷確率算出部11は、算出した経過日数「3」における損傷確率P及びPを、操業度算出部13へ出力する。
操業度算出部13は、損傷確率算出部11から供給される損傷確率P及びPにより、製造ラインと電力設備とにおける損傷の有無の組み合わせの確率PNN(製造ライン及び電力設備の双方に損傷無し)、PNY(電力設備のみに損傷有り)、PYN(製造ラインのみに損傷有り)、PYY(製造ライン及び電力設備の双方に損傷有り)の算出を以下の式により行う。
NN=(1−P)・(1−P
=(1−0)×(1−0)
=1
NY=(1−P)・P
=(1−0)×0
=0
YN=P・(1−P
=0×(1−0)
=0
YY=P・P
=0×0
=0
次に、操業度算出部13は、上述のように求めた確率PNN、PNY、PYN、PYYの各々を、以下の式に示すように、対応する事業構成要素の損失額に乗算し、乗算結果を加算して、工場の受ける総損失額Qを算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=0×1+2000×0+1500×0+3500×0
=0
そして、操業度算出部13は、以下の式に示すように、算出した経過日数「3」における総損失額Q=0を、予め計算してある総再構成費R=3500により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=0/3500
=0
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0を減算し、操業度OPを算出する。
OP=1−0
=1
次に、復旧曲線生成部14は、得られた操業度OP=1を経過日数「3」にプロットし、機械1、機械2及び商用電源が損傷状態から可動状態となり、操業度OPが0.897143から1のハザード前の操業度に戻ったことを、表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「4」とする。
次に、経過日数「4」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数と一致する最大復旧期待時間の事業構成要素をモデルテーブルにおいて検索する。
しかしながら、復旧曲線生成部14は、モデルテーブルに2日の最大復旧期待時間がないため、経過日数「4」と一致する最大復旧期待時間を有する事業構成要素を抽出することができない。
このため、復旧曲線生成部14は、新たに損傷状態から稼動状態に遷移した事業構成要素がないので、前回算出した操業度OPから変化がないものとし、前回の操業度OPを表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「5」とする。
次に、経過日数「5」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数と一致する最大復旧期待時間の事業構成要素をモデルテーブルにおいて検索する。
そして、復旧曲線生成部14は、モデルテーブルに5日の最大復旧期待時間を有する事業構成要素として自家発電源があるため、経過日数「5」と一致する最大復旧期待時間を有する事業構成要素として自家発電源を抽出する。
しかしながら、復旧曲線生成部14は、すでに操業度OPが「1」となり、通常に工場が稼動している状態にあるため、前回算出した操業度OPから変化がないものとし、前回の操業度OPを表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「6」とする。
次に、経過日数「6」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていることを検出すると、復旧曲線の生成処理を終了する。
上述したように、復旧曲線生成部14は、図11における工場のリソースの復旧曲線を生成する。
<復旧曲線の生成−サービス(商品の生産)>
次に、本実施形態による復旧曲線生成システムが行う商品A及び商品Bの生産に対する操業度の算出について説明する。
以下の説明において、例えば、商品Aは1日の売上げが600万円で、製造ライン及び電力設備の双方が動作していなければ、生産ができず、一方、商品Bは一日の売上げが300万円で、電力設備が動作していれば、生産ができるとする。
商品A及び商品Bにおいても、各事業構成要素の損失確率の計算は、すでに説明したリソースの場合と、使用する式も数値も同様である。また、PMT算出部12が行う各事業構成要素に対する最大復旧期待時間の計算も同様である。
しかしながら、操業度算出部13における総損失額Qを求める際、確率PNN、PNY、PYN、PYYの算出に用いる損傷確率P及びPにおいて、商品Aの場合は製造ライン及び電力設備の双方が稼動状態でなければ生産できないため、損傷確率P及びPともにリソースの計算に用いた数値と同様である。一方、商品Bの場合、電力設備さえあれば生産が可能であるため、製造ラインの損傷確率Pを「0」とし、電力設備の損傷確率Pはリソースの計算に用いた電力設備の損傷確率Pと同一の数値である。
また、図10に示すフローチャートに従い、リソースの場合と同様に、商品A及び商品Bの各々の復旧曲線を算出する。
ここで、商品の復旧曲線がリソースの復旧曲線の生成と異なる点は、総損失額Qの算出に用いる損失額が1日の売上額となっていることである。
以下に、操業度算出部13の商品A及び商品Bの操業度の算出処理について説明する。このとき、損傷確率算出部11は、操業度算出部13に対し、算出した損傷確率P(=0.29673)及びP(=0.00169)を出力する。
また、操業度算出部13は、商品Aが製造ライン及び電源設備の双方が可動状態でないと生産できないため、損傷確率P及びPをそのまま用い、商品Bが電源設備のみで生産できるため、損傷率Pを「0」とし、損傷率Pをそのまま用いるとの制御情報を、復旧曲線生成部14により予め設定されている。この制御情報は、BIA実施者が入力装置15から入力する、復旧曲線を生成するための設定データである。
まず、操業度算出部13は、以下の様に、商品Aの操業度OPAを、リソースで用いた確率算出式を用いて算出する。
すでに述べたように、商品Aは、リソースと同様の製造ラインの損傷確率Pと電力設備の損傷確率Pとを用いて、製造ラインが損傷の有無と電力設備の損傷の有無との組み合わせの確率PNN、PNY、PYN、PYYを算出するため、得られる数値は以下に示すようにリソースの場合と同様である。
NN=0.70208(製造ライン及び電力設備の双方に損傷が無い場合)
NY=0.00189(電力設備のみに損傷がある場合)
YN=0.29622(製造ラインにのみ損傷がある場合)
YY=0.00050(製造ライン及び電力設備の双方に損傷がある場合)
次に、操業度算出部13は、予め基本情報データベース18に設定されている、商品Aの1日の売上げ金額を読み出す。ここで、商品Aの1日の売上げ金額は、損失額として商品Aを識別する商品識別情報とともに対応付けて記憶されている。操業度算出部13は、商品Aの損失額を、商品Aの商品識別情報により、基本情報データベース18の基本データテーブルから読み出す。
本実施形態の場合、例えば、商品Aの損失額が600万円(1日)である。したがって、再構成費も商品Aの損失額と同一の600万円となる。
次に、操業度算出部13は、製造ライン及び電力設備の損傷の有無によるそれぞれの組み合わせに対して、商品Aの損失額を乗算し、全ての組み合わせの乗算結果を加算し、所定の最大地動加速度の地震が発生した際に工場が受ける商品Aの総損失額の推定値を算出する。
すなわち、操業度算出部13は、以下の式により、工場の受ける商品Aの総損失額Q(円、本実施形態においては万円)を算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+600×PNY(製造ラインにのみ損傷がある場合、損失額は600万円)
+600×PYN(電力設備にのみ損傷がある場合、損失額は600万円)
+600×PYY(双方に損傷がある場合、損失額は600万円)
=178.75
そして、操業度算出部13は、以下の式に示すように、総損失額Q=178.75(万円)を、予め設定されている再構成費R=600(万円)により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=178.5/600
=0.297919
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0.297919を減算し、操業度OPAを算出する。
OPA=1−0.297919
=0.702081
次に、操業度算出部13は、以下の様に、商品Bの操業度OPBを、リソースで用いた確率算出式を用いて算出する。
すでに述べたように、商品Aは、製造ラインの損傷確率Pを「0」とし、リソースと同様の電力設備の損傷確率P(=0.00169)とを用いて、製造ラインが損傷の有無と電力設備の損傷の有無との組み合わせの確率PNN、PNY、PYN、PYYを算出する。
操業度算出部13は、製造ラインが損傷が無く、電力設備も損傷が無い場合、以下の確率算出式により、いずれにも損傷が無い確率PNNを算出する。
NN=(1−P)・(1−P
=(1−0)×(1−0.00169)
=0.99831
また、操業度算出部13は、製造ラインが損傷が無く、電力設備も損傷がある場合、以下の確率算出式により、いずれにも電力設備のみに損傷がある確率PNYを算出する。
NY=(1−P)・P
=(1−0)×0.00169
=0.00169
また、操業度算出部13は、製造ラインが損傷が有り、電力設備に損傷が無い場合、以下の確率算出式により、製造ラインにのみ損傷がある確率PYNを算出する。
YN=P・(1−P
=0×(1−0.00169)
=0
また、操業度算出部13は、製造ライン及び電力設備の双方に損傷がある場合、以下の確率算出式により、いずれにも損傷がある確率PYYを算出する。
YY=P・P
=0×0.00169
=0
次に、操業度算出部13は、予め基本情報データベース18に設定されている、商品Bの1日の売上げ金額を読み出す。ここで、商品Bの1日の売上げ金額は、損失額として商品Bを識別する商品識別情報とともに対応付けて記憶されている。操業度算出部13は、商品Bの損失額を、商品Bの商品識別情報により、基本情報データベース18の基本データテーブルから読み出す。
本実施形態の場合、例えば、商品Bの損失額が300万円(1日)である。したがって、再構成費も商品Bの損失額と同一の300万円となる。
次に、操業度算出部13は、製造ライン及び電力設備の損傷の有無によるそれぞれの組み合わせに対して、商品Bの損失額を乗算し、全ての組み合わせの乗算結果を加算し、所定の最大地動加速度の地震が発生した際に工場が受ける商品Bの総損失額の推定値を算出する。
すなわち、操業度算出部13は、以下の式により、工場の受ける商品Bの総損失額Q(円、本実施形態においては万円)を算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+300×PNY(製造ラインにのみ損傷がある場合、損失額は300万円)
+300×PYN(電力設備にのみ損傷がある場合、損失額は300万円)
+300×PYY(双方に損傷がある場合、損失額は300万円)
=0.51
そして、操業度算出部13は、以下の式に示すように、総損失額Q=0.51(万円)を、予め設定されている再構成費R=300(万円)により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=0.51/300
=0.00162
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0.00162を減算し、操業度OPBを算出する。
OPB=1−0.00162
=0.998308
復旧曲線生成部14は、リソースの場合と同様に、表示装置16の表示画面において、図11に示すグラフに供給される操業度OPA及びOPBを算出した経過日数に対応する位置にプロットする。
図11に示す商品A及び商品Bの操業度の経過日数毎における算出処理は、すでに述べたリソースの場合と同様であるため、詳細な説明を省略する。
また、操業度算出部13は、商品A及び商品Bの各々の損失額を、経過日数毎に積算し、操業度OPA、OPBが通常に戻るまでの積算値を求める。
これにより、復旧曲線生成部14は、製品単位に、それぞれの製品の生産に必要な事業構成要素の損傷状態により、生産が行えるまでの売上げに対する損失を、上述した各商品の損失額の積算値として算出することができる。ここで、復旧曲線生成部14は、表示装置16の表示画面における図11のグラフの経過日数の部分に、算出した積算値を表示する。
また、復旧曲線生成部14は、リソースで求めた、ハザードが発生した当日、すなわち経過日数が「0」の際の損失を、商品の積算値に加算することにより、発生したハザードによるリソース自体(事業構成要素)の損失額と、事業構成要素の損傷による商品の生産
が行えないことによる売上げの損失額との総計を容易に算出することができる。
<損傷確率のステップ変化及びリニア変化>
上述してきた説明において、損傷確率の変化は、ハザードが発生した時点に設定された損傷確率が最大復旧期待時間経過後に「0」となるステップでの変化になっている。
しかしながら、本実施形態に対し、最大復旧期待時間を損失率が「0」にいきなり変化する唯一のトリガとするのではなく、損失確率が設定値から「0」に経過日数により段階的に変化する、すなわちリニアに変化させ、経過日数毎に操業度OPを算出する構成としても良い。
上述したように、損傷率をステップ変化させた場合、事業構成要素の損傷確率は経過日数毎に変化はなく、稼動状態となる経過日数の日に、予め設定されている損傷確率の数値から0に変化し、このタイミングにおいて操業度OPの算出を行う。
一方、損傷率をリニア変化させた場合、事業構成要素の損傷確率を、ハザードが発生した日の最高の損傷確率を基本確率として、経過日数ごとに以下の式により変化させて、経過日数毎の操業度の算出を行う。
ここで、損傷確率(ステップ)のリニア変化における損傷確率(経過日数毎)は、損傷確率算出部11が以下の式により求める。
損傷確率(経過日数毎)=基本損傷確率(1−(経過日数/PMT))
すなわち損傷を受けてから徐々に回復する場合、例えば100台の装置があり、50台が損傷して、日数が経過する毎に、この損傷した50台において数台ずつ可動状態となり、徐々に損傷確率が変化することを想定している。
次に、図12は、本実施形態による復旧曲線作成システムの復旧曲線の生成の動作例を示すフローチャートである。この図12は、損傷確率をステップ変化とするか、あるいはリニア変化とするかを、事業構成要素毎に設定する機能を、損傷確率算出部11が有する場合の復旧曲線作成システムの動作例を示す。
予めBIA実施者は、入力装置15から、事業構成要素毎に、操業度OPを算出する際に、損傷確率をステップ変化させるかリニア変化させるかの設定を行う。
これにより、復旧曲線生成部14は、モデル設定時に、図9に示すモデルテーブルにおける途中復旧率の欄に、損傷確率の変化をステップかリニアかの情報が記憶される。
図12のフローチャートにおいて、図10のフローチャートと同様のステップに、同一のステップ番号を付与している。
ステップS2までは、図10のフローチャートと同様の動作であるため、説明を省略する。そして、ステップS2において、復旧曲線生成部14は、経過日数Dを「0」にリセットした後、処理をステップS10へ進める。
復旧曲線生成部14は、モデルデータベース19におけるモデルテーブルにおいて、各事業構成要素の途中復旧率の欄のデータを読み込み、各事業構成要素が損傷確率をステップあるいはリニアかであるかの判定を行い、リニアに設定されている事業構成要素の有無の検出を行う(ステップS10)。
そして、復旧曲線生成部14は、復旧曲線を生成するモデルのモデルテーブルにおける全ての事業構成要素がステップである場合、すなわち損傷確率をリニア処理して用いると設定された事業構成要素が無い場合、処理をステップS3へ進める。ここで、ステップS3に進んだ場合、後の処理は図10のフローチャートの動作と同様のため、これ以降のステップS4からステップS8までの処理についての説明を省略する。
一方、ステップS10において、復旧曲線生成部14は、復旧曲線を生成するモデルのモデルテーブルにおいて、リニアとして設定された事業構成要素が存在する場合、すなわち損傷確率をリニア処理して用いると設定された事業構成要素がある場合、処理をステップS11へ進める。
次に、復旧曲線生成部14は、損傷確率算出部11に対し、リニアと設定された事業構成要素の要素識別情報を付加し、この要素識別情報に対応する事業構成要素の損傷確率をリニア計算することを指示するリニア計算指示信号を出力する。
そして、損傷確率算出部11は、上述したリニア計算指示信号が供給されると、付加されている要素識別情報に対応する事業構成要素の損傷確率(経過日数毎)の算出を行う(ステップS11)。
ここで、損傷確率算出部11は、例えば、図9に示すように、事業構成要素として機械1がリニアと設定されている場合、機械1の損傷確率から損傷確率(経過日数毎)の算出を行う。損傷確率算出部11は、機械1の最大復旧期待時間が3日のため、以下のように各経過日数の損傷確率(経過日数毎)を算出する。
経過日数D=0:
損傷確率(経過日数毎)=0.24020×(1−(0/3))
=0.24020
経過日数D=1:
損傷確率(経過日数毎)=0.24020×(1−(1/3))
=0.16013
経過日数D=2:
損傷確率(経過日数毎)=0.24020×(1−(2/3))
=0.08006
経過日数D=3:
損傷確率(経過日数毎)=0.24020×(1−(3/3))
=0
そして、損傷確率算出部11は、算出した経過日数毎の機械1の損傷確率を、モデルテーブルの機械1の要素識別情報に対応した損傷確率の欄に、経過日数毎の損傷確率(経過日数毎)を書き込み、記憶させるとともに、復旧曲線生成部14に対してリニア処理のための損傷確率(経過日数毎)の算出が終了したことを通知する。
次に、復旧曲線生成部14は、損傷確率算出部11から損傷確率(経過日数毎)の算出が終了したことが通知されると、処理をステップS13へ進める。
そして、復旧曲線生成部14は、ステップS3と同様に、内部レジスタに記憶されている経過日数と、最大復旧期待時間PMTからPMTにおける最大値である最大経過日数とを比較する(ステップS13)。
このとき、復旧曲線生成部14は、経過日数が最大経過日数を超えている場合、復旧曲線の生成を終了し、経過日数が最大経過日数を超えていない場合、処理をステップS4へ進める。したがって、本実施形態の場合、最大経過日数が最大復旧期待時間PMTの5日であるため、経過日数が6日となると、完全に復旧1日後となるため処理を終了する。
次に、復旧曲線生成部14は、現在の経過日数を超える最大復旧期待時間を有するサブ事業構成要素の要素識別情報と、送信するサブ事業構成要素の要素識別情報にリニアの損傷確率を使用することを示すフラグを付加し、この要素識別情報に対応するサブ事業構成要素の損傷確率により、損傷確率P及びPを算出することを指示する制御信号を、損傷確率算出部11に対して出力する。
このとき、復旧曲線生成部14は、経過日数以下の最大復旧時間を有するサブ事業構成要素の損傷確率を「0」とする情報も、対応する要素識別情報とともに損傷確率算出部11に出力する制御信号に付加する。
これにより、損傷確率算出部11は、入力される制御信号に含まれる要素識別情報に基づき、いずれのサブ事業構成要素の損失確率を用い、またいずれのサブ事業構成要素の損失確率を「0」とするかの情報を用い、すでに説明した式により、損傷確率P及びPを算出する(ステップS15)。このとき、損傷確率算出部11は、リニアの損傷確率を使用することを示すフラグが付加された要素識別情報を検出すると、この要素識別番号に対応する事業構成要素の現在の経過日数に対応する損傷確率(経過日数毎)を、モデルテーブルからこの損傷確率(経過日数毎)を読み出す。そして、損傷確率算出部11は、リニアと指定された事業構成要素の損傷確率として、モデルテーブルから読み出した損傷確率(経過日数毎)を用いて、損傷確率P及びPを算出する。
そして、損傷確率算出部11は、算出した損傷確率P及びPを、操業度算出部13へ出力する。
次に、操業度算出部13は、損傷確率算出部11から入力される損傷確率P及びPに基づき、すでに説明した確率算出式により、製造ライン及び電力設備の双方に損傷の無い確率PNN、電力設備のみに損傷の有る確率PNY、製造ラインのみに損傷の有る確率PYN、製造ライン及び電力設備の双方に損傷の有る確率PYYを算出する。
そして、操業度算出部13は、算出した確率PNN、PNY、PYN及びPYYと、製造ライン及び電力設備の各々の再構成費とにより、総損失額Qを算出する。
現在の経過日数における総損失額Qを算出すると、操業度算出部13は、算出した総損失額Qを、すでに算出してある工場全体の事業構成要素に対する総再構成費Rにより除算し、現在の経過日数における最大予想損失率を算出する。
次に、操業度算出部13は、算出した最大予想損失率を1から減算し、現在の経過日数における操業度OPを算出し(ステップS16)、算出した操業度OPを復旧曲線生成部14に対して出力する。
操業度OPが供給されると、復旧曲線生成部14は、表示装置16の表示画面に表示している図11に示すグラフにおいて、現在の経過日数の座標点に、供給された操業度OPをプロットして表示する(ステップS17)。
次に、復旧曲線生成部14は、内部記憶部にある経過日数レジスタに記憶されている経過日数をインクリメント(1を加算)し(ステップS18)、シンクリメントし経過日数を経過日数レジスタに書き込み、記憶させる。
そして、復旧曲線生成部14は、処理をステップS13へ進める。
次に、図13を用いて、以下に、損傷確率をリニア処理した損傷確率を用いて操業度を算出し、復旧曲線の生成処理を行う実例を説明する。ここで、図9のモデルテーブルに示すように、機械1の損傷確率をリニア処理するとして以下の説明を行う。
BIA実施者により入力装置15からシミュレーション開始の制御信号が供給されると、復旧曲線生成部14は、経過日数「−1」から経過日数「0」までの操業度OPを1としてプロットする。
次に、復旧曲線生成部14は、ハザード、例えば地震が発生した際の経過日数「0」における操業度OPの計算を開始する制御信号を、損傷確率算出部11、PMT算出部12及び操業度算出部13に対して出力する。これにより、損傷確率算出部11、PMT算出部12及び操業度算出部13は、指定されたモデルの情報をモデルデータベース19のモデルテーブルに書き込む。
損傷確率算出部11は、製造ライン、電力設備、機械1、機械2、商用電源及び自家発電源の各々の損傷確率(P、P、P、P、P及びP)を算出し、モデルテーブルに書き込み、記憶させる。
PMT算出部12は、機械1、機械2、商用電源及び自家発電源の各々の最大復旧期待時間(PMT、PMT、PMT、PMT)を、それぞれ損傷確率と復旧日数とを乗算することにより算出し、モデルテーブルに書き込み、記憶させる。
このとき、復旧曲線生成部14は、モデルテーブルにある最大復旧期待時間の中から最大の日数(本実施形態においては最大復旧期待時間PMTの5日)を抽出し、内部記憶部に最大経過日数として書き込んで記憶させる。
ここで、機械1、機械2、商用電源及び自家発電源の各々の最大復旧期待時間は、すでに説明したように、それぞれ3日、1日、1日、5日と求められる。
また、復旧曲線生成部14は、モデルデータベース19のモデルテーブルにおける各事業構成要素(あるいはサブ事業構成要素)の途中復旧率の欄のデータを読み込み、機械1が損傷確率としてリニアで損傷確率(経過日数毎)を用いることを検出すると、損傷確率算出部11に対して、機械1の損傷確率と最大復旧期待時間とから、すでに説明したように、経過日数毎に損傷確率(経過日数毎)の算出を指示する。
これにより、損傷確率算出部11は、経過日数毎の損傷確率(経過日数毎)を算出し、モデルデータベース19のモデルテーブルの損傷確率の欄に書き込み、記憶させる。このとき、各経過日数Dにおける損傷確率(経過日数毎)は、D=0:損傷確率(経過日数毎)=0.24020、D=1:損傷確率(経過日数毎)=0.16013、D=2:損傷確率(経過日数毎)=10.8006、D=3:損傷確率(経過日数毎)=0
また、操業度算出部13は、損傷確率算出部11が算出した損傷確率により、それぞれの操業度OPを算出する。
この経過日数「0」日における操業度OPは、すでに算出したように、「0.872」である。
このため、復旧曲線生成部14は、得られた操業度OP=0.872を経過日数「0」にプロットし、操業度OPが1から0.872へ低下してことを表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「1」とする。
次に、経過日数「1」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数を超える最大復旧期待時間の事業構成要素をモデルテーブルから、経過日数と各事業構成要素の最大復旧期待時間とを比較することにより検出する。
検出後、復旧曲線生成部14は、機械1と自家発電源とが経過日数を超えた事業構成要素とし、機械2と商用電源とが損傷確率を「0」とする事業構成要素とし、それぞれの構成識別情報を含む制御信号を、損傷確率算出部11へ出力する。このとき、復旧曲線生成部14は、損傷確率をリニアとするフラグを機械1の構成識別情報に付加して、損傷確率算出部11へ出力する。
そして、損傷確率算出部11は、上述した制御信号が供給されると、機械2と商用電源との損傷確率を「0」とし、かつモデルテーブルから機械1の経過日数D=1に対応する損傷確率(経過日数毎)=0.16013を読み出し、以下の式により、製造ラインの損傷確率P及び電力設備の損傷確率Pの算出を行う。
=1−(1−P)・(1−P
=1−(1−0.16013)・(1−0)
=1−0.83987
=0.16013
=P・P
=0.22860×0
=0
そして、損傷確率算出部11は、算出した経過日数「1」における損傷確率P及びPを、操業度算出部13へ出力する。
操業度算出部13は、損傷確率算出部11から供給される損傷確率P及びPにより、製造ラインと電力設備とにおける損傷の有無の組み合わせの確率PNN(製造ライン及び電力設備の双方に損傷無し)、PNY(電力設備のみに損傷有り)、PYN(製造ラインのみに損傷有り)、PYY(製造ライン及び電力設備の双方に損傷有り)の算出を以下の式により行う。
NN=(1−P)・(1−P
=(1−16013)×(1−0)
=0.83987
NY=(1−P)・P
=(1−0.16013)×0
=0
YN=P・(1−P
=0.16013×(1−0)
=0.16013
YY=P・P
=0.16013×0
=0
次に、操業度算出部13は、上述のように求めた確率PNN、PNY、PYN、PYYの各々を、以下の式に示すように、対応する事業構成要素の損失額に乗算し、乗算結果を加算して、工場の受ける総損失額Qを算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=0×0.83987+2000×0+1500×0.16013+3500×0
=240.195
≒240
そして、操業度算出部13は、以下の式に示すように、算出した経過日数「1」における総損失額Q=240を、予め計算してある総再構成費R=3500により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=240/3500
=0.06857
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0.06857を減算し、操業度OPを算出する。
OP=1−0.06857
=0.93143
次に、復旧曲線生成部14は、得られた操業度OP=0.93143を経過日数「1」にプロットし、機械2と商用電源とが損傷から可動状態となり、操業度OPが0.897143から0.93143へ上昇したことを、表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「2」とする。
次に、経過日数「2」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数を超える最大復旧期待時間の事業構成要素をモデルテーブルから、経過日数と各事業構成要素の最大復旧期待時間とを比較することにより検出する。
検出後、復旧曲線生成部14は、機械1と自家発電源とが経過日数を超えた事業構成要素とし、機械2と商用電源とが損傷確率を「0」とする事業構成要素とし、それぞれの構成識別情報を含む制御信号を、損傷確率算出部11へ出力する。このとき、復旧曲線生成部14は、損傷確率をリニアとするフラグを機械1の構成識別情報に付加して、損傷確率算出部11へ出力する。
そして、損傷確率算出部11は、上述した制御信号が供給されると、機械2と商用電源との損傷確率を「0」とし、かつモデルテーブルから機械1の経過日数D=2に対応する損傷確率(経過日数毎)=0.08006を読み出し、以下の式により、製造ラインの損傷確率P及び電力設備の損傷確率Pの算出を行う。
=1−(1−P)・(1−P
=1−(1−0.08006)・(1−0)
=1−0.91994
=0.08006
=P・P
=0.22860×0
=0
そして、損傷確率算出部11は、算出した経過日数「21」における損傷確率P及びPを、操業度算出部13へ出力する。
操業度算出部13は、損傷確率算出部11から供給される損傷確率P及びPにより、製造ラインと電力設備とにおける損傷の有無の組み合わせの確率PNN(製造ライン及び電力設備の双方に損傷無し)、PNY(電力設備のみに損傷有り)、PYN(製造ラインのみに損傷有り)、PYY(製造ライン及び電力設備の双方に損傷有り)の算出を以下の式により行う。
NN=(1−P)・(1−P
=(1−0.08006)×(1−0)
=0.91994
NY=(1−P)・P
=(1−0.08006)×0
=0
YN=P・(1−P
=0.08006×(1−0)
=0.08006
YY=P・P
=0.08006×0
=0
次に、操業度算出部13は、上述のように求めた確率PNN、PNY、PYN、PYYの各々を、以下の式に示すように、対応する事業構成要素の損失額に乗算し、乗算結果を加算して、工場の受ける総損失額Qを算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=0×0.91994+2000×0+1500×0.08006+3500×0
=120.09
≒120
そして、操業度算出部13は、以下の式に示すように、算出した経過日数「1」における総損失額Q=240を、予め計算してある総再構成費R=3500により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=120/3500
=0.03428
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0.03428を減算し、操業度OPを算出する。
OP=1−0.03428
=0.96571
次に、復旧曲線生成部14は、得られた操業度OP=0.96571を経過日数「2」にプロットし、機械2と商用電源とが損傷から可動状態となり、操業度OPが0.93143から0.96571へ上昇したことを、表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「3」とする。
次に、復旧曲線生成部14は、経過日数を超える最大復旧期待時間の事業構成要素をモデルテーブルから、経過日数と各事業構成要素の最大復旧期待時間とを比較することにより検出する。
検出後、復旧曲線生成部14は、自家発電源とが経過日数を超えた事業構成要素とし、機械1と機械2と商用電源とが損傷確率を「0」とする事業構成要素とし、それぞれの構成識別情報を含む制御信号を、損傷確率算出部11へ出力する。
そして、損傷確率算出部11は、上述した制御信号が供給されると、機械1、機械2及び商用電源との損傷確率を「0」とし、以下の式により、製造ラインの損傷確率P及び電力設備の損傷確率Pの算出を行う。
=1−(1−P)・(1−P
=1−(1−0)・(1−0)
=1−0
=0
=P・P
=0.22860×0
=0
そして、損傷確率算出部11は、算出した経過日数「3」における損傷確率P及びPを、操業度算出部13へ出力する。
操業度算出部13は、損傷確率算出部11から供給される損傷確率P及びPにより、製造ラインと電力設備とにおける損傷の有無の組み合わせの確率PNN(製造ライン及び電力設備の双方に損傷無し)、PNY(電力設備のみに損傷有り)、PYN(製造ラインのみに損傷有り)、PYY(製造ライン及び電力設備の双方に損傷有り)の算出を以下の式により行う。
NN=(1−P)・(1−P
=(1−0)×(1−0)
=1
NY=(1−P)・P
=(1−0)×0
=0
YN=P・(1−P
=0×(1−0)
=0
YY=P・P
=0×0
=0
次に、操業度算出部13は、上述のように求めた確率PNN、PNY、PYN、PYYの各々を、以下の式に示すように、対応する事業構成要素の損失額に乗算し、乗算結果を加算して、工場の受ける総損失額Qを算出する。
Q=0×PNN(損傷がない場合、損失額は0円)
+2000×PNY(製造ラインにのみ損傷がある場合、損失額は2000万円)
+1500×PYN(電力設備にのみ損傷がある場合、損失額は1500万円)
+3500×PYY(双方に損傷がある場合、損失額は3500万円)
=0×1+2000×0+1500×0+3500×0
=0
そして、操業度算出部13は、以下の式に示すように、算出した経過日数「3」における総損失額Q=0を、予め計算してある総再構成費R=3500により除算し、最大予想損失率PMLを算出する。
PML=Q/R
=0/3500
=0
最大予想損失率を算出すると、操業度算出部13は、以下の式に示すように、1から最大予想損失率PML=0を減算し、操業度OPを算出する。
OP=1−0
=1
次に、復旧曲線生成部14は、得られた操業度OP=1を経過日数「3」にプロットし、機械1、機械2及び商用電源が損傷状態から可動状態となり、操業度OPが0.897143から1のハザード前の操業度に戻ったことを、表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「4」とする。
次に、経過日数「4」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数を超える最大復旧期待時間の事業構成要素をモデルテーブルから、経過日数と各事業構成要素の最大復旧期待時間とを比較することにより検出する。
検出後、復旧曲線生成部14は、自家発電源とが経過日数を超えた事業構成要素とし、機械1と機械2と商用電源とが損傷確率を「0」とする事業構成要素として検出するが、自家発電源がリニアの損傷確率を使用するとして設定されておらず、自家発電源の損傷確率が前回と同一であることを検出する。
このため、復旧曲線生成部14は、新たに損傷状態から稼動状態に遷移した事業構成要素がないので、前回算出した操業度OPから変化がないものとし、前回の操業度OPを表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「5」とする。
次に、経過日数「5」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていないことを検出すると、経過日数を超える最大復旧期待時間の事業構成要素をモデルテーブルから、経過日数と各事業構成要素の最大復旧期待時間とを比較することにより検出する。
しかしながら、復旧曲線生成部14は、経過日数を超える最大復旧期待時間を超える事業構成要素が存在せず、すでに操業度OPが「1」となっていることから、通常に工場が稼動している状態にあるため、前回算出した操業度OPから変化がないものとし、前回の操業度OPを表示装置16の表示画面のグラフに表示する。また、復旧曲線生成部14は、経過日数をインクリメントし、経過日数「6」とする。
次に、経過日数「6」において、復旧曲線生成部14は、経過日数が最大経過日数を超えたか否かの判定を行い、超えていることを検出すると、復旧曲線の生成処理を終了する。
上述したように、復旧曲線生成部14は、図13における工場のリソースの復旧曲線を生成する。
また、リニアな損傷確率を使用する復旧曲線の生成−サービス(商品の生産)については、リソースと同様の演算を行うため、説明を省略する。
上述した本実施形態によれば、損傷確率の変化にステップではなくリニアを用いることにより、複数の機械などが損傷し、数台ずつ復旧して生産が可能になる場合などにおいて、より詳細な復旧曲線を生成し、ハザードに対して耐性を持たせたり、あるいは損傷を受けた後の修理の優先順位などの対処方法の抽出の精度を向上させることができる。
また、図1における損傷確率算出部11、PMT算出部12、操業度算出部13、復旧曲線生成部14の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより復旧曲線の生成処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
11…損傷確率算出部
12…PMT算出部
13…操業度算出部
14…復旧曲線生成部
15…入力装置
16…表示装置
17…損傷確率データベース
18…基本情報データベース
19…モデルデータベース
100…復旧曲線作成システム

Claims (21)

  1. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、
    所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部と
    を有し、
    前記復旧曲線生成部は、
    前記操業度算出部によって前記ハザードの種類に応じて算出された前記操業度を前記周期毎にプロットし、前記復旧曲線を生成する
    ことを特徴とする復旧曲線作成システム。
  2. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、
    所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部と
    を有する
    ことを特徴とする復旧曲線作成システム。
  3. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、
    所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部と
    を有し、
    前記損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にする
    ことを特徴とする復旧曲線作成システム。
  4. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部と、
    所定の周期毎に、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出部と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成部と、
    前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出部と
    を有し、
    前記操業度算出部が、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算する
    ことを特徴とする復旧曲線作成システム。
  5. 前記構成要素は、
    前記診断対象の施設における事業の継続性に影響する構成要素である
    ことを特徴とする請求項1から請求項4の何れか1項に記載の復旧曲線作成システム。
  6. 前記構成要素は、
    前記診断対象の施設における構成要素のうちから選択された構成要素である
    ことを特徴とする請求項1から請求項5の何れか1項に記載の復旧曲線作成システム。
  7. 前記構成要素は、
    前記診断対象の施設における少なくとも建物および各収容設備の何れかを含む
    ことを特徴とする請求項1から6の何れか1項に記載の復旧曲線作成システム。
  8. 前記操業度算出部は、
    前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額と前記構成要素の再構成費とから、前記操業度を算出することを特徴とする請求項1から7の何れか1項に記載の復旧曲線作成システム。
  9. 前記操業度算出部は、
    前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額と前記構成要素の再構成費とから予想損失率を求め、前記予想損失率に応じた操業度を、減算式を用いて算出する
    ことを特徴とする請求項1から8の何れか1項に記載の復旧曲線作成システム。
  10. 所定の値から前記予想損失率を減算して前記操業度を算出するように、前記減算式を定めている
    ことを特徴とする請求項9に記載の復旧曲線作成システム。
  11. 前記操業度算出部は、
    前記構成要素毎の全壊における最大損失額に対し、前記損傷確率を乗じて最大予想損失額を求め、前記最大予想損失額を前記構成要素の再構成費で除算して予想損失率を求め、1から前記予想損失率を減算し、減算結果を操業度として出力する
    ことを特徴とする請求項1から10の何れか1項に記載の復旧曲線作成システム。
  12. 前記復旧曲線生成部は、
    前記ハザードが発生した時点から最大復旧期待時間が経過するまでの期間の復旧曲線を生成する
    ことを特徴とする請求項1から11の何れか1項に記載の復旧曲線作成システム。
  13. 前記復旧曲線生成部は、
    前記算出された操業度に基づいて復旧曲線を生成し、グラフに表示する
    ことを特徴とする請求項1から12の何れか1項に記載の復旧曲線作成システム。
  14. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、
    前記ハザードの種類に応じて前記算出された操業度に基づいて前記操業度を前記周期毎にプロットし、前記復旧曲線を生成する復旧曲線生成過程と、
    を含むことを特徴とする復旧曲線作成方法。
  15. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程と
    を含むことを特徴とする復旧曲線作成方法。
  16. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にして、前記損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程と
    を含むことを特徴とする復旧曲線作成方法。
  17. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムにおける復旧曲線作成方法であり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出過程と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成過程と、
    前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出過程と
    を含み、
    前記操業度算出過程において、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算する過程
    を含むことを特徴とする復旧曲線作成方法。
  18. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、
    前記ハザードの種類に応じて前記算出された操業度に基づいて前記操業度を前記周期毎にプロットし、前記復旧曲線を生成する復旧曲線生成処理と
    をコンピュータに実行させるプログラム。
  19. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を前記ハザードの種類に応じて定めておき、前記定めた損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理と
    をコンピュータに実行させるプログラム。
  20. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を、前記診断対象の施設における構成要素に含まれる各収容設備を用いて操業し、前記各収容設備のうち少なくともいずれか1つがハザードにより損傷を受けて操業できなくなる確率にして、前記損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理と
    をコンピュータに実行させるプログラム。
  21. ハザードによる施設に対する被害を定量的に評価し、施設における事業の継続性を予測する復旧曲線を生成する復旧曲線作成システムの動作をコンピュータに実行させるプログラムであり、
    診断対象の施設における構成要素がハザードにより損傷を受ける損傷確率を当該構成要素毎に記憶する損傷確率記憶部があり、所定の周期毎に、前記損傷確率記憶部から前記構成要素の損傷確率を読出し、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とに基づいて操業度を算出する操業度算出処理と、
    前記算出された操業度に基づいて復旧曲線を生成する復旧曲線生成処理と、
    前記構成要素の全壊における最大復旧時間に対し、前記損傷確率を乗じ、前記構成要素毎の最大復旧期待時間を求めるPMT算出処理と、
    前記操業度算出処理において、前記周期の経過毎に経過時間をカウントし、当該経過時間が前記最大復旧期待時間を超えた前記構成要素の損傷確率を0とし、前記構成要素毎の全壊における最大損失額と前記損傷確率と前記構成要素の再構成費とから求めた予想損失率を再度計算する処理と
    をコンピュータに実行させるプログラム。
JP2014155397A 2014-07-30 2014-07-30 復旧曲線作成システム、復旧曲線作成方法、及びプログラム Active JP5970505B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155397A JP5970505B2 (ja) 2014-07-30 2014-07-30 復旧曲線作成システム、復旧曲線作成方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155397A JP5970505B2 (ja) 2014-07-30 2014-07-30 復旧曲線作成システム、復旧曲線作成方法、及びプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010288012A Division JP5592247B2 (ja) 2010-12-24 2010-12-24 復旧曲線作成システム、復旧曲線作成方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2014199680A JP2014199680A (ja) 2014-10-23
JP5970505B2 true JP5970505B2 (ja) 2016-08-17

Family

ID=52356485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155397A Active JP5970505B2 (ja) 2014-07-30 2014-07-30 復旧曲線作成システム、復旧曲線作成方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP5970505B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6550254B2 (ja) * 2015-04-02 2019-07-24 株式会社Nttファシリティーズ 復旧曲線作成システム、復旧曲線作成方法、及びプログラム
US10803414B2 (en) * 2016-05-25 2020-10-13 Dassault Systemes Americas Corp. Risk identification in supply chain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186285A (ja) * 2007-01-30 2008-08-14 Takenaka Komuten Co Ltd 地震被害予測装置、地震被害予測方法及び地震被害予測プログラム
JP5186990B2 (ja) * 2008-04-22 2013-04-24 株式会社大林組 復旧過程評価用コンピュータ、及び復旧過程評価プログラム

Also Published As

Publication number Publication date
JP2014199680A (ja) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6843882B2 (ja) 履歴ログからの学習と、etlツール内のデータアセットに関するデータベースオペレーションの推奨
MacKenzie et al. Empirical data and regression analysis for estimation of infrastructure resilience with application to electric power outages
US20090083089A1 (en) Systems and methods for analyzing failure modes according to cost
Tesfamariam et al. Loss estimation for non‐ductile reinforced concrete building in Victoria, British Columbia, Canada: effects of mega‐thrust Mw9‐class subduction earthquakes and aftershocks
US10453015B2 (en) Injury risk factor identification, prediction, and mitigation
US20140046709A1 (en) Methods and systems for evaluating technology assets
Console et al. Real time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law: comparison with a purely stochastic ETAS model
US20170178039A1 (en) Computer system for catastrophic event management
DeBock et al. A comparative evaluation of probabilistic regional seismic loss assessment methods using scenario case studies
Zorn et al. Quantifying directional dependencies from infrastructure restoration data
CN114997263B (zh) 基于机器学习的结训率分析方法、装置、设备及存储介质
JP5970505B2 (ja) 復旧曲線作成システム、復旧曲線作成方法、及びプログラム
Sweya et al. Tool development to measure the resilience of water supply systems in Tanzania: Economic dimension
JP2013105221A (ja) 保守部品配送支援システム,保守部品配送支援装置および保守部品配送支援プログラム
JP2016110231A (ja) プロジェクト評価装置及びプロジェクト評価方法及びプロジェクト評価プログラム
US20130282410A1 (en) Hazard risk assessment
Azarbakht et al. A decision-making approach for operational earthquake forecasting
JP5592247B2 (ja) 復旧曲線作成システム、復旧曲線作成方法及びプログラム
JP2004054954A (ja) リスク診断システム、リスクマップデータ生成方法及びプログラム
CN111666191B (zh) 数据质量监控方法、装置、电子设备及存储介质
JP2014081878A (ja) 意思決定支援システム及び方法
US20160026951A1 (en) Mature practice assessment framework
WO2013061324A2 (en) A method for estimating the total cost of ownership (tcp) for a requirement
de Llano Monelos et al. DEA as a business failure prediction tool Application to the case of galician SMEs
Wahlgren et al. A maturity model for IT-related security incident management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5970505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250