JP5969891B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5969891B2
JP5969891B2 JP2012232237A JP2012232237A JP5969891B2 JP 5969891 B2 JP5969891 B2 JP 5969891B2 JP 2012232237 A JP2012232237 A JP 2012232237A JP 2012232237 A JP2012232237 A JP 2012232237A JP 5969891 B2 JP5969891 B2 JP 5969891B2
Authority
JP
Japan
Prior art keywords
tire
width direction
shoulder land
dimple
tire width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232237A
Other languages
Japanese (ja)
Other versions
JP2014083892A (en
Inventor
哲二 宮崎
哲二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2012232237A priority Critical patent/JP5969891B2/en
Publication of JP2014083892A publication Critical patent/JP2014083892A/en
Application granted granted Critical
Publication of JP5969891B2 publication Critical patent/JP5969891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Description

本発明は、ショルダー陸部に複数の横溝がタイヤ周方向に間隔を設けて形成された空気入りタイヤに関する。   The present invention relates to a pneumatic tire in which a plurality of lateral grooves are formed in a shoulder land portion at intervals in the tire circumferential direction.

トレッド面に設けられる複数の陸部のうち、タイヤ幅方向の最外側に位置するショルダー陸部では、コーナリング走行時の負荷が大きくなる傾向にあり、乾燥路面での操縦安定性能に及ぼす影響が大きい。このことは、車重が重く且つ重心が高いミニバンやワンボックス車に装着されたタイヤにおいて特に顕著であり、有効な対策を講ずることが望まれる。ショルダー陸部には、排水性能の向上などを目的として、タイヤ幅方向に沿って延びる横溝をタイヤ周方向に繰り返して形成することが一般的である。   Among the plurality of land portions provided on the tread surface, in the shoulder land portion located on the outermost side in the tire width direction, the load during cornering tends to increase, which greatly affects the steering stability performance on the dry road surface. . This is particularly noticeable in tires mounted on minivans and one-box vehicles with heavy vehicle weight and high center of gravity, and it is desirable to take effective measures. In the shoulder land portion, for the purpose of improving drainage performance or the like, it is common to repeatedly form lateral grooves extending in the tire width direction in the tire circumferential direction.

接地端を跨ぐようにして設けられたショルダー陸部では、そのタイヤ幅方向の外側部分がバットレス部に配される。バットレス部は、サイドウォール部のタイヤ径方向の外側部分に相当し、平坦な舗装路での通常走行時には接地しない部位である。ショルダー陸部に形成された横溝が、バットレス部に入り込むことなく接地面内で終端する構造や、接地端を越えてすぐに終端する構造では、横溝によるショルダー陸部の体積減少が十分でなく、それ故に転がり抵抗の低減に対する寄与は小さい。   In the shoulder land portion provided so as to straddle the ground contact end, the outer portion in the tire width direction is arranged in the buttress portion. The buttress portion corresponds to an outer portion of the sidewall portion in the tire radial direction, and is a portion that does not come into contact with the ground during normal traveling on a flat paved road. In the structure where the lateral groove formed in the shoulder land part terminates in the ground contact surface without entering the buttress part, or the structure that terminates immediately beyond the ground contact end, the volume reduction of the shoulder land part due to the lateral groove is not sufficient, Therefore, the contribution to the reduction of rolling resistance is small.

一方、特許文献1,2に示されるような、ショルダー陸部のタイヤ幅方向外側端に横溝が到達する構造や、バットレス部においてタイヤ周方向に連続する環状溝に横溝が接続される構造では、走行時のタイヤの撓み変形に伴うサイドウォール部の動きが大きくなって、乾燥路面での操縦安定性能が低下する傾向にある。これは、ショルダー陸部の剛性が低下することや、バットレス部のワイピングが助長されることに起因するものと考えられ、改善する余地があった。   On the other hand, as shown in Patent Documents 1 and 2, in the structure in which the lateral groove reaches the outer end in the tire width direction of the shoulder land portion, or in the structure in which the lateral groove is connected to the annular groove continuous in the tire circumferential direction in the buttress portion, The movement of the sidewall portion accompanying the bending deformation of the tire during traveling tends to increase, and the steering stability performance on the dry road surface tends to decrease. This is considered to be caused by the decrease in rigidity of the shoulder land portion and the wiping of the buttress portion being promoted, and there is room for improvement.

意匠登録第1169838号公報Design Registration No. 1169838 意匠登録第954684号公報Design Registration No. 954684

本発明は上記実情に鑑みてなされたものであり、その目的は、操縦安定性能の向上と転がり抵抗の低減を両立しうる空気入りタイヤを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pneumatic tire capable of achieving both improvement in steering stability performance and reduction in rolling resistance.

上記目的は、下記の如き本発明により達成することができる。即ち、本発明に係る空気入りタイヤは、タイヤ周方向に沿って延びる複数の主溝により区画された複数の陸部がトレッド面に設けられ、その複数の陸部のうちタイヤ幅方向の最外側に位置するショルダー陸部に、複数の横溝がタイヤ周方向に間隔を設けて形成された空気入りタイヤにおいて、前記横溝は、接地端を横切るようにしてタイヤ幅方向に沿って延びる本体部と、前記本体部のタイヤ幅方向外側の端部からタイヤ幅方向内側に向かって折り返してなる折返し部とを有し、前記折返し部は、タイヤ周方向に対して傾斜して延びるとともに、他の溝やサイプに接続されることなく、前記接地端よりもタイヤ幅方向外側の位置で終端し、前記ショルダー陸部のタイヤ幅方向外側端と前記折返し部との間に、独立したディンプルが形成されているものである。   The above object can be achieved by the present invention as described below. That is, in the pneumatic tire according to the present invention, a plurality of land portions defined by a plurality of main grooves extending along the tire circumferential direction are provided on the tread surface, and the outermost portion in the tire width direction among the plurality of land portions. In the pneumatic tire in which a plurality of lateral grooves are formed at intervals in the tire circumferential direction on the shoulder land portion located in the body, the lateral grooves extend along the tire width direction so as to cross the ground contact end, and And a folded portion that is folded back from the end on the tire width direction outer side of the main body portion toward the inner side in the tire width direction, the folded portion extends while being inclined with respect to the tire circumferential direction, and other grooves and Without being connected to a sipe, it terminates at a position on the outer side in the tire width direction from the ground contact end, and an independent dimple is formed between the outer end in the tire width direction of the shoulder land portion and the folded portion. Is shall.

このタイヤでは、横溝の折返し部が、タイヤ周方向に対して傾斜して延び、他の溝やサイプに接続されず、接地端よりもタイヤ幅方向外側で終端するため、ショルダー陸部の剛性低下とバットレス部のワイピングが良好に抑制される。ショルダー陸部には、折返し部により延長された横溝に加えてディンプルが形成されているため、ショルダー陸部の体積減少を多くしてタイヤ質量を軽減できる。また、ディンプルは、ショルダー陸部のタイヤ幅方向外側端と折返し部との間で独立して形成されるため、ディンプルによるショルダー陸部の剛性低下は抑制される。その結果、このタイヤによれば、操縦安定性能の向上と転がり抵抗の低減を両立できる。   In this tire, the folded portion of the lateral groove extends obliquely with respect to the tire circumferential direction, is not connected to other grooves or sipes, and terminates on the outer side in the tire width direction from the ground contact end, so that the rigidity of the shoulder land portion decreases. And the wiping of the buttress part is suppressed well. Since the dimples are formed in the shoulder land portion in addition to the lateral grooves extended by the folded portion, the tire mass can be reduced by increasing the volume of the shoulder land portion. Further, since the dimples are independently formed between the outer end of the shoulder land portion in the tire width direction and the folded portion, a decrease in rigidity of the shoulder land portion due to the dimple is suppressed. As a result, according to this tire, it is possible to achieve both improvement in steering stability performance and reduction in rolling resistance.

本発明では、前記ショルダー陸部が、そのショルダー陸部のタイヤ幅方向外側端を縁としてタイヤ周方向に連続して延びる細リブ領域を有するものが好ましい。これにより、ショルダー陸部の剛性低下とバットレス部のワイピングを効果的に抑えて、操縦安定性能を適切に向上することができる。   In the present invention, it is preferable that the shoulder land portion has a thin rib region continuously extending in the tire circumferential direction with the outer edge in the tire width direction of the shoulder land portion as an edge. Thereby, the rigidity reduction of a shoulder land part and the wiping of a buttress part can be suppressed effectively, and steering stability performance can be improved appropriately.

本発明では、前記ディンプルが複数の小ディンプルにより構成されているものが好ましい。かかる構成によれば、ディンプルによるショルダー陸部の剛性低下を更に抑制して、操縦安定性能をより良好に向上できる。   In the present invention, the dimple is preferably composed of a plurality of small dimples. According to such a configuration, it is possible to further improve the steering stability performance by further suppressing the decrease in rigidity of the shoulder land portion due to the dimples.

本発明では、タイヤ周方向における前記ディンプルの長さが、前記横溝の繰り返しピッチ長の45%以上であるものが好ましい。これによってディンプルの長さが確保され、転がり抵抗の低減効果を有効に高められる。   In the present invention, it is preferable that the length of the dimples in the tire circumferential direction is 45% or more of the repeated pitch length of the lateral grooves. As a result, the length of the dimple is secured, and the effect of reducing rolling resistance can be effectively enhanced.

本発明では、前記ディンプルの深さが前記折返し部の深さよりも大きいものでもよい。この場合、横溝の折返し部の深さは相対的に小さいため、ショルダー陸部の剛性低下を抑えられる。それでいて、ディンプルの深さは相対的に大きいことから、ショルダー陸部の体積減少を確保して転がり抵抗を低減できる。   In the present invention, the depth of the dimple may be larger than the depth of the folded portion. In this case, since the depth of the folded portion of the lateral groove is relatively small, the rigidity of the shoulder land portion can be prevented from being lowered. Nevertheless, since the depth of the dimple is relatively large, the rolling resistance can be reduced by ensuring the volume reduction of the shoulder land portion.

空気入りタイヤのトレッド面の一例を示す展開図Development view showing an example of tread surface of pneumatic tire 図1のトレッド面の一部を示す拡大図An enlarged view showing a part of the tread surface of FIG. 別実施形態におけるトレッド面の一部を示す拡大図The enlarged view which shows a part of tread surface in another embodiment 別実施形態におけるトレッド面の一部を示す拡大図The enlarged view which shows a part of tread surface in another embodiment (A)比較例1と(B)比較例2におけるトレッド面の一部を示す拡大図(A) Enlarged view showing a part of the tread surface in Comparative Example 1 and (B) Comparative Example 2 比較例3におけるトレッド面の一部を示す拡大図The enlarged view which shows a part of tread surface in the comparative example 3

以下、本発明の実施形態について、図面を参照しながら説明する。図1に示した空気入りタイヤのトレッド面Trには、タイヤ周方向CDに沿って延びる複数の(本実施形態では3本の)主溝1と、それらにより区画された複数の(本実施形態では4つの)陸部が設けられている。この複数の陸部は、タイヤ幅方向の最外側に位置する一対のショルダー陸部2と、タイヤ赤道CLを挟んで位置する一対のセンター陸部3とを含む。ショルダー陸部2は、接地端Eを跨ぐようにして設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The tread surface Tr of the pneumatic tire shown in FIG. 1 has a plurality of (three in this embodiment) main grooves 1 extending along the tire circumferential direction CD and a plurality of (this embodiment) partitioned by them. There are four land areas. The plurality of land portions include a pair of shoulder land portions 2 located on the outermost side in the tire width direction and a pair of center land portions 3 located across the tire equator CL. The shoulder land portion 2 is provided so as to straddle the ground contact end E.

ショルダー陸部2には、複数の横溝4がタイヤ周方向CDに間隔を設けて形成されている。横溝4のタイヤ幅方向内側の端部は、主溝1に接続することなく接地面内で終端しても構わない。タイヤ周方向CDに並ぶ横溝4の間には、切り込み状のサイプ5が形成されている。本明細書では、幅が1.2mm以下であるものをサイプとし、これよりも幅広であれば溝とする。よって、横溝4の幅W4は1.2mmを超え、サイプ5の幅W5は1.2mm以下である。幅W4及び幅W5は、それぞれ接地面内においてショルダー陸部2の表面の高さで測定される。   A plurality of lateral grooves 4 are formed in the shoulder land portion 2 at intervals in the tire circumferential direction CD. The end of the lateral groove 4 on the inner side in the tire width direction may be terminated within the ground contact surface without being connected to the main groove 1. A cut-out sipe 5 is formed between the lateral grooves 4 arranged in the tire circumferential direction CD. In the present specification, a sipe having a width of 1.2 mm or less is defined as a sipe, and a groove having a width greater than this is defined as a groove. Therefore, the width W4 of the lateral groove 4 exceeds 1.2 mm, and the width W5 of the sipe 5 is 1.2 mm or less. The width W4 and the width W5 are each measured by the height of the surface of the shoulder land portion 2 in the ground plane.

接地端Eは、タイヤをJATMA YEAR BOOK(2007年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMAYEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧−負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%を内圧として充填し、最大負荷能力を負荷したときのタイヤ幅方向最外の接地部分を指す。使用地または製造地においてTRA規格、ETRTO規格が適用される場合は各々の規格に従う。   The ground contact E attaches the tire to a standard rim specified in JATMA YEAR BOOK (2007 edition, Japan Automobile Tire Association standard), and the maximum load capacity (internal pressure-load capacity) in the applicable size and ply rating in JATMAYEAR BOOK Fills 100% of the air pressure (maximum air pressure) corresponding to the bold load in the correspondence table as the internal pressure, and indicates the outermost contact portion in the tire width direction when the maximum load capacity is applied. When the TRA standard or ETRTO standard is applied in the place of use or manufacturing, the respective standards are followed.

図2に拡大して示すように、横溝4の各々は、接地端Eを横切るようにしてタイヤ幅方向に沿って延びる本体部4aと、本体部4aのタイヤ幅方向外側の端部からタイヤ幅方向内側に向かって折り返してなる折返し部4bとを有する。本体部4aのタイヤ幅方向内側の端部は接地面内に位置し、タイヤ幅方向外側の端部は接地面外に位置する。本実施形態の本体部4aは、タイヤ幅方向に対して傾斜したストレート溝であるが、タイヤ幅方向と平行に延びてもよく、緩やかに湾曲しても構わない。   As shown in an enlarged view in FIG. 2, each of the lateral grooves 4 includes a main body portion 4 a extending along the tire width direction so as to cross the ground contact end E, and a tire width from an outer end portion of the main body portion 4 a in the tire width direction. And a folded portion 4b that is folded inward in the direction. The end of the main body 4a on the inner side in the tire width direction is located in the ground contact surface, and the end on the outer side in the tire width direction is located outside the ground contact surface. The main body 4a of the present embodiment is a straight groove inclined with respect to the tire width direction, but may extend in parallel with the tire width direction or may be gently curved.

折返し部4bは、タイヤ周方向CDに対して傾斜して延びるとともに、他の溝(隣接する横溝4や主溝1など)やサイプ(サイプ5及びその他のサイプ)に接続されることなく、接地端Eよりもタイヤ幅方向外側の位置で終端する。そして、ショルダー陸部2のタイヤ幅方向外側端E2と折返し部4bとの間には、独立したディンプル6が形成されている。外側端E2はトレッドゴムの端でもあり、これよりもタイヤ幅方向外側には不図示のサイドウォールゴムが連なる。ショルダー陸部2では、横溝4やディンプル6を含む模様がタイヤ周方向CDに繰り返して形成されている。   The folded portion 4b extends while inclining with respect to the tire circumferential direction CD, and is connected to the ground without being connected to other grooves (such as the adjacent lateral grooves 4 and the main groove 1) or sipes (sipe 5 and other sipes). Terminate at a position on the outer side in the tire width direction from the end E. And the independent dimple 6 is formed between the tire width direction outer side end E2 of the shoulder land part 2, and the folding | returning part 4b. The outer end E2 is also an end of the tread rubber, and a sidewall rubber (not shown) continues to the outside in the tire width direction. In the shoulder land portion 2, a pattern including the lateral grooves 4 and the dimples 6 is repeatedly formed in the tire circumferential direction CD.

このタイヤでは、折返し部4bがタイヤ周方向CDに対して傾斜しているため、バットレス部のワイピングが良好に抑制される。ワイピングの抑制効果を確保するうえで、タイヤ周方向CDに対する折返し部4bの傾斜角度θは、15〜45°であることが好ましい。また、横溝4を長く形成して転がり抵抗の低減効果を高めるうえで、タイヤ周方向CDにおける折返し部4bの長さL4bは、横溝4の繰り返しピッチ長Pの35%以上であることが好ましい。傾斜角度θと長さL4bは、それぞれ横溝4の溝中心線を基準にして定められる。   In this tire, since the folded portion 4b is inclined with respect to the tire circumferential direction CD, wiping of the buttress portion is satisfactorily suppressed. In order to ensure the effect of suppressing wiping, the inclination angle θ of the folded portion 4b with respect to the tire circumferential direction CD is preferably 15 to 45 °. Further, in order to enhance the rolling resistance reduction effect by forming the lateral grooves 4 longer, the length L4b of the folded portion 4b in the tire circumferential direction CD is preferably 35% or more of the repeated pitch length P of the lateral grooves 4. The inclination angle θ and the length L4b are determined based on the groove center line of the lateral groove 4, respectively.

また、折返し部4bが他の溝やサイプに接続されず、接地端Eよりもタイヤ幅方向外側で終端することによって、ショルダー陸部2の剛性低下を抑制できる。それでいて、ショルダー陸部2には、折返し部4bにより延長された横溝4に加えてディンプル6が形成されているため、折返し部4bやディンプル6が形成されていない場合に比べて、ショルダー陸部2の体積減少が多くなり、延いてはタイヤ質量を軽減して転がり抵抗を低減することができる。   Further, the folded portion 4b is not connected to another groove or sipe, and is terminated at the outer side in the tire width direction from the ground contact end E, so that a decrease in rigidity of the shoulder land portion 2 can be suppressed. Nevertheless, since the dimple 6 is formed in the shoulder land portion 2 in addition to the lateral groove 4 extended by the folded portion 4b, the shoulder land portion 2 is compared with the case where the folded portion 4b and the dimple 6 are not formed. As a result, the volume of the tire increases and the tire mass can be reduced and the rolling resistance can be reduced.

ディンプル6が、外側端E2と折返し部4bとの間に形成され、且つ、他の溝やサイプと接続されないように周りを囲まれて独立していることにより、ディンプル6によるショルダー陸部2の剛性低下を良好に抑制できる。したがって、この空気入りタイヤによれば、操縦安定性能の向上と転がり抵抗の低減を両立できる。また、折返し部4bよりもタイヤ幅方向内側にディンプル6を配置しないことは、ショルダー陸部2の剛性を確保して操縦安定性能を向上するうえで好都合である。   The dimple 6 is formed between the outer end E2 and the folded portion 4b, and is surrounded and independent so as not to be connected to other grooves or sipes. Stiffness reduction can be satisfactorily suppressed. Therefore, according to this pneumatic tire, it is possible to achieve both improvement in steering stability performance and reduction in rolling resistance. Further, not arranging the dimples 6 on the inner side in the tire width direction than the turned-up portion 4b is advantageous in securing the rigidity of the shoulder land portion 2 and improving the steering stability performance.

折返し部4bが他の溝やサイプに接続されないことにより、加硫成形に使用する金型では、折返し部4bを形成するための突起に、他の溝やサイプを形成するための突起が接続されず、それらがコーナーを形成することがない。それにより、タイヤを加硫成形する際に空気が閉じ込められやすい箇所を削減でき、ベアと呼ばれる凹み傷の発生を防ぐうえで都合が良い。特に、バットレス部は、スピューのトリミング処理が困難であって、ベントホールの設置が避けられる部位であるため、かかる構造が有益である。   Since the folded portion 4b is not connected to another groove or sipe, in the mold used for vulcanization molding, a projection for forming another groove or sipe is connected to the projection for forming the folded portion 4b. They do not form corners. As a result, it is possible to reduce the locations where air is easily trapped when the tire is vulcanized, and this is convenient in preventing the occurrence of dents called bears. In particular, such a structure is advantageous because the buttress portion is a portion where it is difficult to perform spew trimming and the installation of a vent hole is avoided.

ショルダー陸部2は、そのショルダー陸部2の外側端E2を縁としてタイヤ周方向に連続して延びる細リブ領域7を有する。横溝4とディンプル6は、いずれも細リブ領域7に面していて外側端E2には達しておらず、細リブ領域7の幅W7に相当する距離だけ外側端E2から離れている。これにより、ショルダー陸部2の剛性低下とバットレス部のワイピングを効果的に抑えて、操縦安定性能を適切に向上できる。細リブ領域7の幅W7は、例えば1.5〜5.0mmに設定される。   The shoulder land portion 2 has a thin rib region 7 continuously extending in the tire circumferential direction with the outer end E2 of the shoulder land portion 2 as an edge. Both the lateral groove 4 and the dimple 6 face the fine rib region 7 and do not reach the outer end E2, but are separated from the outer end E2 by a distance corresponding to the width W7 of the fine rib region 7. Thereby, the rigidity reduction of the shoulder land part 2 and the wiping of a buttress part can be suppressed effectively, and steering stability performance can be improved appropriately. The width W7 of the fine rib region 7 is set to 1.5 to 5.0 mm, for example.

横溝4は、全体としてV字状に形成されている。折返し部4bは、本体部4aに対して鋭角をなすようにして折り返されているが、直角や鈍角をなすものでも構わない。但し、タイヤ幅方向に対する本体部4aの角度と、タイヤ周方向CDに対する折返し部4bの角度θを適切に設定するうえでは、本実施形態のように鋭角をなす形態が好ましい。横溝4を長くしてショルダー陸部2の体積減少を増やすうえでは、本体部4aのタイヤ幅方向外側の端部を外側端E2に近付けることが好ましく、本実施形態では幅W7に相当する距離で接近している。   The lateral groove 4 is formed in a V shape as a whole. The folded portion 4b is folded so as to form an acute angle with respect to the main body portion 4a, but may be a right angle or an obtuse angle. However, in order to appropriately set the angle of the main body portion 4a with respect to the tire width direction and the angle θ of the turned-up portion 4b with respect to the tire circumferential direction CD, a form having an acute angle as in the present embodiment is preferable. In order to increase the volume reduction of the shoulder land portion 2 by elongating the lateral groove 4, it is preferable to bring the end portion of the main body portion 4a on the outer side in the tire width direction closer to the outer end E2, and in this embodiment, a distance corresponding to the width W7. You are approaching.

タイヤ周方向CDにおけるディンプル6の長さL6は、ディンプル6を長くしてショルダー陸部2の体積減少を増やすうえで、横溝4の繰り返しピッチ長Pの45%以上が好ましく、50%以上がより好ましく、55%以上が更に好ましい。ディンプル6は、横溝4の折返し部4bと、その横溝4に隣接した別の横溝4の本体部4aと、外側端E2とで囲まれた三角形状の領域内に配置され、その領域に対応した三角形状に形成されている。ディンプル6の形状は、これに限られるものではなく、他の多角形状や円形状でも構わない。   The length L6 of the dimple 6 in the tire circumferential direction CD is preferably 45% or more, more preferably 50% or more of the repeated pitch length P of the lateral groove 4 in order to increase the volume reduction of the shoulder land portion 2 by increasing the dimple 6. Preferably, 55% or more is more preferable. The dimple 6 is disposed in a triangular region surrounded by the folded portion 4b of the lateral groove 4, the main body portion 4a of another lateral groove 4 adjacent to the lateral groove 4, and the outer end E2, and corresponds to the region. It is formed in a triangular shape. The shape of the dimple 6 is not limited to this, and may be another polygonal shape or a circular shape.

ディンプル6は、タイヤ周方向CDにおいて折返し部4bと対向している。そのディンプル6の深さが折返し部4bの深さよりも大きい場合、例えば折返し部4bの深さが0.5〜1.2mmで、ディンプル6の深さがそれよりも大きい場合には、折返し部4bによるショルダー陸部2の剛性低下を抑制して、操縦安定性能を向上できる。それでいて、ディンプル6によるショルダー陸部2の体積減少が確保されるため、転がり抵抗を低減することができる。   The dimple 6 faces the folded portion 4b in the tire circumferential direction CD. When the depth of the dimple 6 is larger than the depth of the folded portion 4b, for example, when the depth of the folded portion 4b is 0.5 to 1.2 mm and the depth of the dimple 6 is larger than that, the folded portion The rigidity reduction of the shoulder land portion 2 due to 4b can be suppressed, and the steering stability performance can be improved. Nevertheless, since the volume reduction of the shoulder land portion 2 by the dimple 6 is ensured, the rolling resistance can be reduced.

他の実施形態として、ディンプル6の深さを折返し部4bの深さより小さくしてもよい。例えば、折返し部4bの深さが上記の寸法で、ディンプル6の深さがそれよりも小さい場合には、ディンプル6によるショルダー陸部2の体積減少が上記よりも少なくなるものの、ディンプル6によるショルダー陸部2の剛性低下を抑制して、操縦安定性能を向上できる。よって、その実施形態は、操縦安定性能を重視したものとなる。ディンプル6や折返し部4bの深さは、それぞれの最大値として測定されるものとする。   As another embodiment, the depth of the dimple 6 may be smaller than the depth of the folded portion 4b. For example, when the depth of the folded portion 4b is the above-mentioned dimension and the depth of the dimple 6 is smaller than that, the volume reduction of the shoulder land portion 2 by the dimple 6 is smaller than the above, but the shoulder by the dimple 6 Steering performance can be improved by suppressing a decrease in rigidity of the land portion 2. Therefore, the embodiment places importance on steering stability performance. The depths of the dimple 6 and the turned-up portion 4b are measured as the maximum values.

図3,4に示した実施形態は、以下に説明する構成の他は、前述の実施形態と同様であるので、共通点を省略して主に相違点について説明する。既に説明した部位と同一の部位には同一の符号を付しており、重複した説明は省略する。図3は、図2よりも折返し部4bを短く形成し、ディンプル6を大きく形成した例である。この場合、ディンプル6によるショルダー陸部2の体積減少が増えることで、転がり抵抗の低減に寄与しうる。この例では、ショルダー陸部2の表面の高さで測定されるディンプル6の面積が、折返し部4bの面積よりも大きい。   The embodiment shown in FIGS. 3 and 4 is the same as the above-described embodiment except for the configuration described below. Therefore, common points will be omitted and mainly the differences will be described. The same parts as those already described are denoted by the same reference numerals, and redundant description is omitted. FIG. 3 is an example in which the folded portion 4b is formed shorter than in FIG. 2 and the dimple 6 is formed larger. In this case, the volume reduction of the shoulder land portion 2 due to the dimple 6 increases, which can contribute to reduction of rolling resistance. In this example, the area of the dimple 6 measured by the height of the surface of the shoulder land portion 2 is larger than the area of the folded portion 4b.

図4の(A),(B)は、それぞれ図2,3におけるディンプル6を複数の小ディンプル6a,6bにより構成したものである。これにより、ディンプル6によるショルダー陸部2の剛性低下を抑制して、操縦安定性能をより良好に向上できる。これらのディンプル6は、いずれも全体として三角形状に形成されており、タイヤ周方向に延びる微小リブによって、タイヤ幅方向に並んだ2つの小ディンプル6a,6bに区分されている。   4A and 4B, the dimple 6 in FIGS. 2 and 3 is configured by a plurality of small dimples 6a and 6b, respectively. Thereby, the rigidity fall of the shoulder land part 2 by the dimple 6 can be suppressed, and steering stability performance can be improved more favorably. Each of these dimples 6 is formed in a triangular shape as a whole, and is divided into two small dimples 6a and 6b arranged in the tire width direction by minute ribs extending in the tire circumferential direction.

本実施形態では、上記の如き構造のショルダー陸部をタイヤ幅方向の両側に設けてある例を示すが、これをタイヤ幅方向の片側のみに設けても構わない。本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。   In the present embodiment, an example in which the shoulder land portions having the above-described structure are provided on both sides in the tire width direction is shown, but this may be provided only on one side in the tire width direction. The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.

この空気入りタイヤの内部構造は、一般的なラジアルタイヤと同様に構成できるため、内部構造についての説明は省略する。本発明の空気入りタイヤは、トレッド面に上記の如きショルダー陸部を設けること以外は、通常の空気入りタイヤと同等であり、従来公知の材料、形状、構造、製法などは何れも本発明に採用できる。   Since the internal structure of the pneumatic tire can be configured in the same manner as a general radial tire, description of the internal structure is omitted. The pneumatic tire of the present invention is the same as a normal pneumatic tire except that the shoulder land portion as described above is provided on the tread surface, and any conventionally known material, shape, structure, manufacturing method, etc. Can be adopted.

以下、本発明の構成と効果を具体的に示すため、操縦安定性能と転がり抵抗を評価したので説明する。これらの性能評価は下記(1)及び(2)のようにして行い、評価に供したタイヤのサイズは195/65R15、主溝の深さは7.7mm、ショルダー陸部に形成された横溝の深さは6.7mmである。   Hereinafter, in order to specifically show the configuration and effect of the present invention, the steering stability performance and the rolling resistance will be evaluated and described. These performance evaluations are performed as follows (1) and (2). The tire size used for the evaluation is 195 / 65R15, the depth of the main groove is 7.7 mm, and the width of the lateral groove formed in the shoulder land portion is The depth is 6.7 mm.

(1)操縦安定性能
車両(2000ccクラスのセダン(FF車))に装着して乾燥路面を走行し、ドライバーによる官能試験を行った。比較例1の結果を100とする指数で評価し、数値が大きいほど操縦安定性能に優れていることを示す。
(1) Steering stability performance The vehicle was mounted on a vehicle (2000 cc class sedan (FF car)), traveled on a dry road surface, and a sensory test was performed by a driver. The result of Comparative Example 1 is evaluated with an index of 100, and the larger the value, the better the steering stability performance.

(2)転がり抵抗
ドラム式転がり抵抗試験機を用いて計測した転がり抵抗係数の逆数を算出した。比較例1の結果を100とする指数で評価し、数値が大きいほど転がり抵抗が小さく、性能が良好であることを示す。
(2) Rolling resistance The reciprocal number of the rolling resistance coefficient measured using the drum type rolling resistance tester was calculated. The result of Comparative Example 1 is evaluated with an index of 100, and the larger the value, the smaller the rolling resistance and the better the performance.

比較例1及び比較例2の形状は、それぞれ図5(A),(B)に示した通りであり、バットレス部での横溝とディンプルの形状を除いて、実施例1と同じ構成である。また、比較例3の形状は、図6に示した通りであって、実施例1において折返し部4bにサイプ5を接続したものに実質的に相当する。その他、特に説明しないタイヤ構造やゴム配合は共通である。表1に評価結果を示す。   The shapes of Comparative Example 1 and Comparative Example 2 are as shown in FIGS. 5A and 5B, respectively, and are the same as Example 1 except for the shape of the lateral grooves and dimples in the buttress portion. Moreover, the shape of the comparative example 3 is as having shown in FIG. 6, Comprising: It substantially corresponds to what connected the sipe 5 to the folding | returning part 4b in Example 1. FIG. In addition, the tire structure and the rubber composition not specifically described are common. Table 1 shows the evaluation results.

Figure 0005969891
Figure 0005969891

表1に示すように、実施例1〜3では、比較例1〜3よりも操縦安定性能と転がり抵抗に優れており、操縦安定性能の向上と転がり抵抗の低減を良好に両立できている。   As shown in Table 1, in Examples 1 to 3, the steering stability performance and rolling resistance are superior to those of Comparative Examples 1 to 3, and both improvement in steering stability performance and reduction in rolling resistance can be successfully achieved.

1 主溝
2 ショルダー陸部
4 横溝
4a 本体部
4b 折返し部
6 ディンプル
6a 小ディンプル
6b 小ディンプル
7 細リブ領域
E 接地端
E2 ショルダー陸部のタイヤ幅方向外側端
P 繰り返しピッチ長
DESCRIPTION OF SYMBOLS 1 Main groove 2 Shoulder land part 4 Horizontal groove 4a Main body part 4b Folding part 6 Dimple 6a Small dimple 6b Small dimple 7 Fine rib area E Grounding edge E2 Tire width direction outer side edge P of shoulder land part Repeat pitch length

Claims (4)

タイヤ周方向に沿って延びる複数の主溝により区画された複数の陸部がトレッド面に設けられ、その複数の陸部のうちタイヤ幅方向の最外側に位置するショルダー陸部に、複数の横溝がタイヤ周方向に間隔を設けて形成された空気入りタイヤにおいて、
前記横溝は、接地端を横切るようにしてタイヤ幅方向に沿って延びる本体部と、前記本体部のタイヤ幅方向外側の端部からタイヤ幅方向内側に向かって折り返してなる折返し部とを有し、
前記折返し部は、タイヤ周方向に対して傾斜して延びるとともに、他の溝やサイプに接続されることなく、前記接地端よりもタイヤ幅方向外側の位置で終端し、
前記ショルダー陸部のタイヤ幅方向外側端と前記折返し部との間に、独立したディンプルが形成されていて、前記ディンプルの深さが前記折返し部の深さよりも大きいことを特徴とする空気入りタイヤ。
A plurality of land portions defined by a plurality of main grooves extending along the tire circumferential direction are provided on the tread surface, and a plurality of lateral grooves are formed in a shoulder land portion located on the outermost side in the tire width direction among the plurality of land portions. In a pneumatic tire formed with an interval in the tire circumferential direction,
The lateral groove includes a main body portion extending along the tire width direction so as to cross the ground contact end, and a folded portion formed by folding back from the outer end portion of the main body portion in the tire width direction toward the inner side in the tire width direction. ,
The folded portion extends while being inclined with respect to the tire circumferential direction, and is terminated at a position on the outer side in the tire width direction from the ground contact end without being connected to other grooves or sipes,
A pneumatic tire characterized in that an independent dimple is formed between the outer end of the shoulder land portion in the tire width direction and the folded portion, and the depth of the dimple is larger than the depth of the folded portion. .
前記ショルダー陸部が、そのショルダー陸部のタイヤ幅方向外側端を縁としてタイヤ周方向に連続して延びる細リブ領域を有する請求項1に記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein the shoulder land portion has a thin rib region continuously extending in a tire circumferential direction with an outer end in a tire width direction of the shoulder land portion as an edge. 前記ディンプルが複数の小ディンプルにより構成されている請求項1又は2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein the dimple is constituted by a plurality of small dimples. タイヤ周方向における前記ディンプルの長さが、前記横溝の繰り返しピッチ長の45%以上である請求項1〜3いずれか1項に記載の空気入りタイヤ。
The pneumatic tire according to any one of claims 1 to 3, wherein a length of the dimple in the tire circumferential direction is 45% or more of a repetition pitch length of the lateral groove.
JP2012232237A 2012-10-19 2012-10-19 Pneumatic tire Active JP5969891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232237A JP5969891B2 (en) 2012-10-19 2012-10-19 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232237A JP5969891B2 (en) 2012-10-19 2012-10-19 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014083892A JP2014083892A (en) 2014-05-12
JP5969891B2 true JP5969891B2 (en) 2016-08-17

Family

ID=50787399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232237A Active JP5969891B2 (en) 2012-10-19 2012-10-19 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5969891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022101269A (en) * 2020-12-24 2022-07-06 Toyo Tire株式会社 Pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8210220B2 (en) * 2005-12-21 2012-07-03 Bridgestone Corporation Pneumatic tire
JP5165975B2 (en) * 2007-09-13 2013-03-21 株式会社ブリヂストン Pneumatic tire
JP4829994B2 (en) * 2009-04-06 2011-12-07 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2014083892A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5337201B2 (en) Pneumatic tire
JP5454602B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP5797412B2 (en) Pneumatic tire
JPWO2016121858A1 (en) Pneumatic tire
JP6139843B2 (en) Pneumatic tire
JP5827669B2 (en) Pneumatic tire
JP5781566B2 (en) Pneumatic tire
EP3470243A1 (en) Tire
JP6740617B2 (en) Pneumatic tire
JP6012298B2 (en) Pneumatic tire
JP4929466B2 (en) Pneumatic tire
JP5993986B2 (en) Pneumatic tire
JP5200123B2 (en) Heavy duty pneumatic tire
JP6366525B2 (en) Pneumatic tire
JP5969891B2 (en) Pneumatic tire
JP5635145B2 (en) tire
JP6824832B2 (en) tire
JP5762216B2 (en) Pneumatic tire
JP5634840B2 (en) Pneumatic tire
JP5523358B2 (en) Pneumatic tire
JP7189800B2 (en) pneumatic tire
JP4874378B2 (en) Pneumatic tire
JP5437851B2 (en) Pneumatic tire
JP2017036010A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5969891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250