JP5969696B2 - ガスの流速を測定するための方法および装置 - Google Patents

ガスの流速を測定するための方法および装置 Download PDF

Info

Publication number
JP5969696B2
JP5969696B2 JP2015513201A JP2015513201A JP5969696B2 JP 5969696 B2 JP5969696 B2 JP 5969696B2 JP 2015513201 A JP2015513201 A JP 2015513201A JP 2015513201 A JP2015513201 A JP 2015513201A JP 5969696 B2 JP5969696 B2 JP 5969696B2
Authority
JP
Japan
Prior art keywords
gas
piezoelectric oscillator
conduit
meter
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015513201A
Other languages
English (en)
Other versions
JP2015526695A (ja
Inventor
アレクサンダー ダウニー ニール
アレクサンダー ダウニー ニール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JP2015526695A publication Critical patent/JP2015526695A/ja
Application granted granted Critical
Publication of JP5969696B2 publication Critical patent/JP5969696B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/32Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by using flow properties of fluids, e.g. flow through tubes or apertures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

本発明は、ガスの流速を測定するための方法および装置に関する。より詳細には、本発明は、圧電発振器を用いてガスの流量を測定するための方法および装置に関する。
本明細書で述べる方法および装置は、比較的高圧(例:約10バールもしくはそれ以上)の流体が存在する系に適用することができ、例えば、高圧シリンダーでの流体の供給、または高圧流体を用いる製造プラントなどである。本発明は、特に、「清浄な」ガス、すなわち、水蒸気もしくはダストなどの不純物または汚染物をほとんどまたはまったく含まないガスに関する。
本発明は、特に、永久ガスに適用可能である。永久ガスとは、圧力単独によっては液化することのできないガスであり、例えば、最大450バールgまでの圧力で、シリンダーとして供給され得る(ここで、バールgは、大気圧を超える圧力の尺度である)。例としては、アルゴンおよび窒素である。しかし、これは限定的に解釈されるべきではなく、ガスの用語は、永久ガスおよび液化ガスの蒸気の両方を例とするより広範囲のガスを包含するものとして見なされ得る。
液化ガスの蒸気は、圧縮ガスシリンダー中の液体上に存在する。シリンダー中に充填するために圧縮されるに従って圧力下で液化するガスは、永久ガスではなく、圧力下での液化ガスまたは液化ガスの蒸気としての記述がより正確である。例として、亜酸化窒素は、液体の形態でシリンダーとして供給され、平衡蒸気圧は15℃で44.4バールgである。そのような蒸気は、それらが周囲条件付近の圧力または温度によって液化可能であることから、永久ガスまたは真のガス(true gases)ではない。
圧縮ガスシリンダーは、高圧、すなわち、大気圧よりも非常に高い圧力のガスを収容するように設計された圧力容器である。圧縮ガスシリンダーは、低コストの一般的工業分野の市場から、医療分野の市場、さらには高純度の腐食性、毒性、または発火性特殊ガスを用いる電子製造分野などのより高コストの用途まで、幅広い範囲の市場で用いられる。一般的に、圧縮ガス容器は、鋼鉄、アルミニウム、またはコンポジットを含み、ほとんどのガスについては450バールgまでの、水素およびヘリウムなどのガスについては900バールgまでの最大充填圧力で、圧縮、液化、または溶解ガスを保存することができる。
ガスシリンダーまたはその他の圧力容器から効果的、および制御可能にガスを分配するためには、バルブまたはレギュレーターが必要である。多くの場合、これら2つは組み合わせられて、圧力低下装置内蔵バルブ(Valve with Integrated Pressure Reduction)(VIPR)が形成される。レギュレーターは、一定の、またはユーザーが変更可能な圧力でガスが分配されるように、ガスの流量を調節することができる。
多くの用途において、ガスシリンダーからのガスの流速を知ることは望ましい。これは、医療用途を例とする多くの用途において極めて重要であり得る。いくつかの異なる質量流量メーター設備が知られている。
多くの工業用途で一般的に用いられる質量流量メーターの種類は、機械式質量流量メーターである。そのようなメーターは、質量流量を測定するために移動または回転する機械コンポーネントを含む。1つのそのような種類としては、形状をつけた管に対する流体の影響を介して流体流量を測定する慣性流量メーター(inertial flow meter)(またはコリオリ流量メーター)である。コリオリメーターは、高い精度で広範囲の流速を扱うことができる。しかし、流速を検出するためには、始動、検知、電子、およびコンピューター機能などの複雑なシステムが必要とされる。
別の選択肢としての機械式質量流量メーターは、ダイアフラムメーター、ロータリーメーター、およびタービンメーターである。しかし、これらの種類のメーターは、一般的に、精度が高くなく、摩耗を受ける可能性のある動くパーツを含む。さらに、ロータリーメーターなどのメーターは、比較的低い流速を測定するためにしか有用ではない。
別の選択肢としての質量流量メーターの種類は、電子流量メーターである。2つの主たる種類は、熱流量メーターおよび超音波流量メーターである。熱流量メーターは、加熱管を通しての熱移動を測定することで、流速の測定を行う。超音波流量メーターは、ガス媒体中の音速を測定するものであり、管内の複数の経路にわたる音速を平均化する場合もある。しかし、電子流量メーターの両種類共に、一般的には大掛かりなシグナル処理ハードウェアを必要とし、一般的に高コストな製品である。
公知のガス流量センサーのさらなる種類は、流れの中の小さい障害物を通過する流れのノイズを測定するものである。"A Novel Gas Flow Sensor Based on Sound Generated by Turbulence", K. S. Rabbani et al, IEEE Instrumentation and Measurement Technology Conference Ottawa, Canada, May 19-21, 1997には、障害物の後ろに配置されたマイクロフォンを含む流量センサーが開示されている。マイクロフォンは、電気出力を提供し、それが流速のために調整され、較正される。しかし、そのような設備の欠点は、外部ノイズおよび/または振動が測定に影響を与え得ることである。
本発明の第一の態様によると、導管に沿うガスの流速を測定する方法が提供され、その方法は:a)導管中まで届き、ガスと接触するような圧電発振器の配置であって、前記圧電発振器は、導管に沿うガス流によって生じる前記圧電発振器への抵抗力に応答して発振するように構成される2つの平行な平面型タイン部(tines)を含むものである、配置;b)導管に沿うガス流中の前記圧電発振器への抵抗力に起因する前記圧電発振器の平面型タイン部の発振性の運動によって発生されるノイズ電圧の大きさの測定;およびc)発生されるノイズ電圧の大きさからの、前記導管に沿うガスの流速の特定を含む。
実施形態によると、導管に沿うガスの流速を測定する方法が提供され、その方法は:a)導管中まで届き、ガスと接触するような圧電発振器の配置であって、前記圧電発振器は、2つの平面型タイン部を含むものである、配置;b)導管に沿うガス流中の前記圧電発振器の平面型タイン部の運動によって発生される電圧の測定;およびc)発生される電圧からの、前記導管に沿うガスの流速の特定を含む。
1つの実施形態では、工程a)は、圧電発振器の平面型タイン部を、ガスの流れに対して実質的に直角に配置することを含む。
1つの実施形態では、工程b)は、圧電発振器によって発生された電圧を増幅することをさらに含む。
1つの実施形態では、工程c)は、増幅電圧の立方根を算出してガスの流速を特定することをさらに含む。
1つの実施形態では、前記平面型タイン部は、およそ32kHz以上の周波数で発振するように構成される。
1つの実施形態では、圧電発振器は、石英水晶発振器を含む。
1つの実施形態では、方法は、d)圧電発振器の共振周波数からガスの密度を特定する工程をさらに含む。
1つの実施形態では、工程d)は、e)共振周波数で圧電発振器を駆動することをさらに含む。
本発明の第二の態様によると、導管に沿うガスの流速を測定するためのメーターが提供され、このメーターは、メーターの使用時に前記ガス流と接触し、前記ガス流の中へ延びており、前記ガス流によって生じる前記圧電発振器への抵抗力に応答して発振するように構成される2つの平行な平面型タイン部を含んでいる圧電水晶発振器を有するセンサーアセンブリーを含み、前記センサーアセンブリーは:導管に沿うガス流中の前記圧電発振器への抵抗力に起因する前記圧電発振器の平面型タイン部の発振性の運動によって発生されるノイズ電圧の大きさを測定し;および発生されるノイズ電圧の大きさから、前記導管に沿うガスの流速を特定するように構成される。
実施形態によると、導管に沿うガスの流速を測定するためのメーターが提供され、このメーターは、メーターの使用時に前記ガス流と接触し、前記ガス流の中へ延びている2つの平面型タイン部を含んでいる圧電水晶発振器を有するセンサーアセンブリーを含み、前記センサーアセンブリーは:導管に沿うガス流中の前記圧電発振器の平面型タイン部の運動によって発生される電圧を測定し;および発生される電圧から、前記導管に沿うガスの流速を特定するように構成される。
1つの実施形態では、圧電発振器の平面型タイン部は、ガスの流れに対して実質的に直角に配置される。
1つの実施形態では、センサーアセンブリーは、圧電発振器によって発生された電圧を増幅するための増幅器をさらに含む。
1つの実施形態では、センサーアセンブリーは、増幅電圧の立方根を算出してガスの流速を特定するように作動可能である。
1つの実施形態では、センサーアセンブリーは、ガス流中の圧電発振器の共振周波数からガスの密度を特定するようにさらに作動可能である。
1つの実施形態では、メーターは、さらに駆動回路を含み、ここで、駆動回路は、共振周波数で圧電発振器を駆動するように作動可能である。
1つの実施形態では、前記平面型タイン部は、およそ32kHz以上の周波数で発振するように構成される。
1つの実施形態では、圧電発振器は、石英水晶発振器を含む。
実施形態では、石英水晶は、ATカットまたはSCカットである。
変更では、石英水晶の表面は、ガスに直接暴露される。
1つの実施形態では、センサーアセンブリーは、電力源を含む。1つの設備では、電力源は、リチウム電池を含む。
1つの実施形態では、センサーアセンブリーは、プロセッサーを含む。
1つの設備では、メーターは、圧力レギュレーターまたはバルブの下流に配置される。
さらなる設備では、メーターは、流量制限オリフィス(flow restriction orifice)を通過する測定された質量流速に応答して、圧力レギュレーターまたはバルブを電子制御するように構成される。
本発明の第三の実施形態によると、プログラム可能な処理装置によって実行可能であり、第一の態様の工程を実施するための1つ以上のソフトウェア部分を含むコンピュータープログラム製品が提供される。
本発明の第四の実施形態によると、そこに記憶された第四の態様に従うコンピュータープログラム製品を有する、コンピューターが使用可能である記憶媒体が提供される。
ここで、本発明の実施形態を、添付の図面を参照して詳細に記載する。
図1は、ガスシリンダーおよびレギュレーターアセンブリーの概略図である。 図2は、本発明の第一の実施形態に従うレギュレーターアセンブリーおよびメーターを示す概略図である。 図3は、本発明の第二の実施形態に従うレギュレーターアセンブリーおよびメーターを示す概略図である。 図4は、流速(リットル/分)の関数としてのY軸のノイズ電圧(mV)のグラフを示す。 図5は、流速(リットル/分)の関数としてのY軸のノイズ電圧の立方根のグラフを示す。 図6は、時間(秒)の関数としてのY軸のノイズ電圧(mV)のグラフを示す。 図7は、ガス流量および密度の両方を測定するための電子増幅器回路の概略図を示す。 図8は、記載の実施形態に従う方法を示すフローチャートである。 図9は、リモート電子データユニットを用いる別の選択肢としての設備を示す。
図1は、本発明の実施形態に従うガスシリンダーアセンブリー10の概略図を示す。図1は、本発明を用いることができる状況の概略図を示す。ガスシリンダー100、レギュレーター150、およびメーター200が提供される。
ガスシリンダー100は、ガスシリンダー本体102およびバルブ104を有する。ガスシリンダー本体102は、ガスシリンダーアセンブリー10が平面上で支持なしに自立可能であるように構成された平面基部102aを有する概略円柱形状の圧力容器を含む。
ガスシリンダー本体102は、鋼鉄、アルミニウム、および/またはコンポジット材料から形成され、最大およそ900バールgまでの内圧に耐えるように適合され、構成される。開口部106は、基部102aの反対側のガスシリンダー本体102の近位端部に配置され、バルブ104を受けるように適合されたねじ山(図示せず)を含む。
ガスシリンダー100は、内部容積Vを有する圧力容器を定める。ガスシリンダー100内には、適切ないかなる流体が収容されてもよい。しかし、本実施形態は、それだけに限定されないが、ダストおよび/または水分などの不純物を含まない精製された永久ガスに関する。網羅的ではないそのようなガスの例は:酸素、窒素、アルゴン、ヘリウム、水素、メタン、三フッ化窒素、一酸化炭素、クリプトン、またはネオンであってよい。
バルブ104は、筺体108、出口部110、バルブ本体112、およびバルブシート114を含む。筺体108は、ガスシリンダー本体102の開口部106とかみ合わせるための相補的ねじ山を含む。出口部110は、ガスシリンダー100を、ホース、管、またはさらなる圧力バルブもしくはレギュレーターを例とするガスアセンブリーの他のコンポーネントと接続することを可能とするように適合され、構成される。バルブ104は、所望に応じて、VIPR(圧力低下装置内蔵バルブ)を含んでよい。この場合、レギュレーター150は省略されてよい。
バルブ本体112は、選択的に出口部110を開または閉とするために、握ることのできるハンドル116の回転によって、バルブシート114に向かって、またはそれから遠ざかるように、軸方向に調節することができる。言い換えると、バルブ本体112のバルブシート112に向かう、またはそれから遠ざかる動きにより、ガスシリンダー本体102の内部と出口部110との間の連結経路の領域が選択的に制御される。そしてこれは、ガスシリンダーアセンブリー100の内部から外部環境へのガスの流量を制御する。
レギュレーター150は、出口部110の下流に配置される。レギュレーター150は、入り口部152および出口部154を有する。レギュレーター150の入り口部152は、ガスシリンダー100の出口部110とレギュレーター150との間の連結経路を提供する入り口管156と接続される。レギュレーター150の入り口部152は、ガスシリンダー100の出口部110から高圧のガスを受けるように構成される。これは、適切ないかなる圧力であってもよいが、一般的には、出口部110から出るガスの圧力は、20バールを超えており、100〜900バールの範囲である可能性がより高い。
出口部154は、出口管158と接続される。カップリング160は、出口管158の遠位端部に配置され、ガスを必要とするさらなる管またはデバイス(図示せず)と接続されるように適合される。
メーター200は、出口部154とカップリング160との間の出口管158と連結されて配置される。メーター200は、レギュレーター150のすぐ下流に配置され、出口部160へ送られるガスの流速を特定するように構成される。
本発明の第一の実施形態に従うレギュレーター150およびメーター200は、図2においてより詳細に示される。
本実施形態では、レギュレーター150は、単一のダイアフラムレギュレーターを含む。しかし、当業者であれば、2つのダイアフラムレギュレーターまたはその他の設備を例とする本発明で用いることが可能である変更を容易に認識するであろう。
レギュレーター150は、入り口部152および出口部154と連結されたバルブ領域162を含む。バルブ領域162は、バルブシート166に隣接して配置されるポペットバルブ164を含む。ポペットバルブ164は、ダイアフラム168と接続され、それは、バルブシート166に向かう、およびそれから遠ざかるポペットバルブ164との平行移動によってそれらの間にある開口部170をそれぞれ閉および開とすることを可能とするよう構成される。ダイアフラム168は、シャフト174の周りに配置されるスプリング172の弾性によって偏った状態とされている。
レギュレーター150は、全シリンダー圧力(例:100バール)にて、出口部110からガスを受けるが、実質的に一定である固定された低圧力(例:5バール)にて、出口部154にガスを供給するように作動可能である。これは、開口部170の下流のガスの圧力が、スプリング172の偏らせる力とは逆向きにダイアフラム168に作用するように作動可能であるフィードバック機構によって達成される。
ダイアフラム168に隣接する領域のガス圧力が指定されたレベルを超えた場合に、ダイアフラム168は、上向き(図2に対して)に移動するように作動可能である。結果として、ポペットバルブ164は、バルブシート166に近付くように移動し、開口部170のサイズが低下し、その結果、入り口部152から出口部154へのガスの流量が制限される。一般的に、スプリング172の抵抗力およびガスの圧力の競合する力が、ダイアフラムの平衡位置をもたらし、その結果、出口部154にてガスの一定圧力が供給される。
スプリング172の偏らせる力をユーザーが調節可能であるように、握ることのできるハンドル176が提供され、それによって、ダイアフラム168の位置を移動させ、結果として、ポペットバルブ164とバルブシート166との間の平衡間隔を調節する。このことにより、出口部110からの高圧ガス流が通過することのできる開口部170の寸法の調節が可能となる。
メーター200は、本体202およびセンサーアセンブリー204を含む。本体202は、鋼鉄、アルミニウム、またはコンポジットを例とする適切ないかなる材料を含んでもよい。本体202は、導管206および筐体208を含む。導管206は、出口管158の内部と連結され、それと接続されるように構成される。導管206は、出口部154とカップリング160(および同時に、カップリング160と接続されたユーザーデバイスまたはアプリケーション)との間の流体連結経路を提供する。
本実施形態では、導管206は、概略円柱形状である。さらに、本実施形態では、導管206は、流量制限部(flow restriction)206aを含む。流量制限部206aは、導管の直径が狭められたセクションを含む。これによって流量が増加され、後述するように、センサーアセンブリー204による流速の測定が補助される。例として、管の非絞り部分の直径の半分の絞りが充分である。オリフィスなどの強い絞りは必要ではない。
筐体208は、センサーアセンブリー204の少なくとも一部分を含有するように構成される。筐体208の内部は、大気圧であってよく、または導管206の内部と連結され、その結果として出口管158の内部と同じ圧力であってもよい。これにより、筐体208と導管206の内部との間の圧力フィードスルー(pressure feed-through)の必要性が排除される。
別の選択肢として、筐体208は、導管206の一部分として提供されてもよい。例えば、導管206の一部分が、センサーアセンブリー204を収容するように広げられてよい。発明者らが、高圧の影響を受けやすいのは、センサーアセンブリー204の少数のコンポーネントのみであることを見出したことから、これらの設備は実用的である。特に、電池などのより大きいコンポーネントが、高圧に弱いものであり得る。しかし、リチウム電池が、導管206で遭遇し得る高圧下で特に良好に機能することが見出された。しかし、当業者によれば、別の選択肢としての適切な電力源が容易に考慮される。
センサーアセンブリー204を完全に導管206内に配置することが考えられることにより、メーター200の設計の際にさらなる柔軟性が得られる。特に、比較的脆弱な電子コンポーネントを、筐体208などの突出部分を必要とせずに、本体202の金属またはコンポジット壁内に完全に配置することにより、環境または不慮の損傷からの高い保護が得られる。このことは、例えば、ガスシリンダーが、他のガスシリンダー、重機械、または粗い表面に隣接して配置される場合のある保管領域または倉庫において特に重要である。
さらに、センサーアセンブリー204が内部に配置されることにより、塩分、水分、およびその他の汚染物などの環境条件からこれらのコンポーネントが保護される。このことにより、例えば、塩分および水分による損傷を非常に受けやすい高インピーダンス回路を、センサーアセンブリー204の一部分として用いることが可能となる。
メーター200は、導管に沿うガスの流速を測定するように構成される。センサーアセンブリー204は、増幅器回路212、電池214、およびマイクロプロセッサー216と接続される石英水晶発振器210を含む。
本実施形態では、石英水晶発振器210は、導管206の内部と連結されて配置され、一方センサーアセンブリー204の残りのコンポーネントは、筐体208内に配置される。言い換えると、石英水晶発振器210は、オリフィスプレート210の上流のガス中に浸漬される。
石英水晶発振器210は、石英カット品の平面セクションを含む。図2に示されるように、本実施形態の石英水晶発振器210は、音叉形状であり、真空中において32.768kHzの共振周波数で発振するように構成された長さがおよそ5mmである1対のタイン部210aを含む。タイン部210aは、石英の平面セクションに形成される。音叉形状のタイン部210aは、通常、その基本モードで発振し、その場合、それらは、共振周波数で同期して、互いに向かう方向に、および互いから離れる方向に動く。共振周波数以外の周波数での水晶210の発振は、急速にその振幅を失い、消滅する。
石英は、圧電挙動を示し、すなわち、水晶全体にわたって電圧を印加することで、水晶に形状の変化が引き起こされ、機械的な力が発生する。逆に、水晶に機械的な力が加えられると、電荷が発生する。本発明で利用されるのはこの特性である。
石英水晶発振器210の2つの平行な表面は、水晶の塊全体にわたって電気接続を提供する目的で、金属化される。その金属接点によって電圧が水晶全体に印加されると、水晶は形状を変化させる。交流電圧を水晶に印加することにより、水晶に発振を引き起こすことができる。同時に、水晶210のタイン部210aの発振(すなわち、水晶210の形状変化)は、電気接続部間に電圧の発生を引き起こす。
石英水晶発振器210は、導管206に沿う流れの中に配置される。詳細には、石英水晶発振器210は、導管206に沿う流れ絞り部206a中に配置される。これにより、石英水晶発振器210を通過するガスの流速が上昇する。
石英水晶発振器210は、流れ障害物および流量検出器の両方として作用するように作動可能である。従って、石英水晶発振器210は、導管206に沿うガス流中まで延びるように作動可能である。水晶発振器210の長軸Xは、示されるように、流れの方向に対して実質的に直角である。言い換えると、音叉型石英水晶発振器210の平行なタイン部210aは、導管206の内壁から延びて導管206中へと突き出している。
音叉型水晶210のタイン部210aは、一平面中で互いに平行に位置している。石英水晶発振器210は、その平面が流れの方向に対して実質的に平行となるように流れに対して配向されてよい(図2に示されるように)。別の選択肢として、石英水晶発振器210は、その平面が流れの方向に対して直角に、もしくは直交して、または中間の角度で位置するように配向されてもよい。
さらに、石英水晶発振器210の長軸Xは、流れに対して厳密に直角に配向される必要はない。重要なことは、石英水晶発振器210が、乱流を引き起こすために流れの中に突き出していることである。従って、当業者であれば、用いることが可能である流れに対するその他の角度を容易に認識するものであり;例えば、鈍角(この場合、石英水晶発振器210の遠位端部がその近位端部の下流側に向けて角度が付けられている)または鋭角(この場合、石英水晶発振器210の遠位端部がその近位端部の上流側に向けて角度が付けられている)である。
石英水晶の物理的サイズおよび厚さが、石英水晶の特性、または共振周波数を決定する。実際、水晶210の特性、または共振周波数は、2つの金属化表面間の物理的厚さに逆比例する。石英水晶発振器は、本技術分野にて公知であり、従って、石英水晶発振器210の構造については、ここでさらに記載しない。
加えて、石英水晶の共振振動周波数は、水晶が配置される環境に依存して様々となる。真空下では、水晶は、特定の周波数を有する。しかし、この周波数は、異なる環境中では変化する。例えば、流体中では、水晶の振動は、周囲の分子によって減衰されることになり、このことが、共振周波数、および任意の振幅での水晶の発振に必要とされるエネルギーに影響を与える。
さらに、水晶上へのガスの吸着または周囲物質の堆積により、振動する水晶の質量が影響を受け、共振周波数が変化する。物質のそのような吸着または堆積は、一般的に用いられる選択性ガス分析器の基礎を成すものであり、そこでは、水晶上に吸収層が形成されており、ガスが吸収されるに従って、その質量が増加する。しかし、本発明の場合、石英水晶発振器210にコーティングは適用されない。
溶融(または非結晶)石英は、温度依存性膨張係数が非常に低く、弾性係数も低い。このことにより、示されるように、基本周波数の温度依存性が低減され、温度の影響が最小限に抑えられる。
加えて、ATカットまたはSCカットである石英を用いることが望ましい。言い換えると、石英の平面セクションは、発振周波数の温度係数を、室温近辺での広いピークを有する放物線状となるように定めることができるように、特定の角度でカットされる。従って、水晶発振器は、ピークトップの傾きが精密にゼロとなるように構成することができる。
そのような石英水晶は、一般的に、比較的低コストで入手可能である。真空下で用いられる大部分の石英水晶発振器とは対照的に、本実施形態では、石英水晶発振器210は、導管206中にて、圧力下のガスに暴露される。
本発明の第二の実施形態を、図3に示す。図2の第一の実施形態と共通する図3に示される第二の実施形態の特徴には、同じ符号が割り当てられ、ここでは再度記載しない。
図3の実施形態において、レギュレーター300は、レギュレーター300が、ソレノイドバルブ302によって出口部154からガスの自動制御を提供するように構成されるという点で、図2の実施形態のレギュレーター150とは異なる。ソレノイドバルブ302は、ソレノイドバルブ302のコイル(図示せず)を通る電流に応答して動くことができるアーマチュア304を含む。アーマチュア304は、ポペットバルブ164を、従って開口部170を直接開または閉とするように動くことができる。
図3に示すソレノイドバルブ302は、通常時開の状態である。言い換えると、ソレノイドバルブ302を通る電流が存在しない場合、アーマチュア304は、ポペットバルブ164が開となるように延びた位置にあり、すなわち、開口部170が開いている。ソレノイドバルブ302に電流が印加されると、アーマチュア304は後退し、ポペットバルブ164は閉となる。
当業者であれば、本発明で用いることが可能であるソレノイドバルブの別の選択肢としての変更を容易に認識するであろう。例えば、アーマチュア304は、ダイアフラムへ直接作用してよく、またはダイアフラム168の動きを調節する目的で、出口部154と連結された狭い導管を通る流量を制御してもよい。別の選択肢として、ポペットバルブを省略し、ダイアフラム168自体を、入り口部152から出口部154へのガスの流量を直接制御するバルブメンバーとすることも可能である。
第二の実施形態は、流量メーター350を含む。メーター200と共通するメーター350のコンポーネントは、明確にするために、同じ符号が割り当てられる。
メーター350は、第一の実施形態のメーター200と非常に類似している。しかし、メーター350は、ソレノイドバルブ302およびセンサーアセンブリー204と接続される電子ソレノイド駆動部352をさらに含む。ソレノイド駆動部352は、センサーアセンブリー204からシグナルを受け取り、そのシグナルに応答してソレノイドバルブ302を制御し、その結果としてレギュレーター300を通る流量を制御するように構成される。
ソレノイド駆動部352は、ソレノイドバルブ302を制御するための適切ないかなる駆動回路を含んでもよい。1つの適切な回路は、センサーアセンブリー204から演算増幅器の負端子への入力を有する演算増幅器の設備であってよい。従って、正端子へは、一定の基準レベルを提供し、比較器として作用するように設計される可変抵抗器を取り付けることが可能である。
センサーアセンブリー204からソレノイド駆動部352への入力は、ソレノイドバルブ302を作動させる。例えば、センサーアセンブリー204(または、別の選択肢として、プロセッサー216)からの入力シグナルが特定の閾値レベルを超える場合に、ソレノイド駆動部352がソレノイドバルブ302を作動させてよい。ソレノイドバルブ302は、デジタル式に制御されてよく(すなわち、オンまたはオフ)、この場合、DC電圧が、最大および最小値の間で変化される。別の選択肢として、ソレノイド駆動部352からのDC電圧が連続的に可変であって、ポペットバルブ164の位置がアナログ式によって正確に調節されてもよい。
加えて、または別の選択肢として、ソレノイド駆動部352は、AC成分を含むDC出力によってソレノイドバルブ302を制御してもよい。ソレノイドバルブ302からのアーマチュア304の延びは、印加電流におよそ比例することから、これは、ソレノイドバルブ302のアーマチュア304の振動を引き起こす。そのような振動は、アーマチュア304の「静摩擦」を緩和し、すなわち、アーマチュア304の引っ掛かりまたは詰まりを防止する手助けとなる。
別の選択肢として、FET、マイクロプロセッサー、またはASICなどのその他の制御設備が、ソレノイドバルブ302の作動の制御に適宜用いられてもよい。さらに、考察したように、ソレノイドバルブ302は、ポペットバルブ164または類似物の正確な動きを可能とするために、デジタル(すなわち、オン/オフ)またはアナログ(すなわち、連続的に可変)モードのいずれかで作動されてよい。
第一または第二の実施形態は、検出されたガスに対して成された測定の結果をユーザーに示すためのディスプレイ(図示せず)をさらに含んでよい。別の選択肢として、ディスプレイは、メーター200、350から離れて配置されてよく、該当するデータは、リモート通信されてよい。
ここで、流れノイズセンサー(flow noise sensor)の理論および作動について記載する。石英水晶発振器210は、それが配置されている流体の密度に依存する共振周波数を有する。発振する音叉型の平面水晶発振器をガスに暴露することにより、水晶の共振周波数の偏移および減衰が引き起こされる(真空中の水晶の共振周波数と比較した場合)。これにはいくつかの理由がある。水晶の発振に対するガスの減衰効果が存在するが、音叉型水晶発振器210の振動するタイン部210aに隣接するガスは、発振器の有効質量を増加させる。このことは、片側固定弾性棒(one-sided, fixed elastic beam)の運動に従って、石英水晶発振器の共振周波数の低下を引き起こすものであり:
Figure 0005969696
ここで、fは、発振の周波数であり、f0は、真空中での発振の周波数であり、ρは、ガス密度であり、M0は、定数である。
密度ρは、ほとんどすべての場合において、M0と比較して小さく、従って、この式は、以下の一次方程式によって近似することができ:
Figure 0005969696
これは、f0からの周波数偏移Δfに関して再度表すことができ、方程式3)で示される。
Figure 0005969696
従って、良好な近似として、周波数の変化は、石英水晶発振器が暴露されるガスの密度の変化に比例する。
一般的に、石英水晶発振器210の感度は、大気圧と比較した場合に、例えば250バールの酸素ガス(原子質量数32を有する)で、周波数の5%の変化が見られる感度である。
石英水晶発振器210を用いることの利点は、共振周波数が充分に明らかにされており、および上記で示したように、ガス圧力によって少しずつしか変化しないことである。加えて、石英水晶発振器210は、共振周波数以外の周波数での振動に対して比較的感受性が低く、従って、外部の振動およびノイズによる影響を比較的受けにくい。
ガス流が導管206に沿って存在する場合、ガスは、流量制限部206aにある石英水晶発振器210を通過して流れる。石英水晶発振器210が、実際にはガス流中の障害物であることから、石英水晶発振器210は、ガス流に抵抗を作り出し、乱流が発生する。これが流れノイズを引き起こす。
石英水晶発振器210への抵抗力およびその周りの乱流により、タイン部210aの動きが引き起こされ、そしてこれが、石英水晶発振器210の電気接続部間の電圧を発生させる。この電圧は、ノイズ電圧(Vn)として知られる。実験的に、発生されるノイズ電圧Vnは、流速(Q)の三乗に比例することが見出されており、方程式4)で示され:
Figure 0005969696
ここで、Kは、多くの流れの状況において、定数であるが、ガス密度に応じてゆっくり変動する。
従って、ノイズ電圧Vnの測定値は、立方根フィルターを通されると、流速の示度を提供することができる。典型的には、共振周波数32.768kHzの水晶を有する長さ5mmの石英水晶発振器は、3リットル/分の流速で流れる3mm管中に搭載されると、増幅器回路212で10倍に増幅される場合、30mWの電圧を与える。このシグナル上の典型的なノイズは、10秒時定数スムージングデジタルフィルターの適用後、典型的には、+/−2%の誤差を流量にもたらす。
図4は、リットル/分単位での流速(X軸)の関数としてのmV単位でのノイズ電圧Vn(Y軸)のグラフを示す。この場合の各データ点は、1分間にわたる平均である。
図5は、同じデータのmV単位でのノイズ電圧Vn(Y軸)であるが、立方根が適用されたものを、リットル/分単位での流速(X軸)の関数として示す。示されるように、グラフはほぼ直線である。
図4および5の例では、共振周波数32.8kHzの水晶を有する長さ5mmの石英水晶発振器を用い、そこからのシグナルは、電圧ゲインが10倍であるシングルステージ増幅器(標準741増幅器など)に通した。
図6は、時間の関数としてのノイズ電圧のグラフを示す。測定は、1秒間隔で、100秒間にわたって行った。4本の線は、それぞれ、3、4.5、6、および9リットル/分で測定した流れノイズを表しており、最も速い流速が、最も高い電圧を発生させている。
加えて、石英水晶発振器210は、流れノイズを測定するための単なる受動的センサーとしてではなく、能動的または半能動的モードで用いることもできる。方程式1)から3)に関連して上記で考察したように、石英水晶発振器210は、周囲ガスの密度ρに比例する周波数fで共振する。
従って、上記方程式1)から3)に従って、周波数fを正確に測定することができ、ガスの密度ρを正確に算出することができる。次に、この情報は、ユーザーに出力することができ、および/または方程式4)の実験定数Kの値がガス密度に応じてゆっくり変動することが実験的に見出されていることから、上記方程式4)の較正係数Kの調節に用いることもできる。
周波数fは、石英水晶発振器210が、特定の媒体中においてその共振周波数fで共振する傾向にあることから、石英水晶発振器210の流れ励起振動から直接誘導することができる。
別の選択肢として、周波数fは、周期的ベースで、短い時間にわたり、駆動回路によって意図的に励起することもできる。これにより、確実に、測定される共振周波数fが充分に明らかにされた大きさとなり、より正確な測定を行うことができる。
本発明での使用に適する増幅器回路212の例を図7に示す。増幅器回路212は、増幅器218、抵抗器R1およびR3、ならびにスイッチSW1およびSW2を含む。
増幅器218は、R1およびR3と合わせて、非反転増幅器を形成する。R3は、可変抵抗器であり、R3の値の変動は、増幅器のゲインを制御するように作動可能である(すなわち、R3の値を増加させると、ゲインが減少する)。これを用いることで、発振を維持し(石英水晶発振器210の励起に用いられる場合)、および流れノイズ検出器として機能する場合の石英水晶発振器210からのシグナルの増幅に用いられる場合に、充分に高く飽和していない測定可能なシグナルレベルを得るという両方のための適切なゲインレベルを設定することができる。
スイッチSW1およびSW2は、増幅器および発振器の駆動モード間で回路212をスイッチするように作動可能である。これらは、例えば、電界効果トランジスター(FET)スイッチまたは電気機械式継電器を含んでよい。
石英水晶発振器210によって発生されたノイズ電圧を増幅するための増幅器として用いられる場合(流れノイズ検出器として用いられる場合)、スイッチSW1は、オフの位置であり(すなわち、開)、スイッチSW2は、オンの位置である(すなわち、閉)。
増幅器モードでは、出力は、石英水晶発振器210が外部源によって励起される場合に発生される電圧を反映している。増幅器218のゲインの調節は、出力シグナルが、正確な測定のためには充分であるが、飽和はしないように行われる。
逆に、石英水晶発振器210によって発生されたノイズ電圧を増幅するための増幅器として用いられる場合(流れノイズ検出器として用いられる場合)、スイッチSW1は、オンの位置であり(すなわち、閉)、スイッチSW2は、オフの位置である(すなわち、開)。
発振器モードでは、石英水晶発振器210は、増幅器218の出力によって励起され、これが、増幅器218の入力へとフィードバックされる。増幅器218のゲインが充分に高い場合、発振は維持される。発振器の周波数fは、出力に接続された周波数メーターを用いて測定されてよい。
変更では、スイッチSW1を抵抗器で置き換えることが可能であり、この場合、SW2単独で、作動モードが制御される。
ここで、本発明の実施形態に従う方法について、図8を参照して記載する。以下に記載する方法は、上述した第一および第二の実施形態の各々に適用可能である。
[工程400:測定初期化]
工程400において、導管206を通るガスの流速の測定が初期化される。これは、例えば、筺体208の外側にあるボタンをユーザーが押すことによって起動されてよい。別の選択肢として、測定は、リモート接続によって開始されてもよく、例えば、ワイヤレスネットワークを通してシグナルが送信され、アンテナを通してメーター200、350によって受信される。
さらなる別の選択肢として、または追加として、メーター200、350は、リモートで、またはタイマーで初期化されるように設計されてよい。方法は、工程402へ進む。
[工程402:石英水晶発振器を用いた電圧の発生]
初期化されると、石英水晶発振器210を通過するガスの流れが、乱流および抵抗力の結果として、石英水晶発振器210を動かし、圧電効果によって電圧を発生させる。理解されるように、石英水晶発振器210は、本質的に、独立型検出器であり、流れ障害物である。
[工程404:発生電圧の増幅]
次に、増幅器回路212が、石英水晶発振器210によって発生されたシグナルを増幅する。本実施形態では、シングルステージ増幅器回路212(増幅器218を含む)が用いられるが、マルチステージシステムを用いることも可能である。本実施形態では、増幅器212は、電圧ゲイン10を有するが、必要に応じてその他のゲインを用いることも可能である。
方法は、工程406へ進む。
[工程406:データの立方根取得]
上記で示したように、ノイズ電圧は、流量Qの三乗に比例する。従って、流速Qに比例するデータ値を得るために、立方根回路が実装される。方法は、工程408へ進む。
[工程408:積分およびスムージング]
測定を行うために、立方根を取り、増幅された電圧値が、およそ10秒間にわたって測定される。これは、正確な測定値を特定するために、読み取りを安定化させることを可能とするためである。次に、デジタルフィルターを用いてデータのスムージングを行う。この工程、および前の工程は、マイクロプロセッサー216で、または増幅器回路212上の専用回路網によって行われてよい。マイクロプロセッサー216は、測定が開始された時間T1の記録も行ってよい。
[工程410:周波数からのガス密度の誘導]
工程410はオプションであり、流量メーターの作動中に必要に応じて行われてよい。方程式1)、2)、および3)に関連して上記で示したように、ガス密度は、石英水晶発振器210の共振周波数におよそ直線的に依存する。この周波数fが測定され、密度の情報が必要に応じてプロセッサー216によって利用される。
方法は、工程412へ進む。
[工程412:ガス流量の特定]
これは、上記の方程式4)を用いて行われ、ここで、ノイズ電圧は工程402で測定され、定数Kの初期値は既に特定されている。工程410で密度が特定された場合、定数Kの値は、該当する密度の情報を用いて、必要に応じて更新されてよい。
方法は次に、工程414へ進む。
[工程414:結果の通信および記憶]
ガスの流量は、いくつかの方法で表示させることができる。例えば、筺体208、本体202、またはレギュレーター150、300に取り付けられたスクリーン(図示せず)に、ガスの流量が表示されてよい。別の選択肢として、流速測定は、以降で記載するように、ベースステーションへ、または隣接する付属備品上に配置されるメーターへ、リモート通信されてもよい。
なおさらなる別の選択肢として、時間T1でのガスの流速が、前記マイクロプロセッサー216のローカルメモリーに記憶されて、時間ログが作製されてもよい。
方法は次に、工程416へ進む。
[工程416:センサーアセンブリーの電源オフ]
メーター200、350を常時作動状態に保持しておく必要はない。逆に、非使用時にメーター200、350のスイッチを切ることによって電力消費を低減することは有益である。これにより、電池214の寿命が長くなる。
上記実施形態の変更は、当業者に明らかである。ハードウェアおよびソフトウェアコンポーネントの厳密な設計は異なっていてもよく、それでも、本発明の範囲内に含まれる。当業者であれば、用いられてよい別の選択肢としての設計を、容易に認識するであろう。
例えば、電子機能は、シリンダー上に恒久的に搭載されるユニットと、顧客用ステーションに搭載されるユニットか、または従来の流量メーターに通常は用いられる位置などのシリンダーの出口部に一時的に搭載されるユニットとに分割されてよい。
本設備の例を、図9を参照して示す。この設備は、ガスシリンダー500、レギュレーター502、および質量流速メーター504を有するガスシリンダーアセンブリー50を含む。ガスシリンダー500、レギュレーター502、および質量流速メーター504は、先の実施形態に関連してこれまでに述べたガスシリンダー100、レギュレーター150、およびメーター200、350に非常に類似している。
本実施形態では、質量流速メーター504は、先の実施形態の石英水晶発振器210および増幅器回路212に類似する石英水晶発振器および増幅器回路(図示せず)を含む。適切ないずれかのリモート通信プロトコルを介する通信のためのアンテナ506が提供され;例えば、ブルートゥース(登録商標)、赤外(IR)、またはRFIDである。別の選択肢として、ワンワイヤ通信が用いられてもよい。
さらなる別の選択肢として、音響通信法が用いられてもよい。そのような方法の利点は、外部アンテナを必要とせずにリモート通信を行うことができることである。
接続管508が、ガスシリンダー500の出口部に接続される。接続管は、クイックコネクト接続部(quick connect connection)510が末端に接続されている。このクイックコネクト接続部510は、接続配管またはコンポーネントとガスシリンダー500との接続および分離を、容易に素早く行うことを可能とするものである。
クイックコネクトユニット550は、ガスシリンダー500との接続のために提供される。コネクター508との接続のために、相補的なクイックコネクトコネクター512が提供される。さらに、クイックコネクトユニット550は、データユニット552を備える。データユニット552は、ディスプレイ554、およびガスシリンダーアセンブリー50のアンテナ504との通信のためのアンテナ556を含む。ディスプレイ554は、ディスプレイの電力消費を最小限に抑え、最大限の視認性を得るために、例えば、LCD、LED、または昼光視認可能ディスプレイ(daylight-readable display)を含んでよい。
データユニット552は、ガスシリンダーアセンブリー50のセンサーアセンブリー502によって測定される種々のパラメーターを記録してよい。例えば、データユニット552は、時間に対する流速を記録してよい。そのようなログは、例えば、重要なコンポーネントへの時間の掛かるガス溶接手順の間にガス流が存在し、それが正しかったことを確認したいと考える溶接施工業者にとって、または特定の顧客の使用に関するデータを企業へ提供するために、有用であり得る。
別の選択肢として、データユニット550からのデータを、コンピューター操作可能溶接機(溶接用途の場合)、またはその他のガス使用機器へ出力して、警告メッセージと共に、誘導されるパラメーターの算出を可能とすることもできる。
別の選択肢として、上記の例のすべては、所望に応じて、メーター200、350に関して考察したように、全体がガスシリンダー500または筺体208上(または内)に配置されるシステムによって処理され、保存され、またはそこから得られてもよい。
上記実施形態を、石英水晶発振器の使用に関連して記載したが、当業者であれば、やはり用いることが可能である別の選択肢としての圧電材料を容易に認識するであろう。例えば、非網羅的なリストとしては、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウム、ベルリナイト、ガリウムヒ素、四ホウ酸リチウム、リン酸アルミニウム、酸化ビスマスゲルマニウム、多結晶チタン酸ジルコニウムセラミック、高アルミナセラミック、ケイ素‐酸化亜鉛コンポジット、または酒石酸二カリウムを含む水晶発振器が挙げられ得る。
本発明の実施形態を、例示した例に特に関連して記載した。特定の例を図面で示し、本明細書にて詳細に記載したが、図面および詳細な記載は、開示した特定の形態に本発明を限定することを意図するものではないことは理解されるべきである。本発明の範囲内にて、記載の例に変更および改変を施してよいことは理解されるであろう。

Claims (15)

  1. 導管に沿うガスの流速を測定する方法であって、前記方法は、
    a)前記導管中まで届き、前記ガスと接触するような圧電発振器の配置であって、前記圧電発振器は、前記導管に沿うガス流によって生じる前記圧電発振器への抵抗力に応答して発振するように構成される2つの平行な平面型タイン部(tines)を含むものである、配置、
    b)前記導管に沿う前記ガス流中の前記圧電発振器への抵抗力に起因する前記圧電発振器の前記平面型タイン部の発振性の運動によって発生されるノイズ電圧の大きさの測定、および
    c)前記発生されるノイズ電圧の前記大きさからの、前記導管に沿う前記ガスの流速の特定
    を含む、導管に沿うガスの流速を測定する方法。
  2. 工程a)が、前記圧電発振器の前記平面型タイン部を、前記ガスの流れに対して実質的に直角に配置することを含む、請求項1に記載の方法。
  3. 工程b)が、前記圧電発振器によって発生された前記ノイズ電圧を増幅することをさらに含む、請求項1または2に記載の方法。
  4. 前記ノイズ電圧が前記流速の三乗に比例し、工程c)が、前記増幅されたノイズ電圧の立方根を算出して前記ガスの流速を特定することをさらに含む、請求項3に記載の方法。
  5. さらに以下の工程、すなわち
    d)前記圧電発振器の共振周波数から前記ガスの密度を特定する工程
    を含む、請求項1〜4のいずれか一項に記載の方法。
  6. 工程d)が、
    e)共振周波数で前記圧電発振器を駆動すること、
    をさらに含む、請求項5に記載の方法。
  7. 導管に沿うガスの流速を測定するためのメーターであって、前記メーターは、前記メーターの使用時に前記ガス流と接触し、前記ガス流の中へ延びており、前記ガス流によって生じる前記圧電発振器への抵抗力に応答して発振するように構成された2つの平行な平面型タイン部を含んでいる圧電水晶発振器を有するセンサーアセンブリーを含み、前記センサーアセンブリーは、前記導管に沿う前記ガス流中の前記圧電発振器への抵抗力に起因する前記圧電発振器の前記平面型タイン部の発振性の運動によって発生されるノイズ電圧の大きさを測定し、および前記発生されるノイズ電圧の大きさから、前記導管に沿う前記ガスの流速を特定するように構成された、導管に沿うガスの流速を測定するためのメーター。
  8. 前記圧電発振器の前記平面型タイン部が、前記ガスの流れに対して実質的に直角に配置された、請求項7に記載のメーター。
  9. 前記センサーアセンブリーが、前記圧電発振器によって発生された前記ノイズ電圧を増幅するための増幅器をさらに含む、請求項7または8に記載のメーター。
  10. 前記ノイズ電圧が前記流速の三乗に比例し、前記センサーアセンブリーが、前記増幅されたノイズ電圧の立方根を算出して前記ガスの流速を特定するように作動可能である、請求項9に記載のメーター。
  11. 前記センサーアセンブリーが、前記ガス流中の前記圧電発振器の共振周波数から前記ガスの密度を特定するようにさらに作動可能である、請求項7〜10のいずれか一項に記載のメーター。
  12. さらに駆動回路を含み、ここで、前記駆動回路は、共振周波数で前記圧電発振器を駆動するように作動可能である、請求項11に記載のメーター。
  13. 前記平面型タイン部が、およそ32kHz以上の周波数で発振するように構成される、請求項1〜6のいずれか一項に記載の方法または請求項7〜12のいずれか一項に記載のメーター。
  14. 前記圧電発振器が石英水晶発振器を含む、請求項1〜6のいずれか一項に記載の方法または請求項7〜12のいずれか一項に記載のメーター。
  15. 求項1〜6のいずれか一項に記載の工程を実施するための1つ以上のソフトウェア部分を含み、プログラム可能な処理装置によって実行可能である、コンピュータープログラム。
JP2015513201A 2012-05-24 2013-05-23 ガスの流速を測定するための方法および装置 Expired - Fee Related JP5969696B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12169389.9A EP2667161A1 (en) 2012-05-24 2012-05-24 Method of, and apparatus for, measuring the flow rate of a gas
EP12169389.9 2012-05-24
PCT/EP2013/060690 WO2013174958A1 (en) 2012-05-24 2013-05-23 Method of, and apparatus for, measuring the flow rate of a gas

Publications (2)

Publication Number Publication Date
JP2015526695A JP2015526695A (ja) 2015-09-10
JP5969696B2 true JP5969696B2 (ja) 2016-08-17

Family

ID=48579020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015513201A Expired - Fee Related JP5969696B2 (ja) 2012-05-24 2013-05-23 ガスの流速を測定するための方法および装置

Country Status (10)

Country Link
US (1) US20150292922A1 (ja)
EP (1) EP2667161A1 (ja)
JP (1) JP5969696B2 (ja)
KR (1) KR20150008451A (ja)
CN (1) CN104303024A (ja)
BR (1) BR112014029059A2 (ja)
CA (1) CA2874558C (ja)
MX (1) MX2014013705A (ja)
TW (1) TWI481986B (ja)
WO (1) WO2013174958A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458348B1 (en) 2010-11-29 2013-08-14 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
ES2749877T3 (es) 2010-11-29 2020-03-24 Air Prod & Chem Método y aparato de medición del peso molecular de un gas
EP2667162B1 (en) 2012-05-24 2015-09-30 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
PL2667277T3 (pl) * 2012-05-24 2018-05-30 Air Products And Chemicals, Inc. Sposób i urządzenia do dostarczania mieszaniny gazu
ES2536091T3 (es) 2012-05-24 2015-05-20 Air Products And Chemicals, Inc. Aparato para la medición del contenido verdadero de un cilindro de gas bajo presión
PL2667160T3 (pl) 2012-05-24 2021-05-04 Air Products And Chemicals, Inc. Sposób i urządzenie do regulowania masowego natężenia przepływu gazu
EP2667276B1 (en) 2012-05-24 2017-11-08 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
ES2905838T3 (es) 2012-05-24 2022-04-12 Air Prod & Chem Método y aparato para medir el caudal másico de un gas
FR3061547B1 (fr) * 2017-01-03 2019-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Appareil pour determiner le debit massique ou l’autonomie en gaz d’une bouteille de gaz, notamment d’oxygene medical
WO2020197543A1 (en) * 2019-03-25 2020-10-01 Micro Motion, Inc. Vibrating meter with gap
US20210223281A1 (en) * 2019-11-20 2021-07-22 Board Of Regents, The University Of Texas System Velocity Measurements Using a Piezoelectric Sensor
TWI830305B (zh) * 2022-07-26 2024-01-21 弓銓企業股份有限公司 流量計感測裝置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1349257A (en) * 1970-04-24 1974-04-03 Rotron Inc Mass flow and mass flow rate indication
SE9801766D0 (sv) * 1998-05-19 1998-05-19 Siemens Elema Ab Fluid flow meter
JP4001029B2 (ja) * 2002-03-25 2007-10-31 セイコーエプソン株式会社 音叉型圧電振動片及びその製造方法、圧電デバイス
US7651263B2 (en) * 2007-03-01 2010-01-26 Advanced Energy Industries, Inc. Method and apparatus for measuring the temperature of a gas in a mass flow controller
US7971480B2 (en) * 2008-10-13 2011-07-05 Hitachi Metals, Ltd. Mass flow controller having a first pair of thermal sensing elements opposing a second pair of thermal sensing elements
DE102009001526A1 (de) * 2009-03-12 2010-09-16 Endress + Hauser Flowtec Ag Wirbelströmungsmessgerät zum Überwachen und/oder Messen einer verteilten Teilchen- und/oder Tröpfchen-Strömung
US20120042715A1 (en) * 2010-01-14 2012-02-23 Northwestern University Advanced micro flow sensor
CN101881640A (zh) * 2010-06-30 2010-11-10 重庆耐德正奇流量仪表有限公司 涡街质量流量计
WO2012070006A1 (en) * 2010-11-23 2012-05-31 Feather Sensors Llc Method and apparatus for intelligen flow sensors
EP2458348B1 (en) * 2010-11-29 2013-08-14 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
CN102288230B (zh) * 2011-07-27 2012-12-05 江苏伟屹电子有限公司 一种外置型应力式涡街传感器

Also Published As

Publication number Publication date
CA2874558A1 (en) 2013-11-28
MX2014013705A (es) 2015-09-07
US20150292922A1 (en) 2015-10-15
BR112014029059A2 (pt) 2017-06-27
CA2874558C (en) 2016-06-28
KR20150008451A (ko) 2015-01-22
JP2015526695A (ja) 2015-09-10
WO2013174958A1 (en) 2013-11-28
CN104303024A (zh) 2015-01-21
EP2667161A1 (en) 2013-11-27
TWI481986B (zh) 2015-04-21
TW201401005A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5969696B2 (ja) ガスの流速を測定するための方法および装置
JP6258926B2 (ja) ガス混合物を提供するための方法および装置
JP6082103B2 (ja) ガス混合物を提供するための方法および装置
KR101480370B1 (ko) 가스의 질량 유량 측정 방법 및 장치
JP6126207B2 (ja) ガスの質量流速を測定するための方法及び機器
KR101741872B1 (ko) 가스의 분자량 측정 방법 및 장치
US9804010B2 (en) Method of, and apparatus for, regulating the mass flow rate of a gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees