JP5969354B2 - Method for producing dispersible nickel fine particle slurry - Google Patents

Method for producing dispersible nickel fine particle slurry Download PDF

Info

Publication number
JP5969354B2
JP5969354B2 JP2012239872A JP2012239872A JP5969354B2 JP 5969354 B2 JP5969354 B2 JP 5969354B2 JP 2012239872 A JP2012239872 A JP 2012239872A JP 2012239872 A JP2012239872 A JP 2012239872A JP 5969354 B2 JP5969354 B2 JP 5969354B2
Authority
JP
Japan
Prior art keywords
fine particles
nickel fine
nickel
primary amine
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012239872A
Other languages
Japanese (ja)
Other versions
JP2014088603A (en
Inventor
一人 岡村
一人 岡村
山田 勝弘
勝弘 山田
井上 修治
修治 井上
昇 大東
昇 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012239872A priority Critical patent/JP5969354B2/en
Publication of JP2014088603A publication Critical patent/JP2014088603A/en
Application granted granted Critical
Publication of JP5969354B2 publication Critical patent/JP5969354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、分散性が向上したニッケル微粒子スラリーに関し、より詳しくは、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用などの導電ペーストに好適に利用できる分散性ニッケル微粒子スラリーに関する。   The present invention relates to a nickel fine particle slurry having improved dispersibility, and more particularly to a dispersible nickel fine particle slurry that can be suitably used for, for example, a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).

金属微粒子は、バルク金属とは異なる物理的・化学的特性を有することから、例えば、導電性ペーストや透明導電膜などの電極材料、高密度記録材料、触媒材料、インクジェット用インク材料等の様々な工業材料に利用されている。近年では、電子機器の小型化に伴い、積層セラミックコンデンサの電極は薄膜多層化が進んでおり、これに伴い電極層の材料に用いられるニッケル微粒子などの金属微粒子も、数十〜数百nm程度まで微粒子化が進んでいる。   Since the metal fine particles have physical and chemical characteristics different from those of bulk metals, various materials such as electrode materials such as conductive pastes and transparent conductive films, high-density recording materials, catalyst materials, and ink-jet ink materials are used. It is used for industrial materials. In recent years, with the miniaturization of electronic devices, multilayer ceramic capacitor electrodes have been made thin and multilayer, and with this, metal fine particles such as nickel fine particles used for the material of the electrode layer are also about several tens to several hundreds of nanometers. The micronization is progressing.

上記のように、工業材料に使用される金属微粒子は、その粒子径が例えば150nmを下回る程度に小さく、粒子径が均一で、かつ分散性に優れることが求められる。しかしながら、微粒子化が進むことで、表面エネルギーの増加により、金属微粒子が凝集し易くなる、という問題が生じている。   As described above, the metal fine particles used for industrial materials are required to have a particle diameter as small as, for example, less than 150 nm, a uniform particle diameter, and excellent dispersibility. However, with the progress of micronization, there is a problem that the metal microparticles easily aggregate due to an increase in surface energy.

金属微粒子を分散させるために用いる分散剤として、例えば多価カルボン酸を含む脂肪酸や不飽和脂肪酸などを含むアニオン系分散剤(例えば、特許文献1)、高分子系イオン性分散剤(例えば、特許文献2)、りん酸エステル系化合物(例えば、特許文献3)、ポリオキシエチレンラウリルエーテルカルボン酸などのカルボン酸のエチレンオキサイド付加物(例えば、特許文献4)などが知られている。これらの分散剤は、ある程度の分散効果が得られるものの、微粒子化の進行に伴い、数十〜数百nm程度の金属微粒子に対しては、凝集を抑えることが十分にできていないのが現状である。従って、金属微粒子の更なる微粒子化に対応した高い分散性を示す分散剤が求められている。   As a dispersant used for dispersing metal fine particles, for example, an anionic dispersant (for example, Patent Document 1) containing a fatty acid containing polyvalent carboxylic acid, an unsaturated fatty acid, or the like, or a polymeric ionic dispersant (for example, a patent) Document 2), phosphoric ester compounds (for example, Patent Document 3), and ethylene oxide adducts of carboxylic acids such as polyoxyethylene lauryl ether carboxylic acid (for example, Patent Document 4) are known. Although these dispersants can achieve a certain degree of dispersion effect, with the progress of micronization, it is not possible to sufficiently suppress aggregation of metal fine particles of about several tens to several hundreds of nanometers. It is. Accordingly, there is a demand for a dispersant exhibiting high dispersibility corresponding to further micronization of metal fine particles.

特開2001−067951号公報JP 2001-066951 A 特開2010−135180号公報JP 2010-135180 A 特開1998−092226号公報JP 1998-092226 A 特許第4020764号公報Japanese Patent No. 4020764

本発明の目的は、金属ニッケル微粒子を分散した状態で含む分散性ニッケル微粒子スラリーを提供することである。   An object of the present invention is to provide a dispersible nickel fine particle slurry containing metallic nickel fine particles in a dispersed state.

本発明の分散性ニッケル微粒子スラリーの製造方法は、次の工程A〜C;
A)1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆された原料金属ニッケル微粒子と有機溶媒とを含有するスラリーを準備する工程、
B)前記スラリーに、フタロシアニン化合物を添加し、前記原料金属ニッケル微粒子の表面において、前記1級アミンの少なくとも一部分と前記フタロシアニン化合物とを置換させて該フタロシアニン化合物で部分的に被覆されたフタロシアニン修飾金属ニッケル微粒子を得る工程、
C)前記フタロシアニン修飾金属ニッケル微粒子に、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加し、前記フタロシアニン化合物とのカルボン酸塩を形成する工程、
を備えている。
The method for producing the dispersible nickel fine particle slurry of the present invention includes the following steps A to C;
A) preparing a slurry containing raw metal nickel fine particles and an organic solvent at least partially coated with a primary amine and elemental sulfur or a sulfur-containing compound;
B) A phthalocyanine-modified metal that is partially coated with the phthalocyanine compound by adding a phthalocyanine compound to the slurry and replacing at least a portion of the primary amine with the phthalocyanine compound on the surface of the raw material nickel metal fine particles Obtaining nickel fine particles,
C) adding polyoxyethylene alkyl ether carboxylic acid or a salt thereof to the phthalocyanine-modified metal nickel fine particles to form a carboxylate with the phthalocyanine compound;
It has.

本発明の分散性ニッケル微粒子スラリーの製造方法は、前記原料金属ニッケル微粒子の表面を被覆する1級アミンが、脂肪族1級アミンであってもよい。   In the method for producing a dispersible nickel fine particle slurry of the present invention, the primary amine covering the surface of the raw metal nickel fine particles may be an aliphatic primary amine.

本発明の分散性ニッケル微粒子スラリーの製造方法は、前記原料金属ニッケル微粒子が、湿式解砕機を用いて、有機溶媒中で、予め解砕処理されたものであってもよい。   In the method for producing a dispersible nickel fine particle slurry of the present invention, the raw metal nickel fine particles may be crushed in advance in an organic solvent using a wet pulverizer.

本発明の分散性ニッケル微粒子スラリーの製造方法は、前記原料金属ニッケル微粒子が、
次の工程I及びII;
I)カルボン酸ニッケル及び1級アミンの混合物を、100℃〜165℃の範囲内の温度に加熱して錯化反応液を得る工程、
II)該錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱して、該錯化反応液中のニッケルイオンを還元し、1級アミンで被覆された金属ニッケル微粒子を得る工程、
III)1級アミンで被覆された金属ニッケル微粒子に硫黄元素もしくは硫黄含有化合物を混合することにより、原料ニッケル微粒子を得る工程、
を含む方法により調製されたものであってもよい。
In the method for producing a dispersible nickel fine particle slurry of the present invention, the raw metal nickel fine particles are
Next steps I and II;
I) a step of heating a mixture of nickel carboxylate and primary amine to a temperature in the range of 100 ° C. to 165 ° C. to obtain a complexing reaction solution;
II) A step of heating the complexing reaction solution to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction solution to obtain metallic nickel fine particles coated with a primary amine.
III) A step of obtaining raw material nickel fine particles by mixing elemental sulfur or a sulfur-containing compound with metallic nickel fine particles coated with a primary amine,
It may be prepared by a method comprising

本発明の分散性ニッケル微粒子スラリーで使用するフタロシアニン化合物は、金属ニッケル微粒子の表面において1級アミンの少なくとも一部分と容易に置換する。そして、このフタロシアニン化合物とポリオキシエチレンアルキルエーテルカルボン酸又はその塩が反応することによって形成されるカルボン酸塩は、金属ニッケル微粒子に対し、強い凝集抑制作用を有することから、少量でも優れた分散効果が期待できる。従って、本発明の分散性ニッケル微粒子スラリーの製造方法によれば、例えば粒子径が150nm以下の微細な金属ニッケル微粒子についても、凝集を抑制し、単一粒子が分散した粒子径分布のシャープな金属ニッケル微粒子の集合体を得ることができる。   The phthalocyanine compound used in the dispersible nickel fine particle slurry of the present invention easily substitutes at least a part of the primary amine on the surface of the metal nickel fine particles. And the carboxylate formed by the reaction of this phthalocyanine compound and polyoxyethylene alkyl ether carboxylic acid or its salt has a strong anti-aggregation effect on the metallic nickel fine particles, so an excellent dispersion effect even in a small amount Can be expected. Therefore, according to the method for producing a dispersible nickel fine particle slurry of the present invention, for example, even for fine metal nickel fine particles having a particle size of 150 nm or less, agglomeration is suppressed, and a metal having a sharp particle size distribution in which single particles are dispersed. An aggregate of nickel fine particles can be obtained.

本実施の形態に係る分散性ニッケル微粒子の製造方法は、次の工程A〜C;
A)1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆された原料金属ニッケル微粒子と有機溶媒とを含有するスラリーを準備する工程、
B)前記スラリーに、フタロシアニン化合物を添加し、前記原料金属ニッケル微粒子の表面において、前記1級アミンの少なくとも一部分とフタロシアニン化合物とを置換させて該フタロシアニン化合物で被覆されたフタロシアニン修飾金属ニッケル微粒子を得る工程、
C)前記フタロシアニン修飾金属ニッケル微粒子に、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加し、前記フタロシアニン化合物とのカルボン酸塩を形成する工程、
を備えている。
The method for producing dispersible nickel fine particles according to the present embodiment includes the following steps A to C;
A) preparing a slurry containing raw metal nickel fine particles and an organic solvent at least partially coated with a primary amine and elemental sulfur or a sulfur-containing compound;
B) A phthalocyanine compound is added to the slurry, and at least a part of the primary amine and the phthalocyanine compound are substituted on the surface of the raw metal nickel fine particles to obtain phthalocyanine-modified metal nickel fine particles coated with the phthalocyanine compound. Process,
C) adding polyoxyethylene alkyl ether carboxylic acid or a salt thereof to the phthalocyanine-modified metal nickel fine particles to form a carboxylate with the phthalocyanine compound;
It has.

工程A:
原料金属ニッケル微粒子は、金属ニッケル微粒子の表面が、1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆されてなるものである。ここで、被覆とは、1級アミン及び硫黄元素もしくは硫黄含有化合物が、金属ニッケル微粒子の表面の少なくとも一部分に物理的に吸着又は付着した状態、あるいは金属ニッケル微粒子の表面の少なくとも一部分に化学的に結合した状態を含む。
Process A:
The raw metal nickel fine particles are obtained by at least partially covering the surface of the metal nickel fine particles with a primary amine and a sulfur element or sulfur-containing compound. Here, the term “coating” refers to a state in which primary amine and elemental sulfur or sulfur-containing compound are physically adsorbed or adhered to at least a part of the surface of the metal nickel fine particle, or chemically applied to at least a part of the surface of the metal nickel fine particle. Includes combined state.

原料金属ニッケル微粒子は、公知の方法により製造することができる。例えば、気相法又は液相法により得られた金属ニッケル微粒子に、1級アミン及び硫黄元素もしくは硫黄含有化合物を混合する方法や、金属ニッケル微粒子の前駆体であるニッケル塩に、1級アミンを混合した後、加熱して1級アミンで被覆された金属ニッケル微粒子を得、この金属ニッケル微粒子に硫黄元素もしくは硫黄含有化合物を混合する方法などが挙げられる。   The raw metal nickel fine particles can be produced by a known method. For example, a method of mixing a primary amine and elemental sulfur or a sulfur-containing compound with metallic nickel fine particles obtained by a vapor phase method or a liquid phase method, or a primary amine with a nickel salt that is a precursor of metallic nickel fine particles. Examples thereof include a method in which after mixing, metal nickel fine particles coated with a primary amine are obtained by heating, and elemental sulfur or a sulfur-containing compound is mixed with the metal nickel fine particles.

気相法は液相法に比べて製造コストが高価になりがちであるので、液相法を適用することは有利である。液相法のなかでも、粒子径分布が狭い原料金属ニッケル微粒子を短時間で容易に製造する方法として、下記の工程I〜III;
I)カルボン酸ニッケル及び1級アミンの混合物を、100℃〜165℃の範囲内の温度に加熱して錯化反応液を得る工程、
II)該錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱して、該錯化反応液中のニッケルイオンを還元して、1級アミンで被覆された金属ニッケル微粒子を得る工程、
III)1級アミンで被覆された金属ニッケル微粒子に硫黄元素もしくは硫黄含有化合物を混合することにより、原料ニッケル微粒子を得る工程、
を備えることが好ましい。ここで、工程IIでは、1級アミンで被覆された金属ニッケル微粒子を、有機溶媒(以下、「第1の有機溶媒」と記すことがある)のスラリーの状態で得ることが好ましい。
Since the gas phase method tends to be expensive to produce compared to the liquid phase method, it is advantageous to apply the liquid phase method. Among the liquid phase methods, as a method for easily producing raw material metal nickel fine particles having a narrow particle size distribution in a short time, the following steps I to III;
I) a step of heating a mixture of nickel carboxylate and primary amine to a temperature in the range of 100 ° C. to 165 ° C. to obtain a complexing reaction solution;
II) A step of heating the complexing reaction solution to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction solution to obtain metallic nickel fine particles coated with a primary amine. ,
III) A step of obtaining raw material nickel fine particles by mixing elemental sulfur or a sulfur-containing compound with metallic nickel fine particles coated with a primary amine,
It is preferable to provide. Here, in Step II, it is preferable to obtain the metal nickel fine particles coated with the primary amine in the state of a slurry of an organic solvent (hereinafter sometimes referred to as “first organic solvent”).

ニッケル塩の種類は特に限定されず、例えば水酸化ニッケル、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、カルボン酸ニッケル、Ni(acac)(β−ジケトナト錯体)、ステアリン酸ニッケル等が挙げられるが、この中でも、塩化ニッケル又はカルボン酸ニッケルが好ましく、還元過程での解離温度(分解温度)が比較的低いカルボン酸ニッケルを用いることが有利である。カルボン酸ニッケルは単独で用いてもよいし、他のニッケル塩と併用することもできる。 The kind of nickel salt is not particularly limited, and examples thereof include nickel hydroxide, nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel carboxylate, Ni (acac) 2 (β-diketonato complex), nickel stearate and the like. However, among these, nickel chloride or nickel carboxylate is preferable, and it is advantageous to use nickel carboxylate having a relatively low dissociation temperature (decomposition temperature) in the reduction process. The nickel carboxylate may be used alone or in combination with other nickel salts.

1級アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定するものではなく、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。常温で液体の1級アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の1級の有機アミンであっても、加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。   The primary amine is not particularly limited as long as it can form a complex with nickel ions, and can be a solid or liquid at room temperature. Here, room temperature means 20 ° C. ± 15 ° C. The primary amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex. Even if it is a primary organic amine that is solid at room temperature, there is no particular problem as long as it is liquid by heating or can be dissolved using an organic solvent.

1級アミンは、芳香族1級アミンであってもよいが、反応液におけるニッケル錯体形成の容易性の観点からは脂肪族1級アミンが好適である。脂肪族1級アミンは、例えばその炭素鎖の長さを調整することによって生成する金属ニッケル微粒子の粒径を制御することができる。金属ニッケル微粒子の粒径を制御する観点から、脂肪族1級アミンは、その炭素数が6〜20程度のものから選択して用いることが好適である。炭素数が多いほど得られる金属ニッケル微粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。   The primary amine may be an aromatic primary amine, but an aliphatic primary amine is preferred from the viewpoint of easy nickel complex formation in the reaction solution. The aliphatic primary amine can control the particle diameter of the metal nickel fine particles produced, for example, by adjusting the length of the carbon chain. From the viewpoint of controlling the particle diameter of the metal nickel fine particles, the aliphatic primary amine is preferably selected from those having about 6 to 20 carbon atoms. The larger the number of carbons, the smaller the particle diameter of the obtained metal nickel fine particles. Examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine.

1級アミンは、還元反応で生成した金属ニッケル微粒子の固体成分と溶剤または未反応の1級アミン等を分離する洗浄工程における処理操作の容易性の観点からは室温で液体のものが好ましい。更に、1級アミンは、ニッケル錯体を還元して金属ニッケル微粒子を得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。1級アミンの量は、ニッケル塩1molに対して2mol以上用いることが好ましく、2.2mol以上用いることがより好ましい。1級アミンの量が2mol未満では、得られる金属ニッケル微粒子の粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、1級アミンの量の上限は特にはないが、例えば生産性の観点からは20mol以下とすることが好ましい。   The primary amine is preferably liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the metallic nickel fine particles produced by the reduction reaction from the solvent or the unreacted primary amine. Further, the primary amine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of easy reaction control when the nickel complex is reduced to obtain metallic nickel fine particles. The amount of the primary amine is preferably 2 mol or more, more preferably 2.2 mol or more, relative to 1 mol of the nickel salt. When the amount of the primary amine is less than 2 mol, it is difficult to control the particle diameter of the obtained metal nickel fine particles, and the particle diameter tends to vary. The upper limit of the amount of primary amine is not particularly limited, but is preferably 20 mol or less from the viewpoint of productivity, for example.

1級アミンは、第1の有機溶媒として反応を進行させることができるが、均一溶液での反応をより効率的に進行させるために、1級アミンとは別の有機溶媒を新たに添加してもよい。使用できる有機溶媒としては、1級アミンとニッケルイオンとの錯形成を阻害しないものであれば、特に限定するものではなく、例えば炭素数4〜30のエーテル系有機溶媒、炭素数7〜30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8〜18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200〜300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n−オクチルエーテル等が挙げられる。   The primary amine can proceed as a first organic solvent, but in order to proceed the reaction in a homogeneous solution more efficiently, an organic solvent other than the primary amine is newly added. Also good. The organic solvent that can be used is not particularly limited as long as it does not inhibit the complex formation between the primary amine and the nickel ion. For example, the organic solvent having 4 to 30 carbon atoms, 7 to 30 carbon atoms, and the like. A saturated or unsaturated hydrocarbon organic solvent, an alcohol organic solvent having 8 to 18 carbon atoms, or the like can be used. Moreover, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol and n-octyl ether.

錯形成反応は室温に於いても進行することができるが、十分且つ、より効率の良い錯形成反応を行うために、例えば100℃〜165℃の範囲内に加熱して反応を行う。この加熱は、後に続くニッケル錯体(又はニッケルイオン)のマイクロ波照射による加熱還元の過程と確実に分離し、前記の錯形成反応を完結させるという観点から、上記上限を適宜設定することができる。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよい。   Although the complex formation reaction can proceed even at room temperature, in order to perform a sufficient and more efficient complex formation reaction, for example, the reaction is performed by heating within a range of 100 ° C. to 165 ° C. This heating can be appropriately set from the viewpoint of separating from the subsequent heat reduction process by microwave irradiation of the nickel complex (or nickel ions) and completing the complex formation reaction. The heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation.

工程IIでは、ニッケル塩と1級アミンとの錯形成反応によって得られた錯化反応液を、マイクロ波照射によって加熱し、錯化反応液中のニッケルイオンを還元して金属ニッケル微粒子の第1の有機溶媒のスラリーを得る。マイクロ波照射によって加熱する温度は、得られる金属ニッケル微粒子の形状のばらつきを抑制するという観点から、好ましくは170℃以上、より好ましくは180℃以上とすることがよい。加熱温度の上限は特にないが、処理を能率的に行う観点からは例えば270℃以下とすることが好適である。なお、マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。   In Step II, the complexing reaction solution obtained by the complexation reaction between the nickel salt and the primary amine is heated by microwave irradiation to reduce the nickel ions in the complexing reaction solution, thereby reducing the first metal nickel fine particles. A slurry of the organic solvent is obtained. The temperature for heating by microwave irradiation is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the obtained metal nickel fine particles. The upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. In addition, the use wavelength of a microwave is not specifically limited, For example, it is 2.45 GHz.

マイクロ波照射による錯化反応液の加熱は、該反応液内の均一加熱を可能とし、かつエネルギーを媒体に直接与えることができるため、急速加熱を行なうことができる。これにより、反応液全体を所望の温度に均一にすることができ、ニッケル錯体(又はニッケルイオン)の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、結果として粒子径分布の狭い単分散な粒子を短時間で容易に製造することができる。特に、平均粒子径が20〜150nmの範囲内にある金属ニッケル微粒子を製造するのに好適である。   Heating of the complexing reaction solution by microwave irradiation enables uniform heating in the reaction solution and can directly apply energy to the medium, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and the processes of reduction, nucleation, and nucleation of the nickel complex (or nickel ions) occur simultaneously in the entire solution. Narrow monodisperse particles can be easily produced in a short time. In particular, it is suitable for producing metallic nickel fine particles having an average particle diameter in the range of 20 to 150 nm.

均一な粒径を有する金属ニッケル微粒子を生成させるには、錯化反応液生成工程の加熱温度を特定の範囲内で調整し、マイクロ波照射による加熱温度よりも確実に低くしておくことで、粒径・形状の整った粒子が生成し易い。例えば、錯化反応液生成工程で加熱温度が高すぎるとニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し異種の金属種が発生することで、粒子形状の整った金属ニッケル微粒子の生成が困難となるおそれがある。また、マイクロ波照射による加熱温度が低すぎるとニッケル(0価)への還元反応速度が遅くなり核の発生が少なくなるため粒子が大きくなるだけでなく、粒子の大きさが不揃いになり、金属ニッケル微粒子の収率の点からも好ましくはない。   In order to generate metallic nickel fine particles having a uniform particle size, the heating temperature of the complexing reaction liquid generation step is adjusted within a specific range, and is surely lower than the heating temperature by microwave irradiation. Easily produce particles with a uniform particle size and shape. For example, if the heating temperature is too high in the complexing reaction solution generation process, the formation of nickel complex and the reduction reaction to nickel (zero valence) proceed simultaneously, and different types of metal are generated. There is a possibility that generation of fine particles may be difficult. In addition, if the heating temperature by microwave irradiation is too low, the reduction reaction rate to nickel (zero valence) becomes slow and the generation of nuclei is reduced, so that not only the particles become larger but also the size of the particles becomes uneven, This is also not preferable from the viewpoint of the yield of nickel fine particles.

工程IIIでは、上記のようにして得られた金属ニッケル微粒子をスラリーの状態にして、硫黄粉末又は硫黄含有化合物を添加する。この場合、金属ニッケル微粒子に含有する炭素元素を制御する観点から、硫黄含有化合物としてニッケル原子と化学結合を可能とする硫黄原子を含む官能基を有する硫黄含有有機化合物を用いることが好ましい。硫黄粉末又は硫黄含有化合物の添加は、反応液のマイクロ波照射による還元反応に続く、金属ニッケル微粒子スラリーの状態で添加してもよく、又は還元反応によって得られる金属ニッケル微粒子スラリーから、一旦、金属ニッケル微粒子を単離した後に、金属ニッケル微粒子を液中に分散させてスラリーの状態としてから、添加してもよい。工程の簡略化の観点から、硫黄粉末又は硫黄含有化合物の添加は、反応液のマイクロ波照射による還元反応に続く、金属ニッケル微粒子スラリーの状態で添加することが好ましい。   In Step III, the metal nickel fine particles obtained as described above are made into a slurry state, and sulfur powder or a sulfur-containing compound is added. In this case, from the viewpoint of controlling the carbon element contained in the metal nickel fine particles, it is preferable to use, as the sulfur-containing compound, a sulfur-containing organic compound having a functional group containing a sulfur atom that enables chemical bonding with a nickel atom. The sulfur powder or the sulfur-containing compound may be added in the state of a metal nickel fine particle slurry following the reduction reaction by microwave irradiation of the reaction solution, or from the metal nickel fine particle slurry obtained by the reduction reaction, once the metal After the nickel fine particles are isolated, the metal nickel fine particles may be dispersed in a liquid to form a slurry and then added. From the viewpoint of simplification of the process, it is preferable to add the sulfur powder or the sulfur-containing compound in the state of a metal nickel fine particle slurry following the reduction reaction by microwave irradiation of the reaction solution.

硫黄含有有機化合物は、硫黄原子を分子内に含有する有機化合物であるが、このような有機化合物として、例えばチオール系化合物、スルフィド系化合物、チオフェン系化合物、スルホキシド系化合物、スルホン系化合物、チオケトン系化合物、スルフラン系化合物などが挙げられる。このなかでもチオール系化合物(メルカプト基を含有)、スルフィド系化合物(スルフィド基、又はジスルフィド基を含有)は、硫黄原子の活性が高いために、反応性に優れており、金属ニッケル微粒子の表面をNi−Sの化学結合で被覆することができ、例えば金属ニッケル微粒子の急激な加熱によっても、金属ニッケル微粒子の表面酸化を抑えることができるので好ましい。また、金属ニッケル微粒子の分散性を向上させるために、脂肪族系の硫黄含有有機化合物が好ましい。   The sulfur-containing organic compound is an organic compound containing a sulfur atom in the molecule. Examples of such an organic compound include thiol compounds, sulfide compounds, thiophene compounds, sulfoxide compounds, sulfone compounds, and thioketone compounds. Examples thereof include compounds and sulfuran compounds. Among these compounds, thiol compounds (containing mercapto groups) and sulfide compounds (containing sulfide groups or disulfide groups) have high reactivity due to the high activity of sulfur atoms. It can be coated with a Ni—S chemical bond, and for example, surface oxidation of the metal nickel fine particles can be suppressed even by rapid heating of the metal nickel fine particles, which is preferable. In order to improve the dispersibility of the metallic nickel fine particles, an aliphatic sulfur-containing organic compound is preferable.

メルカプト基を含有する硫黄含有有機化合物としては、分散性ニッケル微粒子の分散性の向上のために、炭化水素基を有する脂肪族チオール化合物が好ましく、より好ましくは炭素数1〜18の範囲内にある脂肪族チオール化合物がよい。   As the sulfur-containing organic compound containing a mercapto group, an aliphatic thiol compound having a hydrocarbon group is preferable in order to improve the dispersibility of the dispersible nickel fine particles, and more preferably in the range of 1 to 18 carbon atoms. Aliphatic thiol compounds are preferred.

スルフィド基を含有する硫黄含有有機化合物としては、分散性ニッケル微粒子の分散性の向上のために、炭化水素基を有する脂肪族メチルスルフィド化合物が好ましく、より好ましくは炭素数2〜18の範囲内にある脂肪族メチルスルフィド化合物がよい。このような脂肪族メチルスルフィド化合物は、R−S−CHで表される。ここで、Rは炭素数1〜20のアルキル基、シクロアルキル基、アルケニル基及びアルキニル基から選ばれる1価の置換基である。 The sulfur-containing organic compound containing a sulfide group is preferably an aliphatic methyl sulfide compound having a hydrocarbon group, more preferably within the range of 2 to 18 carbon atoms, in order to improve the dispersibility of the dispersible nickel fine particles. Some aliphatic methyl sulfide compounds are preferred. Such an aliphatic methyl sulfide compound is represented by R 1 —S—CH 3 . Here, R 1 is a monovalent substituent selected from an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an alkenyl group, and an alkynyl group.

ジスルフィド基を含有する硫黄含有有機化合物としては、分散性ニッケル微粒子の分散性の向上のために、炭化水素基を有する脂肪族ジスルフィド化合物が好ましく、より好ましくは炭素数2〜40の範囲内にある脂肪族ジスルフィド化合物がよい。このような脂肪族ジスルフィド化合物は、R−S−S―R’で表される。ここで、R、R’は独立に炭素数1〜20のアルキル基、シクロアルキル基、アルケニル基及びアルキニル基から選ばれる1価の置換基である。 The sulfur-containing organic compound containing a disulfide group is preferably an aliphatic disulfide compound having a hydrocarbon group, more preferably in the range of 2 to 40 carbon atoms, in order to improve the dispersibility of the dispersible nickel fine particles. Aliphatic disulfide compounds are preferred. Such an aliphatic disulfide compound is represented by R 1 —S—S—R 1 ′. Here, R 1 and R 1 ′ are monovalent substituents independently selected from an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an alkenyl group, and an alkynyl group.

脂肪族系の硫黄含有有機化合物の好ましい具体例としては、例えばメチルチオール、エチルチオール、プロピルチオール、ブチルチオール、ヘプチルチオール、ヘキシルチオール、オクチルチオール、ノニルチオール、デシルチオール(デカンチオール)、ウンデシルチオール、ドデシルチオール(ドデカンチオール)、テトラデシルチオール(テトラデカンチオール)、ヘキサデカンチオール、オクタデシルチオール、tert−ドデシルメルカプタン、シクロヘキシルチオール、ベンジルチオール、エチルフェニルチオール、2−メルカプトメチル−1,3−ジチオラン、2−メルカプトメチル−1,4−ジチアン、1−メルカプト−2,3−エピチオプロパン、1−メルカプトメチルチオ−2,3−エピチオプロパン、1−メルカプトエチルチオ−2,3−エピチオプロパン、3−メルカプトチエタン、2−メルカプトチエタン、3−メルカプトメチルチオチエタン、2−メルカプトメチルチオチエタン、3−メルカプトエチルチオチエタン、2−メルカプトエチルチオチエタン、2−メルカプトエタノール、3−メルカプト−1,2−プロパンジオール等の1価の脂肪族チオール化合物、1,1−メタンジチオール、1,2−エタンジチオール、1,1−プロパンジチオール、1,2−プロパンジチオール、1,3−プロパンジチオール、2,2−プロパンジチオール、1,6−ヘキサンジチオール、1,10−デカンジチオール、1,2,3−プロパントリチオール、1,1−シクロヘキサンジチオール、1,2−シクロヘキサンジチオール、2,2−ジメチルプロパン−1,3−ジチオール、3,4−ジメトキシブタン−1,2−ジチオール、2−メチルシクロヘキサン−2,3−ジチオール、1,1−ビス(メルカプトメチル)シクロヘキサン、チオリンゴ酸ビス(2−メルカプトエチルエステル)、2,3−ジメルカプト−1−プロパノール(2−メルカプトアセテート)、2,3−ジメルカプト−1−プロパノール(3−メルカプトプロピオネート)、ジエチレングリコールビス(2−メルカプトアセテート)、ジエチレングリコールビス(3−メルカプトプロピオネート)、1,2−ジメルカプトプロピルメチルエーテル、2,3−ジメルカプトプロピルメチルエーテル、2,2−ビス(メルカプトメチル)−1,3−プロパンジチオール、ビス(2−メルカプトエチル)エーテル、エチレングリコールビス(2−メルカプトアセテート)、エチレングリコールビス(3−メルカプトプロピオネート)、トリメチロールプロパンビス(2−メルカプトアセテート)、トリメチロールプロパンビス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2−メルカプトアセテート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、テトラキス(メルカプトメチル)メタン、1,1,1,1−テトラキス(メルカプトメチル)メタン、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2−メルカプトエチルチオ)メタン、ビス(3−メルカプトプロピルチオ)メタン、1,2−ビス(メルカプトメチルチオ)エタン、1,2−ビス(2−メルカプトエチルチオ)エタン、1,2−ビス(3−メルカプトプロピル)エタン、1,3−ビス(メルカプトメチルチオ)プロパン、1,3−ビス(2−メルカプトエチルチオ)プロパン、1,3−ビス(3−メルカプトプロピルチオ)プロパン、1,2,3−トリス(メルカプトメチルチオ)プロパン、1,2,3−トリス(2−メルカプトエチルチオ)プロパン、1,2,3−トリス(3−メルカプトプロピルチオ)プロパン、1,2−ビス[(2−メルカプトエチル)チオ]−3−メルカプトプロパン、4,8−ジメルカプトメチル−1,11−ジメルカプト−3,6,9−トリチアウンデカン、4,7−ジメルカプトメチル−1,11−ジメルカプト−3,6,9−トリチアウンデカン、5,7−ジメルカプトメチル−1,11−ジメルカプト−3,6,9−トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2−メルカプトエチルチオメチル)メタン、テトラキス(3−メルカプトプロピルチオメチル)メタン、ビス(2,3−ジメルカプトプロピル)スルフィド、ビス(1,3−ジメルカプトプロピル)スルフィド、2,5−ジメルカプト−1,4−ジチアン、2,5−ビス(メルカプトメチル)−1,4−ジチアン、2,5−ジメルカプトメチル−2,5−ジメチル−1,4−ジチアン、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)ジスルフィド、4−メルカプトメチル−1,8−ジメルカプト−3,6−ジチアオクタン、ヒドロキシメチルスルフィドビス(2−メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3−メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2−メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3−メルカプトプロピオネート)、ヒドロキシプロピルスルフィドビス(2−メルカプトアセテート)、ヒドロキシプロピルスルフィドビス(3−メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2−メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3−メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2−メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3−メルカプトプロピオネート)、ヒドロキシプロピルジスルフィドビス(2−メルカプトアセテート)、ヒドロキシプロピルジスルフィドビス(3−メルカプトプロピオネート)、2−メルカプトエチルエーテルビス(2−メルカプトアセテート)、2−メルカプトエチルエーテルビス(3−メルカプトプロピオネート)、1,4−ジチアン−2,5−ジオールビス(2−メルカプトアセテート)、1,4−ジチアン−2,5−ジオールビス(3−メルカプトプロピオネート)、チオジグリコール酸ビス(2−メルカプトエチルエステル)、チオジプロピオン酸ビス(2−メルカプトエチルエステル)、4,4−チオジブチル酸ビス(2−メルカプトエチルエステル)、ジチオジグリコール酸ビス(2−メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2−メルカプトエチルエステル)、4,4−ジチオジブチル酸ビス(2−メルカプトエチルエステル)、チオジグリコール酸ビス(2,3−ジメルカプトプロピルエステル)、チオジプロピオン酸ビス(2,3−ジメルカプトプロピルエステル)、ジチオグリコール酸ビス(2,3−ジメルカプトプロピルエステル)、ジチオジプロピオン酸ビス(2,3−ジメルカプトプロピルエステル)等の脂肪族ポリチオール化合物、ドデシルメチルスルフィド、n−デシルスルフィドなどの脂肪族スルフィド、デカンジスルフィドなどの脂肪族ジスルフィドが挙げられる。なお、これらは特に限定されるものではなく、単独又は2種類以上を組み合わせて用いることができる。   Preferable specific examples of the aliphatic sulfur-containing organic compound include, for example, methylthiol, ethylthiol, propylthiol, butylthiol, heptylthiol, hexylthiol, octylthiol, nonylthiol, decylthiol (decanethiol), undecylthiol , Dodecylthiol (dodecanethiol), tetradecylthiol (tetradecanethiol), hexadecanethiol, octadecylthiol, tert-dodecylmercaptan, cyclohexylthiol, benzylthiol, ethylphenylthiol, 2-mercaptomethyl-1,3-dithiolane, 2- Mercaptomethyl-1,4-dithiane, 1-mercapto-2,3-epithiopropane, 1-mercaptomethylthio-2,3-epithiopropane, 1-mercapto Tylthio-2,3-epithiopropane, 3-mercaptothietane, 2-mercaptothietane, 3-mercaptomethylthiothietane, 2-mercaptomethylthiothietane, 3-mercaptoethylthiothietane, 2-mercaptoethylthiothi Monovalent aliphatic thiol compounds such as ethane, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, 1,1-methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, 1, 2-propanedithiol, 1,3-propanedithiol, 2,2-propanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, 1,2,3-propanetrithiol, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, 2,2-dimethylpropane 1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,1-bis (mercaptomethyl) cyclohexane, bis-thiomalate (2-mercaptoethyl ester) ), 2,3-dimercapto-1-propanol (2-mercaptoacetate), 2,3-dimercapto-1-propanol (3-mercaptopropionate), diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis (3- Mercaptopropionate), 1,2-dimercaptopropyl methyl ether, 2,3-dimercaptopropyl methyl ether, 2,2-bis (mercaptomethyl) -1,3-propanedithiol, bis (2-mercaptoethyl) Ether, ethylene glycol Rubis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane bis (2-mercaptoacetate), trimethylolpropane bis (3-mercaptopropionate), pentaerythritol tetrakis (2- Mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), tetrakis (mercaptomethyl) methane, 1,1,1,1-tetrakis (mercaptomethyl) methane, bis (mercaptomethyl) sulfide, bis (mercaptomethyl) Disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) methane, bis (2-mercapto) Tilthio) methane, bis (3-mercaptopropylthio) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2-bis (2-mercaptoethylthio) ethane, 1,2-bis (3-mercaptopropyl) Ethane, 1,3-bis (mercaptomethylthio) propane, 1,3-bis (2-mercaptoethylthio) propane, 1,3-bis (3-mercaptopropylthio) propane, 1,2,3-tris (mercapto) Methylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3-mercaptopropylthio) propane, 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, tetrakis ( Mercaptomethylthiomethyl) methane, tetrakis (2-mercaptoethylthiomethyl) methane, tetrakis (3-mercaptopropylthiomethyl) methane, bis (2,3-dimercaptopropyl) sulfide, bis (1,3-dimercaptopropyl) Sulfide, 2,5-dimercapto-1,4-dithiane, 2,5-bis (mercaptomethyl) -1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, Bis (mercaptomethyl) disulfide, bis (mercaptoethyl) disulfide, bis (mercapto) Propyl) disulfide, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, hydroxymethyl sulfide bis (2-mercaptoacetate), hydroxymethyl sulfide bis (3-mercaptopropionate), hydroxyethyl sulfide bis ( 2-mercaptoacetate), hydroxyethyl sulfide bis (3-mercaptopropionate), hydroxypropyl sulfide bis (2-mercaptoacetate), hydroxypropyl sulfide bis (3-mercaptopropionate), hydroxymethyl disulfide bis (2- Mercaptoacetate), hydroxymethyl disulfide bis (3-mercaptopropionate), hydroxyethyl disulfide bis (2-mercaptoacetate), hydroxy Ethyl disulfide bis (3-mercaptopropionate), hydroxypropyl disulfide bis (2-mercaptoacetate), hydroxypropyl disulfide bis (3-mercaptopropionate), 2-mercaptoethyl ether bis (2-mercaptoacetate), 2 -Mercaptoethyl ether bis (3-mercaptopropionate), 1,4-dithian-2,5-diol bis (2-mercaptoacetate), 1,4-dithian-2,5-diol bis (3-mercaptopropionate) ), Thiodiglycolic acid bis (2-mercaptoethyl ester), thiodipropionic acid bis (2-mercaptoethyl ester), 4,4-thiodibutyric acid bis (2-mercaptoethyl ester), dithiodiglycolic acid bis (2 -Merca Toethyl ester), dithiodipropionic acid bis (2-mercaptoethyl ester), 4,4-dithiodibutyric acid bis (2-mercaptoethyl ester), thiodiglycolic acid bis (2,3-dimercaptopropyl ester), Aliphatic acids such as bis (2,3-dimercaptopropyl ester) thiodipropionate, bis (2,3-dimercaptopropyl ester) dithioglycolate, bis (2,3-dimercaptopropyl ester) dithiodipropionate Examples include polythiol compounds, aliphatic sulfides such as dodecylmethyl sulfide and n-decyl sulfide, and aliphatic disulfides such as decane disulfide. In addition, these are not specifically limited, It can use individually or in combination of 2 or more types.

硫黄含有有機化合物の添加量は、金属ニッケル微粒子の表面積を考慮して決定されるものであり、仕込み時の金属ニッケル塩のニッケル元素100質量部に対して硫黄元素として、例えば0.01〜3質量部の範囲内、好ましくは0.05〜1質量部の範囲内となるようにすればよい。   The addition amount of the sulfur-containing organic compound is determined in consideration of the surface area of the metal nickel fine particles. As the sulfur element with respect to 100 parts by mass of the nickel element of the metal nickel salt at the time of preparation, for example, 0.01 to 3 What is necessary is just to make it become in the range of the mass part, Preferably it is in the range of 0.05-1 mass part.

硫黄含有有機化合物の添加によって、室温においても、硫黄含有有機化合物で被覆された原料金属ニッケル微粒子を得ることができるが、確実かつより効率的に行うため、好ましくは100℃〜300℃の範囲内で、1分〜1時間の範囲内で加熱処理する。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよく、特に限定されない。なお、上記のとおり、硫黄粉末又は硫黄含有化合物は、工程IIでの錯化反応液のマイクロ波照射による還元反応に引き続き、金属ニッケル微粒子スラリーに添加することが好ましく、硫化ニッケルの形成を容易にする観点から、還元反応の直後に該スラリーが加熱された状態で添加することがより好ましい。   By adding the sulfur-containing organic compound, raw material nickel metal fine particles coated with the sulfur-containing organic compound can be obtained even at room temperature, but preferably in the range of 100 ° C. to 300 ° C. in order to carry out reliably and more efficiently. Then, heat treatment is performed within a range of 1 minute to 1 hour. This heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation, and is not particularly limited. As described above, the sulfur powder or the sulfur-containing compound is preferably added to the metal nickel fine particle slurry following the reduction reaction by microwave irradiation of the complexing reaction liquid in Step II, and the formation of nickel sulfide is facilitated. From this viewpoint, it is more preferable to add the slurry in a heated state immediately after the reduction reaction.

本実施の形態で用いる原料金属ニッケル微粒子は、硫黄含有有機化合物によるNi−Sの化学結合を形成させるという観点から、水酸化物又は酸化物の被膜の緻密度を中程度に制御することが好ましい。より具体的には、被膜を透過するX線で金属ニッケルを同定するX線光電子分光分析法(以下「XPS」と略することがある。)により測定した金属ニッケルの含有率が、好ましくは25〜75atm%の範囲内、より好ましくは40〜60atm%の範囲内がよい。XPSにより、金属ニッケル、水酸化ニッケル及び酸化ニッケルに起因するニッケル原子を同定及び定量することができるが、水酸化物又は酸化物の被膜の緻密度と金属ニッケルの含有率との関係に相関があり、当該被膜の緻密度が低ければ金属ニッケルの比率は高くなり、緻密度が高ければ金属ニッケルの比率は低くなる。   From the viewpoint of forming a Ni—S chemical bond by a sulfur-containing organic compound, the raw material nickel metal fine particles used in the present embodiment preferably control the density of the hydroxide or oxide film to a medium level. . More specifically, the content of metallic nickel measured by X-ray photoelectron spectroscopy (hereinafter sometimes abbreviated as “XPS”) for identifying metallic nickel with X-rays transmitted through the coating is preferably 25. It is preferable to be within a range of ˜75 atm%, more preferably within a range of 40 to 60 atm%. XPS can identify and quantify nickel atoms resulting from metallic nickel, nickel hydroxide and nickel oxide, but there is a correlation between the density of the hydroxide or oxide coating and the content of metallic nickel. The ratio of metallic nickel is high when the density of the coating is low, and the ratio of metallic nickel is low when the density is high.

本実施の形態の原料金属ニッケル微粒子は、金属ニッケル微粒子の表面に、硫黄含有化合物又は硫黄元素が被覆するものであり、硫黄元素を0.01〜0.5質量%の範囲内、炭素元素を0.5〜2.0質量%の範囲内、酸素元素を0.1〜2.5質量%の範囲内で含有し、酸素元素に対する炭素元素の含有割合(炭素元素の含有量/酸素元素の含有量)が0.2〜1.0の範囲内である。   The raw material metallic nickel fine particles of the present embodiment are those in which the surface of the metallic nickel fine particles is coated with a sulfur-containing compound or sulfur element. The oxygen element is contained in the range of 0.5 to 2.0% by mass and the oxygen element is contained in the range of 0.1 to 2.5% by mass. Content) is in the range of 0.2 to 1.0.

本実施の形態の原料金属ニッケル微粒子において、金属ニッケル微粒子は、ニッケル元素を含有する。ニッケル元素の含有量は、その使用目的に応じて適宜選択すればよいが、ニッケル元素の量を、原料金属ニッケル微粒子100質量部に対し、好ましくは90質量部以上、より好ましくは95質量部以上とすることがよい。ニッケル以外の金属としては、例えば、チタン、コバルト、銅、クロム、マンガン、鉄、アルミニウム、ナトリウム、カリウム、マグネシウム、ジルコニウム、スズ、タングステン、モリブデン、バナジウム、バリウム、カルシウム、ストロンチウム。シリコン、アルミニウム、リン等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム、ネオジウム、ニオブ、ホロニウム、ディスプロヂウム、イットリウム等の貴金属、希土類金属を挙げることができ、単独で又は2種以上含有していてもよく、また水素、炭素、窒素、硫黄、ボロン等の金属元素以外の元素を含有していてもよいし、これらの合金であってもよい。   In the raw metal nickel fine particles of the present embodiment, the metal nickel fine particles contain nickel element. The content of nickel element may be appropriately selected according to the purpose of use, but the amount of nickel element is preferably 90 parts by mass or more, more preferably 95 parts by mass or more with respect to 100 parts by mass of the raw metal nickel fine particles. It is good to do. Examples of metals other than nickel include titanium, cobalt, copper, chromium, manganese, iron, aluminum, sodium, potassium, magnesium, zirconium, tin, tungsten, molybdenum, vanadium, barium, calcium, and strontium. Examples include base metals such as silicon, aluminum and phosphorus, noble metals such as gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, neodymium, niobium, holonium, dysprodium, yttrium, and rare earth metals. Or it may contain 2 or more types, and may contain elements other than metal elements, such as hydrogen, carbon, nitrogen, sulfur, and boron, and these alloys may be sufficient.

原料金属ニッケル微粒子における硫黄含有化合物又は硫黄元素の好ましい被覆形態は、金属ニッケル微粒子の表面の少なくとも一部分に、硫黄含有化合物又は硫黄元素が化学的に結合した状態がよい。また、金属ニッケル微粒子の表面の少なくとも一部分、且つ全体を覆うことなく、硫化ニッケルの被覆層を有していることが特に好ましい。硫化ニッケルの被覆層は、金属ニッケル微粒子の表面活性を抑制し、脱バインダー工程におけるバインダーの低温燃焼又は熱分解を抑制することができる。硫黄含有化合物又は硫黄元素の被覆の状態は、例えば透過型電子顕微鏡(TEM)、X線光電子分光法(XPS)、オージェ電子分光法(AES)などにより確認することができる。また、被覆層の厚みは特に制限されないが、例えば2〜20nm程度とすることが好ましい。   A preferable covering form of the sulfur-containing compound or the elemental sulfur in the raw metal nickel fine particles is preferably in a state where the sulfur-containing compound or the elemental sulfur is chemically bonded to at least a part of the surface of the metal nickel fine particles. Further, it is particularly preferable to have a nickel sulfide coating layer without covering at least a part and the whole of the surface of the nickel metal fine particles. The coating layer of nickel sulfide can suppress the surface activity of the metal nickel fine particles, and can suppress low-temperature combustion or thermal decomposition of the binder in the binder removal step. The state of the coating of the sulfur-containing compound or sulfur element can be confirmed by, for example, a transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), or the like. Moreover, the thickness of the coating layer is not particularly limited, but is preferably about 2 to 20 nm, for example.

別の観点から、原料金属ニッケル微粒子の硫黄元素の量(硫黄含有化合物の状態で含有されるものも含む)を、原料金属ニッケル微粒子に対し、0.01〜0.5質量%の範囲内、好ましくは0.05〜0.5質量%の範囲内で含有することがよい。硫黄元素が0.01質量%未満では、酸素雰囲気下での加熱における原料金属ニッケル微粒子の酸化抑制効果が低下し、0.5質量%を超えると、還元雰囲気下での硫化水素ガスの発生に伴う粒子の膨れの原因となる。   From another viewpoint, the amount of elemental sulfur in the raw metal nickel fine particles (including those contained in the state of sulfur-containing compounds) is within the range of 0.01 to 0.5 mass% with respect to the raw metal nickel fine particles, Preferably it is good to contain in the range of 0.05-0.5 mass%. If the elemental sulfur is less than 0.01% by mass, the effect of suppressing oxidation of the raw material nickel metal fine particles during heating in an oxygen atmosphere is reduced, and if it exceeds 0.5% by mass, hydrogen sulfide gas is generated in a reducing atmosphere. It causes the accompanying swelling of the particles.

原料金属ニッケル微粒子の粒子径は、特に制限はなく、その使用目的に応じて、例えば1〜200nmの範囲内から選択される。例えば粒子径が150nm以下の金属ニッケル微粒子が好ましく、100nm以下の金属ニッケル微粒子がより好ましい。別の観点から、原料金属ニッケル微粒子の平均粒子径は、好ましくは10〜150nmの範囲内、より好ましくは20〜120nmの範囲内がよい。   There is no restriction | limiting in particular in the particle diameter of raw material nickel metal microparticles | fine-particles, For example, according to the use purpose, it selects from the range of 1-200 nm. For example, metal nickel fine particles having a particle diameter of 150 nm or less are preferable, and metal nickel fine particles having a particle size of 100 nm or less are more preferable. From another viewpoint, the average particle diameter of the raw metal nickel fine particles is preferably in the range of 10 to 150 nm, more preferably in the range of 20 to 120 nm.

上記のようにして得られた原料ニッケル微粒子がスラリーの状態である場合、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで、原料金属ニッケル微粒子が得られる。次に、得られた原料金属ニッケル微粒子を第2の有機溶媒でスラリーの状態にする。スラリーは、例えば、原料金属ニッケル微粒子と第2の有機溶媒とを混合し、撹拌することにより製造することができる。原料金属ニッケル微粒子が、第1の有機溶媒のスラリーの状態である場合は、第2の有機溶媒に置換する。なお、第1の有機溶媒が1級アミンである場合は、そのまま第2の有機溶媒として利用することも可能である。   When the raw material nickel fine particles obtained as described above are in a slurry state, for example, after standing and separating, removing the supernatant liquid, washing with an appropriate solvent, and drying, the raw material nickel metal Fine particles are obtained. Next, the obtained raw material nickel metal fine particles are made into a slurry state with a second organic solvent. The slurry can be produced, for example, by mixing the raw metal nickel fine particles and the second organic solvent and stirring them. When the raw material nickel metal fine particles are in the state of a slurry of the first organic solvent, they are replaced with the second organic solvent. When the first organic solvent is a primary amine, it can be used as it is as the second organic solvent.

工程B:
工程Bでは、工程Aで得られたスラリーに、フタロシアニン化合物を添加する。フタロシアニン化合物の添加は、反応液のマイクロ波照射による還元反応に引き続き、第1の有機溶媒を第2の有機溶媒で置換したスラリーの状態で添加してもよく、又は還元反応によって得られる金属ニッケル微粒子のスラリーから、一旦、金属ニッケル微粒子を単離した後に、金属ニッケル微粒子を第2の有機溶媒中に再度分散させてスラリーの状態としてから、添加してもよい。
Process B:
In step B, the phthalocyanine compound is added to the slurry obtained in step A. The phthalocyanine compound may be added in the form of a slurry in which the first organic solvent is replaced with the second organic solvent following the reduction reaction by microwave irradiation of the reaction solution, or the metallic nickel obtained by the reduction reaction After the metallic nickel fine particles are once isolated from the fine particle slurry, the metallic nickel fine particles may be dispersed again in the second organic solvent to form a slurry, and then added.

第2の有機溶媒は、フタロシアニン化合物を溶解できるものであればよく、水と混和しない有機溶媒であり、その具体例として、例えばトルエン、キシレン、エチルベンゼン等の芳香族系炭化水素系、ヘキサン、ヘプタン、デカン、オクタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族系炭化水素系、酢酸エチル、酢酸ブチル等のエステル系、α−テルピネオール、ブチルカルビトール等の長鎖アルコール系、長鎖アルコールとカルボン酸とのエステル等が挙げられる。また、フタロシアニン化合物が凝集しないものであれば、上記の有機溶媒の他に、一部のものが水と混和する有機溶媒、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系も使用可能である。   The second organic solvent is not particularly limited as long as it can dissolve the phthalocyanine compound, and specific examples thereof include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, hexane, heptane, and the like. , Decane, octane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc., aliphatic hydrocarbons, ethyl acetate, butyl acetate, etc., esters, α-terpineol, butyl carbitol, etc., long chain alcohols, long chain alcohols And an ester of carboxylic acid. Moreover, as long as the phthalocyanine compound does not aggregate, in addition to the above organic solvent, an organic solvent in which a part of the phthalocyanine compound is miscible with water, for example, a ketone system such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used.

本実施の形態で用いるフタロシアニン化合物としては、下記一般式で表されるフタロシアニン化合物を用いることができる。   As the phthalocyanine compound used in this embodiment, a phthalocyanine compound represented by the following general formula can be used.

Figure 0005969354

[上記式中、X〜Xは、それぞれ独立に、水素原子、あるいは直鎖もしくは枝分かれのアルキル基、環状アルキル基、アシル基、複素環残基、ニトロ基、シアノ基、スルホン酸基、カルボン酸基、−OR、−SR、−SO、−COOR、−NR、−CONR、−SO、−NHCOR、−N=N−R、又は−N=CHRを表す。ここで、R及びRは、それぞれ独立に、水素原子、あるいは直鎖状もしくは枝分かれ状のアルキル基、環状アルキル基、アシル基、又はポリエーテル基を表し、また、RとRで4〜7員環を形成していてもよく、その際、ヘテロ原子を含む複素環であってもよい。Mは、H又は2価の遷移金属元素を表す。]
Figure 0005969354

[In the above formula, X 1 to X 8 are each independently a hydrogen atom or a linear or branched alkyl group, a cyclic alkyl group, an acyl group, a heterocyclic residue, a nitro group, a cyano group, a sulfonic acid group, a carboxylic acid group, -OR 1, -SR 2, -SO 2 R 1, -COOR 2, -NR 1 R 2, -CONR 1 R 2, -SO 2 R 1 R 2, -NHCOR 1, -N = N -R 1, or an -N = CHR 1. Here, R 1 and R 2 each independently represent a hydrogen atom, or a linear or branched alkyl group, a cyclic alkyl group, an acyl group, or a polyether group, and R 1 and R 2 A 4- to 7-membered ring may be formed, and in this case, a heterocycle containing a heteroatom may be used. M represents H 2 or a divalent transition metal element. ]

上記一般式中、Mで表される2価の遷移金属元素としては、例えばCu、Niなどが好ましい。上記一般式で表されるフタロシアニン化合物の中でもX〜Xが水素原子でありMがHであるフタロシアニンが最も好ましい。 In the above general formula, as the divalent transition metal element represented by M, for example, Cu, Ni and the like are preferable. Among the phthalocyanine compounds represented by the above general formula, phthalocyanine in which X 1 to X 8 are hydrogen atoms and M is H 2 is most preferable.

フタロシアニン化合物としては、例えば日本ルーブリゾール社製Solsperse5000(フタロシアニンスルホン酸アンモニウム塩)などの市販品を用いることができる。   As the phthalocyanine compound, for example, commercially available products such as Solsperse 5000 (ammonium phthalocyanine sulfonate) manufactured by Japan Lubrizol Corporation can be used.

フタロシアニン化合物は、原料金属ニッケル微粒子の表面において、1級アミンの少なくとも一部分と置換する。1級アミンの少なくとも一部分とフタロシアニン化合物とを置換することによって、フタロシアニン修飾金属ニッケル微粒子が得られる。本実施の形態で用いるフタロシアニン化合物は、金属と結合しやすい性質を有するため、金属ニッケル微粒子の表面に固定化された1級アミンの少なくとも一部分と容易に置換し、金属ニッケル微粒子を被覆できると考えられる。しかし、金属ニッケル微粒子の表面に1級アミンが存在しない場合には、フタロシアニン化合物を添加しても1級アミンとの置換が生じにくく、凝集抑制作用や分散効果が得られない。   The phthalocyanine compound substitutes at least a part of the primary amine on the surface of the raw material nickel metal fine particles. By replacing at least a part of the primary amine and the phthalocyanine compound, phthalocyanine-modified metallic nickel fine particles can be obtained. Since the phthalocyanine compound used in the present embodiment has the property of being easily bonded to a metal, it can be easily substituted with at least a portion of the primary amine immobilized on the surface of the metal nickel fine particles, and the metal nickel fine particles can be coated. It is done. However, when no primary amine is present on the surface of the metal nickel fine particles, even if a phthalocyanine compound is added, substitution with the primary amine does not easily occur, and an aggregation suppressing action and a dispersion effect cannot be obtained.

また、工程Cで用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩は優れた分散性を奏するが、1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆された原料金属ニッケル微粒子に直接適用しても十分な分散効果が得られない。その理由として、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩は、原料金属ニッケル微粒子との親和性が低いため、原料金属ニッケル微粒子に対し直接適用しても、その表面への付着量が限られるためであると考えられる。しかし、原料金属ニッケル微粒子を予めフタロシアニン化合物で修飾しておくことによって、強い凝集抑制作用を有するポリオキシエチレンアルキルエーテルカルボン酸又はその塩を、フタロシアニンを介して十分な量で金属ニッケル微粒子に付着させることが可能になり、優れた分散効果が期待できる。なお、フタロシアニン化合物は、金属ニッケル微粒子に対し凝集抑制作用を有することが知られているが、本実施の形態では、工程Cで用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩を、1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆された原料金属ニッケル微粒子に付着させるためのバインダーとして機能させている。   In addition, the polyoxyethylene alkyl ether carboxylic acid or salt thereof used in Step C exhibits excellent dispersibility, but is directly applied to the raw material nickel metal fine particles at least partially coated with a primary amine and a sulfur element or sulfur-containing compound. However, a sufficient dispersion effect cannot be obtained. The reason for this is that polyoxyethylene alkyl ether carboxylic acid or a salt thereof has a low affinity with raw material nickel metal fine particles, so even if it is directly applied to raw metal nickel fine particles, the amount of adhesion to the surface is limited. It is thought that. However, by modifying the raw metal nickel fine particles with a phthalocyanine compound in advance, a sufficient amount of polyoxyethylene alkyl ether carboxylic acid or a salt thereof having a strong aggregation inhibitory action is attached to the metal nickel fine particles via phthalocyanine. And an excellent dispersion effect can be expected. In addition, although it is known that a phthalocyanine compound has an aggregation inhibitory action with respect to metal nickel fine particles, in this Embodiment, polyoxyethylene alkyl ether carboxylic acid or its salt used at the process C is made into primary amine and It functions as a binder for adhering to the raw material nickel metal fine particles at least partially coated with elemental sulfur or a sulfur-containing compound.

本実施の形態で用いるフタロシアニン化合物は、単独又は2種以上を組み合わせて使用することもできる。また、発明の効果を損なわない範囲で、他の化合物からなる分散剤と組み合わせて使用することもできる。   The phthalocyanine compounds used in this embodiment can be used alone or in combination of two or more. Moreover, it can also be used in combination with the dispersing agent which consists of another compound in the range which does not impair the effect of invention.

本実施の形態で用いるフタロシアニン化合物の添加量は、金属ニッケル微粒子100質量部に対して0.01〜10質量部の範囲内、好ましくは0.1〜5質量部の範囲内がよい。添加量が上記下限未満では分散性が低下する傾向があり、上記上限を超えると、凝集が生じ易くなる傾向がある。   The addition amount of the phthalocyanine compound used in the present embodiment is in the range of 0.01 to 10 parts by mass, preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the metallic nickel fine particles. When the addition amount is less than the above lower limit, the dispersibility tends to decrease, and when it exceeds the upper limit, aggregation tends to occur.

本実施の形態において、フタロシアニン化合物の適用方法は、特に制限はなく、例えば、a)1級アミン及び硫黄元素もしくは硫黄含有化合物で被覆された原料金属ニッケル微粒子を液相法で合成した後で液相中に所定量のフタロシアニン化合物を添加する方法、b)高圧ホモジナイザー、超音波ホモジナイザー、ビーズミル分散機などの分散機を用いて1級アミン及び硫黄元素もしくは硫黄含有化合物で被覆された原料金属ニッケル微粒子を機械的に解砕し、その解砕の前又は後に、所定量のフタロシアニン化合物を添加し分散させる方法など、様々な方法が挙げられる。   In the present embodiment, the application method of the phthalocyanine compound is not particularly limited. For example, a) After the raw metal nickel fine particles coated with primary amine and sulfur element or sulfur-containing compound are synthesized by a liquid phase method, A method of adding a predetermined amount of a phthalocyanine compound in a phase, b) raw material metal nickel fine particles coated with a primary amine and a sulfur element or a sulfur-containing compound using a dispersing machine such as a high-pressure homogenizer, an ultrasonic homogenizer, or a bead mill disperser Various methods such as a method of mechanically crushing and adding and dispersing a predetermined amount of a phthalocyanine compound before or after the crushing are exemplified.

金属ニッケル微粒子の比表面積を向上させ、金属ニッケル微粒子の表面に被覆する1級アミンをより効果的に表面に露出させるという観点から、1級アミン及び硫黄元素もしくは硫黄含有化合物で被覆された金属ニッケル微粒子を機械的に解砕することが好ましい。また、金属ニッケル微粒子の表面に存在する1級アミンの被覆状態を解砕前後で、できるだけ変化させないようにするという観点から、1級アミン及び硫黄元素もしくは硫黄含有化合物で被覆された金属ニッケル微粒子を第3の有機溶媒によるスラリーの状態で予め解砕処理することが好ましい。   Metal nickel coated with primary amine and elemental sulfur or sulfur-containing compound from the viewpoint of improving the specific surface area of the metal nickel fine particles and more effectively exposing the primary amine coated on the surface of the metal nickel fine particles to the surface It is preferable to disintegrate the fine particles mechanically. In addition, from the viewpoint of changing the primary amine coating state present on the surface of the metal nickel fine particles as much as possible before and after crushing, the metal nickel fine particles coated with the primary amine and sulfur element or sulfur-containing compound are used. It is preferable to crush in advance in a slurry state with a third organic solvent.

第3の有機溶媒によるスラリーは、例えば、原料金属ニッケル微粒子スラリーを静置分離し、上澄み液を取り除き、適当な溶媒を用いて洗浄した後、第3の有機溶媒を加えることによって調製することができる。第3の有機溶媒として、例えば炭素数4〜30のエーテル系有機溶媒、炭素数7〜30の飽和又は不飽和の炭化水素系有機溶媒、炭素数3〜18のアルコール系溶媒等を使用することができる。第3の有機溶媒は、アルコール系有機溶媒であることが好ましい。このようなアルコール系有機溶媒の好ましい具体例としては、メタノール、1−オクタノール、イソプロパノール、テトラエチレングリコール等が挙げられる。なお、錯形成反応に使用する1級アミンを第3の有機溶媒の代わりに用いることもできるが、金属ニッケル微粒子の再凝集が生じやすくなる場合がある。   The slurry with the third organic solvent can be prepared, for example, by statically separating the raw material nickel metal fine particle slurry, removing the supernatant, washing with an appropriate solvent, and then adding the third organic solvent. it can. As the third organic solvent, for example, an ether organic solvent having 4 to 30 carbon atoms, a saturated or unsaturated hydrocarbon organic solvent having 7 to 30 carbon atoms, an alcohol solvent having 3 to 18 carbon atoms, or the like is used. Can do. The third organic solvent is preferably an alcoholic organic solvent. Preferable specific examples of such alcohol organic solvents include methanol, 1-octanol, isopropanol, tetraethylene glycol and the like. Although the primary amine used for the complex formation reaction can be used in place of the third organic solvent, reaggregation of the metallic nickel fine particles is likely to occur.

工程C:
工程Cでは、フタロシアニン修飾金属ニッケル微粒子にポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加し、前記フタロシアニン化合物とのカルボン酸塩を形成する。
Process C:
In step C, polyoxyethylene alkyl ether carboxylic acid or a salt thereof is added to phthalocyanine-modified metallic nickel fine particles to form a carboxylate with the phthalocyanine compound.

工程Cで用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩としては、例えば下記の一般式:
−O−(CHCHO)n−CH−COOH
[ここで、前記Rは、炭素数12〜26の直鎖状又は枝分かれ状のアルキル基を意味し、前記nは、オキシエチレン基の平均付加モル数であり、3〜90の範囲内である。]
で表される化合物及びその塩を挙げることができる。また、ポリオキシエチレンアルキルエーテルカルボン酸としては、上記一般式中、Rが炭素数12のラウリル基、炭素数14のミスチル基を含むものが好ましい。また、ポリオキシエチレンアルキルエーテルカルボン酸の塩としては、例えばポリオキシエチレンラウリルエーテル酢酸を挙げることができる。
Examples of the polyoxyethylene alkyl ether carboxylic acid or salt thereof used in Step C include the following general formula:
R 1 -O- (CH 2 CH 2 O) n-CH 2 -COOH
[Wherein R 1 represents a linear or branched alkyl group having 12 to 26 carbon atoms, and n represents an average addition mole number of an oxyethylene group, and is within a range of 3 to 90] is there. ]
And a salt thereof. Further, as the polyoxyethylene alkyl ether carboxylic acid, those in which R 1 contains a lauryl group having 12 carbon atoms and a mystil group having 14 carbon atoms are preferable in the above general formula. Examples of polyoxyethylene alkyl ether carboxylic acid salts include polyoxyethylene lauryl ether acetic acid.

また、上記ポリオキシエチレンアルキルエーテルカルボン酸又はその塩としては、例えば、タイポールソフト(登録商標)ECA−390、タイポールソフト(登録商標)ECA−490、タイポールソフト(登録商標)ECA−1090(以上、泰光油脂化学工業社製)、日光ケミカルズ社製のNIKKOL AKYPO RLM45(商品名)(ラウレス−5カルボン酸)、同NIKKOL AKYPO RLM100(商品名)(ラウレス−11カルボン酸)、同NIKKOL ECT−3(商品名)(トリデセス−4カルボン酸)、同NIKKOL ECT−7(商品名)(トリデセス−8カルボン酸)などの市販品を用いることも可能である。   Examples of the polyoxyethylene alkyl ether carboxylic acid or a salt thereof include TYPOL SOFT (registered trademark) ECA-390, TYPOL SOFT (registered trademark) ECA-490, TYPOL SOFT (registered trademark) ECA-1090. (Nagoko Chemicals Co., Ltd.), Nikko Chemicals' NIKKOL AKYPO RLM45 (trade name) (Laureth-5 carboxylic acid), NIKKOL AKYPO RLM100 (trade name) (Laureth-11 carboxylic acid), NIKOL ECT -3 (trade name) (trideceth-4 carboxylic acid), NIKKOL ECT-7 (trade name) (trideceth-8 carboxylic acid) and the like can also be used.

本実施の形態で用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩は、フタロシアニン化合物と結合しやすい性質を有するため、フタロシアニン化合物と塩を形成し、金属ニッケル微粒子を被覆できると考えられる。ポリオキシエチレンアルキルエーテルカルボン酸又はその塩は、金属ニッケル微粒子に対し、強い凝集抑制作用を有することから、少量でも優れた分散効果が期待できる。しかし、金属ニッケル微粒子の表面にフタロシアニン化合物が存在しない場合には、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加しても、金属ニッケル微粒子の表面に結合しにくく、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩による強い凝集抑制作用や優れた分散効果が得られない。   The polyoxyethylene alkyl ether carboxylic acid or a salt thereof used in the present embodiment has a property of being easily bonded to a phthalocyanine compound, so that it is considered that a salt can be formed with the phthalocyanine compound and the metal nickel fine particles can be coated. Since polyoxyethylene alkyl ether carboxylic acid or a salt thereof has a strong aggregation inhibitory action on the metal nickel fine particles, an excellent dispersion effect can be expected even in a small amount. However, when there is no phthalocyanine compound on the surface of the metal nickel fine particles, even if polyoxyethylene alkyl ether carboxylic acid or a salt thereof is added, it is difficult to bind to the surface of the metal nickel fine particles, and polyoxyethylene alkyl ether carboxylic acid Or the strong aggregation inhibitory effect and the outstanding dispersion effect by the salt are not acquired.

本実施の形態で用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩の添加量は、フタロシアニン修飾金属ニッケル微粒子100質量部に対して0.01〜10質量部の範囲内、好ましくは0.1〜50質量部の範囲内がよい。添加量が上記下限未満では分散性が低下する傾向があり、上記上限を超えると、凝集が生じ易くなる傾向がある。   The addition amount of the polyoxyethylene alkyl ether carboxylic acid or a salt thereof used in the present embodiment is within a range of 0.01 to 10 parts by mass, preferably 0.1 to 50 parts per 100 parts by mass of the phthalocyanine-modified metal nickel fine particles. Within the range of parts by mass is preferable. When the addition amount is less than the above lower limit, the dispersibility tends to decrease, and when it exceeds the upper limit, aggregation tends to occur.

本実施の形態で用いるポリオキシエチレンアルキルエーテルカルボン酸又はその塩は、単独又は2種以上を組み合わせて使用することもできる。また、発明の効果を損なわない範囲で、他の化合物からなる分散剤と組み合わせて使用することもできる。   The polyoxyethylene alkyl ether carboxylic acid or salt thereof used in the present embodiment can be used alone or in combination of two or more. Moreover, it can also be used in combination with the dispersing agent which consists of another compound in the range which does not impair the effect of invention.

本実施の形態において、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩の適用方法は、特に制限はなく、例えば、a)フタロシアニン修飾金属ニッケル微粒子のスラリーに所定量のポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加する方法、b)高圧ホモジナイザー、超音波ホモジナイザー、ビーズミル分散機などの分散機を用いてフタロシアニン修飾金属ニッケル微粒子を機械的に解砕し、その解砕の前又は後に、所定量のポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加し分散させる方法など、様々な方法が挙げられる。   In the present embodiment, the application method of the polyoxyethylene alkyl ether carboxylic acid or its salt is not particularly limited. For example, a) a predetermined amount of polyoxyethylene alkyl ether carboxylic acid or its B) a method of adding salt, b) mechanically crushing phthalocyanine-modified metal nickel fine particles using a disperser such as a high-pressure homogenizer, an ultrasonic homogenizer, a bead mill disperser, etc. Various methods such as a method of adding and dispersing oxyethylene alkyl ether carboxylic acid or a salt thereof may be mentioned.

以上のように、工程A〜工程Cを実施することによって、原料金属ニッケル微粒子に対し、強い凝集抑制作用を有するポリオキシエチレンアルキルエーテルカルボン酸又はその塩で被覆された分散性ニッケル微粒子スラリーが得られる。この分散性ニッケル微粒子スラリーは、例えば粒子径が150nm以下の微細な金属ニッケル微粒子についても、凝集が抑制され、単一粒子が分散した粒子径分布のシャープな金属ニッケル微粒子の集合体であり、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用などの導電ペーストの材料として好適に利用できる。   As described above, by carrying out Step A to Step C, a dispersible nickel fine particle slurry coated with polyoxyethylene alkyl ether carboxylic acid or a salt thereof having a strong aggregation suppressing action on the raw metal nickel fine particles is obtained. It is done. This dispersible nickel fine particle slurry is an aggregate of metal nickel fine particles having a sharp particle size distribution in which aggregation is suppressed and single particles are dispersed, for example, even for fine metal nickel fine particles having a particle size of 150 nm or less. It can be suitably used as a material for a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[平均粒子径の測定]
SEM(走査電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの粒子径を求め、平均粒子径を算出した。
[Measurement of average particle size]
A photograph of the sample was taken with an SEM (scanning electron microscope), 200 samples were randomly extracted from the sample, and the respective particle sizes were determined to calculate the average particle size.

[分散性の評価]
分散性の評価は、レーザ回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、商品名;LA−950V2)を用いて行った。サンプルをトルエンに分散させたスラリー溶液(固形分濃度10wt%)を所定の濃度に希釈して、前記粒子径分布測定装置内にて超音波で5分間分散させ、体積分布の測定を行い、粒度分布の結果にて分散性の比較評価を行った。
[Evaluation of dispersibility]
Evaluation of dispersibility was performed using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Horiba, Ltd., trade name: LA-950V2). A slurry solution (solid content concentration 10 wt%) in which the sample is dispersed in toluene is diluted to a predetermined concentration, and dispersed in the particle size distribution measuring apparatus with ultrasonic waves for 5 minutes, and the volume distribution is measured. The results of distribution were used for comparative evaluation of dispersibility.

分散性ニッケル微粒子スラリーを作製するために使用した分散剤とその略号は以下のとおりである。   The dispersants and their abbreviations used to produce the dispersible nickel fine particle slurry are as follows.

分散剤(1):ポリオキシエチレンアルキルエーテルカルボン酸(泰光油脂化学工業株式会社製、タイポールソフト(登録商標)ECA−390)
分散剤(2):ポリオキシエチレンアルキルエーテルカルボン酸(泰光油脂化学工業株式会社製、タイポールソフト(登録商標)ECA−490)
分散剤(3):ポリオキシエチレンアルキルエーテルカルボン酸(泰光油脂化学工業株式会社製、タイポールソフト(登録商標)ECA−1090)
分散剤(4):ポリエステル系高分子分散剤(日本ルーブリゾール社製、商品名;Solsperse3000、ポリエステル−末端カルボン酸)
分散剤(5):ウレタン系高分子分散剤(日本ルーブリゾール社製、商品名;Solsperse55000、ウレタン系−末端カルボン酸)
Dispersant (1): polyoxyethylene alkyl ether carboxylic acid (Taiko Oil Chemical Co., Ltd., Taipol Soft (registered trademark) ECA-390)
Dispersant (2): polyoxyethylene alkyl ether carboxylic acid (Taiko Oil Chemical Co., Ltd., Taipol Soft (registered trademark) ECA-490)
Dispersant (3): polyoxyethylene alkyl ether carboxylic acid (Taiko Oil Chemical Co., Ltd., Taipol Soft (registered trademark) ECA-1090)
Dispersant (4): Polyester polymer dispersant (manufactured by Nippon Lubrizol, trade name: Solsperse 3000, polyester-terminal carboxylic acid)
Dispersant (5): Urethane polymer dispersant (manufactured by Nippon Lubrizol, trade name: Solsperse 55000, urethane-terminated carboxylic acid)

(合成例1−1)
125.9gのラウリルアミンに18.5gのギ酸ニッケル二水和物を加え、窒素フロー下、120℃で10分間加熱することによって、ギ酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、さらに83.9gのラウリルアミンを加え、マイクロ波を用いて180℃で10分間加熱することによって、金属ニッケル微粒子スラリー1a’を得た。
(Synthesis Example 1-1)
18.5 g of nickel formate dihydrate was added to 125.9 g of laurylamine and heated at 120 ° C. for 10 minutes under a nitrogen flow to dissolve nickel formate to obtain a complexing reaction solution. Next, 83.9 g of laurylamine was further added to the complexing reaction solution, and the mixture was heated at 180 ° C. for 10 minutes using a microwave to obtain a metal nickel fine particle slurry 1a ′.

得られた金属ニッケル微粒子スラリー1a’を静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて洗浄した。その後、60℃に維持される真空乾燥機で6時間乾燥することによって、1級アミンが被覆した金属ニッケル微粒子1aを得た。このようにして得られた金属ニッケル微粒子1aの平均粒子径は100nmであり、元素分析の結果、C;0.9、N;0.06、O;1.4(単位は質量%)であった。   The obtained metallic nickel fine particle slurry 1a 'was allowed to stand and separated, and the supernatant was removed, followed by washing with a mixed solvent having a volume ratio of methanol to toluene of 1: 4. Then, the metal nickel fine particle 1a which the primary amine coat | covered was obtained by drying with the vacuum dryer maintained at 60 degreeC for 6 hours. The average particle diameter of the metallic nickel fine particles 1a thus obtained was 100 nm, and as a result of elemental analysis, C: 0.9, N; 0.06, O; 1.4 (unit: mass%) It was.

(合成例1−2)
合成例1−1で得られた金属ニッケル微粒子スラリー1a’を静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて洗浄した。その後、更にイソプロパノールを用いて洗浄し、イソプロパノール溶媒にて固形分濃度が10wt%になるように調整した後、高圧ホモジナイザー(株式会社スギノマシン製、商品名;スターバーストHJP−25008)を用いて、圧力200MPaの条件にて金属ニッケル微粒子1aを分散させた金属ニッケル微粒子スラリー1b’を調製した。
(Synthesis Example 1-2)
The metallic nickel fine particle slurry 1a ′ obtained in Synthesis Example 1-1 was left standing and separated, and the supernatant was removed, followed by washing with a mixed solvent having a volume ratio of methanol to toluene of 1: 4. Then, after further washing with isopropanol and adjusting the solid content concentration to 10 wt% with an isopropanol solvent, using a high-pressure homogenizer (manufactured by Sugino Machine Co., Ltd., trade name: Starburst HJP-25008), A metal nickel fine particle slurry 1b ′ in which metal nickel fine particles 1a are dispersed under a pressure of 200 MPa was prepared.

(合成例2−1)
合成例1−1で得られた金属ニッケル微粒子スラリー1a’(固形分濃度4.0wt%に調整したもの)の100gに、0.070gのドデカンチオ−ルを添加し、230℃で5分間加熱することによって、1級アミン及び硫黄含有化合物が被覆した金属ニッケル微粒子スラリー2a’を得た。
(Synthesis Example 2-1)
0.070 g of dodecanthiol is added to 100 g of the metal nickel fine particle slurry 1a ′ obtained by Synthesis Example 1-1 (adjusted to a solid content concentration of 4.0 wt%) and heated at 230 ° C. for 5 minutes. Thus, a metal nickel fine particle slurry 2a ′ coated with a primary amine and a sulfur-containing compound was obtained.

得られた金属ニッケル微粒子スラリー2a’を分取して静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて洗浄した。その後、60℃に維持される真空乾燥機で6時間乾燥することによって、1級アミン及び硫黄含有化合物が被覆した金属ニッケル微粒子2aを得た。このようにして得られた金属ニッケル微粒子2aの平均粒子径は100nmであり、元素分析の結果、C;0.6、N;0.05、O;1.4、S;0.4(単位は質量%)であった。   The obtained metal nickel fine particle slurry 2a 'was separated and allowed to stand and separated, and the supernatant was removed, followed by washing with a mixed solvent of methanol and toluene in a volume ratio of 1: 4. Then, the metal nickel fine particle 2a which the primary amine and the sulfur containing compound coat | covered was obtained by drying for 6 hours with the vacuum dryer maintained at 60 degreeC. The average particle diameter of the metallic nickel fine particles 2a thus obtained is 100 nm. As a result of elemental analysis, C: 0.6, N: 0.05, O: 1.4, S: 0.4 (unit Was mass%).

(合成例2−2)
合成例2−1で得られた金属ニッケル微粒子スラリー2a’を静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて洗浄し、更にイソプロパノールを用いて洗浄し、イソプロパノール溶媒にて固形分濃度が10wt%になるように調整した後、高圧ホモジナイザー(株式会社スギノマシン製、商品名;スターバーストHJP−25008)を用いて、圧力200MPaの条件にて金属ニッケル微粒子2aを分散させた金属ニッケル微粒子スラリー2b’を調製した。
(Synthesis Example 2-2)
The metallic nickel fine particle slurry 2a ′ obtained in Synthesis Example 2-1 was allowed to stand and separated, and after removing the supernatant, it was washed with a mixed solvent having a volume ratio of methanol and toluene of 1: 4, and isopropanol was further removed. The solid content concentration was adjusted to 10 wt% with an isopropanol solvent, and then the pressure was adjusted to 200 MPa using a high-pressure homogenizer (trade name: Starburst HJP-25008, manufactured by Sugino Machine Co., Ltd.). Thus, a metal nickel fine particle slurry 2b ′ in which the metal nickel fine particles 2a are dispersed was prepared.

(比較例1)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。次に、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表1に示す。
(Comparative Example 1)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. Next, the dihydroterpinyl acetate solvent was substituted while washing with dihydroterpinyl acetate three times, and the particle size distribution was measured. The results are shown in Table 1.

(比較例2)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにフタロシアニンを0.05g(0.5wt%)加え、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたフタロシアニン修飾ニッケル微粒子約1gに対し、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表1に示す。
(Comparative Example 2)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. To this, 0.05 g (0.5 wt%) of phthalocyanine was added, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained phthalocyanine-modified nickel fine particles were substituted with a dihydroterpinyl acetate solvent while washing with dihydroterpinyl acetate three times, and the particle size distribution was measured. The results are shown in Table 1.

(参考例1)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これに分散剤(1)を0.2g添加し、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたニッケル微粒子約1gに対し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表1に示す。
(Reference Example 1)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. 0.2 g of dispersant (1) was added thereto, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained nickel fine particles were treated with a 50 kHz ultrasonic device for 15 minutes, then washed with dihydroterpinyl acetate three times, and then replaced with a dihydroterpinyl acetate solvent, and the particle size distribution was measured. . The results are shown in Table 1.

(実施例1)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにフタロシアニンを0.05g(0.5wt%)加え、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたフタロシアニン修飾ニッケル微粒子約1gに対し、分散剤(1)を0.2g添加し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表1に示す。
Example 1
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. To this, 0.05 g (0.5 wt%) of phthalocyanine was added, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. To about 1 g of the obtained phthalocyanine-modified nickel fine particles, 0.2 g of the dispersant (1) was added, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed with dihydroterpinyl acetate three times. The particle size distribution was measured by substituting with a nyl acetate solvent. The results are shown in Table 1.

Figure 0005969354
Figure 0005969354

(比較例3)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにオレイン酸を0.2g添加し、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたニッケル微粒子約1gに対し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表2に示す。
(Comparative Example 3)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. 0.2 g of oleic acid was added thereto, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained nickel fine particles were treated with a 50 kHz ultrasonic device for 15 minutes, then washed with dihydroterpinyl acetate three times, and then replaced with a dihydroterpinyl acetate solvent, and the particle size distribution was measured. . The results are shown in Table 2.

(比較例4)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにオクタン酸を0.2g添加し、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたニッケル微粒子約1gに対し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表2に示す。
(Comparative Example 4)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. 0.2 g of octanoic acid was added thereto, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained nickel fine particles were treated with a 50 kHz ultrasonic device for 15 minutes, then washed with dihydroterpinyl acetate three times, and then replaced with a dihydroterpinyl acetate solvent, and the particle size distribution was measured. . The results are shown in Table 2.

(比較例5)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにフタロシアニンを0.05g(0.5wt%)加え、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたフタロシアニン修飾ニッケル微粒子約1gに対し、オレイン酸を0.2g添加し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表2に示す。
(Comparative Example 5)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. To this, 0.05 g (0.5 wt%) of phthalocyanine was added, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. 0.2 g of oleic acid is added to about 1 g of the obtained phthalocyanine-modified nickel fine particles, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed with dihydroterpinyl acetate three times to obtain a dihydroterpinyl acetate solvent. The particle size distribution was measured. The results are shown in Table 2.

(比較例6)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これにフタロシアニンを0.05g(0.5wt%)加え、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたフタロシアニン修飾ニッケル微粒子約1gに対し、オクタン酸を0.2g添加し、50kHz超音波装置にて15分処理後、ジヒドロターピニルアセテートにて3回洗浄しながらジヒドロターピニルアセテート溶媒に置換し、粒度分布の測定を行った。結果を表2に示す。
(Comparative Example 6)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. To this, 0.05 g (0.5 wt%) of phthalocyanine was added, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. 0.2 g of octanoic acid is added to about 1 g of the obtained phthalocyanine-modified nickel fine particles, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed with dihydroterpinyl acetate three times to obtain a dihydroterpinyl acetate solvent. The particle size distribution was measured. The results are shown in Table 2.

Figure 0005969354
Figure 0005969354

(比較例7)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。次に、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表3に示す。
(Comparative Example 7)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. Next, the isopropyl alcohol solvent was substituted while washing with isopropyl alcohol three times, and the particle size distribution was measured. The results are shown in Table 3.

(比較例8)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これに分散剤(2)を0.2g添加し、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたニッケル微粒子約1gに対し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表3に示す。
(Comparative Example 8)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. 0.2 g of the dispersant (2) was added thereto, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained nickel fine particles were treated with a 50 kHz ultrasonic device for 15 minutes and then replaced with an isopropyl alcohol solvent while washing with isopropyl alcohol three times, and the particle size distribution was measured. The results are shown in Table 3.

(比較例9)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、分散剤(3)を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表3に示す。
(Comparative Example 9)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. About 1 g of the nickel fine particles was added with 0.2 g of the dispersant (3), treated with a 50 kHz ultrasonic device for 15 minutes, and then replaced with isopropyl alcohol solvent while washing with isopropyl alcohol three times. Measurements were made. The results are shown in Table 3.

(比較例10)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、分散剤(1)を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表3に示す。
(Comparative Example 10)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. About 1 g of the nickel fine particles was added with 0.2 g of the dispersing agent (1), treated with a 50 kHz ultrasonic device for 15 minutes, and then replaced with an isopropyl alcohol solvent while washing with isopropyl alcohol three times. Measurements were made. The results are shown in Table 3.

(比較例11)
合成例2−2で調製した金属ニッケル微粒子スラリー2b’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、オレイルサルコシンを0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表3に示す。
(Comparative Example 11)
10 g of the metal nickel fine particle slurry 2b ′ prepared in Synthesis Example 2-2 was statically separated and the solvent was replaced with toluene, and then the solid content concentration was adjusted to 10 wt%. 0.2 g of oleyl sarcosine is added to about 1 g of the nickel fine particles, treated with a 50 kHz ultrasonic device for 15 minutes, then replaced with isopropyl alcohol solvent while washing with isopropyl alcohol three times, and the particle size distribution is measured. It was. The results are shown in Table 3.

Figure 0005969354
Figure 0005969354

(参考例2)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。次に、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 2)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. Next, the isopropyl alcohol solvent was substituted while washing with isopropyl alcohol three times, and the particle size distribution was measured. The results are shown in Table 4.

(参考例3)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。これに分散剤(2)を0.2g添加し、50kHz超音波装置にて15分処理後、トルエンにて2回洗浄した。得られたニッケル微粒子約1gに対し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 3)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. 0.2 g of the dispersant (2) was added thereto, treated with a 50 kHz ultrasonic device for 15 minutes, and then washed twice with toluene. About 1 g of the obtained nickel fine particles were treated with a 50 kHz ultrasonic device for 15 minutes and then replaced with an isopropyl alcohol solvent while washing with isopropyl alcohol three times, and the particle size distribution was measured. The results are shown in Table 4.

(参考例4)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、分散剤(3)を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 4)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. About 1 g of the nickel fine particles was added with 0.2 g of the dispersant (3), treated with a 50 kHz ultrasonic device for 15 minutes, and then replaced with isopropyl alcohol solvent while washing with isopropyl alcohol three times. Measurements were made. The results are shown in Table 4.

(参考例5)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、分散剤(1)を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 5)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. About 1 g of the nickel fine particles was added with 0.2 g of the dispersing agent (1), treated with a 50 kHz ultrasonic device for 15 minutes, and then replaced with an isopropyl alcohol solvent while washing with isopropyl alcohol three times. Measurements were made. The results are shown in Table 4.

(参考例6)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、SOLSPERSE 3000を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 6)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. 0.2g of SOLPERSE 3000 is added to about 1g of the nickel fine particles, treated with a 50kHz ultrasonic device for 15 minutes, then replaced with isopropyl alcohol solvent while washing with isopropyl alcohol three times, and the particle size distribution is measured. It was. The results are shown in Table 4.

(参考例7)
合成例1−1で調製した金属ニッケル微粒子スラリー1a’の10gを静置分離し、溶媒をトルエンに置換後、固形分濃度10wt%に調整した。このニッケル微粒子約1gに対し、SOLSPERSE 55000を0.2g添加し、50kHz超音波装置にて15分処理後、イソプロピルアルコールにて3回洗浄しながらイソプロピルアルコール溶媒に置換し、粒度分布の測定を行った。結果を表4に示す。
(Reference Example 7)
10 g of the metal nickel fine particle slurry 1a ′ prepared in Synthesis Example 1-1 was allowed to stand and separated, and after the solvent was replaced with toluene, the solid content concentration was adjusted to 10 wt%. 0.2g of SOLPERSE 55000 is added to about 1g of the nickel fine particles, treated with a 50kHz ultrasonic device for 15 minutes, then replaced with isopropyl alcohol solvent while washing with isopropyl alcohol three times, and the particle size distribution is measured. It was. The results are shown in Table 4.

Figure 0005969354
Figure 0005969354

表1に示したように、実施例1では、体積分布D50[メジアン径;小粒子径側からの積算粒度分布(体積基準)が50%となる粒子径]が十分に小さいのに対し、比較例ではD50が大きく、凝集体が多く存在し、分散性が低いことが判明した。また、粗大凝集粒子の目安となる体積分布D90[小粒子径側からの積算粒度分布(体積基準)が90%となる粒子径]、D99[同99%となる粒子径]についても、実施例1は比較例に比べて格段に小さく、凝集粒子が少なく、粒子径分布がシャープで、分散性が良好なことが確認された。   As shown in Table 1, in Example 1, the volume distribution D50 [median diameter; the particle diameter at which the cumulative particle size distribution (volume basis) from the small particle diameter side becomes 50%] is sufficiently small. In the example, it was found that D50 was large, there were many aggregates, and the dispersibility was low. Further, examples of the volume distribution D90 [particle diameter at which the cumulative particle size distribution (volume basis) from the small particle diameter side becomes 90%] and D99 [particle diameter at 99% from the small particle diameter side], which are rough coarse agglomerated particles, are given as examples. It was confirmed that No. 1 was much smaller than the comparative example, there were few aggregated particles, the particle size distribution was sharp, and the dispersibility was good.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。   As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment.

Claims (4)

次の工程A〜C;
A)1級アミン及び硫黄元素もしくは硫黄含有化合物によって少なくとも部分的に被覆された原料金属ニッケル微粒子と有機溶媒とを含有するスラリーを準備する工程、
B)前記スラリーに、フタロシアニン化合物を添加し、前記原料金属ニッケル微粒子の表面において、前記1級アミンの少なくとも一部分と前記フタロシアニン化合物とを置換させて該フタロシアニン化合物で部分的に被覆されたフタロシアニン修飾金属ニッケル微粒子を得る工程、
C)前記フタロシアニン修飾金属ニッケル微粒子に、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩を添加し、前記フタロシアニン化合物とのカルボン酸塩を形成する工程、
を備える分散性ニッケル微粒子スラリーの製造方法。
Next steps A to C;
A) preparing a slurry containing raw metal nickel fine particles and an organic solvent at least partially coated with a primary amine and elemental sulfur or a sulfur-containing compound;
B) A phthalocyanine-modified metal that is partially coated with the phthalocyanine compound by adding a phthalocyanine compound to the slurry and replacing at least a portion of the primary amine with the phthalocyanine compound on the surface of the raw material nickel metal fine particles Obtaining nickel fine particles,
C) adding polyoxyethylene alkyl ether carboxylic acid or a salt thereof to the phthalocyanine-modified metal nickel fine particles to form a carboxylate with the phthalocyanine compound;
A method for producing a dispersible nickel fine particle slurry.
前記原料金属ニッケル微粒子の表面を被覆する1級アミンが、脂肪族1級アミンである請求項1に記載の分散性ニッケル微粒子スラリーの製造方法。   The method for producing a dispersible nickel fine particle slurry according to claim 1, wherein the primary amine covering the surface of the raw metal nickel fine particles is an aliphatic primary amine. 前記原料金属ニッケル微粒子が、湿式解砕機を用いて、有機溶媒中で、予め解砕処理されたものである請求項1又は2に記載の分散性ニッケル微粒子スラリーの製造方法。   The method for producing a dispersible nickel fine particle slurry according to claim 1 or 2, wherein the raw metal nickel fine particles are preliminarily pulverized in an organic solvent using a wet pulverizer. 前記原料金属ニッケル微粒子が、
次の工程I及びII;
I)カルボン酸ニッケル及び1級アミンの混合物を、100℃〜165℃の範囲内の温度に加熱して錯化反応液を得る工程、
II)該錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱して、該錯化反応液中のニッケルイオンを還元し、1級アミンで被覆された金属ニッケル微粒子を得る工程、
III)1級アミンで被覆された金属ニッケル微粒子に硫黄元素もしくは硫黄含有化合物を混合することにより、原料ニッケル微粒子を得る工程、
を含む方法により調製されたものである、請求項1から3のいずれか1項に記載の分散性ニッケル微粒子スラリーの製造方法。
The raw metal nickel fine particles are
Next steps I and II;
I) a step of heating a mixture of nickel carboxylate and primary amine to a temperature in the range of 100 ° C. to 165 ° C. to obtain a complexing reaction solution;
II) A step of heating the complexing reaction solution to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction solution to obtain metallic nickel fine particles coated with a primary amine.
III) A step of obtaining raw material nickel fine particles by mixing elemental sulfur or a sulfur-containing compound with metallic nickel fine particles coated with a primary amine,
The method for producing a dispersible nickel fine particle slurry according to any one of claims 1 to 3, which is prepared by a method comprising:
JP2012239872A 2012-10-31 2012-10-31 Method for producing dispersible nickel fine particle slurry Active JP5969354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239872A JP5969354B2 (en) 2012-10-31 2012-10-31 Method for producing dispersible nickel fine particle slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239872A JP5969354B2 (en) 2012-10-31 2012-10-31 Method for producing dispersible nickel fine particle slurry

Publications (2)

Publication Number Publication Date
JP2014088603A JP2014088603A (en) 2014-05-15
JP5969354B2 true JP5969354B2 (en) 2016-08-17

Family

ID=50790729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239872A Active JP5969354B2 (en) 2012-10-31 2012-10-31 Method for producing dispersible nickel fine particle slurry

Country Status (1)

Country Link
JP (1) JP5969354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210094601A (en) * 2018-12-27 2021-07-29 카오카부시키가이샤 Dispersion of metal fine particles
CN114121338B (en) * 2021-11-29 2023-07-21 航天科工(长沙)新材料研究院有限公司 Organic ligand modified micron gold, preparation method thereof and conductive gold paste

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328132A (en) * 1991-04-26 1992-11-17 Tokyo Ink Kk Colorant for thermoplastic resin and production thereof
US6620220B2 (en) * 2000-01-31 2003-09-16 Toho Titanium Co., Ltd. Nickel powder dispersion, method of producing nickel power dispersion and method of producing conductive paste
JP4020764B2 (en) * 2001-12-21 2007-12-12 Jfeミネラル株式会社 Super fine metal slurry with excellent dispersibility
JP4021361B2 (en) * 2003-04-23 2007-12-12 東邦チタニウム株式会社 Nickel powder dispersion and method for preparing the same, and method for preparing conductive paste using the powder dispersion
JP5569837B2 (en) * 2007-07-26 2014-08-13 国立大学法人東京工業大学 Method for producing surface-coated inorganic particles
JP2010037574A (en) * 2008-07-31 2010-02-18 Mitsuboshi Belting Ltd Metal nanoparticle paste and pattern forming method
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same

Also Published As

Publication number Publication date
JP2014088603A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6042736B2 (en) Nickel fine particle-containing composition and method for producing the same
JP5883433B2 (en) Composite nickel nanoparticles and method for producing the same
Hokita et al. High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks
Deng et al. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature
EP2671655B1 (en) Method for manufacturing coated metal fine particles
Weber et al. Structural features of ionic liquids: consequences for material preparation and organic reactivity
JP6095422B2 (en) Nickel particles and method for producing the same
EP2551039B1 (en) Complex of organic compound and copper nanoparticles, complex of organic compound and copper oxide (i) nanoparticles, and processes for production of the complexes
TW201408737A (en) Method of preparing metal nanoparticles using phase transfer reduction method and metal ink comprising metal nanoparticles
Dai et al. Self-reducible Cu nanoparticles for conductive inks
JP5969354B2 (en) Method for producing dispersible nickel fine particle slurry
Kumar et al. S 4 N 4 as an intermediate in Ag 2 S nanoparticle synthesis
JP5808010B2 (en) Dispersible nickel fine particle composition
KR20160088919A (en) Method for producing silver particles, and silver particles produced by said method
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
Mondal et al. Use of a 4, 5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles
KR20140027627A (en) Method for preparing metal nano particles and ink using the same
JP2014028991A (en) Composite nickel fine particles and methods for producing the same
TWI586462B (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure and the copper nanoparticle prepared from the same
EP3354698A1 (en) Ink composition for photonic sintering and method for producing same
JP2014029845A (en) Method for producing conductive paste
JP2014136826A (en) Composite nickel particulate, and method of manufacturing the same
JP2013043157A (en) Dispersant, and dispersible composition of metal nanoparticles
JP2015193890A (en) Composite nickel particulate and method of producing the same
JP2014028990A (en) Composite nickel fine particles and methods for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250