JP5969309B2 - Selective control method for sulfate-reducing bacteria - Google Patents

Selective control method for sulfate-reducing bacteria Download PDF

Info

Publication number
JP5969309B2
JP5969309B2 JP2012180093A JP2012180093A JP5969309B2 JP 5969309 B2 JP5969309 B2 JP 5969309B2 JP 2012180093 A JP2012180093 A JP 2012180093A JP 2012180093 A JP2012180093 A JP 2012180093A JP 5969309 B2 JP5969309 B2 JP 5969309B2
Authority
JP
Japan
Prior art keywords
sulfate
bacteria
reducing bacteria
growth
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012180093A
Other languages
Japanese (ja)
Other versions
JP2014037364A (en
Inventor
孝一 須藤
孝一 須藤
千弘 井上
千弘 井上
雅人 山口
雅人 山口
真一 三浦
真一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Gypsum Co Ltd
Original Assignee
Yoshino Gypsum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012180093A priority Critical patent/JP5969309B2/en
Application filed by Yoshino Gypsum Co Ltd filed Critical Yoshino Gypsum Co Ltd
Priority to CN201380043319.6A priority patent/CN104582491B/en
Priority to BR112015003090A priority patent/BR112015003090B8/en
Priority to EP13879516.6A priority patent/EP2885972B1/en
Priority to MX2015001956A priority patent/MX2015001956A/en
Priority to KR1020157005067A priority patent/KR101632545B1/en
Priority to US14/421,359 priority patent/US9901101B2/en
Priority to AU2013303570A priority patent/AU2013303570B2/en
Priority to PCT/JP2013/071612 priority patent/WO2014027613A1/en
Priority to TW102129261A priority patent/TWI568701B/en
Publication of JP2014037364A publication Critical patent/JP2014037364A/en
Application granted granted Critical
Publication of JP5969309B2 publication Critical patent/JP5969309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、他の菌の増殖を抑制することなく、硫酸還元菌の増殖のみを抑制する硫酸還元菌の選択的制菌方法に関するものである。   The present invention relates to a selective sterilization method for sulfate-reducing bacteria that suppresses only the growth of sulfate-reducing bacteria without inhibiting the growth of other bacteria.

硫酸還元菌は、硫酸イオンを電子受容体として有機物を酸化し、エネルギーを獲得する細菌である。前記硫酸還元菌は種類によってその生育温度域が異なり、高温性菌、中温性菌、低温性菌および好冷性菌が存在する。また、生育pHの違いによって、中性付近で良く生育する菌と、酸性あるいはアルカリ性の条件で良く生育する菌が存在する。また、生存域も海洋泥、一般土壌、熱水噴出域、パイプラインの中等と広域にわたる。   A sulfate-reducing bacterium is a bacterium that acquires energy by oxidizing an organic substance using sulfate ions as an electron acceptor. The growth temperature range of the sulfate-reducing bacteria varies depending on the type, and there are thermophilic bacteria, mesophilic bacteria, psychrophilic bacteria and psychrophilic bacteria. In addition, depending on the growth pH, there are bacteria that grow well near neutrality and bacteria that grow well under acidic or alkaline conditions. In addition, the survival area covers a wide area such as marine mud, general soil, hydrothermal eruption area, and pipeline.

硫酸還元菌のエネルギー獲得の過程においては、硫酸イオンの還元体である硫化水素が生成される。この硫化水素は毒性や腐食性が強く、悪臭を放つ物質であるため、多量に生成されると問題となる。例えば、自然水、肥料(硫酸アンモニウム等)、不法投棄された石膏製品等に含まれる硫酸イオンを電子受容体として硫酸還元菌がエネルギーを獲得する際に硫化水素が発生し、農地において作物の生育を阻害し、或いは鉄材(埋設管等)を腐食する等の問題が知られている。   In the process of obtaining energy by sulfate-reducing bacteria, hydrogen sulfide, which is a reduced form of sulfate ions, is generated. Since this hydrogen sulfide is highly toxic and corrosive and emits a bad odor, it causes a problem if it is produced in a large amount. For example, hydrogen sulfide is generated when sulfate-reducing bacteria acquire energy by using sulfate ions contained in natural water, fertilizers (such as ammonium sulfate), and illegally dumped gypsum products as electron acceptors. Problems such as obstruction or corrosion of iron materials (such as buried pipes) are known.

そこで、硫酸還元菌の増殖を抑制し、硫化水素の生成を抑制することが試みられている。例えば、本出願人の一は、石膏を主材とする土壌処理材に、アントラキノン化合物を添加することにより、硫酸還元菌の増殖を抑制し、硫化水素の生成を抑制する方法を開示している(特許文献1参照)。   Therefore, attempts have been made to suppress the growth of sulfate-reducing bacteria and suppress the production of hydrogen sulfide. For example, one of the present applicants discloses a method for suppressing the growth of sulfate-reducing bacteria and suppressing the production of hydrogen sulfide by adding an anthraquinone compound to a soil treatment material mainly composed of gypsum. (See Patent Document 1).

しかし、特許文献1に記載の技術は、非常に高価なアントラキノン化合物を用いるために、製造コストの面で問題があった。特に土壌処理材等の大量に使用される用途においては、コストが障害となって利用が拡大されないという実情があった。   However, the technique described in Patent Document 1 has a problem in terms of manufacturing cost because an extremely expensive anthraquinone compound is used. In particular, in applications that are used in large quantities, such as soil treatment materials, there has been a situation where the cost is an obstacle and the use is not expanded.

そこで、本出願人の一は、石膏組成物に、アルミニウム硫酸塩水和物[Al2(SO43・nH2O(n=6、10、16、18、27)]等の特定のアルミニウム化合物を添加することにより、硫酸還元菌の増殖を抑制し、硫化水素の生成を抑制する方法も開示している(特許文献2参照)。 Therefore, one of the applicants of the present application is that a specific aluminum such as aluminum sulfate hydrate [Al 2 (SO 4 ) 3 .nH 2 O (n = 6, 10, 16, 18, 27)] is used in the gypsum composition. A method of suppressing the growth of sulfate-reducing bacteria and adding hydrogen sulfide by adding a compound is also disclosed (see Patent Document 2).

特開2002−177992号公報JP 2002-177992 A 特開2010−208870号公報JP 2010-208870 A

特許文献2に記載の方法は、アントラキノン化合物と比較して安価で入手し易いアルミニウム化合物を用いるため、特許文献1に記載の技術が有する製造コストという問題を解決し得るものである。しかし、以下の点において未だ改良の余地を残すものであった。   Since the method described in Patent Document 2 uses an aluminum compound that is inexpensive and easily available as compared with an anthraquinone compound, the method described in Patent Document 1 can solve the problem of manufacturing cost. However, there is still room for improvement in the following points.

即ち、特許文献2に記載の方法によれば、硫酸還元菌の増殖を抑制し、硫化水素の生成を抑制することは可能であるものの、硫酸還元菌以外の菌(以下、「他の菌」と記す。)の増殖を抑制してしまう場合があった。他の菌の増殖が抑制された場合、土壌等の微生物相が破壊され、悪臭の発生、植物の生育障害等の問題を生ずることがある。従って、他の菌の増殖を抑制することなく、硫酸還元菌の増殖を選択的に抑制することが可能な方法を確立することが切望されている。   That is, according to the method described in Patent Document 2, although it is possible to suppress the growth of sulfate-reducing bacteria and suppress the production of hydrogen sulfide, bacteria other than sulfate-reducing bacteria (hereinafter referred to as “other bacteria”). In some cases). When the growth of other bacteria is suppressed, the microflora such as soil may be destroyed, resulting in problems such as the generation of malodors and impaired plant growth. Therefore, it is anxious to establish a method capable of selectively suppressing the growth of sulfate-reducing bacteria without suppressing the growth of other bacteria.

本発明は、前記従来技術の課題を解決するためになされたものである。即ち、本発明は、他の菌の増殖を抑制することなく、硫酸還元菌の増殖を選択的に抑制することが可能な硫酸還元菌の選択的制菌方法を提供するものである。   The present invention has been made to solve the above-described problems of the prior art. That is, the present invention provides a selective sterilization method for sulfate-reducing bacteria that can selectively inhibit the growth of sulfate-reducing bacteria without inhibiting the growth of other bacteria.

本発明者らは前記課題について鋭意検討を行った結果、キレート化Alに硫酸還元菌の増殖を選択的に抑制する作用があることを見出して、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that chelated Al has an action of selectively suppressing the growth of sulfate-reducing bacteria, and have completed the present invention.

即ち、本発明によれば、硫酸還元菌の存在する環境に、キレート化Alを併存させることにより、前記硫酸還元菌の増殖を選択的に抑制することを特徴とする硫酸還元菌の選択的制菌方法が提供される。   That is, according to the present invention, the selective control of sulfate-reducing bacteria is characterized by selectively inhibiting the growth of the sulfate-reducing bacteria by coexisting chelated Al in the environment where the sulfate-reducing bacteria are present. A fungal method is provided.

本発明においては、前記硫酸還元菌の存在する環境に、Al3+源及びキレート剤を添加して、前記環境中で前記キレート化Alを生成させることが好ましい。また、本発明においては、前記Al3+源が、Al23、AlCl3、Al(OH)3及びAl2(SO43からなる群より選択される少なくとも一種のAl化合物であることが好ましい。更に、本発明においては、前記硫酸還元菌が、中温域(20〜45℃)かつ中性域(pH5〜9)で生息する菌であることが好ましい。 In the present invention, it is preferable to add an Al 3+ source and a chelating agent to the environment where the sulfate-reducing bacteria are present to produce the chelated Al in the environment. In the present invention, the Al 3+ source is at least one Al compound selected from the group consisting of Al 2 O 3 , AlCl 3 , Al (OH) 3 and Al 2 (SO 4 ) 3. Is preferred. Furthermore, in the present invention, the sulfate-reducing bacteria are preferably bacteria that inhabit in a medium temperature range (20 to 45 ° C.) and a neutral range (pH 5 to 9).

本発明に係る選択的制菌方法は、硫酸還元菌の増殖を選択的に抑制することができる。より具体的には、硫酸還元菌の増殖を抑制し、硫化水素の生成を抑制することができる。一方、本発明に係る選択的制菌方法は、他の菌の増殖が抑制されないため、土壌等の微生物相が破壊されることもなく、悪臭の発生、植物の生育障害等の問題を生ずるおそれはない。   The selective sterilization method according to the present invention can selectively suppress the growth of sulfate-reducing bacteria. More specifically, the growth of sulfate-reducing bacteria can be suppressed and the production of hydrogen sulfide can be suppressed. On the other hand, the selective sterilization method according to the present invention does not inhibit the growth of other bacteria, so that the microflora such as soil is not destroyed, and problems such as generation of malodor and disturbance of plant growth occur. It is not.

キレート化Alによる硫酸還元菌の増殖抑制効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the growth inhibitory effect of the sulfate reduction bacteria by chelating Al. キレート化Alによる大腸菌の増殖抑制効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the growth inhibitory effect of colon_bacillus | E._coli by chelating Al. キレート化Alによる酪酸菌の増殖抑制効果を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the growth inhibitory effect of butyric acid bacteria by chelating Al. AlCl3による硫酸還元菌の増殖抑制効果を評価した結果を示すグラフである。Is a graph showing the results of evaluation of the antiproliferative effect of sulfate reducing bacteria by AlCl 3. AlCl3による大腸菌の増殖抑制効果を評価した結果を示すグラフである。Is a graph showing the results of evaluating the effect of inhibiting proliferation of Escherichia coli by AlCl 3. AlCl3による酪酸菌の増殖抑制効果を評価した結果を示すグラフである。Is a graph showing the results of evaluation of the antiproliferative effect of butyric acid bacteria by AlCl 3.

以下、本発明について詳細に説明する。但し、本発明は下記の実施形態に限定されず、その発明特定事項を有する全ての対象を含むものである。   Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and includes all objects having the invention-specific matters.

[1]硫酸還元菌の選択的制菌方法:
本発明は、硫酸還元菌の増殖を選択的に抑制する選択的制菌方法に関するものである。
[1] Method for selective sterilization of sulfate-reducing bacteria:
The present invention relates to a selective sterilization method that selectively suppresses the growth of sulfate-reducing bacteria.

前記のように、「硫酸還元菌」とは、硫酸イオンを電子受容体として有機物を酸化し、エネルギーを獲得する細菌である。この細菌は、一般土壌や下水汚泥等の嫌気環境に広く分布している。本発明の適用対象となる硫酸還元菌の種類は特に限定されない。例えば、グラム陰性菌であってもよいし、グラム陽性菌であってもよいし、古細菌でもよい。   As described above, a “sulfate-reducing bacterium” is a bacterium that acquires energy by oxidizing an organic substance using sulfate ions as electron acceptors. This bacterium is widely distributed in anaerobic environments such as general soil and sewage sludge. The kind of sulfate-reducing bacteria to which the present invention is applied is not particularly limited. For example, it may be a Gram negative bacterium, a Gram positive bacterium, or an archaea.

具体的には、デスルホビブリオ属(Desulfovibrio;グラム陰性嫌気性桿菌、同らせん菌)、デスルフロモナス属(Desulfuromonas;グラム陰性嫌気性桿菌、同らせん菌)、デスルフィトバクテリウム属(Desulfitobacterium;グラム陰性偏性嫌気性菌)、デスルホトマキュラム属(Desulfotomaculum;グラム陽性内生胞子形成桿菌)等の硫酸還元菌を挙げることができる。   Specifically, the genus Desulfovibrio (Desulfovibrio; Gram-negative anaerobic gonococcus, Helicobacteria), Desulfuromonas (Desulfuromonas; Gram-negative anaerobic gonococcus, Helicobacteria), Desulfitobacterium (Gram-negative) Examples include sulfate-reducing bacteria such as obligately anaerobic bacteria and Desulfotomaculum (Gram-positive endospore-forming rods).

デスルホビブリオ属の細菌の具体例としては、デスルホビブリオ・ブルガリス(Desulfovibrio vulgaris)、デスルホビブリオ・アフリカヌス(Desulfovibrio africanus)、デスルホビブリオ・デスルフリカンス(Desulfovibrio desulfuricans)、デスルホビブリオ・ギガス(Desulfovibrio gigas)等を挙げることができる。デスルホトマキュラム属の細菌の具体例としては、デスルホトマキュラム・ルミニス(Desulfotomaculum ruminis)等を挙げることができる。   Specific examples of bacteria of the genus Desulfovibrio include Desulfovibrio vulgaris, Desulfovibrio africanus, Desulfovibrio desulfuricans, Desulfovibrio desulfuricans, Desulfovibrio vulgaris (Desulfovibrio vulgaris) Desulfovibrio gigas) and the like. Specific examples of bacteria belonging to the genus Desulfotomaculum include Desulfotomaculum ruminis and the like.

本発明の方法は、前記硫酸還元菌全般に対して抑制効果を奏する。中でも、中温域(20〜45℃)かつ中性域(pH5〜9)で生息する硫酸還元菌に対して好適に用いることができる。既述のデスルホビブリオ・ブルガリス、デスルホビブリオ・アフリカヌス、デスルホビブリオ・デスルフリカンス、デスルホビブリオ・ギガス、デスルホトマキュラム・ルミニスは、「中温域(20〜45℃)かつ中性域(pH5〜9)で生息する硫酸還元菌」である。   The method of the present invention has an inhibitory effect on the sulfate-reducing bacteria in general. Especially, it can use suitably with respect to the sulfate reduction bacteria which inhabit in a middle temperature range (20-45 degreeC) and a neutral range (pH 5-9). The above-mentioned desulfobibrio bulgaris, desulfobibrio africanus, desulfobibrio desulfuricans, desulfobibrio gigas, desulfotomacurum luminis are “medium temperature range (20 to 45 ° C.) and neutral range. "Sulphate-reducing bacteria that inhabit (pH 5-9)".

本発明の方法は、キレート化Alが硫酸還元菌の硫酸還元機構に作用し、これにより硫酸還元菌の硫酸還元機構が停止し、結果として硫酸還元菌の増殖を選択的に抑制していると考えられる。「選択的」とは、増殖抑制効果が硫酸還元菌に対して特異的であること、即ち、硫酸還元菌に対する増殖抑制効果と比較して、硫酸還元菌以外の菌(他の菌)に対する増殖抑制効果が殆ど無いことを意味する。   In the method of the present invention, the chelated Al acts on the sulfate reduction mechanism of the sulfate-reducing bacteria, thereby stopping the sulfate-reducing mechanism of the sulfate-reducing bacteria and, as a result, selectively suppressing the growth of the sulfate-reducing bacteria. Conceivable. “Selective” means that the growth inhibitory effect is specific to sulfate-reducing bacteria, that is, the growth of bacteria other than sulfate-reducing bacteria (other bacteria) compared to the growth inhibitory effect on sulfate-reducing bacteria. It means that there is almost no suppression effect.

「他の菌」の代表例としては、エセルシア・コリ(Escherichia coli;通性嫌気性グラム陰性桿菌、和名:大腸菌)、クロストリジウム・ブチリウム(Clostridium butyricum;グラム陽性内生胞子形成桿菌、和名:酪酸菌)等を挙げることができる。   Representative examples of “other bacteria” include Escherichia coli (facultative anaerobic gram-negative bacillus, Japanese name: E. coli), Clostridium butyricum (gram-positive endospore-forming bacillus, Japanese name: Butyric acid bacteria).

なお、本発明に言う「制菌」とは、細菌の増殖を抑制することを意味する。即ち、殺菌や滅菌のように直接的に細菌数を減少させることまでは必要としない。   The “antibacterial” referred to in the present invention means to suppress bacterial growth. That is, it is not necessary to reduce the number of bacteria directly like sterilization or sterilization.

[1−1]キレート化Al:
本発明に係る方法は、硫酸還元菌の存在する環境に、キレート化Alを併存させる点に特徴がある。「硫酸還元菌の存在する環境」は、硫酸還元菌の存在が確認可能な限り、特に制限はない。例えば一般土壌や下水汚泥等の嫌気環境を挙げることができる。「キレート化Al」とは、中心原子となるAl3+にキレート剤が配位した錯体を指す。キレート化Alは、後述するAl3+源とキレート剤を混合することで速やかに形成される。
[1-1] Chelated Al:
The method according to the present invention is characterized in that chelated Al coexists in an environment where sulfate-reducing bacteria are present. The “environment where sulfate-reducing bacteria are present” is not particularly limited as long as the presence of sulfate-reducing bacteria can be confirmed. For example, anaerobic environments such as general soil and sewage sludge can be mentioned. “Chelating Al” refers to a complex in which a chelating agent is coordinated to Al 3+ serving as a central atom. Chelated Al is rapidly formed by mixing an Al 3+ source and a chelating agent described later.

「キレート剤」とは、Al3+に配位してキレート化Alを形成する多座配位子である。本発明において、キレート剤の種類は特に限定されない。例えば鎖状配位子であってもよいし、環状配位子であってもよい。 A “chelating agent” is a multidentate ligand that coordinates to Al 3+ to form chelated Al. In the present invention, the type of chelating agent is not particularly limited. For example, it may be a chain ligand or a cyclic ligand.

鎖状配位子としては、例えばシュウ酸、マロン酸、酒石酸、グルタル酸、リンゴ酸、クエン酸、マレイン酸(いずれも2座配位子)等の多価カルボン酸類;エチレンジアミン(EDA、2座配位子)等の多価アミン類;エチレンジアミン四酢酸(EDTA、6座配位子)等のアミノポリカルボン酸類;2,2’−ビピリジン、1,10−フェナントロリン(いずれも2座配位子)等のビピリジン類;等を挙げることができる。   Examples of chain ligands include polyvalent carboxylic acids such as oxalic acid, malonic acid, tartaric acid, glutaric acid, malic acid, citric acid, and maleic acid (both are bidentate ligands); ethylenediamine (EDA, bidentate) Ligands), etc .; aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA, hexadentate ligand); 2,2′-bipyridine, 1,10-phenanthroline (both bidentate ligands) ) And the like; and the like.

環状配位子としては、例えばポルフィリン類(4座配位子);クラウンエーテル類(化合物により配座数が異なる。例えば18−クラウン−6は6座配位子);等を挙げることができる。   Examples of the cyclic ligand include porphyrins (tetradentate ligand); crown ethers (the number of conformations varies depending on the compound. For example, 18-crown-6 is a hexadentate ligand); and the like. .

前記キレート剤はAl3+に配位して容易にキレート化Alを形成するキレート剤であることが好ましい。また、本発明は自然環境中で実施することが多いため、環境に悪影響を与えないキレート剤であることが更に好ましい。具体的には、クエン酸、マロン酸、酒石酸、グルタル酸、リンゴ酸、マレイン酸等を挙げることができる。 The chelating agent is preferably a chelating agent that coordinates to Al 3+ and easily forms chelated Al. Further, since the present invention is often carried out in a natural environment, a chelating agent that does not adversely affect the environment is more preferable. Specific examples include citric acid, malonic acid, tartaric acid, glutaric acid, malic acid, maleic acid and the like.

Al3+とキレート剤の量比については特に限定されない。キレート剤の種類により、Al3+と安定な錯体を形成するモル比は異なる。但し、添加したAl3+源の全量がキレート化し、Al3+が溶存するように、キレート剤の添加量(モル比)を調節することが望ましい。例えば、Al3+源とシュウ酸が安定な錯体を形成するモル比は1:3、Al3+源とクエン酸が安定な錯体を形成するモル比は1:2、Al3+源とEDTAが安定な錯体を形成するモル比は1:1である。 The amount ratio of Al 3+ to the chelating agent is not particularly limited. The molar ratio for forming a stable complex with Al 3+ varies depending on the type of chelating agent. However, it is desirable to adjust the addition amount (molar ratio) of the chelating agent so that the total amount of the added Al 3+ source is chelated and Al 3+ is dissolved. For example, the molar ratio in which an Al 3+ source and oxalic acid form a stable complex is 1: 3, the molar ratio in which an Al 3+ source and citric acid form a stable complex is 1: 2, and the Al 3+ source and EDTA The molar ratio for forming a stable complex is 1: 1.

なお、後述するように、キレート化Alは、安価で入手し易いアルミニウム化合物から形成することが可能であり、アントラキノン化合物を用いる場合に比して製造コストの低廉化を図ることができる。特に、キレート剤として、安価で入手し易い2〜4価の有機酸を用いた場合、製造コストの低廉化の効果が大きい。   As will be described later, the chelated Al can be formed from an inexpensive and readily available aluminum compound, and the production cost can be reduced as compared with the case of using an anthraquinone compound. In particular, when a divalent to tetravalent organic acid that is inexpensive and easily available is used as the chelating agent, the effect of reducing the manufacturing cost is great.

[1−2]Al3+源:
キレート化Alは、それ自体(即ち、既にキレート化されているAl3+)を硫酸還元菌の存在する環境に添加してもよいし、前記環境に、Al3+源及びキレート剤を添加して、前記環境中で前記キレート化Alを生成させてもよい。Al3+源とキレート剤を個別に添加しても前記環境中で速やかにキレート化Alが形成される。
[1-2] Al 3+ source:
The chelated Al may add itself (that is, Al 3+ already chelated) to an environment where sulfate reducing bacteria are present, or an Al 3+ source and a chelating agent may be added to the environment. The chelated Al may be generated in the environment. Even if the Al 3+ source and the chelating agent are added separately, chelated Al is rapidly formed in the environment.

「Al3+源」とは、水の存在下においてキレートの中心原子となるAl3+を生成し得る物質である。具体的な物質の種類は特に限定されない。但し、Al23、AlCl3、Al(OH)3及びAl2(SO43からなる群より選択される少なくとも一種のAl化合物であることが好ましい。なお、「少なくとも一種」であるから、前記化合物の一種を単独で用いてもよいし、前記化合物を二種以上併用してもよい。 The “Al 3+ source” is a substance that can generate Al 3+ that becomes a central atom of a chelate in the presence of water. Specific types of substances are not particularly limited. However, it is preferably at least one Al compound selected from the group consisting of Al 2 O 3 , AlCl 3 , Al (OH) 3 and Al 2 (SO 4 ) 3 . In addition, since it is “at least one”, one of the above compounds may be used alone, or two or more of the above compounds may be used in combination.

「Al23、AlCl3、Al(OH)3及びAl2(SO43」には、これらの無水物は勿論のこと、水和物も含まれる。また、これらの化合物の形態は、結晶であってもよいし、アモルファス(例えば非晶質アルミナ等)であってもよい。更に、これらの化合物として、純物質を用いる必要はなく、混合物を用いてもよい。例えば、これらの化合物を含有する鉱物をAl3+源として用いることもできる。 “Al 2 O 3 , AlCl 3 , Al (OH) 3 and Al 2 (SO 4 ) 3 ” includes these anhydrides as well as hydrates. Further, the form of these compounds may be a crystal or amorphous (for example, amorphous alumina or the like). Furthermore, it is not necessary to use pure substances as these compounds, and mixtures may be used. For example, minerals containing these compounds can also be used as the Al 3+ source.

以下、実施例及び比較例により、本発明を更に具体的に説明する。但し、本発明は、下記の実施例の構成のみに限定されるものではない。なお、以下の記載における「部」、「%」は特に断らない限り質量基準である。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the configurations of the following examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.

[前培養]
実施例及び比較例においては、代表的な基準株である以下の菌株を用いた。Desulfovibrio vulgariss DSM 644Tについては、ドイツ国の標準菌株保存機関であるDSMZ(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH)から、その他の菌については製品評価技術基盤機構バイオテクノロジーセンターから入手した。これらの菌株については分譲機関指定の培地を用いて前培養を行った。前培養期間は約1週間とした。
(1)硫酸還元菌:Desulfovibrio vulgariss DSM 644T
(2)大腸菌:Escherichia coli NBRC 102203T
(3)酪酸菌:Clostridium butyricum NBRC 13949T
[Pre-culture]
In the examples and comparative examples, the following strains, which are representative reference strains, were used. Desulfovibrio vulgariss DSM 644 T was obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH), a standard strain preservation organization in Germany, and other bacteria were obtained from the Biotechnology Center, National Institute for Product Evaluation Technology. These strains were pre-cultured using a medium designated by the distribution agency. The preculture period was about 1 week.
(1) Sulfate-reducing bacteria: Desulfovibrio vulgariss DSM 644 T
(2) Escherichia coli NBRC 102203 T
(3) Butyric acid bacteria: Clostridium butyricum NBRC 13949 T

[継代培養]
前培養を行った後、菌体のみを回収し、各菌について表1〜表3に示す組成の培地にて継代培養を行った。前記継代培養後、集菌・洗浄した菌体を、実施例及び比較例にて使用した。なお、表中の「脱イオン水/Al水溶液」は、調製したAl水溶液の濃度が0mMの系では脱イオン水を用い、調製したAl水溶液の濃度が2mM、20mMの系では後述するAl溶液を用いたことを示す。
[Subculture]
After pre-culture, only the cells were collected, and subculture was performed for each bacterium in a medium having the composition shown in Tables 1 to 3. After subculture, the collected and washed cells were used in Examples and Comparative Examples. In the table, “deionized water / Al aqueous solution” means deionized water in a system in which the prepared Al aqueous solution has a concentration of 0 mM, and an Al solution described later in a system in which the prepared Al aqueous solution has a concentration of 2 mM and 20 mM. Indicates that it was used.

Figure 0005969309
Figure 0005969309

Figure 0005969309
Figure 0005969309

Figure 0005969309
Figure 0005969309

[Al溶液(AlCl3水溶液)の調整]
所定量のAlCl3・6H2Oを蒸留水に添加し、オートクレーブにて加熱溶解した後、KOH水溶液を適量添加して、pHを7.0付近に調整した。これにより、AlCl3の濃度が2mM、20mMの培地添加用AlCl3水溶液を調製した。このAlCl3水溶液を比較例1の方法に供した。
[Preparation of Al solution (AlCl 3 aqueous solution)]
A predetermined amount of AlCl 3 .6H 2 O was added to distilled water, heated and dissolved in an autoclave, and then an appropriate amount of KOH aqueous solution was added to adjust the pH to around 7.0. Thus, the concentration of the AlCl 3 was prepared 2 mM, the AlCl 3 solution for 20mM media added. This AlCl 3 aqueous solution was subjected to the method of Comparative Example 1.

[Al溶液(キレート化Al水溶液)の調整]
所定量のAlCl3・6H2Oを蒸留水に添加し、オートクレーブにて加熱溶解した後、加熱溶解したAlCl3・6H2O水溶液に、前記水溶液中のAlCl3と等モル量のクエン酸、及び水を添加し、1時間撹拌した。その後、KOH水溶液を適量添加して、pHを7.0付近に調整した。これにより、クエン酸・Alキレートの濃度が2mM、20mMの培地添加用キレート化Al水溶液を調製した。このキレート化Al水溶液を実施例1の方法に供した。
[Preparation of Al solution (chelated Al aqueous solution)]
It was added AlCl 3 · 6H 2 O in a predetermined amount of distilled water, dissolved by heating in an autoclave, the AlCl 3 · 6H 2 O aqueous solution were heated and dissolved, an equimolar amount of citric acid and AlCl 3 in the aqueous solution, And water were added and stirred for 1 hour. Thereafter, an appropriate amount of an aqueous KOH solution was added to adjust the pH to around 7.0. Thus, a chelating Al aqueous solution for adding a medium having a citric acid / Al chelate concentration of 2 mM and 20 mM was prepared. This chelated Al aqueous solution was subjected to the method of Example 1.

加熱溶解したAlCl3・6H2O水溶液に、前記水溶液中のAlCl3と等モル量のシュウ酸、及び水を添加することを除いては、実施例1と同様にして、シュウ酸・Alキレートの濃度が2mM、20mMの培地添加用キレート化Al水溶液を調製した。このキレート化Al水溶液を実施例2の方法に供した。 In the same manner as in Example 1, except that oxalic acid and water in an equimolar amount with AlCl 3 in the aqueous solution were added to the AlCl 3 · 6H 2 O aqueous solution dissolved by heating, the oxalic acid · Al chelate A concentration of 2 mM and 20 mM of chelating Al aqueous solution for medium addition was prepared. This chelated Al aqueous solution was subjected to the method of Example 2.

加熱溶解したAlCl3・6H2O水溶液に、前記水溶液中のAlCl3と等モル量のEDTA、及び水を添加することを除いては、実施例1と同様にして、EDTA・Alキレートの濃度が2mM、20mMの培地添加用キレート化Al水溶液を調製した。このキレート化Al水溶液を実施例3の方法に供した。 The concentration of EDTA · Al chelate was the same as in Example 1 except that EDTA in an equimolar amount with AlCl 3 in the aqueous solution and water were added to the AlCl 3 · 6H 2 O aqueous solution dissolved by heating. Prepared 2 mM and 20 mM chelating Al aqueous solutions for medium addition. This chelated Al aqueous solution was subjected to the method of Example 3.

[Al添加培地の調製]
前記のように調製したAlCl3水溶液またはキレート化Al水溶液に、予めオートクレーブにて滅菌処理した表1〜表3に記載の培地の成分を、表1〜表3に記載の組成比となるように添加し、Al添加培地を調製した。このAl添加培地を水酸化カリウムと塩酸を適量添加して、表1〜表3に記載のpHに調整して用いた。
[Preparation of Al-added medium]
The components of the medium shown in Tables 1 to 3 previously sterilized in an autoclave in the AlCl 3 aqueous solution or the chelated Al aqueous solution prepared as described above so that the composition ratios shown in Tables 1 to 3 are obtained. After addition, an Al-added medium was prepared. An appropriate amount of potassium hydroxide and hydrochloric acid was added to this Al-added medium, and the pH was adjusted to the values shown in Tables 1 to 3 before use.

[培養]
滅菌済み100ml(公称)バイアル瓶に、前記Al添加培地100mlを注入し、前記培地に脱酸素した窒素ガスを一定時間吹き込むことによって、前記培地内を嫌気状態とした。この培地に、菌体濃度が106個となるように、継代培養した各菌体(硫酸還元菌、大腸菌、酪酸菌)を植菌した。その後、ブチルゴム栓およびアルミシールによりバイアル瓶を密封し、37℃のインキュベータ内で振盪培養を行った。振盪培養は、水酸化物が沈殿しない程度の振盪回数(110回/分)で行った。培養液からサンプルを抜き取り、評価に使用した。
[culture]
The Al-added medium (100 ml) was poured into a sterilized 100 ml (nominal) vial, and deoxygenated nitrogen gas was blown into the medium for a certain period of time to make the medium anaerobic. The subcultured cells (sulfuric acid-reducing bacteria, Escherichia coli, butyric acid bacteria) were inoculated into this medium so that the cell concentration was 10 6 cells. Thereafter, the vial was sealed with a butyl rubber stopper and an aluminum seal, and shaking culture was performed in a 37 ° C. incubator. The shaking culture was performed at the number of shakings (110 times / min) that does not precipitate the hydroxide. A sample was extracted from the culture and used for evaluation.

[評価方法(タンパク量測定)]
バイアル瓶から培地1mlを採取し、培地成分を取り除き、滅菌蒸留水1mlに懸濁させた。その懸濁液から超音波破砕機によってタンパクを抽出し、BCA法(ビシンコニン酸法)によりタンパク量を測定した。このタンパク量により各菌体に対する増殖抑制効果(制菌効果)を評価した。
[Evaluation method (protein amount measurement)]
1 ml of the medium was collected from the vial, the medium components were removed, and the medium was suspended in 1 ml of sterile distilled water. Protein was extracted from the suspension by an ultrasonic crusher, and the amount of protein was measured by the BCA method (bicinchoninic acid method). The growth inhibitory effect (antibacterial effect) with respect to each microbial cell was evaluated by this protein amount.

[結果]
実施例1の方法(クエン酸・Alキレートの添加)について、硫酸還元菌に対する制菌効果を表したグラフを図1に、大腸菌に対する制菌効果を表したグラフを図2に、酪酸菌に対する制菌効果を表したグラフを図3に示す。また、比較例1の方法(AlCl3の添加)について、硫酸還元菌に対する制菌効果を表したグラフを図4に、大腸菌に対する制菌効果を表したグラフを図5に、酪酸菌に対する制菌効果を表したグラフを図6に示す。これらのグラフにおいて、横軸は経過時間(単位:時間)を示し、縦軸はタンパク量(単位:mg/L)の対数値を示す。
[result]
With respect to the method of Example 1 (addition of citric acid / Al chelate), a graph showing the bactericidal effect against sulfate-reducing bacteria is shown in FIG. 1, a graph showing the bactericidal effect against E. coli is shown in FIG. A graph showing the fungal effect is shown in FIG. In addition, for the method of Comparative Example 1 (addition of AlCl 3 ), a graph showing the bactericidal effect on sulfate-reducing bacteria is shown in FIG. 4, a graph showing the bactericidal effect on E. coli is shown in FIG. The graph showing the effect is shown in FIG. In these graphs, the horizontal axis indicates the elapsed time (unit: time), and the vertical axis indicates the logarithmic value of the protein amount (unit: mg / L).

比較例1の方法(AlCl3の添加)によれば、図4〜図6に示すように、硫酸還元菌、大腸菌、酪酸菌の全ての培養液においてタンパク量の増加が抑制された。即ち、比較例1の方法によれば、硫酸還元菌の増殖が抑制されるのみならず、大腸菌や酪酸菌の増殖も抑制された。 According to the method of Comparative Example 1 (addition of AlCl 3 ), as shown in FIGS. 4 to 6, the increase in the amount of protein was suppressed in all the culture solutions of sulfate-reducing bacteria, Escherichia coli, and butyric acid bacteria. That is, according to the method of Comparative Example 1, not only the growth of sulfate-reducing bacteria was suppressed, but also the growth of Escherichia coli and butyric acid bacteria was suppressed.

また、実施例1の方法(クエン酸・Alキレートの添加)によれば、図1に示すように、硫酸還元菌の培養液においてはタンパク量の増加が抑制された。即ち、硫酸還元菌の増殖が抑制された。   Moreover, according to the method of Example 1 (addition of citric acid / Al chelate), as shown in FIG. That is, the growth of sulfate-reducing bacteria was suppressed.

一方、図2及び図3に示すように、大腸菌、酪酸菌の培養液においては、Alキレートを添加しても、不添加の場合と同様にタンパク量が増加した。即ち、大腸菌および酪酸菌の増殖は抑制されておらず、実施例1の方法については、選択的な制菌効果が認められた。なお、グラフには示さなかったが、実施例2の方法(Al・シュウ酸キレートの添加)及び実施例3の方法(Al・EDTAキレートの添加)についても、実施例1と同様の選択的制菌効果が認められた。   On the other hand, as shown in FIGS. 2 and 3, in the culture solution of Escherichia coli and butyric acid bacteria, the amount of protein increased even when Al chelate was added, as in the case of no addition. That is, the growth of Escherichia coli and butyric acid bacteria was not suppressed, and the selective bactericidal effect was observed for the method of Example 1. Although not shown in the graph, the method of Example 2 (addition of Al · oxalic acid chelate) and the method of Example 3 (addition of Al · EDTA chelate) are also selectively controlled as in Example 1. A fungal effect was observed.

本発明に係る制菌方法は、硫酸還元菌の増殖抑制、ひいては硫化水素の生成抑制に利用することができる。   The antibacterial method according to the present invention can be used for inhibiting the growth of sulfate-reducing bacteria and thus for inhibiting the production of hydrogen sulfide.

Claims (4)

硫酸還元菌の存在する環境に、キレート化Alを併存させることにより、前記硫酸還元菌の増殖を選択的に抑制することを特徴とする硫酸還元菌の選択的制菌方法。   A selective sterilization method for sulfate-reducing bacteria, characterized by selectively inhibiting the proliferation of the sulfate-reducing bacteria by allowing the chelated Al to coexist in an environment where the sulfate-reducing bacteria are present. 前記硫酸還元菌の存在する環境に、Al3+源及びキレート剤を添加して、前記環境中で前記キレート化Alを生成させる請求項1に記載の選択的制菌方法。 The selective sterilization method according to claim 1, wherein an Al 3+ source and a chelating agent are added to an environment where the sulfate-reducing bacteria are present to produce the chelated Al in the environment. 前記Al3+源が、Al23、AlCl3、Al(OH)3及びAl2(SO43からなる群より選択される少なくとも一種のAl化合物である請求項2に記載の選択的制菌方法。 3. The selective according to claim 2, wherein the Al 3+ source is at least one Al compound selected from the group consisting of Al 2 O 3 , AlCl 3 , Al (OH) 3 and Al 2 (SO 4 ) 3. Antibacterial method. 前記硫酸還元菌が、中温域(20〜45℃)かつ中性域(pH5〜9)で生息する菌である請求項1〜3のいずれか一項に記載の選択的制菌方法。   The selective sterilization method according to any one of claims 1 to 3, wherein the sulfate-reducing bacteria are bacteria that inhabit in a medium temperature range (20 to 45 ° C) and a neutral range (pH 5 to 9).
JP2012180093A 2012-08-15 2012-08-15 Selective control method for sulfate-reducing bacteria Active JP5969309B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2012180093A JP5969309B2 (en) 2012-08-15 2012-08-15 Selective control method for sulfate-reducing bacteria
PCT/JP2013/071612 WO2014027613A1 (en) 2012-08-15 2013-08-09 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
EP13879516.6A EP2885972B1 (en) 2012-08-15 2013-08-09 Use of aluminium chelates for inhibiting sulfate-reducing bacteria
MX2015001956A MX2015001956A (en) 2012-08-15 2013-08-09 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material.
KR1020157005067A KR101632545B1 (en) 2012-08-15 2013-08-09 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
US14/421,359 US9901101B2 (en) 2012-08-15 2013-08-09 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
CN201380043319.6A CN104582491B (en) 2012-08-15 2013-08-09 The selectivity bacteriostasis method of sulfate reducting bacteria, utilize the gypsum compositions of propagation of preceding method inhibiting sulfate reduction bacterium, gypsum curing materials and gypsum construction material
BR112015003090A BR112015003090B8 (en) 2012-08-15 2013-08-09 method for selectively inhibiting sulfate-reducing bacteria, gypsum composition capable of inhibiting sulfate-reducing bacteria proliferation by said method, gypsum-like solification material, and gypsum-like building material
AU2013303570A AU2013303570B2 (en) 2012-08-15 2013-08-09 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
TW102129261A TWI568701B (en) 2012-08-15 2013-08-15 Selective bacteriostatic method of sulfate-reducing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012180093A JP5969309B2 (en) 2012-08-15 2012-08-15 Selective control method for sulfate-reducing bacteria

Publications (2)

Publication Number Publication Date
JP2014037364A JP2014037364A (en) 2014-02-27
JP5969309B2 true JP5969309B2 (en) 2016-08-17

Family

ID=50285801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180093A Active JP5969309B2 (en) 2012-08-15 2012-08-15 Selective control method for sulfate-reducing bacteria

Country Status (1)

Country Link
JP (1) JP5969309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037330A (en) * 2012-08-15 2014-02-27 Yoshino Gypsum Co Ltd Gypsum compositions, gypsum-based solidification materials and gypsum-based construction materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127656A (en) * 1984-11-21 1986-06-14 富士不燃建材工業株式会社 Gypsum hardened body
NO302538B1 (en) * 1995-05-30 1998-03-16 Reslab As Procedure for stabilizing unconsolidated core borehole material
JP3487133B2 (en) * 1997-07-01 2004-01-13 宇部興産株式会社 Ultra-fast hardening non-shrink grout material
US6352585B1 (en) * 1999-04-12 2002-03-05 Michael Diesso Gypsum casting composition and method of casting
JP3824844B2 (en) * 2000-06-19 2006-09-20 チヨダエコリサイクル株式会社 Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances
JP4695254B2 (en) * 2000-12-07 2011-06-08 吉野石膏株式会社 Soil treatment material composition and soil treatment method
JP2004329757A (en) * 2003-05-12 2004-11-25 Tadashi Inoue Method for preventing production of hydrogen sulfide, and structural body
JP4802255B2 (en) * 2009-03-06 2011-10-26 吉野石膏株式会社 Gypsum-based solidifying material mainly composed of a gypsum composition capable of suppressing hydrogen sulfide
JP5632768B2 (en) * 2011-02-10 2014-11-26 吉野石膏株式会社 Method for suppressing hydrogen sulfide generation

Also Published As

Publication number Publication date
JP2014037364A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
Lou et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review
JP5194223B1 (en) Chemical treatment agent
JP5507787B2 (en) Aqueous composition containing metal composition, and deodorant, antibacterial agent and antifungal agent comprising the aqueous composition
CN110226604B (en) Magnetic biomass charcoal-quaternary phosphonium salt sterilization material, preparation and use method
WO2016097857A1 (en) Compositions and methods of use
CN105010387A (en) Preparation technology of improved oil field composite bactericide
KR20210104622A (en) Unfired carriers for arsenic removal and its manufacturing method using a bittern
JPWO2014038596A1 (en) Method for producing iron fulvic acid material containing soluble silica
Li et al. Initial formation and accumulation of manganese deposits in drinking water pipes: investigating the role of microbial-mediated processes
Wang et al. Review on arsenic environment behaviors in aqueous solution and soil
JP5969309B2 (en) Selective control method for sulfate-reducing bacteria
KR102034821B1 (en) Composition for antibacteria and deodorant
CN109626591B (en) Method for synergistically reducing hexavalent chromium by utilizing microorganisms and hematite under illumination condition
TWI568701B (en) Selective bacteriostatic method of sulfate-reducing bacteria
Langumier et al. Formation of Fe (III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria
CN104326513B (en) Multifunctional treating agent for oil extraction sewage
KR20150102949A (en) Method for treating sewage
JP2007302706A (en) Formaldehyde decomposer and its use method
JP7053173B2 (en) Biodegradation treatment method for organic compounds
Yoo et al. The effect of Mn2+ concentration on Mn removal by a sulfate reducing bacteria bioreactor
JP5167534B2 (en) Medium high temperature sulfur-oxidizing bacteria and method for removing hydrogen sulfide using the bacteria
JP2014037330A (en) Gypsum compositions, gypsum-based solidification materials and gypsum-based construction materials
Paudel et al. Biosynthesis of Metallic Nanoparticles by Extremophiles and Their Applications
JP2018201459A (en) Soil packing material
JP2008006427A (en) Anion adsorbent, agent for cleaning water or soil and methods for manufacturing the adsorbent and agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250