JP5967755B2 - Top nozzle for pouring hot water - Google Patents
Top nozzle for pouring hot water Download PDFInfo
- Publication number
- JP5967755B2 JP5967755B2 JP2012095640A JP2012095640A JP5967755B2 JP 5967755 B2 JP5967755 B2 JP 5967755B2 JP 2012095640 A JP2012095640 A JP 2012095640A JP 2012095640 A JP2012095640 A JP 2012095640A JP 5967755 B2 JP5967755 B2 JP 5967755B2
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- gas
- hole
- cross
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Continuous Casting (AREA)
Description
本発明は,鋼の連続鋳造においてタンディッシュ等の容器内の溶鋼をノズル内孔より排出するノズルであって,その内孔面から不活性ガスを注入する機能を備えたノズル,特に貫通孔式のガス通過経路を備えた注湯用上ノズル(以下単に「ノズル」又は「注湯用ノズル」ともいう。)に関する。 The present invention relates to a nozzle that discharges molten steel in a container such as a tundish from a nozzle inner hole in continuous casting of steel, and has a function of injecting an inert gas from the inner hole surface, particularly a through-hole type. And an upper nozzle for pouring (hereinafter also simply referred to as “nozzle” or “ nozzle for pouring” ).
鋼の連続鋳造において溶鋼をタンディッシュからモールドに排出するためにタンディッシュの底部に設置されたタンディッシュノズル等の注湯用ノズルでは,その内孔面に溶鋼由来のアルミナ等の介在物が付着することによるノズル閉塞が生じやすい。そのような内孔面への介在物付着防止,溶鋼撹拌,その他の目的で,内孔面から不活性ガスを溶鋼中に注入することが多く行われている。 In the pouring nozzle such as the tundish nozzle installed at the bottom of the tundish to discharge the molten steel from the tundish to the mold in continuous casting of steel, inclusions such as alumina derived from the molten steel adhere to the inner hole surface. This is likely to cause nozzle blockage. Inert gas is often injected into the molten steel from the inner hole surface for the purpose of preventing inclusion adhesion to the inner hole surface, stirring the molten steel, and other purposes.
なお,本明細書において「アルミナ等」とは,溶鋼由来のAl2O3を主とする酸化物,溶鋼が温度降下によって凝固又は高粘性化して固体に近い状態なった地金を含む。 In this specification, “alumina or the like” includes an oxide mainly composed of Al 2 O 3 derived from molten steel, and a bullion in which the molten steel is solidified or made highly viscous due to a temperature drop and becomes nearly solid.
このような注湯用ノズルとしては,その本体を多孔質の耐火物で構成し,耐火物内の気孔をガスの通過経路として,内孔面のほぼ全体からガスを溶鋼中に注入するポーラス式のノズルがある。 Such a pouring nozzle is composed of a porous refractory body, and a porous type in which gas is injected into the molten steel from almost the entire inner surface with the pores in the refractory as a gas passage. There are nozzles.
このようなポーラス式のノズルのほかに,いわゆる貫通孔式のノズルが使用されることもある。これはノズルの耐食性や耐摩耗性等を向上させる等の目的から,ノズル本体を緻密な耐火物で構成し,その耐火物組織内にガス通過経路たる貫通孔を形成したものである。この貫通孔は,溶鋼が侵入しない程度に小さな断面積のトンネル状の空間であって,ノズル本体の耐火物内部又はノズル本体とその外周面側に配置されたメタルケースとの間に設けたガスプールと,内孔面に設けたガス吐出口との間を貫通する。 In addition to such a porous nozzle, a so-called through-hole nozzle may be used. For this purpose, the nozzle body is made of a dense refractory material for the purpose of improving the corrosion resistance and wear resistance of the nozzle, and a through-hole serving as a gas passage is formed in the refractory structure. This through-hole is a tunnel-like space with a cross-sectional area small enough to prevent molten steel from entering, and is a gas provided between the refractory material of the nozzle body or between the nozzle body and the metal case arranged on the outer peripheral surface side. It penetrates between the pool and the gas outlet provided in the inner hole surface.
耐食性や耐摩耗性等を重視する貫通孔式のノズルのノズル本体材質としては,一般的には高アルミナ質が使用されているが,アルミキルド鋼の鋳造に際して溶鋼由来の非金属介在物であるアルミナ(Al2O3に他の成分を含んだクラスター状になることが多い)等が内孔面に付着し,ノズル内孔の閉塞を生じ易いという欠点がある。 A high-alumina material is generally used as the nozzle body material for through-hole type nozzles that place importance on corrosion resistance and wear resistance. (In many cases, Al 2 O 3 is a cluster containing other components) and the like adhere to the inner hole surface, and there is a drawback that the nozzle inner hole is likely to be blocked.
内孔面にアルミナ等が付着すると,鋳造中にそのノズルだけでなく下方のノズルまでの広範囲の溶鋼流出経路での付着ないしは閉塞を招来して,溶鋼流量制御を行うスライディングノズルでの正常な溶鋼流量制御ができなくなったり,鋳造中にノズル内孔部を酸素で洗浄することが必要となる等,操業に支障を生じたり,鋼の品質にも悪影響を及ぼすことがある。 When alumina or the like adheres to the inner hole surface, it causes adhesion or clogging in a wide range of molten steel outflow paths not only to the nozzle but also to the lower nozzle during casting, and normal molten steel with a sliding nozzle that controls the molten steel flow rate. The flow rate cannot be controlled, and it is necessary to clean the nozzle bore with oxygen during casting, which may hinder operations and adversely affect steel quality.
このような注湯用ノズルにおけるアルミナ等の付着ないしは閉塞を防止する方策として,特許文献1には,ガス吐出口に連通する貫通孔をノズル(内孔面)の上部と下部の上下2段に分離して配置した貫通孔式のノズルが開示されている。特許文献1によれば,貫通孔を内孔面の上下方向のほぼ全体に均等に配置したノズルよりも効率的にアルミナ等の付着を防止することができるとされている。 As a measure for preventing the adhesion or blockage of alumina or the like in such a pouring nozzle, Patent Document 1 discloses a through-hole communicating with a gas discharge port in two upper and lower stages on the nozzle (inner hole surface). A through-hole type nozzle arranged separately is disclosed. According to Patent Document 1, it is said that it is possible to prevent adhesion of alumina or the like more efficiently than a nozzle in which through holes are arranged uniformly over substantially the entire vertical direction of the inner hole surface.
しかし,特許文献1のノズルでは,貫通孔の存在しない領域へのアルミナ等の付着が依然生じたり,ノズルへのガス供給口に近い,下段の貫通孔を配置した領域からのガス流出割合が,上段の貫通孔を配置した領域からのガス流出割合よりも多くなって,貫通孔が配置されていない領域を中心にアルミナ等の付着が生じることがある。 However, in the nozzle of Patent Document 1, the adhesion of alumina or the like to a region where no through hole is present still occurs, or the gas outflow rate from the region where the lower through hole is arranged close to the gas supply port to the nozzle is The amount of gas outflow from the region where the upper through-holes are arranged is larger than that, and alumina or the like may adhere around the region where the through-holes are not arranged.
また特許文献2には,貫通孔式のノズルの少なくとも一部の貫通孔が,内孔面の開口側に進むにつれ下向きに傾斜するように形成された貫通孔式のノズルが開示されている。特許文献2によれば,貫通孔を内孔面の上下方向のほぼ全体に均等に配置した上で,ノズル内孔での溶鋼のよどみが生じやすいために特にアルミナ等の付着が生じやすい,内孔面下端付近に集中的に,かつ,下方に傾斜した方向にガスを噴出させることで,効率的にアルミナ等の付着を防止することができるとされている。 Patent Document 2 discloses a through-hole type nozzle in which at least a part of the through-hole type nozzle is inclined downward as it advances toward the opening side of the inner hole surface. According to Patent Document 2, since the through holes are arranged evenly over substantially the entire vertical direction of the inner hole surface, stagnation of molten steel in the nozzle inner hole is likely to occur, so that adhesion of alumina or the like is particularly likely to occur. It is said that adhesion of alumina or the like can be effectively prevented by ejecting gas in the vicinity of the lower end of the hole surface and in a downwardly inclined direction.
しかし,特許文献2のノズルでは,ノズルへのガス供給口から下方の領域からのガス流出割合が,その上方の領域のガス流出割合よりも多くなって,前記上方の領域を中心にアルミナ等の付着が生じることがある。 However, in the nozzle of Patent Document 2, the gas outflow rate from the lower region from the gas supply port to the nozzle is larger than the gas outflow rate in the upper region. Adhesion may occur.
更に特許文献3には,貫通孔をノズル上下方向で複数段にグループ分けし,グループ毎に貫通孔断面積を等しくすると共に,上段側グループの貫通孔断面積を小さくし,下段側グループに行くに従い順次貫通孔断面積を大きくした貫通孔式のノズルが開示されている。この特許文献3のノズルは,水銀を用いた実験において,貫通孔を内孔面上下方向のほぼ全体に均等に配置した貫通孔式のノズルでは,ガスの気泡は上方が下方よりも多く,しかも下方への距離の増大に伴って漸次減少するとの結果を基礎に,貫通孔の断面の大きさをノズル下方向を上方向よりも大きくして,ガスの吐出ないしは気泡の量を均等にしようとするものである。 Furthermore, in Patent Document 3, the through holes are grouped into a plurality of stages in the nozzle vertical direction, the through hole cross-sectional area is made equal for each group, the cross-sectional area of the upper side group is reduced, and the lower side group is reached. Through-hole type nozzles having successively increased through-hole cross-sectional areas are disclosed. In the nozzle of Patent Document 3, in the experiment using mercury, in the through-hole type nozzle in which the through-holes are arranged evenly in substantially the entire vertical direction of the inner hole surface, the gas bubbles are higher at the upper side than at the lower side. Based on the result that it gradually decreases as the distance to the bottom increases, the cross-sectional size of the through-hole is made larger in the downward direction of the nozzle than in the upward direction so as to equalize the amount of gas discharge or bubbles. To do.
しかし特許文献3のノズルでも,下段の貫通孔を設置した領域からのガス流出割合が上段の貫通孔を設置した領域のガス流出割合よりも多くなって,貫通孔が設置されていない領域を中心にアルミナ等の付着が生じることがあり,却ってアルミナ等の付着が増大したりノズル内孔の閉塞が増加することもある。 However, even in the nozzle of Patent Document 3, the gas outflow rate from the region where the lower through hole is installed is larger than the gas outflow rate in the region where the upper through hole is installed, and the region where no through hole is installed is the center. In some cases, adhesion of alumina or the like may occur on the surface, and on the contrary, adhesion of alumina or the like may increase, or clogging of the nozzle bore may increase.
このように,貫通孔式のノズルにおいては,依然アルミナ等の付着ないしはノズル内孔閉塞の防止が十分ではない。 Thus, in a through-hole type nozzle, adhesion of alumina or the like or prevention of nozzle hole obstruction is still insufficient.
前述の背景技術に例示した従来の貫通孔式のノズルは,殆どがアルミナ等の付着現象が生じやすい領域(ノズル内孔下方付近)にガスを集中的に吹き込もうとするものである。しかしながら,このような方法は主として,既に内孔面に付着した後でその付着物を,事後的にガスにより強制的に除去しようとするものである。 The conventional through-hole type nozzles exemplified in the background art described above are intended to intensively blow gas into a region (near the lower portion of the nozzle inner hole) where adhesion phenomenon such as alumina is likely to occur. However, such a method is mainly intended to forcibly remove the adhering matter afterwards after adhering to the inner hole surface by a gas.
アルミナ等の付着現象はノズル内孔下方付近が起点となっていることもあるが,更に上方の領域が起点になっていて,その起点から溶鋼流下流側に付着領域が拡大し,下方領域の付着厚みが上方領域の付着厚みよりも大きくなる現象も多く観られる。 In some cases, the adhesion phenomenon of alumina or the like starts from the lower part of the nozzle hole, but the upper region starts from the starting point, and the adhesion region expands downstream from the starting point of the molten steel flow. There are also many phenomena in which the adhesion thickness becomes larger than the adhesion thickness in the upper region.
内孔面に付着してしまったアルミナ等は,その内孔面から抜本的に除去することは困難であることが多い。 In many cases, it is difficult to drastically remove alumina or the like adhering to the inner hole surface from the inner hole surface.
このような付着してしまった付着物を強制的に除去する目的で,ガスをその付着が多いノズル下方付近の溶鋼内に集中的に供給すると,ガスによる溶鋼の局部的な冷却をも招来して,溶鋼が凝固した地金までもが付着物として加わることになり,地金とアルミナ等の酸化物(単一粒子又はクラスター状粒子)等が複雑に絡み合って強固になった付着物を形成することにもなりやすい。 For the purpose of forcibly removing such deposits, if gas is intensively supplied into the molten steel near the lower part of the nozzle where there is much adhesion, local cooling of the molten steel by gas will also be caused. As a result, even the bare metal that solidifies the molten steel will be added as a deposit, and a solid deposit is formed by complex intertwining of the bare metal and oxide such as alumina (single particles or cluster-like particles). It is easy to do.
また,ノズル内孔下方付近に集中的に又は相対的に多量のガスを供給すると,その吹き込まれたガスが溶鋼流を妨げる壁のようになって(いわば堰き止めるような現象),その部位よりも上方では溶鋼流速が低下した滞留領域が発生しやすくなり,更にはその滞留領域では渦流も生じることがある。このような溶鋼の流動形態の領域では,地金やアルミナ等の付着が生じやすくなり,またその付着速度が大きくなる等の現象が観られる。このような溶鋼流を不安定にする現象及び過度なガスの供給は鋼の品質低下を惹き起こす原因にもなる。 In addition, when a relatively large amount of gas is supplied to the vicinity of the lower part of the nozzle bore, the blown gas becomes a wall that hinders the flow of molten steel (a phenomenon that dams up), In the upper area, a stagnant region in which the molten steel flow velocity decreases is likely to occur, and further, a vortex may be generated in the stagnant region. In such a flow region of molten steel, phenomena such as adhesion of ingots and alumina are likely to occur, and the adhesion rate increases. Such a phenomenon that makes the molten steel flow unstable and an excessive supply of gas also cause a deterioration in the quality of the steel.
本発明の解決すべき課題は,注湯用ノズルの内孔面へのアルミナ等の付着を抑制することにある。前記本発明の課題を解決することで,ひいては鋳造における溶鋼流を安定化し,その安定した状態を長時間維持する等により,溶鋼品質の低下を抑制することを目的とする。 The problem to be solved by the present invention is to suppress adhesion of alumina or the like to the inner hole surface of the pouring nozzle. By solving the problems of the present invention, it is an object to stabilize the molten steel flow in the casting and to suppress the deterioration of the molten steel by maintaining the stable state for a long time.
本発明は,次の(1)ないし(5)の注湯用上ノズルである。 The present invention provides the following (1) to (5) pouring upper nozzles.
(1)容器内の溶鋼を排出すると共に溶鋼内に不活性ガスを注入する機能を備えた注湯用上ノズルであって,
溶鋼が通過するノズル内孔の内孔面にガス吐出口を複数個備えており,
前記複数個のガス吐出口は,それぞれノズル本体を貫通する独立した貫通孔であって,共通のガスプールと連通しており,
ノズルへのガス導入部が前記ガスプールの下方に接続されおり,
当該注湯用ノズルの上方側に配置した貫通孔の,ガス流通方向に対して垂直方向の断面積(以下単に「断面積」という。)が,下方側に配置した貫通孔の断面積よりも大きいことを特徴とする,注湯用上ノズル。
(1) An upper nozzle for pouring having a function of discharging molten steel in a container and injecting an inert gas into the molten steel,
There are multiple gas outlets on the inner surface of the nozzle hole through which molten steel passes.
The plurality of gas discharge ports are independent through holes each penetrating the nozzle body, and communicate with a common gas pool.
A gas inlet to the nozzle is connected below the gas pool;
The cross-sectional area in the direction perpendicular to the gas flow direction (hereinafter simply referred to as “cross-sectional area”) of the through hole arranged on the upper side of the pouring nozzle is larger than the cross-sectional area of the through hole arranged on the lower side. An upper nozzle for pouring, characterized by its large size.
(2)前記ノズル内孔の溶鋼流下方向に垂直な方向の同一の断面上に複数個配置された貫通孔のうち一部の貫通孔の断面積が異なることを特徴とする,前記(1)に記載の注湯用上ノズル。 (2) The cross-sectional areas of some of the through holes arranged on the same cross section in the direction perpendicular to the molten steel flow direction of the nozzle inner hole are different from each other (1) The upper nozzle for pouring as described in 1.
(3)前記複数個のガス吐出口が,前記ノズル内孔の縦方向中心を軸とする円周方向において不均一に配置されていることを特徴とする,前記(1)又は前記(2)に記載の注湯用上ノズル。 (3) The above (1) or (2), wherein the plurality of gas discharge ports are non-uniformly arranged in a circumferential direction about the longitudinal center of the nozzle bore. The upper nozzle for pouring as described in 1.
(4)前記貫通孔の,ガス流通方向に対し垂直方向の断面形状の最短部の長さが,0.2mm以上0.5mm以下であることを特徴とする,前記(1)から前記(3)のいずれかに記載の注湯用上ノズル。 (4) The length of the shortest portion of the cross-sectional shape in the direction perpendicular to the gas flow direction of the through-hole is 0.2 mm or more and 0.5 mm or less. The upper nozzle for pouring water according to any one of
(5)前記貫通孔の,ガス流通方向に対して垂直方向の断面形状は,ノズル縦方向の高さが0.2mm以上0.5mm以下で,ノズル横方向の長さが前記ノズル縦方向の高さよりも長い,長円状又は矩形状であることを特徴とする,前記(1)から前記(4)のいずれかに記載の注湯用上ノズル。 (5) The cross-sectional shape of the through hole in the direction perpendicular to the gas flow direction is such that the height in the vertical direction of the nozzle is 0.2 mm or more and 0.5 mm or less, and the length in the horizontal direction of the nozzle is the vertical direction of the nozzle. The upper nozzle for pouring according to any one of (1) to (4), wherein the upper nozzle is longer or oval or rectangular.
以下に詳述する。 This will be described in detail below.
従来技術の,アルミナ等の付着物を,ガスにより事実上事後的に除去するような方法では,アルミナ等の付着を根本的に防止すること及び溶鋼流を安定化させることは,前述のように困難であると共にガスによる弊害,場合によっては逆効果も発生してしまう。 In the prior art method in which deposits such as alumina are practically removed after the gas, it is possible to fundamentally prevent the deposition of alumina and stabilize the molten steel flow as described above. It is difficult and adverse effects due to gas, and in some cases, adverse effects occur.
前述のような付着物を事後的に強制的なガス流で除去する従来技術の手段に対し,本発明は付着自体を抑制する。 In contrast to the prior art means for removing the deposits as described above with a forced gas flow, the present invention suppresses the deposition itself.
すなわち本発明は,ノズル上方から下方までの内孔面にガスによる被膜を効果的に形成して,付着物が内孔面に接触すること自体を抑制する。 In other words, the present invention effectively forms a gas film on the inner hole surface from the upper side to the lower side of the nozzle, and suppresses the adhering substance itself from contacting the inner hole surface.
これを言い換えると,まずノズル上方から下方までの広い領域で,付着の起点を形成させないということである。付着の起点が減少することで付着発生自体が抑制され,付着の起点が無くなれば付着自体が生じなくなり,その後の付着物の成長をも抑制又は防止することができる。 In other words, the adhesion starting point is not formed in a wide area from the top to the bottom of the nozzle. By reducing the starting point of adhesion, the occurrence of adhesion itself is suppressed. When the starting point of adhesion disappears, the adhesion itself does not occur, and the growth of the adhered material can be suppressed or prevented.
またノズル内孔内に吐出するガスの流量は,前述のとおり安定操業及び鋼の品質低下を抑制する等の観点,更にはコストの上昇を避ける観点からも,適正な総ガス量を維持する必要がある。 In addition, the flow rate of gas discharged into the nozzle bore must maintain an appropriate total gas amount from the viewpoints of stable operation and suppression of steel quality deterioration as described above, and also from the viewpoint of avoiding cost increases. There is.
したがって,従来技術のようなノズル内孔下方領域への大量のガス吐出に加えて,上方にもガスを供給することはできず,内孔面において相対的にガスの吐出分布を最適化する必要がある。 Therefore, in addition to the large amount of gas discharge to the lower area of the nozzle inner hole as in the prior art, it is not possible to supply gas upward, and it is necessary to relatively optimize the gas discharge distribution on the inner hole surface. There is.
本発明者らは,注湯用ノズルのノズル内孔内へのガス吐出量の分布が,上方から下方まで均一であるときに,付着抑制効果が最も高くなることを見出した。 The inventors of the present invention have found that the adhesion suppressing effect is the highest when the distribution of the gas discharge amount into the nozzle inner hole of the pouring nozzle is uniform from the upper side to the lower side.
本発明は,内孔面にガスによる被膜を効果的に形成するため,内孔面にガス吐出口を複数個配置し,ノズル内孔の溶鋼流の上流側である上方からのガス吐出量と下方側のガス吐出量を相対的に均一化させる。 In the present invention, in order to effectively form a gas coating on the inner hole surface, a plurality of gas discharge ports are arranged on the inner hole surface, and the amount of gas discharged from above, which is upstream of the molten steel flow in the nozzle inner hole, The gas discharge amount on the lower side is made relatively uniform.
この具体的な手段として本発明は,ガス吐出口に連通する貫通孔の,ガス流通方向に対する垂直方向の断面積を,ノズルの縦方向(溶鋼が流出する鉛直方向)において,ノズルの上方に配置した貫通孔の断面積の方が下方に配置した貫通孔の断面積よりも相対的に大きい貫通孔の配置構造とする。なお,本発明において,ガス吐出口は貫通孔の内孔面側の端部(開口部)であって実質的に貫通孔と一体であり,貫通孔とこれに連通するガス吐出口の,ガス流通方向に対して垂直方向の断面形状及び断面積は同一である。 As a specific means of the present invention, the cross-sectional area of the through hole communicating with the gas discharge port in the direction perpendicular to the gas flow direction is disposed above the nozzle in the longitudinal direction of the nozzle (the vertical direction in which the molten steel flows out). The through-hole arrangement structure is such that the cross-sectional area of the through-hole is relatively larger than the cross-sectional area of the through-hole arranged below. In the present invention, the gas discharge port is an end portion (opening portion) on the inner hole surface side of the through hole, and is substantially integrated with the through hole, and the gas discharge port of the gas discharge port communicating with the through hole is provided with the gas discharge port. The cross-sectional shape and the cross-sectional area perpendicular to the flow direction are the same.
貫通孔を流通する際のガスの圧力損失は,貫通孔の前記断面積が大きい方が小さい。したがって,ノズル上方の貫通孔の断面積をノズル下方よりも相対的に大きくすることで,ノズル上方に位置する貫通孔へのガス供給量を相対的に増加させることができる。 The pressure loss of gas when flowing through the through-hole is smaller when the cross-sectional area of the through-hole is larger. Therefore, the gas supply amount to the through hole located above the nozzle can be relatively increased by making the cross-sectional area of the through hole above the nozzle relatively larger than that below the nozzle.
ガス吐出量は,貫通孔の断面積がノズルの上方から下方まで同じである場合,又はノズルの下方側に配置した貫通孔の断面積の方が上方側に配置した貫通孔の断面積よりも相対的に大きい配置構造である場合は,下方側の方が上方側よりも多くなる。 The gas discharge rate is the same when the cross-sectional area of the through-hole is the same from the top to the bottom of the nozzle, or the cross-sectional area of the through-hole arranged on the lower side of the nozzle is larger than the cross-sectional area of the through-hole arranged on the upper side. In the case of a relatively large arrangement structure, the lower side is more than the upper side.
下方側に配置するガス吐出口は,上方側の複数のガス吐出口から吐出されたガス皮膜の左右(内孔面の円周方向)の境界付近でのガスの乱れを補うと共に,その乱れに伴うアルミナ等の付着を抑制する機能もある。そのため,下方側のガス吐出口は,その上方側に位置して内孔面の円周方向に隣接するガス吐出口間の中央付近直下の位置に配置することが好ましい。 The gas outlet arranged on the lower side compensates for the gas disturbance near the boundary between the left and right sides (circumferential direction of the inner hole surface) of the gas film discharged from the plurality of upper gas outlets. There is also a function to suppress the accompanying adhesion of alumina or the like. Therefore, it is preferable that the lower gas discharge port is disposed at a position just below the center between the gas discharge ports located on the upper side and adjacent in the circumferential direction of the inner hole surface.
このように,本発明におけるガス吐出口の上下方向の段数は2段以上とし,又は溶鋼流の状態,ノズル内孔径及びガス吐出量等のバランスにより,必要に応じて2段を超えて配置することができる。 As described above, the number of gas discharge ports in the vertical direction according to the present invention is set to two or more, or more than two stages are arranged as necessary depending on the balance of the molten steel flow state, nozzle bore diameter, gas discharge amount, and the like. be able to.
更に,注湯用ノズルの下方に位置して溶鋼の流量制御を行うスライディングノズルのノズル孔の開度や開口方向によっても,注湯用ノズルの内孔面でのアルミナ等付着の程度が,特に円周方向の場所ごとに異なることがある。 In addition, the degree of adhesion of alumina, etc. on the inner surface of the pouring nozzle depends on the opening and direction of the nozzle hole of the sliding nozzle that is located below the pouring nozzle and controls the flow rate of molten steel. May vary from place to place in the circumferential direction.
このような場合には,
(ア)ノズル内孔の縦方向(溶鋼流下方向)に垂直な横方向の断面上に複数個配置された貫通孔のうち,アルミナ等付着の程度が大きい領域側の1個以上の貫通孔の断面積を,前記の同一の横方向の断面上の他の貫通孔の断面積よりも大きくする,
(イ)ノズル内孔の縦方向(溶鋼流下方向)に垂直な横方向の断面上に複数個配置されたガス吐出口を,ノズル内孔の縦方向中心を軸とする円周方向において不均一に配置させる,すなわち,アルミナ等付着の程度が大きい側の円周方向領域にガス吐出口を相対的に多く配置する,
等により,内孔面の円周方向でのガスの吐出程度を偏在させて,ガスによる被膜を効果的に形成させることもできる。
In such a case,
(A) Among a plurality of through-holes arranged on a cross section in the transverse direction perpendicular to the longitudinal direction of the nozzle inner hole (downstream of molten steel), one or more through-holes on the region side where the degree of adhesion of alumina or the like is large The cross-sectional area is larger than the cross-sectional area of the other through-holes on the same lateral cross-section
(B) Non-uniformity in the circumferential direction around the longitudinal center of the nozzle bore, with multiple gas outlets arranged on the cross section in the transverse direction perpendicular to the longitudinal direction of the nozzle bore (downstream of molten steel) In other words, a relatively large number of gas discharge ports are arranged in the circumferential region on the side where the degree of adhesion of alumina or the like is large.
For example, a gas coating can be effectively formed by unevenly distributing the degree of gas discharge in the circumferential direction of the inner hole surface.
言い換えると,貫通孔の断面積を,アルミナ等の付着が多い円周方向の部位に配置する方を,アルミナ等の付着が少ない円周方向の部位に配置する方よりも大きくする,又は内孔面の円周方向の付着の多い方にガス吐出口を多く偏在させるということである。 In other words, the cross-sectional area of the through hole is set larger in the circumferential direction where alumina or the like is attached more than in the circumferential direction where alumina or the like is less attached, or the inner hole This means that many gas outlets are unevenly distributed in the direction where the adhesion in the circumferential direction of the surface is large.
ガス吐出口及び貫通孔への溶鋼の進入を防止するために,ガス流通方向に対し垂直方向の貫通孔(ガス吐出口)の断面形状の最短部の長さは,0.2mm以上0.5mm以下であることが好ましい。 In order to prevent molten steel from entering the gas discharge port and the through hole, the length of the shortest portion of the cross-sectional shape of the through hole (gas discharge port) perpendicular to the gas flow direction is 0.2 mm or more and 0.5 mm. The following is preferable.
更に,この断面形状は,ノズル縦方向の高さが0.2mm以上0.5mm以下で,ノズル横方向の長さが前記ノズル縦方向の高さ方向よりも長い,長円状又は長矩形状(長方形)とすることもできる。このようにいわゆる横長形状にすることで,ガスの吐出状態を円周方向に広くして,ガスによる被膜をより効果的に形成することが可能となる。この場合,ノズル縦方向の高さを0.5mm以下にしていれば溶鋼が進入しないので,貫通孔(ガス吐出口)のノズル横方向の長さは,ガスの吐出が横方向で不均一にならない範囲であれば,制限を設ける必要はない。 Further, this cross-sectional shape has an oval or oblong shape in which the height in the nozzle vertical direction is 0.2 mm or more and 0.5 mm or less, and the length in the horizontal direction of the nozzle is longer than the height direction in the nozzle vertical direction ( (Rectangular). By adopting a so-called horizontally long shape in this way, the gas discharge state can be widened in the circumferential direction, and a film made of gas can be more effectively formed. In this case, since the molten steel does not enter if the height in the nozzle vertical direction is 0.5 mm or less, the length of the through hole (gas discharge port) in the horizontal direction of the nozzle is uneven in the gas discharge in the horizontal direction. There is no need to set a limit as long as it does not.
本発明により,ノズル上方から下方までの内孔面にガスによる被膜を効果的に形成して,アルミナ等の付着物が内孔面に接触すること自体を抑制できる。これにより,その後の付着物の成長をも抑制することができる。 According to the present invention, it is possible to effectively form a gas film on the inner hole surface from the upper side to the lower side of the nozzle, and to prevent the deposits such as alumina from contacting the inner hole surface. Thereby, subsequent growth of deposits can be suppressed.
この効果により,付着物が多く付着する部分を中心にガスを多量に供給することがないので,その付近における溶鋼の過度な冷却も生じ難くなって溶鋼の凝固による地金の付着を抑制することができると共に,溶鋼流速を大きく減少させることをも防止することが可能となる。 Due to this effect, a large amount of gas is not supplied around the part where much deposits adhere, so that excessive cooling of the molten steel in the vicinity is difficult to occur, and the adhesion of the metal due to solidification of the molten steel is suppressed. In addition, it is possible to prevent the molten steel flow rate from being greatly reduced.
ひいては鋼の品質低下をも防止することが可能となる。 As a result, it is possible to prevent deterioration of the quality of the steel.
本発明の実施の形態を,図により説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1は,ガス吐出口4及び貫通孔5がノズル内孔2(内孔面3)の縦方向に複数段(この例では5段)配置されたノズル11の,縦方向断面図(イメージ)である。この例では,ガス流出経路としてのガス吐出口4及び貫通孔5の,ガスの流通方向に垂直な方向の断面積を,ノズル下方の段から上方側の段に向かうごとに漸次大きくした場合を示している。なお,本例及び以下の例では,いずれもガス吐出口4と貫通孔5の断面形状及び断面積は同一である。 FIG. 1 is a longitudinal sectional view (image) of a nozzle 11 in which gas discharge ports 4 and through holes 5 are arranged in a plurality of stages (in this example, five stages) in the longitudinal direction of a nozzle inner hole 2 (inner hole surface 3). It is. In this example, the case where the cross-sectional area of the gas discharge port 4 and the through hole 5 as the gas outflow path in the direction perpendicular to the gas flow direction is gradually increased from the lower stage to the upper stage. Show. In this example and the following examples, the gas discharge port 4 and the through hole 5 have the same cross-sectional shape and cross-sectional area.
図2は,ガス吐出口及び貫通孔がノズルの縦方向に複数段(この例では2段)配置されたノズルの,内孔面3の縦方向展開図(イメージ)である。この例では,ガス流出経路としてのガス吐出口4及び貫通孔の断面積をノズル下方の段よりも上方側の段を大きくし,かつ上方側の段のガス吐出口4及び貫通孔の断面形状を横方向に長い矩形状又は長円形状にした場合を示している。 FIG. 2 is a vertical development view (image) of the inner hole surface 3 of the nozzle in which a plurality of gas discharge ports and through holes are arranged in the vertical direction of the nozzle (two stages in this example). In this example, the cross-sectional area of the gas discharge port 4 and the through hole as a gas outflow path is made larger than the step below the nozzle, and the cross-sectional shape of the gas discharge port 4 and the through hole in the upper step. Is shown as a rectangular or oval shape that is long in the horizontal direction.
また図2の例において,下方のガス吐出口4は,上方の段の隣接するガス吐出口4のノズル円周方向の中央直下付近に配置している。なお,下方のガス吐出口4の断面形状も横方向に長い矩形状又は長円形状にしてもよいが,その形状は上方の段から吐出されたガスによる被膜の状態により決定すればよい。 In the example of FIG. 2, the lower gas discharge port 4 is disposed in the vicinity of the center of the gas discharge port 4 adjacent to the upper stage in the circumferential direction of the nozzle. The cross-sectional shape of the lower gas discharge port 4 may be a rectangular shape or an oval shape that is long in the lateral direction, but the shape may be determined by the state of the coating film formed by the gas discharged from the upper stage.
図3は,ガス吐出口及び貫通孔がノズルの縦方向に複数段(この例では2段)配置されたノズルの,内孔面の縦方向展開図(イメージ)である。この例では,ガス吐出口4及び貫通孔の断面積を,ノズル下方の段よりも上方側の段を大きくし,かつ上方側の段のガス吐出口4及び貫通孔の断面形状を横方向に長い矩形状又は長円形状にし,更に上方側の段の円周方向でガス吐出口4及び貫通孔の前記断面積を変化させた場合を示す。内孔面3のアルミナ等が付着し易い領域又は付着量が多い領域付近に,このような断面積が大きいガス吐出口4及び貫通孔を配置することができる。なお、本例のように上方側の段のガス吐出口及び貫通孔の断面積が異なる場合において、ガス吐出口及び貫通孔の断面積を,ノズル下方の段よりも上方側の段を大きくするとは,上方側の段のガス吐出口及び貫通孔の断面積が全て,ノズル下方の段のガス吐出口及び貫通孔の断面積よりも大きいことを意味する。 FIG. 3 is a vertical development view (image) of an inner hole surface of a nozzle in which a plurality of gas discharge ports and through holes are arranged in the vertical direction of the nozzle (two stages in this example). In this example, the cross-sectional areas of the gas discharge port 4 and the through hole are set larger than the step below the nozzle, and the cross-sectional shapes of the gas discharge port 4 and the through hole in the upper step are set in the horizontal direction. A case is shown in which the gas discharge port 4 and the cross-sectional area of the through hole are changed in a long rectangular shape or an oval shape and further in the circumferential direction of the upper step. Such a gas discharge port 4 and a through-hole having a large cross-sectional area can be disposed in the vicinity of a region where the alumina or the like on the inner hole surface 3 easily adheres or a region where the amount of adhesion is large. In the case where the cross-sectional areas of the gas outlet and the through hole in the upper stage are different as in this example, the cross-sectional area of the gas outlet and the through hole is made larger than the stage below the nozzle. Means that the cross-sectional areas of the gas outlet and the through hole in the upper stage are all larger than the cross-sectional areas of the gas outlet and the through hole in the lower stage of the nozzle.
図4は,ガス吐出口及び貫通孔がノズルの縦方向に複数段(この例では2段)配置されたノズルの,内孔面の縦方向展開図(イメージ)である。この例では,ガス吐出口4及び貫通孔の断面積をノズル下方の段よりも上方側の段を大きくし,かつ上方側の段のガス吐出口4及び貫通孔の断面形状を横方向に長い矩形状又は長円形状にし,更に上方側の段のガス吐出口4の円周方向での配置を不均一にした場合を示す。このように,内孔面3のアルミナ等が付着し易い領域又は付着量が多い領域付近に,より多くのガス吐出口4を配置することもできる。 FIG. 4 is a vertical development view (image) of an inner hole surface of a nozzle in which a plurality of gas discharge ports and through holes are arranged in the vertical direction of the nozzle (two stages in this example). In this example, the cross-sectional area of the gas discharge port 4 and the through hole is made larger than the step below the nozzle, and the cross-sectional shape of the gas discharge port 4 and the through hole in the upper step is longer in the lateral direction. A case where the shape is rectangular or oval and the arrangement of the gas discharge ports 4 on the upper side in the circumferential direction is non-uniform is shown. In this manner, more gas discharge ports 4 can be arranged in the vicinity of the region where the alumina or the like on the inner hole surface 3 is likely to adhere or the amount of adhesion is large.
なお,前記図1〜図4の形態は単独に採用してもよく,これらの形態を任意に組み合わせてもよい。これらの形態は,操業条件,設備等の条件,アルミナ等の付着状態等,個別の条件に応じてその期待する効果との調和において決定すればよい。 The forms shown in FIGS. 1 to 4 may be employed independently, or these forms may be arbitrarily combined. These forms may be determined in harmony with the expected effects according to individual conditions such as operating conditions, conditions of equipment, adhesion state of alumina and the like.
次に本発明のノズルの製造法を述べる。その要旨は次のとおりである。 Next, a method for manufacturing the nozzle of the present invention will be described. The summary is as follows.
可燃性物質により,内孔面に相当する内筒とガスプール内面に相当する外筒を同心上に配置した二重筒状体を形成し,この二重筒状体の内筒と外筒間に可燃性の糸を貫通させるように架橋し,前記の外筒の外側に更に,内側面全体に可燃物層を設置(コーティング等)した型を設置する。前記の可燃性の糸を設置する際には,所望のガス吐出口及び貫通孔の断面形状及び大きさに相当する糸を採用する。 A flammable material forms a double cylindrical body in which an inner cylinder corresponding to the inner hole surface and an outer cylinder corresponding to the gas pool inner surface are arranged concentrically, and between the inner cylinder and the outer cylinder of this double cylindrical body A mold having a combustible material layer (coating, etc.) installed on the entire inner side surface is further installed outside the outer cylinder and cross-linked so that a flammable thread can penetrate. When the combustible yarn is installed, the yarn corresponding to the desired cross-sectional shape and size of the gas discharge port and the through hole is employed.
このように形成した前記の成形用筒体等の空間内に,ノズル本体となる耐火物を充填し,乾燥,焼成を行う。この焼成等工程により,前記の糸,ガスプールとなる可燃性物質は消失して,貫通孔とガス吐出口、及びガスプールを形成することができる。 A space such as the molding cylinder thus formed is filled with a refractory serving as a nozzle body, followed by drying and firing. By this firing process or the like, the flammable material that becomes the yarn and the gas pool disappears, and a through hole, a gas discharge port, and a gas pool can be formed.
ノズル本体を成す耐火物層は,連続鋳造用(注湯用)のノズルに一般的に使用されるアルミナ−黒鉛質等のはい土をCIPにより,又は流し込み用に調整し混練した泥状の材料を鋳込み成形し,硬化させる等の方法で成形し熱処理等をする,等の任意の方法により形成することができる。 The refractory layer that forms the nozzle body is a mud-like material that is prepared by kneading a CIP or pouring soil such as alumina-graphite that is generally used for nozzles for continuous casting (for pouring). The film can be formed by any method such as casting and curing by heat treatment or the like.
次に本発明を実施例により説明する。 Next, the present invention will be described with reference to examples.
[実施例A]
実施例Aは,水モデル実験による,ノズル内孔内のガスの流出ないし流動状態を調査した例を示す。
[Example A]
Example A shows an example in which the outflow or flow state of the gas in the nozzle hole is investigated by a water model experiment.
本発明の供試料(実施例)は,図1に示す要領で,貫通孔を下方段から上方段に漸次断面積が大きくなるように10段配置し,ガス吐出口をノズル円周方向に均等に10分割した位置に配置した。 In the sample of the present invention (Example), the through holes are arranged in 10 stages so that the cross-sectional area gradually increases from the lower stage to the upper stage as shown in FIG. 1, and the gas discharge ports are evenly arranged in the nozzle circumferential direction. It was arranged at the position divided into 10 parts.
ガス吐出口と貫通孔の断面積は,連通する一体のガス吐出口と貫通孔ごとに同一とし,最下段は0.031mm2,最上段は0.196mm2であり,段ごとの前記断面積は,同一の段では同一とし,かつ最下段から最上段に向かって漸次ほぼ均等の割合で増加するようにした。この均等の割合としては,ガスプールの最下部の水平位置に第一の貫通孔,最上部の水平位置に第10の貫通孔を配置し,その間を均等に9分割して,それぞれの断面積を,y=0.6xの式で表される近似直線上にほぼ一致するように,漸次変化させた。 The cross-sectional area of the gas discharge port and the through hole is the same for each of the integrated gas discharge port and the through hole communicating with each other, the lowermost stage is 0.031 mm 2 and the uppermost stage is 0.196 mm 2. Is the same at the same stage, and gradually increases from the bottom to the top. For this equal ratio, the first through hole is arranged at the lowest horizontal position of the gas pool and the tenth through hole is arranged at the uppermost horizontal position. Is gradually changed so as to substantially coincide with the approximate straight line represented by the equation y = 0.6x.
なお,ガスプールからガス吐出口までの貫通孔の長さは20mm,ガスプールの長さ(縦方向)は205mm,ガスプールの幅は1mm,ノズル内孔の高さは308mm,ノズル内孔径は上端部φ145mm,下端部φ100mmとした。ガスプールへのガス導入口は,貫通孔最下段の水平位置のノズル外周側に配置した。 The length of the through hole from the gas pool to the gas discharge port is 20 mm, the length of the gas pool (vertical direction) is 205 mm, the width of the gas pool is 1 mm, the height of the nozzle bore is 308 mm, and the nozzle bore diameter is The upper end portion was 145 mm and the lower end portion was 100 mm. The gas inlet to the gas pool was placed on the outer peripheral side of the nozzle in the horizontal position at the bottom of the through hole.
比較例としての従来技術のノズルの供試料は,図9に示すように,下方段から上方段の全てにおいて断面積が等しいガス吐出口4及び貫通孔5を10段配置し,ガス吐出口と貫通孔の断面積は,連通する一体の吐出口と貫通孔ごとに同一とした。具体的には,全てのガス吐出口及び貫通孔の断面積は0.10mm2(前記実施例の断面積のほぼ中央値)の同一とした。ガス吐出口はノズル円周方向に全周を均等に10分割した位置に配置した。 As shown in FIG. 9, a sample of a prior art nozzle as a comparative example has 10 stages of gas discharge ports 4 and through-holes 5 having the same cross-sectional area from the lower stage to the upper stage. The cross-sectional area of the through hole was the same for each integrated discharge port and through hole. Specifically, the cross-sectional areas of all the gas discharge ports and the through holes were the same of 0.10 mm 2 (substantially the median cross-sectional area of the above example). The gas discharge ports were arranged at positions where the entire circumference was equally divided into 10 in the nozzle circumferential direction.
水の供給量は850L/min.とし,ガスの供給圧は0.05Pa,供給量は70NL/min.とした。 The amount of water supplied is 850 L / min. The gas supply pressure is 0.05 Pa, and the supply amount is 70 NL / min. It was.
この水モデル実験によるガスの吐出状態及び流動状態を,図5及び図6に示す。 FIG. 5 and FIG. 6 show the gas discharge state and flow state in this water model experiment.
図5は実施例であり,(a)は写真画像,(b)は前記(a)の写真画像をイメージ図にしたものである。図6は比較例であり,(a)は写真画像,(b)は前記(a)の写真画像をイメージ図にしたものである。図5(b)及び図6(b)の符号8は吐出ガス(気泡)のイメージを示す。 FIG. 5 shows an embodiment, where (a) is a photographic image, and (b) is an image of the photographic image of (a). FIG. 6 is a comparative example, (a) is a photographic image, (b) is an image of the photographic image of (a). Reference numeral 8 in FIGS. 5B and 6B indicates an image of the discharge gas (bubbles).
実施例は上方からガスが広く分布しながら吐出し,更に内孔面全体にガスによる皮膜がほぼ均一に形成されていることがわかる。これに対し比較例は,上方からのガスは極めて少なく主に下方段から吐出していることがわかる。そのため内孔面全体にはガスによる皮膜が形成されていないことがわかる。 It can be seen that in the example, the gas is discharged from the upper side while being widely distributed, and further, a film made of the gas is formed almost uniformly on the entire inner surface. On the other hand, it can be seen that the comparative example has very little gas from above and is mainly discharged from the lower stage. Therefore, it can be seen that a gas film is not formed on the entire inner surface.
更にこの水モデル実験によるノズル内孔内の通気分布,すなわちガスの流出ないし流動状態を直接測定して数値化した結果を,図7に示す。 Further, FIG. 7 shows the result of direct measurement of the air flow distribution in the nozzle bore, that is, the outflow or flow state of the gas, obtained by this water model experiment and digitized.
この実験では,各ノズルのガス吐出口及び貫通孔の縦方向10段を縦方向の1段ごとにガスを集めて,その段ごとのガス量を2段のグループごとに分類して流量を比較した。 In this experiment, the gas discharge ports and through-holes of each nozzle are collected in 10 stages in the vertical direction for each stage in the vertical direction, and the gas volume in each stage is classified into groups of 2 stages and the flow rates are compared. did.
図7の横(X)軸は,前記段のグループ (2段/グループ,下からの順番)を,縦(Y)軸は,総ガス量を100%(体積及び質量とも同じ)とするときの,ガスの割合を示す。(a)は実施例の結果,(b)は比較例の結果である。実施例は上方から下方までほぼ同じ割合となって,均一な吐出量が得られていることがわかる。これに対し比較例は,上方からのガスは極めて少なく主に下方段から吐出していることがわかる。 The horizontal (X) axis in FIG. 7 represents the group of the stages (2 stages / group, the order from the bottom), and the vertical (Y) axis represents the total gas amount 100% (both volume and mass are the same). The ratio of gas is shown. (A) is a result of an Example, (b) is a result of a comparative example. It can be seen that the embodiment has almost the same ratio from the top to the bottom, and a uniform discharge amount is obtained. On the other hand, it can be seen that the comparative example has very little gas from above and is mainly discharged from the lower stage.
なお,本実施例では段ごとの貫通孔及びガス吐出口のそれぞれの断面積を,y=0.6xの式で表される近似直線上にほぼ一致するように,漸次変化させたが,この定数(0.6)は固定的な値ではなく,均一な吐出を得るためには,この定数を個別のノズル形状(構造),材質等によって,最適化するように変動させることが必要である。 In this embodiment, the cross-sectional areas of the through holes and the gas discharge ports for each step are gradually changed so as to substantially coincide with the approximate straight line represented by the equation y = 0.6x. The constant (0.6) is not a fixed value, and in order to obtain uniform discharge, it is necessary to vary this constant to optimize depending on the individual nozzle shape (structure), material, etc. .
[実施例B]
実施例Bは,実操業に供した例を示す。
[Example B]
Example B shows an example subjected to actual operation.
鋼種は,アルミナ等の付着と閉塞が問題となっているアルミキルド鋼で,約450分間鋳造した結果である。 The steel grade is the result of casting for about 450 minutes with aluminum killed steel, which is a problem of adhesion and blockage of alumina.
供試料は,前記実施例Aと同じであり,同一タンディッシュの排出口にそれぞれ1つずつ設置した。 Samples were the same as in Example A, and one sample was installed at each outlet of the same tundish.
試験後の試料は操業の都合(ノズル内孔に溶鋼が残留し凝固すること,その後ノズル内孔を酸素洗浄されノズルが解体されたこと等)により,付着自体を評価することはできなかった。そこで鋳造操業の間における背圧の変動の程度で評価した。 The specimens after the test could not be evaluated for adhesion due to operational reasons (the molten steel remained in the nozzle bore and solidified, and then the nozzle bore was cleaned with oxygen and the nozzle was disassembled). Therefore, the degree of fluctuation of back pressure during casting operation was evaluated.
その結果を図8に示す。図8は横軸に連続鋳造のチャージ数(nチャージ目)を,縦軸はガスの背圧Paを示す。操業においては,内孔面への付着程度が大きくなって閉塞傾向になると,内孔面に棒等を使用して機械的な衝撃・外力を加えてその付着物を除去する。この操作によって内孔面が損傷し,ガスの背圧低下を来す。そこで,このような背圧低下の程度が小さい方が内孔面でのアルミナ等の付着が小さいと評価することができる。 The result is shown in FIG. In FIG. 8, the horizontal axis represents the number of charges of continuous casting (nth charge), and the vertical axis represents the back pressure Pa of the gas. In operation, when the degree of adhesion to the inner hole surface becomes larger and tends to become clogged, a stick or the like is used on the inner hole surface to apply mechanical shock or external force to remove the adhering matter. This operation damages the inner hole surface and causes a reduction in gas back pressure. Therefore, it can be evaluated that the smaller the degree of such a decrease in back pressure, the smaller the adhesion of alumina or the like on the inner hole surface.
実施例(本発明ノズル)の背圧は殆ど一定の水準を保った。これに対し比較例(従来ノズル)は8チャージ目以降背圧が顕著に低下した。このように実操業においても本発明のノズルでのアルミナ付着低減効果が確認できた。 The back pressure of the example (the nozzle of the present invention) was maintained at a substantially constant level. In contrast, in the comparative example (conventional nozzle), the back pressure significantly decreased after the eighth charge. Thus, the alumina adhesion reduction effect with the nozzle of the present invention was confirmed even in actual operation.
本発明は,タンディッシュの溶鋼排出に用いられる上ノズルのほか,同様のガス吐出機能を備えたオープンノズル,浸漬ノズル,及びタンディッシュ以外の容器から溶鋼を排出するノズル等にも適用することができる。 The present invention can be applied to an upper nozzle used for discharging molten steel from a tundish, an open nozzle having a similar gas discharge function, an immersion nozzle, and a nozzle for discharging molten steel from a container other than the tundish. it can.
1 ノズル本体
2 ノズル内孔
3 内孔面
4 ガス吐出口
5 貫通孔
6 ガスプール
7 ノズルへのガス導入部
8 吐出ガス(気泡)のイメージ
11 ノズル
DESCRIPTION OF SYMBOLS 1 Nozzle body 2 Nozzle inner hole 3 Inner hole surface 4 Gas discharge port 5 Through-hole 6 Gas pool 7 Gas introduction part to nozzle 8 Image of discharge gas (bubble) 11 Nozzle
Claims (5)
溶鋼が通過するノズル内孔の内孔面にガス吐出口を複数個備えており,
前記複数個のガス吐出口は,それぞれノズル本体を貫通する独立した貫通孔であって,共通のガスプールと連通しており,
ノズルへのガス導入部が前記ガスプールの下方に接続されおり,
当該注湯用ノズルの上方側に配置した貫通孔の,ガス流通方向に対して垂直方向の断面積(以下単に「断面積」という。)が,下方側に配置した貫通孔の断面積よりも大きいことを特徴とする,注湯用上ノズル。 An upper nozzle for pouring with a function of discharging molten steel in a container and injecting an inert gas into the molten steel,
There are multiple gas outlets on the inner surface of the nozzle hole through which molten steel passes.
The plurality of gas discharge ports are independent through holes each penetrating the nozzle body, and communicate with a common gas pool.
A gas inlet to the nozzle is connected below the gas pool;
The cross-sectional area in the direction perpendicular to the gas flow direction (hereinafter simply referred to as “cross-sectional area”) of the through hole arranged on the upper side of the pouring nozzle is larger than the cross-sectional area of the through hole arranged on the lower side. An upper nozzle for pouring, characterized by its large size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095640A JP5967755B2 (en) | 2012-04-19 | 2012-04-19 | Top nozzle for pouring hot water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095640A JP5967755B2 (en) | 2012-04-19 | 2012-04-19 | Top nozzle for pouring hot water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013220469A JP2013220469A (en) | 2013-10-28 |
JP5967755B2 true JP5967755B2 (en) | 2016-08-10 |
Family
ID=49591829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012095640A Active JP5967755B2 (en) | 2012-04-19 | 2012-04-19 | Top nozzle for pouring hot water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5967755B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515388B2 (en) * | 2015-10-02 | 2019-05-22 | 日本製鉄株式会社 | Upper nozzle for continuous casting |
CN106180672B (en) * | 2016-09-30 | 2018-04-03 | 马鞍山钢铁股份有限公司 | A kind of ingot casting mould argon blowing protection device |
JP7134108B2 (en) * | 2019-01-30 | 2022-09-09 | 黒崎播磨株式会社 | Manufacturing method for stoppers, etc. |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151948A (en) * | 1982-03-05 | 1983-09-09 | Daido Steel Co Ltd | Continuous casting method |
JPS60171652U (en) * | 1984-04-17 | 1985-11-14 | 品川白煉瓦株式会社 | Immersion nozzle for gas-blown continuous casting |
JPS6146359A (en) * | 1984-08-10 | 1986-03-06 | Kawasaki Refract Co Ltd | Nozzle for continuous casting |
JPH01177056U (en) * | 1988-06-06 | 1989-12-18 | ||
JPH0222249U (en) * | 1988-07-22 | 1990-02-14 | ||
US5723055A (en) * | 1995-10-10 | 1998-03-03 | Vesuvius Crucible Company | Nozzle assembly having inert gas distributor |
JPH11314142A (en) * | 1998-04-30 | 1999-11-16 | Nippon Steel Corp | Nozzle for continuous casting |
-
2012
- 2012-04-19 JP JP2012095640A patent/JP5967755B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013220469A (en) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967755B2 (en) | Top nozzle for pouring hot water | |
WO2020137722A1 (en) | Continuous casting stopper and continuous casting method | |
KR101170673B1 (en) | Immersion nozzle for casting and continuous casting apparatus including the same | |
KR102381259B1 (en) | Immersion Type Inlet Nozzle for Continuous Casting | |
JP3460185B2 (en) | Immersion nozzle for casting | |
JP6630157B2 (en) | Immersion nozzle | |
JP3826034B2 (en) | Drift prevention immersion nozzle and sliding nozzle device | |
JPH08164450A (en) | Nozzle for continuously casting wide and thin cast slab | |
CN108495727A (en) | Continuous casting sprue with baffle | |
JP6187234B2 (en) | Heterogeneous glass discharge device | |
JP2001347348A (en) | Immersion nozzle for continuous casting | |
JPH11314142A (en) | Nozzle for continuous casting | |
RU2490092C2 (en) | Submersible teeming barrel | |
JP6451466B2 (en) | Capturing device and removal method for non-metallic inclusions in molten metal | |
JP3408319B2 (en) | Nozzle for casting to prevent drift | |
JP6434845B2 (en) | Porous refractory, continuous casting nozzle and continuous casting method | |
JP7332878B2 (en) | Pouring equipment for molten metal | |
JP3548112B2 (en) | Immersion nozzle for continuous casting | |
JP5239554B2 (en) | Immersion nozzle for continuous casting of slabs | |
JP4421136B2 (en) | Continuous casting method | |
KR101701324B1 (en) | Nozzle | |
JP2004082197A (en) | Continuous casting method and sliding nozzle | |
JP3039821B2 (en) | Immersion nozzle for continuous casting and method of pouring molten steel | |
TW202128310A (en) | Tundish nozzle structure and continuous casting method | |
JPS589750A (en) | Immersion nozzle for continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5967755 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |