JP5959209B2 - Internal heat exchanger - Google Patents

Internal heat exchanger Download PDF

Info

Publication number
JP5959209B2
JP5959209B2 JP2012011662A JP2012011662A JP5959209B2 JP 5959209 B2 JP5959209 B2 JP 5959209B2 JP 2012011662 A JP2012011662 A JP 2012011662A JP 2012011662 A JP2012011662 A JP 2012011662A JP 5959209 B2 JP5959209 B2 JP 5959209B2
Authority
JP
Japan
Prior art keywords
pressure side
flat tube
refrigerant
side flat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011662A
Other languages
Japanese (ja)
Other versions
JP2013152032A (en
Inventor
崇雄 大瀧
崇雄 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Heat Exchanger Co Ltd
Original Assignee
Nikkei Heat Exchanger Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Heat Exchanger Co Ltd filed Critical Nikkei Heat Exchanger Co Ltd
Priority to JP2012011662A priority Critical patent/JP5959209B2/en
Publication of JP2013152032A publication Critical patent/JP2013152032A/en
Application granted granted Critical
Publication of JP5959209B2 publication Critical patent/JP5959209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、冷媒を蒸発、圧縮、凝縮、膨張の4行程で循環する冷凍サイクルにおける内部熱交換器に関するものである。   The present invention relates to an internal heat exchanger in a refrigeration cycle in which refrigerant is circulated in four steps of evaporation, compression, condensation, and expansion.

一般に、車両用空調装置の冷媒回路によって例えば二酸化炭素等の冷媒を蒸発、圧縮、凝縮、膨張の4行程で循環する冷凍サイクルが形成されている。この冷媒回路において、高温高圧の冷媒と低温低圧の冷媒とを熱交換する内部熱交換器が使用されている。この内部熱交換器は、凝縮器で凝縮された高温高圧冷媒と、圧縮機に戻される低温低圧冷媒との間で熱交換を行うものである。   In general, a refrigerant circuit of a vehicle air conditioner forms a refrigeration cycle in which a refrigerant such as carbon dioxide is circulated in four steps of evaporation, compression, condensation, and expansion. In this refrigerant circuit, an internal heat exchanger that exchanges heat between a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant is used. This internal heat exchanger performs heat exchange between the high-temperature and high-pressure refrigerant condensed by the condenser and the low-temperature and low-pressure refrigerant returned to the compressor.

従来のこの種の内部熱交換器には、それぞれ冷媒流路を列設した高圧側扁平管と低圧側扁平管とを積層してろう付けしたものが使用されている。また、この種の内部熱交換器において、限られたスペース内で冷媒流路を長くするために、高圧側扁平管と低圧側扁平管をU字型に形成して、高圧側扁平管と低圧側扁平管の冷媒流入口側端部と冷媒流出口側端部をヘッダータンクに接合している(例えば、特許文献1,2参照)。   In this type of conventional internal heat exchanger, a high-pressure side flat tube and a low-pressure side flat tube, each of which has a refrigerant flow path, are laminated and brazed. Further, in this type of internal heat exchanger, in order to lengthen the refrigerant flow path in a limited space, the high-pressure side flat tube and the low-pressure side flat tube are formed in a U shape, The refrigerant inlet side end and the refrigerant outlet side end of the side flat tube are joined to the header tank (see, for example, Patent Documents 1 and 2).

このうち、特許文献1に記載のものにおいては、U字型がヘッダータンク内の冷媒流通方向に対して直角な平面で切った断面が、3つの直線部とこれらを繋ぐ曲線からなる形状に形成されており、高圧側帯板チューブを低圧側帯板チューブの内側に配置して成型されている。   Among these, in the thing of patent document 1, the cross section which the U shape cut | disconnected by the plane orthogonal to the refrigerant | coolant distribution direction in a header tank forms in the shape which consists of a curve which connects these three straight parts. The high-pressure side strip tube is placed inside the low-pressure side strip tube and molded.

また、特許文献2に記載のものにおいては、それぞれ冷媒流路を列設した高圧側の第1流路層と低圧側の第2流路層とをろう付けしたチューブ体をU字状に折り曲げて内部熱交換器を形成している。   Moreover, in the thing of patent document 2, the tube body which brazed the 1st flow path layer of the high voltage | pressure side which respectively arranged the refrigerant flow path and the 2nd flow path layer of the low voltage | pressure side is bent in U shape. To form an internal heat exchanger.

特開2002−340485号公報(請求項4、段落0016,0035、図3)JP 2002-340485 A (Claim 4, paragraphs 0016, 0035, FIG. 3) 特開2002−98486号公報(段落0090、図8)JP 2002-98486 (paragraph 0090, FIG. 8)

しかしながら、特許文献1に記載のU字型の内部熱交換器においては、U字型がヘッダータンク内の冷媒流通方向に対して直角な平面で切った断面が、3つの直線部とこれらを繋ぐ曲線からなる形状に形成されるため、冷媒流路を長くするためには、占有スペースを広くする必要がある。また、冷媒流路が3つの直線部とこれらを繋ぐ曲線からなるため、冷媒の圧力損失が生じる虞ある。   However, in the U-shaped internal heat exchanger described in Patent Document 1, a cross section in which the U-shape is cut by a plane perpendicular to the refrigerant flow direction in the header tank connects the three straight portions to each other. Since it is formed in a curved shape, it is necessary to widen the occupied space in order to lengthen the refrigerant flow path. Moreover, since the refrigerant flow path is composed of three straight portions and a curve connecting them, there is a risk of refrigerant pressure loss.

また、特許文献2に記載のU字状の内部熱交換器においては、特許文献1に記載のものに比べて曲線部が少ないため、冷媒の圧力損失を抑制することができる。しかし、特許文献2の熱交換器は、高圧側の第1流路層と低圧側の第2流路層とをろう付けしたチューブ体をU字状に折り曲げて成形するため、曲げ加工により屈曲部に歪みが蓄積され、この歪みが起因して破損や流路変形による圧力損失増大が生じる虞がある。   In addition, the U-shaped internal heat exchanger described in Patent Document 2 has a curvilinear portion smaller than that described in Patent Document 1, so that pressure loss of the refrigerant can be suppressed. However, the heat exchanger of Patent Document 2 is bent by bending because a tube body in which the first flow path layer on the high pressure side and the second flow path layer on the low pressure side are brazed is formed into a U shape. There is a possibility that distortion is accumulated in the portion, and this distortion causes an increase in pressure loss due to breakage or flow path deformation.

この発明は上記事情に鑑みてなされたもので、圧力損失を抑制した小型で熱交換効率の優れた内部熱交換器を提供する。   The present invention has been made in view of the above circumstances, and provides a small-sized internal heat exchanger excellent in heat exchange efficiency with suppressed pressure loss.

上記課題を達成するために、この発明の内部熱交換器は、冷媒が蒸発、圧縮、凝縮、膨張の4行程で循環する冷凍サイクルに用いられ、高圧側の冷媒流路を列設した高圧側扁平管と、低圧側の冷媒流路を列設した低圧側扁平管と、を具備する内部熱交換器であって、 上記高圧側扁平管はU字状に屈曲されると共に、両端側の冷媒流入口側端部及び冷媒流出側端部が共に同一方向に円弧部を介して直状に傾斜して設けられ、上記低圧側扁平管はU字状に屈曲されると共に、両端側の冷媒流入口側端部及び冷媒流出側端部が反対方向に円弧部を介して直状に傾斜して設けられ、上記高圧側扁平管が上記低圧側扁平管に対して内側に配置され、上記高圧側扁平管及び低圧側扁平管のそれぞれの冷媒流入口側端部及び冷媒流出口側端部がヘッダーパイプに設けられたスリットを介してヘッダーパイプ内に挿入され、上記高圧側扁平管の冷媒流入口側端部に接続されるヘッダーパイプと、上記低圧側扁平管の冷媒流出口側端部に接続されるヘッダーパイプが、略同一線上に位置して膨張弁に取付可能なコネクタによって連結され、上記高圧側扁平管の冷媒流出口側端部に接続されるヘッダーパイプと、上記低圧側扁平管の冷媒流入口側端部に接続されるヘッダーパイプが、略同一線上に位置して膨張弁に取付可能なコネクタによって連結され、上記高圧側扁平管、低圧側扁平管ヘッダーパイプ及びコネクタがろう材を介して一体接合されてなり、上記高圧側扁平管及び低圧側扁平管の冷媒流入口側端部の上記ヘッダーパイプ内への差し込み量が、ヘッダーパイプの内径の15%〜35%であり、上記高圧側扁平管及び低圧側扁平管の厚さが8mm以下で、かつ、上記扁平管の厚さと幅の比が、1:4〜1:6であり、上記高圧側扁平管の屈曲半径(R)、上記高圧側扁平管の厚さ(t1)及び上記低圧側扁平管の厚さ(t2)との関係が、2.5≦R/(t1+t2)/2≦4.5、かつ、1≦t2/t1≦3/2である、ことを特徴とする(請求項1)。 In order to achieve the above object, an internal heat exchanger according to the present invention is used in a refrigeration cycle in which refrigerant circulates in four strokes of evaporation, compression, condensation, and expansion, and a high-pressure side in which high-pressure side refrigerant flow paths are arranged. An internal heat exchanger comprising a flat tube and a low-pressure side flat tube in which low-pressure side refrigerant flow paths are arranged, wherein the high-pressure side flat tube is bent in a U shape and has refrigerant on both ends. Both the inlet side end and the refrigerant outlet side end are provided in the same direction so as to incline in a straight line through the arc portion, the low-pressure side flat tube is bent in a U shape, and the refrigerant flow at both ends is provided. An inlet side end and a refrigerant outflow side end are provided to be inclined in a straight line in opposite directions via an arc portion, and the high pressure side flat tube is disposed inside the low pressure side flat tube, and the high pressure side each refrigerant flow inlet end and a coolant outlet side end header pie flat tube and the low-flat tube Through the slits provided in the inserted in the header pipe, the header pipe being connected to the coolant inlet side end portion of the high-pressure side flat tubes, are connected to the refrigerant flow outlet side end portion of the low-pressure side flat tubes A header pipe connected to a refrigerant outlet side end of the high-pressure side flat tube and a refrigerant of the low-pressure side flat tube A header pipe connected to the end on the inlet side is connected by a connector that is positioned substantially on the same line and can be attached to the expansion valve. The high pressure side flat tube, the low pressure side flat tube , the header pipe, and the connector are made of brazing material. it is integrally joined via, the amount insertion into the header pipe of the refrigerant inlet port side end portion of the high pressure side flat tubes and the low-pressure side flat tubes, der 15% to 35% of the inner diameter of the header pipe The thickness of the high-pressure side flat tube and the low-pressure side flat tube is 8 mm or less, and the ratio of the thickness and width of the flat tube is 1: 4 to 1: 6, and the bending radius of the high-pressure side flat tube is (R), the relationship between the thickness (t1) of the high-pressure side flat tube and the thickness (t2) of the low-pressure side flat tube is 2.5 ≦ R / (t1 + t2) /2≦4.5, and 1 ≦ t2 / t1 ≦ 3/2 (Claim 1).

このように構成することにより、高圧側扁平管及び低圧側扁平管は予めU字状に屈曲され、曲げ加工によって屈曲部に歪みが蓄積されるが、予めU字状に屈曲された高圧側扁平管及び低圧側扁平管をろう付けする際の加熱による焼鈍効果により歪みが除去される。   With this configuration, the high-pressure side flat tube and the low-pressure side flat tube are bent in a U shape in advance, and distortion is accumulated in the bent portion by bending, but the high pressure side flat tube bent in the U shape in advance. Distortion is removed by the annealing effect by heating when brazing the tube and the low-pressure side flat tube.

この発明において、上記差し込み量が、ヘッダーパイプの内径の15%より少ないと、扁平管の冷媒流路にろう材が流れ込んで目詰まりが生じる。また、差し込み量が、ヘッダーパイプの内径の35%より大きいと、ヘッダーパイプから扁平管へ流入する部分では冷媒が乱流を起こして圧力損失が増大し、その圧力損失が、一般的な円形管によって生じる圧力損失を超えて増大する。 The present invention smell Te, the insertion amount is less than 15% of the inner diameter of the header pipe, clogging flows are braze the refrigerant flow path of the flat tube. Also, if the insertion amount is larger than 35% of the inner diameter of the header pipe, the refrigerant turbulently flows at the portion flowing from the header pipe to the flat pipe, and the pressure loss increases. Increases beyond the pressure loss caused by.

請求項記載の発明によれば、扁平管の冷媒流路にろう材が流れ込んで目詰まりを生じることが無く、また、ヘッダーパイプから扁平管へ流入する部分の冷媒の乱流を抑制することができる。 According to the first aspect of the present invention, the brazing material does not flow into the refrigerant flow path of the flat tube and clogging occurs, and the turbulent flow of the refrigerant flowing into the flat tube from the header pipe is suppressed. Can do.

また、この発明において、高圧側扁平管及び低圧側扁平管の厚さが8mmを超えると、高圧側及び低圧側扁平管同士が接触する面から離れた位置に存在する冷媒が雰囲気温度と熱交換する等外乱が大きくなり、目標通りの熱交換性能を得ることが難しくなり、性能のバラツキが大きくなる。また、扁平管の厚さが幅の4倍より近いと外乱が大きくなって性能のバラツキが大きくなる。扁平管の厚さが幅の6倍より遠くなると、扁平管の各流路への冷媒の分流が上手くいかずに特定の流路に冷媒が集中し熱交換能力が下がる。 In the present invention, when the thickness of the high-pressure side flat tube and the low-pressure side flat tube exceeds 8 mm, the refrigerant present at a position away from the surface where the high-pressure side and low-pressure side flat tubes contact each other is exchanged with the ambient temperature. As a result, it becomes difficult to obtain the desired heat exchange performance, resulting in a large variation in performance. On the other hand, when the thickness of the flat tube is closer than 4 times the width, the disturbance becomes large and the variation in performance increases. When the thickness of the flat tube is more than 6 times the width, the refrigerant does not flow properly to each flow channel of the flat tube, and the refrigerant concentrates in a specific flow channel and the heat exchange capability decreases.

請求項記載の発明によれば、熱交換性能のバラツキを抑制し、熱交換性能を安定させることができる。 According to invention of Claim 1, the variation in heat exchange performance can be suppressed, and heat exchange performance can be stabilized.

また、この発明において、高圧側扁平管の屈曲半径(R)と高圧側扁平管の厚さ(t1)及び低圧側扁平管の厚さ(t2)との比率が2.5より小さい場合、比率が2.5より小さくなるほど扁平管外側の伸び率が高くなり、クラックや流路潰れが生じ圧力損失が増大する。また、上記比率が4.5より大きいと、サイズが巨大化し、加工効率が低下する。 In this invention, when the ratio of the bending radius (R) of the high-pressure side flat tube to the thickness (t1) of the high-pressure side flat tube and the thickness (t2) of the low-pressure side flat tube is less than 2.5, the ratio As the value becomes smaller than 2.5, the elongation rate outside the flat tube increases, cracks and channel collapse occur, and the pressure loss increases. Moreover, when the said ratio is larger than 4.5, size will become huge and processing efficiency will fall.

請求項記載の発明によれば、圧力損失を抑制することができると共に、装置の小型化及び加工効率の向上が図れる。 According to invention of Claim 1, while being able to suppress a pressure loss, size reduction of an apparatus and improvement of processing efficiency can be aimed at.

また、この発明において、上記高圧側扁平管に列設される冷媒流路の面積(A1)と、上記低圧側扁平管に設けられる冷媒流路の面積(A2)とが、1≦A2/A1≦4である方がよい(請求項)。 In the present invention, the area (A1) of the refrigerant flow path arranged in the high-pressure side flat tube and the area (A2) of the refrigerant flow path provided in the low-pressure side flat pipe are 1 ≦ A2 / A1. It is better that ≦ 4 (Claim 2 ).

上記面積比が1未満で低圧側扁平管に設けられる冷媒流路の面積(A2)の方が大きくなってしまうと、同一冷媒質量の流量下で高圧側扁平管を基準にとった時、扁平管を通過しようとする冷媒の体積に対して流路断面積が小さいため、冷媒と扁平管の摩擦が増して圧力損失が増大し冷凍サイクルの効率を低下させる。また、低圧側扁平管を基準にとった時、高圧側扁平管の流路断面積が大きすぎて冷媒が体積膨張した分圧力低下を起こし、結果的に圧力損失を引き起こして冷凍サイクルの効率を低下させる。また、上記面積比が4を超えて高圧側扁平管に列設される冷媒流路の面積(A1)が大きい場合は、上述とは逆のことが起こって冷凍サイクルの効率を低下させる。   When the area ratio is less than 1 and the area (A2) of the refrigerant flow path provided in the low-pressure side flat tube becomes larger, the flatness is obtained when the high-pressure side flat tube is taken as a reference under the same refrigerant mass flow rate. Since the cross-sectional area of the flow path is small with respect to the volume of the refrigerant that is going to pass through the pipe, the friction between the refrigerant and the flat pipe increases, the pressure loss increases, and the efficiency of the refrigeration cycle decreases. Moreover, when the low-pressure side flat tube is taken as a reference, the flow passage cross-sectional area of the high-pressure side flat tube is too large, causing a pressure drop due to the volume expansion of the refrigerant, resulting in a pressure loss and improving the efficiency of the refrigeration cycle. Reduce. Further, when the area ratio exceeds 4 and the area (A1) of the refrigerant flow path arranged in the high pressure side flat tube is large, the reverse of the above occurs and the efficiency of the refrigeration cycle is reduced.

また、この発明において、上記ヘッダーパイプはろう材がクラッドされている方が好ましい(請求項)。これにより、ヘッダーパイプと高圧側及び低圧側扁平管とのろう付けを容易、かつ、確実にすることができる。 Further, in the present invention, the header pipes is better brazing material is clad preferred (claim 3). Thereby, it is possible to easily and reliably braze the header pipe to the high-pressure side and low-pressure side flat tubes.

この発明は、上記のように構成されているので、以下のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1)請求項1記載の発明によれば、高圧側扁平管及び低圧側扁平管は予めU字状に屈曲され、曲げ加工によって屈曲部に歪みが蓄積されるが、予めU字状に屈曲された高圧側扁平管及び低圧側扁平管の冷媒流入口側端部及び冷媒流出口側端部に接続されるヘッダーパイプがコネクタによって連結された状態で一体ろう付けすることができ、ろう付けする際の加熱による焼鈍効果により歪みは除去されるので、耐久性を向上し小型化を図ることができる。
(1) According to the first aspect of the present invention, the high-pressure side flat tube and the low-pressure side flat tube are bent in a U shape in advance, and distortion is accumulated in the bent portion by the bending process. The header pipe connected to the refrigerant inlet side end portion and the refrigerant outlet side end portion of the high pressure side flat tube and the low pressure side flat tube , which are connected by the connector, can be brazed integrally. Since the distortion is removed by the annealing effect due to the heating, durability can be improved and downsizing can be achieved.

(2)また、請求項1記載の発明によれば、扁平管の冷媒流路にろう材が流れ込んで目詰まりを生じることが無く、また、ヘッダーパイプから扁平管へ流入する部分の冷媒の乱流を抑制することができるので、更に冷媒の圧力損失を抑制することができると共に、熱交換効率の向上を図ることができる。 (2) According to the invention described in claim 1 , the brazing material does not flow into the refrigerant flow path of the flat tube and clogging occurs, and the disturbance of the refrigerant flowing into the flat tube from the header pipe Since the flow can be suppressed , the pressure loss of the refrigerant can be further suppressed and the heat exchange efficiency can be improved.

(3)また、請求項1記載の発明によれば、熱交換性能のバラツキを抑制し、熱交換性能を安定させることができるので、更に熱交換効率の向上を図ることができる。 (3) According to the invention described in claim 1 , since the variation in heat exchange performance can be suppressed and the heat exchange performance can be stabilized , the heat exchange efficiency can be further improved.

(4)また、請求項1記載の発明によれば、更に圧力損失を抑制することができると共に、装置の小型化及び加工効率の向上が図れる。 (4) According to the invention described in claim 1 , the pressure loss can be further suppressed, and the apparatus can be downsized and the processing efficiency can be improved.

(5)請求項記載の発明によれば、上記(1)〜(4)に加えて更に内部熱交換器を備えた冷凍サイクルの効率の向上を図ることができる。
(5) According to invention of Claim 2 , in addition to said (1)-(4), the improvement of the efficiency of the refrigerating cycle provided with the internal heat exchanger can be aimed at.

この発明に係る内部熱交換器の配管状態を示す概略構成図である。It is a schematic block diagram which shows the piping state of the internal heat exchanger which concerns on this invention. この発明に係る内部熱交換器の一例を示す正面図である。It is a front view which shows an example of the internal heat exchanger which concerns on this invention. 上記内部熱交換器の平面図である。It is a top view of the said internal heat exchanger. 上記内部熱交換器の右側面図である。It is a right view of the said internal heat exchanger. 図2のI部拡大図(a)及び図2のII部拡大図(b)である。It is the I section enlarged view (a) of FIG. 2, and the II section enlarged view (b) of FIG. この発明における高圧側扁平管と低圧側扁平管の屈曲部を示す拡大正面図である。It is an enlarged front view which shows the bending part of the high voltage | pressure side flat tube and low pressure side flat tube in this invention. 図2のIII−III線に沿う拡大断面図である。It is an expanded sectional view which follows the III-III line of FIG. この発明における高圧側扁平管の拡大断面図(a)及び低圧側扁平管の拡大断面図(b)である。It is an expanded sectional view (a) of a high-pressure side flat tube in this invention, and an expanded sectional view (b) of a low-pressure side flat tube. 上記高圧側扁平管と低圧側扁平管との接合前の状態を示す正面図である。It is a front view which shows the state before joining of the said high voltage | pressure side flat tube and a low voltage | pressure side flat tube. この発明に係る内部熱交換器の配管構造の一例を示す配管図である。It is a piping diagram which shows an example of the piping structure of the internal heat exchanger which concerns on this invention. この発明に係る内部熱交換器の別の配管構造の例を示す配管図である。It is a piping diagram which shows the example of another piping structure of the internal heat exchanger which concerns on this invention.

以下に、この発明に係る内部熱交換器の実施形態を添付図面に基づいて詳細に説明する。ここでは、この発明に係る内部熱交換器を車両用空調装置の冷媒回路に適用した場合について説明する。     Embodiments of an internal heat exchanger according to the present invention will be described below in detail with reference to the accompanying drawings. Here, the case where the internal heat exchanger which concerns on this invention is applied to the refrigerant circuit of a vehicle air conditioner is demonstrated.

車両用空調装置は、低温側の熱を高温側に移動させて冷熱及び温熱を空調に利用するもので、図1に示すように、蒸発器1、圧縮機2、凝縮器3、膨張弁4が配管5によって冷媒を循環可能に接続される一般的な冷凍サイクルに、この発明に係る内部熱交換器6への冷媒の循環が付加されるものである。   The vehicle air conditioner moves the low temperature side heat to the high temperature side and uses the cold heat and heat for air conditioning. As shown in FIG. 1, the evaporator 1, the compressor 2, the condenser 3, and the expansion valve 4 are used. However, the circulation of the refrigerant to the internal heat exchanger 6 according to the present invention is added to a general refrigeration cycle in which the refrigerant is circulated through the pipe 5.

車両用空調装置は、以下のように動作する。すなわち、蒸発器1から帰還された冷媒は、内部熱交換器6を介して圧縮機2に吸引されて高圧圧縮される。次いで、圧縮機2から吐出された冷媒は、凝縮器3に送られる。凝縮器3に送られた冷媒は、外気との間で熱交換されて液化して、内部熱交換器6を介して膨張弁4に至る。次いで、蒸発温度及び流量を電子制御可能な膨張弁4において、冷媒は減圧される。その後、冷媒は蒸発器1に至る。最後に、蒸発器1に供給された液体冷媒は、吸熱して気体冷媒となる。冷媒の吸熱によって蒸発器1を設けた空間が独立して冷却されることになる。そして、冷媒は、蒸発器1から内部熱交換器6を介して圧縮機2に吸引されて帰還して循環運転が繰り返される。   The vehicle air conditioner operates as follows. That is, the refrigerant returned from the evaporator 1 is sucked into the compressor 2 through the internal heat exchanger 6 and compressed at high pressure. Next, the refrigerant discharged from the compressor 2 is sent to the condenser 3. The refrigerant sent to the condenser 3 is liquefied through heat exchange with the outside air, and reaches the expansion valve 4 via the internal heat exchanger 6. Next, the refrigerant is decompressed in the expansion valve 4 in which the evaporation temperature and flow rate can be electronically controlled. Thereafter, the refrigerant reaches the evaporator 1. Finally, the liquid refrigerant supplied to the evaporator 1 absorbs heat and becomes a gaseous refrigerant. The space in which the evaporator 1 is provided is cooled independently by the heat absorption of the refrigerant. And a refrigerant | coolant is attracted | sucked by the compressor 2 via the internal heat exchanger 6 from the evaporator 1, returns, and a circulation driving | operation is repeated.

上記のように、凝縮器3と膨張弁4との間、蒸発器1と圧縮機2との間にこの発明に係る内部熱交換器6が接続されている。内部熱交換器6は上記冷凍サイクルの膨張弁4に流入する高圧側冷媒と圧縮機2に吸引される低圧側冷媒とを熱交換を行うためのものである。ここで、高圧側冷媒とは、凝縮器3の流出側から膨張弁4の流入側を流れる冷媒であり、また、低圧側冷媒とは、蒸発器1の流出側から圧縮機2の流入側を流れる冷媒である。   As described above, the internal heat exchanger 6 according to the present invention is connected between the condenser 3 and the expansion valve 4 and between the evaporator 1 and the compressor 2. The internal heat exchanger 6 is for exchanging heat between the high-pressure refrigerant flowing into the expansion valve 4 of the refrigeration cycle and the low-pressure refrigerant sucked by the compressor 2. Here, the high-pressure side refrigerant is a refrigerant that flows from the outflow side of the condenser 3 to the inflow side of the expansion valve 4, and the low-pressure side refrigerant is that from the outflow side of the evaporator 1 to the inflow side of the compressor 2. It is a flowing refrigerant.

次に、内部熱交換器6について、図2ないし図9を参照して説明する。内部熱交換器6は、図9に示すように、それぞれ予めU字状に屈曲形成された高圧側扁平管10と低圧側扁平管20とを具備し、高圧側扁平管10が低圧側扁平管20に対して内側に配置されると共に、高圧側扁平管10及び低圧側扁平管20のそれぞれの冷媒流入口側端部13,23及び冷媒流出口側端部14,24のうちの少なくとも冷媒流入口側端部13,23がヘッダーパイプ30A〜30Dに設けられたスリット31を介してヘッダーパイプ30A〜30D内に挿入された状態で、これら高圧側扁平管10、低圧側扁平管20及びヘッダーパイプ30A〜30Dをろう付けしてなる。なお、ヘッダーパイプ30A〜30Dには、ろう材がクラッドされているものを用いる方が好ましい。   Next, the internal heat exchanger 6 will be described with reference to FIGS. As shown in FIG. 9, the internal heat exchanger 6 includes a high-pressure side flat tube 10 and a low-pressure side flat tube 20 that are each bent in advance in a U shape, and the high-pressure side flat tube 10 is a low-pressure side flat tube. 20 and at least the refrigerant flow of the refrigerant inlet side end portions 13 and 23 and the refrigerant outlet side end portions 14 and 24 of the high pressure side flat tube 10 and the low pressure side flat tube 20, respectively. In a state where the inlet side end portions 13 and 23 are inserted into the header pipes 30A to 30D through the slits 31 provided in the header pipes 30A to 30D, the high pressure side flat tube 10, the low pressure side flat tube 20, and the header pipe 30A-30D is brazed. In addition, it is more preferable to use what the brazing | wax material is clad for header pipe 30A-30D.

この場合、高圧側扁平管10の冷媒流入口側端部13を接続するヘッダーパイプ30Aと、低圧側扁平管20の冷媒流出口側端部24を接続するヘッダーパイプ30Dが取付孔41を有するアルミニウム合金製のコネクタ40によって垂直方向に配列されている。また、高圧側扁平管10の冷媒流出口側端部14を接続するヘッダーパイプ30Bと、低圧側扁平管20の冷媒流入口側端部23を接続するヘッダーパイプ30Cがコネクタ40によって水平方向に配列されている。   In this case, the header pipe 30A that connects the refrigerant inlet side end 13 of the high-pressure side flat tube 10 and the header pipe 30D that connects the refrigerant outlet side end 24 of the low-pressure flat tube 20 have the mounting holes 41. The alloy connectors 40 are arranged in the vertical direction. A header pipe 30B connecting the refrigerant outlet side end 14 of the high pressure side flat tube 10 and a header pipe 30C connecting the refrigerant inlet side end 23 of the low pressure side flat tube 20 are arranged in the horizontal direction by the connector 40. Has been.

上記高圧側扁平管10と低圧側扁平管20は、それぞれアルミニウム合金製押出形材にて形成されており、高圧側扁平管10は、仕切壁12を介して6個の冷媒流路11が形成され、低圧側扁平管20は、仕切壁22を介して8個の冷媒流路21が形成されている(図7及び図8参照)。なお、高圧側扁平管10の冷媒流路11の内壁面には凹凸細条が設けられている。このように凹凸細条を設けることによって接触面積を広げることができるので、熱伝達の効率を高めることができる。   The high-pressure side flat tube 10 and the low-pressure side flat tube 20 are each formed of an extruded product made of aluminum alloy, and the high-pressure side flat tube 10 is formed with six refrigerant channels 11 via partition walls 12. The low-pressure side flat tube 20 is formed with eight refrigerant channels 21 through partition walls 22 (see FIGS. 7 and 8). In addition, an uneven strip is provided on the inner wall surface of the refrigerant flow path 11 of the high-pressure side flat tube 10. Since the contact area can be increased by providing the uneven strips in this way, the efficiency of heat transfer can be increased.

また、高圧側扁平管10は、U字状に屈曲された両端側の冷媒流入口側端部13と冷媒流出口側端部14は共に同一方向(図において左方向)に円弧部を介して直状に傾斜して設けられており、冷媒流入口側端部13と冷媒流出口側端部14はそれぞれヘッダーパイプ30A,30Bに設けられたスリット31を介してヘッダーパイプ30A,30B内に挿入されている。   Further, the high-pressure side flat tube 10 has a refrigerant inlet side end portion 13 and a refrigerant outlet side end portion 14 both of which are bent in a U-shape, both in the same direction (left direction in the figure) via an arc portion. The refrigerant inlet side end 13 and the refrigerant outlet side end 14 are inserted into the header pipes 30A and 30B through slits 31 provided in the header pipes 30A and 30B, respectively. Has been.

一方、低圧側扁平管20は、U字状に屈曲された両端側の冷媒流入口側端部23と冷媒流出口側端部24は反対方向に円弧部を介して直状に傾斜して設けられており、冷媒流入口側端部23と冷媒流出口側端部24はそれぞれヘッダーパイプ30C,30Dに設けられたスリット31を介してヘッダーパイプ30C,30D内に挿入されている。   On the other hand, in the low-pressure side flat tube 20, the refrigerant inlet side end 23 and the refrigerant outlet side end 24 on both ends bent in a U-shape are provided so as to incline in a straight line through arc portions in opposite directions. The refrigerant inlet side end 23 and the refrigerant outlet side end 24 are inserted into the header pipes 30C and 30D via slits 31 provided in the header pipes 30C and 30D, respectively.

この場合、高圧側扁平管10の冷媒流入口側端部13のヘッダーパイプ30A内の内への差し込み量S1は、ヘッダーパイプ30Aの内径D1の15%〜35%に設定されている(図5(a)参照)。また、低圧側扁平管20の冷媒流入口側端部23のヘッダーパイプ30C内の内への差し込み量S2は、ヘッダーパイプ30Cの内径D2の15%〜35%に設定されている(図5(b)参照)。   In this case, the insertion amount S1 of the refrigerant inlet side end 13 of the high-pressure side flat tube 10 into the header pipe 30A is set to 15% to 35% of the inner diameter D1 of the header pipe 30A (FIG. 5). (See (a)). The insertion amount S2 into the header pipe 30C of the refrigerant inlet side end 23 of the low-pressure side flat tube 20 is set to 15% to 35% of the inner diameter D2 of the header pipe 30C (FIG. 5 ( b)).

上記のように、高圧側扁平管10と低圧側扁平管20の冷媒流入口側端部13,23のヘッダーパイプ30A,30C内への差し込み量S1,S2をヘッダーパイプ30A,30Cの内径D1,D2の15%〜35%に設定する理由は、表1に示す評価実験に基づくものである。   As described above, the insertion amounts S1 and S2 of the refrigerant inlet side end portions 13 and 23 of the high-pressure side flat tube 10 and the low-pressure side flat tube 20 into the header pipes 30A and 30C are used as the inner diameter D1 of the header pipes 30A and 30C. The reason for setting D2 to 15% to 35% is based on the evaluation experiment shown in Table 1.

すなわち、ヘッダーパイプ内径に対する扁平管の差し込み量を10%,15%,20%,25%,30%,35%,40%,50%にし、扁平管の目詰まりの有無(○,×)と同面積円管を基準にした場合の圧力損失の増大の有無(○,×)について調べたところ、表1に示す結果が得られた。なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
In other words, the insertion amount of the flat tube to the inner diameter of the header pipe is 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, and whether the flat tube is clogged (○, ×) When the presence / absence of increase in pressure loss (◯, ×) with the same area circular pipe as a reference was examined, the results shown in Table 1 were obtained. The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記結果より、差し込み量S1,S2が、ヘッダーパイプ30A,30Cの内径D1,D2の15%より少ないと、高圧側及び低圧側扁平管10,20の冷媒流路11,21にろう材が流れ込んで目詰まりが生じる。また、差し込み量S1,S2が、ヘッダーパイプ30A,30Cの内径D1,D2の35%より大きいと、ヘッダーパイプ30A,30Cから高圧側及び低圧側扁平管10,20へ流入する部分では冷媒が乱流を起こして圧力損失が増大し、その圧力損失が、一般的な円形管によって生じる圧力損失を超えて増大することが判った。   From the above results, when the insertion amounts S1, S2 are less than 15% of the inner diameters D1, D2 of the header pipes 30A, 30C, the brazing material flows into the refrigerant channels 11, 21 of the high-pressure side and low-pressure side flat tubes 10, 20. Clogging occurs. Further, when the insertion amounts S1 and S2 are larger than 35% of the inner diameters D1 and D2 of the header pipes 30A and 30C, the refrigerant is disturbed in the portions flowing from the header pipes 30A and 30C to the high-pressure side and low-pressure side flat tubes 10 and 20. It has been found that the flow loss causes an increase in pressure loss that increases beyond the pressure loss caused by a typical circular tube.

また、本実施形態においては、高圧側扁平管10の厚さt1及び低圧側扁平管20の厚さt2が8mm以下で、かつ、両扁平管10,20の厚さt1,t2と幅の比が、1:4〜1:6に設定されている。   In the present embodiment, the thickness t1 of the high-pressure side flat tube 10 and the thickness t2 of the low-pressure side flat tube 20 are 8 mm or less, and the ratio between the thicknesses t1 and t2 of both the flat tubes 10 and 20 and the width. Is set to 1: 4 to 1: 6.

上記のように、高圧側及び低圧側扁平管10,20の厚さt1,t2を8mm以下にし、かつ、両扁平管10,20の厚さt1,t2と幅の比を、1:4〜1:6に設定する理由は、表2、表3に示す評価実験に基づくものである。   As described above, the thicknesses t1 and t2 of the high-pressure side and low-pressure side flat tubes 10 and 20 are set to 8 mm or less, and the ratio of the thicknesses t1 and t2 of both the flat tubes 10 and 20 to the width is 1: 4 to The reason for setting 1: 6 is based on the evaluation experiments shown in Tables 2 and 3.

すなわち、扁平管の厚さを2mm,5mm,7mm,8mm,10mmにした場合の熱交換性能のバラツキを調べたところ、表2に示すような結果が得られた。なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
That is, when the variation of the heat exchange performance when the thickness of the flat tube was 2 mm, 5 mm, 7 mm, 8 mm, and 10 mm was examined, the results shown in Table 2 were obtained. The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記結果より、扁平管10,20の厚さが8mmを超えた10mmであると、高圧側及び低圧側扁平管同士が接触する面から離れた位置に存在する冷媒が雰囲気温度と熱交換する等外乱が大きくなり、目標通りの熱交換性能を得ることが難しくなり、性能のバラツキが大きくなることが判った。   From the above results, when the thickness of the flat tubes 10 and 20 is 10 mm exceeding 8 mm, the refrigerant present at a position away from the surface where the high-pressure side and low-pressure side flat tubes contact each other exchanges heat with the ambient temperature. It was found that the disturbance became large, it was difficult to obtain the heat exchange performance as intended, and the variation in performance became large.

次に、扁平管10,20の厚さt1,t2と幅の比を、1:3,1:4,1:5,1:6,1:6,1:8にした場合の熱交換性能のバラツキを調べたところ、表3に示すような結果が得られた。なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
Next, the heat exchange performance when the ratio of thickness t1, t2 and width of the flat tubes 10, 20 is 1: 3, 1: 4, 1: 5, 1: 6, 1: 6, 1: 8. As a result, the results shown in Table 3 were obtained. The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記結果より、扁平管10,20の厚さt1,t2と幅の比が1:4(4倍)より近い1:3であると外乱が大きくなって性能のバラツキが大きくなることが判った。また、扁平管10,20の厚さt1,t2と幅の比が1:6(6倍)より遠い1:7や1:8になると、扁平管10,20の各流路への冷媒の分流が上手くいかずに特定の流路に冷媒が集中し熱交換能力が下がることが判った。   From the above results, it was found that when the ratio of the thicknesses t1 and t2 of the flat tubes 10 and 20 to the width is 1: 3 which is closer to 1: 4 (4 times), the disturbance is increased and the variation in performance is increased. . Further, when the ratio of the thicknesses t1 and t2 of the flat tubes 10 and 20 to the width is 1: 7 or 1: 8 far from 1: 6 (six times), the refrigerant flows into each flow path of the flat tubes 10 and 20. It was found that the refrigerant flow concentrated in a specific flow path and the heat exchange capacity was lowered without a good flow split.

また、図6に示すように、高圧側扁平管10の屈曲半径をRとし、高圧側扁平管10の厚さt1及び低圧側扁平管の厚さt2との関係で、扁平管の破損の有無(○、×)と加工効率やサイズの評価実験を行ったところ、表4,表5に示すような結果が得られた。   In addition, as shown in FIG. 6, the bending radius of the high-pressure side flat tube 10 is R, and whether the flat tube is broken or not in relation to the thickness t1 of the high-pressure side flat tube 10 and the thickness t2 of the low-pressure side flat tube. When (○, ×) and an evaluation experiment on processing efficiency and size were performed, the results shown in Tables 4 and 5 were obtained.

すなわち、R/(t1+t2)/2が1,2,2.5,3,4,4.5,5,6の場合について扁平管の破損の有無(○、×)と加工効率・サイズの可否(○、×)について評価実験を行ったところ、表4に示すような結果が得られた。なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
That is, whether R / (t1 + t2) / 2 is 1, 2, 2.5, 3, 4, 4.5, 5, 6 or not (◯, x) and whether or not the processing efficiency and size are acceptable. When an evaluation experiment was performed on (◯, ×), the results shown in Table 4 were obtained. The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記結果より、高圧側扁平管の屈曲半径Rと高圧側扁平管10の厚さt1及び低圧側扁平管20の厚さt2との比率が2.5より小さい場合、比率が2.5より小さくなるほど扁平管外側の伸び率が高くなり、クラックや流路潰れが生じ圧力損失が増大することが判った。また、上記比率を4.5より大きくすると、加工が容易な形状となるが、サイズが巨大化する。また、所定の熱交換率で曲げRを大きくすると、ヘッダーパイプ分岐のための曲げ加工が困難性を増し加工効率が低下することが判った。   From the above results, when the ratio of the bending radius R of the high-pressure side flat tube to the thickness t1 of the high-pressure side flat tube 10 and the thickness t2 of the low-pressure side flat tube 20 is smaller than 2.5, the ratio is smaller than 2.5. It has been found that the elongation rate outside the flat tube becomes higher, causing cracks and channel collapse and increasing the pressure loss. Further, when the ratio is larger than 4.5, the shape becomes easy to process, but the size becomes enormous. Further, it was found that when the bending R is increased at a predetermined heat exchange rate, bending for branching the header pipe becomes more difficult and the processing efficiency is lowered.

次に、t2/t1が0.5,1,1.5,2,3の場合について高圧側扁平管10(厚さt1)と低圧側扁平管20(厚さt2)の破損の有無(○、×)について評価実験を行ったところ、表5に示すような結果が得られた。なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
Next, in the case where t2 / t1 is 0.5, 1, 1.5, 2, 3, whether the high-pressure side flat tube 10 (thickness t1) and the low-pressure side flat tube 20 (thickness t2) are damaged (◯ , X) When an evaluation experiment was conducted, results shown in Table 5 were obtained. The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記評価実験の結果、高圧側扁平管10の屈曲半径R、高圧側扁平管10の厚さt1及び低圧側扁平管の厚さt2との関係は、2.5≦R/(t1+t2)/2≦4.5、かつ、1≦t2/t1≦3/2である、ことが好ましいことが判った。   As a result of the evaluation experiment, the relationship among the bending radius R of the high-pressure side flat tube 10, the thickness t1 of the high-pressure side flat tube 10 and the thickness t2 of the low-pressure side flat tube 10 is 2.5 ≦ R / (t1 + t2) / 2. It was found that ≦ 4.5 and 1 ≦ t2 / t1 ≦ 3/2 are preferable.

また、高圧側扁平管10に列設される冷媒流路11の面積(A1)と、低圧側扁平管20に設けられる冷媒流路21の面積(A2)との関係で、圧力損失の有無(○、×)を調べたところ、表6に示すような結果が得られた。   Further, the presence / absence of pressure loss (in relation to the area (A1) of the refrigerant flow path 11 arranged in the high pressure side flat tube 10 and the area (A2) of the refrigerant flow path 21 provided in the low pressure side flat tube 20) The results shown in Table 6 were obtained when ◯ and X) were examined.

すなわち、高圧側扁平管10に列設される冷媒流路11の面積(A1)と、低圧側扁平管20に設けられる冷媒流路21の面積(A2)との面積比(A2/A1)が、0.5,1,1.5,2,2.5,3,3.5,4,5の場合についての圧力損失の有無(○、×)の評価実験を行ったところ、表6に示すような結果が得られた。   That is, the area ratio (A2 / A1) of the area (A1) of the refrigerant flow path 11 arranged in the high pressure side flat tube 10 and the area (A2) of the refrigerant flow path 21 provided in the low pressure side flat pipe 20 is , 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 5 were evaluated for the presence or absence of pressure loss (O, X). The results shown were obtained.

なお、実験では、車両時速10Km/hr相当の条件で行った。

Figure 0005959209
The experiment was performed under conditions equivalent to a vehicle speed of 10 km / hr.
Figure 0005959209

上記評価実験の結果、上記面積比(A2/A1)が1よりも小さい0.5の場合と、上記面積比(A2/A1)が4よりも大きい5の場合において、圧力損失が生じることが判った。すなわち、上記面積比(A2/A1)が1よりも小さいと、同一冷媒質量の流量下で高圧側扁平管10を基準にとった時、扁平管10,20を通過しようとする冷媒の体積に対して流路断面積が小さいため、冷媒と扁平管10,20の摩擦が増して圧力損失が増大し熱交換効率を低下させる。また、低圧側扁平管20を基準にとった時、高圧側扁平管10の流路断面積が大きすぎて冷媒が体積膨張した分圧力低下を起こし、結果的に圧力損失を引き起こして熱交換効率を低下させる。また、上記面積比(A2/A1)が4を超えて大きい場合は、上述とは逆のことが起こって熱交換効率を低下させることが判った。よって、1≦A2/A1≦4である方が好ましい。   As a result of the evaluation experiment, pressure loss may occur when the area ratio (A2 / A1) is 0.5 smaller than 1 and when the area ratio (A2 / A1) is 5 larger than 4. understood. That is, when the area ratio (A2 / A1) is smaller than 1, the volume of the refrigerant that is about to pass through the flat tubes 10 and 20 when the high-pressure side flat tube 10 is taken as a reference under the flow rate of the same refrigerant mass. On the other hand, since the flow path cross-sectional area is small, the friction between the refrigerant and the flat tubes 10 and 20 increases, the pressure loss increases, and the heat exchange efficiency decreases. Further, when the low-pressure side flat tube 20 is taken as a reference, the flow passage cross-sectional area of the high-pressure side flat tube 10 is too large, causing a pressure drop due to the volume expansion of the refrigerant, resulting in a pressure loss and heat exchange efficiency. Reduce. Moreover, when the said area ratio (A2 / A1) exceeded 4 and it was large, it turned out that the reverse of the above-mentioned happen and heat exchange efficiency falls. Therefore, it is preferable that 1 ≦ A2 / A1 ≦ 4.

上記実施形態の内部熱交換器6を作製するには、まず、図9に示すように、高圧側扁平管10と低圧側扁平管20を別々に屈曲してU字状に曲げ加工すると共に、高圧側扁平管10と低圧側扁平管20の両端部を上述のように傾斜状に屈曲して冷媒流入口側端部13,23と冷媒流出口側端部14,24を加工する。この場合、高圧側扁平管10と低圧側扁平管20を曲げ加工する方法として、例えばロールベンダーの方法がある。ロールベンダーとは、3本のロールを三角形に配置し、その間を通過する高圧側扁平管10又は低圧側扁平管20にロールを圧下、回転させることで連続的に曲げを与える方法である。   In order to produce the internal heat exchanger 6 of the above embodiment, first, as shown in FIG. 9, the high-pressure side flat tube 10 and the low-pressure side flat tube 20 are separately bent and bent into a U shape, Both ends of the high-pressure side flat tube 10 and the low-pressure side flat tube 20 are bent as described above to process the refrigerant inlet side end portions 13 and 23 and the refrigerant outlet side end portions 14 and 24. In this case, as a method of bending the high-pressure side flat tube 10 and the low-pressure side flat tube 20, for example, there is a roll bender method. The roll bender is a method in which three rolls are arranged in a triangle, and the high pressure side flat tube 10 or the low pressure side flat tube 20 passing between the rolls is continuously pressed and rotated to bend.

次に、図9に示すように、上記のようにしてU字状に曲げ加工された高圧側扁平管10を低圧側扁平管20に対して内側に配置する。そして、高圧側扁平管10の冷媒流入口側端部13をヘッダーパイプ30Aに設けられたスリット31を介してヘッダーパイプ30A内に挿入し、高圧側扁平管10の冷媒流出口側端部14をヘッダーパイプ30Bに設けられたスリット31を介してヘッダーパイプ30B内に挿入する。この際、高圧側扁平管10の冷媒流入口側端部13のヘッダーパイプ30A内への差し込み量S1は、ヘッダーパイプ30Aの内径D1の15%〜35%に設定される(図5(a)参照)。   Next, as shown in FIG. 9, the high-pressure side flat tube 10 bent into a U shape as described above is disposed inside the low-pressure side flat tube 20. Then, the refrigerant inlet side end 13 of the high pressure side flat tube 10 is inserted into the header pipe 30A through the slit 31 provided in the header pipe 30A, and the refrigerant outlet side end 14 of the high pressure side flat tube 10 is inserted. It inserts into the header pipe 30B through the slit 31 provided in the header pipe 30B. At this time, the insertion amount S1 of the refrigerant inlet side end 13 of the high pressure side flat tube 10 into the header pipe 30A is set to 15% to 35% of the inner diameter D1 of the header pipe 30A (FIG. 5A). reference).

また、低圧側扁平管20の冷媒流入口側端部23をヘッダーパイプ30Cに設けられたスリット31を介してヘッダーパイプ30C内に挿入し、低圧側扁平管20の冷媒流出口側端部24をヘッダーパイプ30Dに設けられたスリット31を介してヘッダーパイプ30D内に挿入する。この際、低圧側扁平管20の冷媒流入口側端部23のヘッダーパイプ30C内の内への差し込み量S2は、ヘッダーパイプ30Cの内径D2の15%〜35%に設定される(図5(b)参照)。   Further, the refrigerant inlet side end portion 23 of the low pressure side flat tube 20 is inserted into the header pipe 30C through the slit 31 provided in the header pipe 30C, and the refrigerant outlet side end portion 24 of the low pressure side flat tube 20 is inserted. It inserts in header pipe 30D through the slit 31 provided in header pipe 30D. At this time, the insertion amount S2 into the header pipe 30C of the refrigerant inlet side end 23 of the low pressure side flat tube 20 is set to 15% to 35% of the inner diameter D2 of the header pipe 30C (FIG. 5 ( b)).

次に、コネクタ40によってヘッダーパイプ30Aと30Dを連結し、コネクタ40によってヘッダーパイプ30Bと30Cを連結した状態で、図示しない炉内に搬入して所定の温度で加熱して高圧側扁平管10,低圧側扁平管20及びヘッダーパイプ30A,30B,30C,30Dを一体ろう付けして内部熱交換器6を作製する。   Next, in a state where the header pipes 30A and 30D are connected by the connector 40 and the header pipes 30B and 30C are connected by the connector 40, the header pipes 30B and 30C are carried into a furnace (not shown) and heated at a predetermined temperature. The internal heat exchanger 6 is manufactured by brazing the low-pressure side flat tube 20 and the header pipes 30A, 30B, 30C, and 30D together.

上記実施形態の熱交換器によれば、高圧側扁平管10及び低圧側扁平管20は予めU字状に屈曲され、曲げ加工によって屈曲部に歪みが蓄積されるが、予めU字状に屈曲された高圧側扁平管10及び低圧側扁平管20をろう付けする際の加熱による焼鈍効果により歪みが除去される。したがって、扁平管10,20を流れる冷媒の圧力損失を抑制することができ、小型で熱交換効率の向上を図ることができる。また、ヘッダーパイプ30A,30B,30C,30Dは、ろう材がクラッドされているので、ろう付けを容易、かつ、確実にすることができる。   According to the heat exchanger of the above-described embodiment, the high-pressure side flat tube 10 and the low-pressure side flat tube 20 are bent in a U shape in advance, and distortion is accumulated in the bent portion by bending, but the bent in a U shape in advance. The distortion is removed by the annealing effect by heating when brazing the high-pressure side flat tube 10 and the low-pressure side flat tube 20. Therefore, the pressure loss of the refrigerant flowing through the flat tubes 10 and 20 can be suppressed, and the heat exchange efficiency can be improved with a small size. In addition, since the brazing material is clad in the header pipes 30A, 30B, 30C, and 30D, brazing can be easily and reliably performed.

また、少なくとも高圧側扁平管10及び低圧側扁平管20の冷媒流入口側端部13,23のヘッダーパイプ30A,30C内への差し込み量S1,S2は、ヘッダーパイプ30A,30Cの内径D1,D2の15%〜35%に設定されているので、扁平管10,20の冷媒流路11,21にろう材が流れ込んで目詰まりを生じることが無く、また、ヘッダーパイプ30A,30Cから扁平管10,20へ流入する部分の冷媒の乱流を抑制することができる。   The insertion amounts S1 and S2 of the refrigerant inlet side end portions 13 and 23 of at least the high-pressure side flat tube 10 and the low-pressure side flat tube 20 into the header pipes 30A and 30C are the inner diameters D1 and D2 of the header pipes 30A and 30C. Therefore, the brazing material does not flow into the refrigerant flow paths 11 and 21 of the flat tubes 10 and 20 and clogging occurs. Further, the flat tubes 10 are supplied from the header pipes 30A and 30C. , 20 can suppress the turbulent flow of the refrigerant flowing into the part.

なお、上記実施形態では、高圧側扁平管10及び低圧側扁平管20の冷媒流入口側端部13,23及び冷媒流出口側端部14,24をヘッダーパイプ30A〜30Dに設けられたスリット31を介してヘッダーパイプ30A〜30D内に挿入して接合する場合について説明したが、少なくとも高圧側扁平管10及び低圧側扁平管20の冷媒流入口側端部13,23をヘッダーパイプ30A,30Cに設けられたスリット31を介してヘッダーパイプ30A,30C内に挿入し、その差し込み量S1,S2が、ヘッダーパイプ30A,30Cの内径D1,D2の15%〜35%に設定されていればよい。   In the above embodiment, the refrigerant inlet side end portions 13 and 23 and the refrigerant outlet side end portions 14 and 24 of the high pressure side flat tube 10 and the low pressure side flat tube 20 are provided in the slits 31 provided in the header pipes 30A to 30D. However, at least the refrigerant inlet side end portions 13 and 23 of the high-pressure side flat tube 10 and the low-pressure side flat tube 20 are connected to the header pipes 30A and 30C. It inserts in header pipe 30A, 30C through the provided slit 31, and insertion amount S1, S2 should just be set to 15%-35% of inner diameter D1, D2 of header pipe 30A, 30C.

また、上記実施形態の内部熱交換器6によれば、高圧側扁平管10の冷媒流入口側端部13を接続するヘッダーパイプ30Aと、低圧側扁平管20の冷媒流出口側端部24を接続するヘッダーパイプ30Dがコネクタ40によって連結され、高圧側扁平管10の冷媒流出口側端部14を接続するヘッダーパイプ30Bと、低圧側扁平管20の冷媒流入口側端部23を接続するヘッダーパイプ30Cがコネクタ40によって連結されているので、取付孔41を介して挿入される取付ねじ(図示せず)によってコネクタ40を膨張弁4に直接取り付けることができる。   Further, according to the internal heat exchanger 6 of the above embodiment, the header pipe 30A connecting the refrigerant inlet side end 13 of the high pressure side flat tube 10 and the refrigerant outlet side end 24 of the low pressure side flat tube 20 are provided. A header pipe 30D to be connected is connected by a connector 40, and a header pipe 30B that connects the refrigerant outlet side end 14 of the high-pressure side flat tube 10 and a header that connects the refrigerant inlet side end 23 of the low-pressure side flat tube 20 are connected. Since the pipe 30C is connected by the connector 40, the connector 40 can be directly attached to the expansion valve 4 by an attachment screw (not shown) inserted through the attachment hole 41.

例えば、図10に示すように、運転室CとエンジンEを搭載するエンジンルームE.Rとの境界に配置される膨張弁4にコネクタ40を介して内部熱交換器6を直接取り付け、運転室Cに配置される蒸発器1と、エンジンルームE.Rに配置される圧縮機2及び凝縮器3とを配管5を介して接続することができ、従来の取付工程と殆ど同じ作業で取り付けることができる。また、配管5を図11に示すように代えることで、異なる車種に対応させることができる。   For example, as shown in FIG. The internal heat exchanger 6 is directly attached to the expansion valve 4 arranged at the boundary with R via a connector 40, the evaporator 1 arranged in the cab C, the engine room E.E. The compressor 2 and the condenser 3 arranged in R can be connected via the pipe 5 and can be attached by almost the same work as the conventional attachment process. Moreover, it can respond to a different vehicle model by replacing the piping 5 as shown in FIG.

1 蒸発器
2 圧縮機
3 凝縮器
4 膨張弁
5 配管
6 内部熱交換器
10 高圧側ヘッダーパイプ
11 冷媒流路
13 冷媒流入口側端部
14 冷媒流出口側端部
20 低圧側ヘッダーパイプ
21 冷媒流路
23 冷媒流入口側端部
24 冷媒流出口側端部
30A〜30D ヘッダーパイプ
31 スリット
40 コネクタ
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Compressor 3 Condenser 4 Expansion valve 5 Piping 6 Internal heat exchanger 10 High pressure side header pipe 11 Refrigerant flow path 13 Refrigerant inlet side end 14 Refrigerant outlet side end 20 Low pressure side header pipe 21 Refrigerant flow Path 23 Refrigerant inlet side end 24 Refrigerant outlet side end 30A to 30D Header pipe 31 Slit 40 Connector

Claims (3)

冷媒が蒸発、圧縮、凝縮、膨張の4行程で循環する冷凍サイクルに用いられ、高圧側の冷媒流路を列設した高圧側扁平管と、低圧側の冷媒流路を列設した低圧側扁平管と、を具備する内部熱交換器であって、
上記高圧側扁平管はU字状に屈曲されると共に、両端側の冷媒流入口側端部及び冷媒流出側端部が共に同一方向に円弧部を介して直状に傾斜して設けられ、
上記低圧側扁平管はU字状に屈曲されると共に、両端側の冷媒流入口側端部及び冷媒流出側端部が反対方向に円弧部を介して直状に傾斜して設けられ、
上記高圧側扁平管が上記低圧側扁平管に対して内側に配置され、上記高圧側扁平管及び低圧側扁平管のそれぞれの冷媒流入口側端部及び冷媒流出口側端部がヘッダーパイプに設けられたスリットを介してヘッダーパイプ内に挿入され、上記高圧側扁平管の冷媒流入口側端部に接続されるヘッダーパイプと、上記低圧側扁平管の冷媒流出口側端部に接続されるヘッダーパイプが、略同一線上に位置して膨張弁に取付可能なコネクタによって連結され、上記高圧側扁平管の冷媒流出口側端部に接続されるヘッダーパイプと、上記低圧側扁平管の冷媒流入口側端部に接続されるヘッダーパイプが、略同一線上に位置して膨張弁に取付可能なコネクタによって連結され、上記高圧側扁平管、低圧側扁平管ヘッダーパイプ及びコネクタがろう材を介して一体接合されてなり、
上記高圧側扁平管及び低圧側扁平管の冷媒流入口側端部の上記ヘッダーパイプ内への差し込み量が、ヘッダーパイプの内径の15%〜35%であり、
上記高圧側扁平管及び低圧側扁平管の厚さが8mm以下で、かつ、上記扁平管の厚さと幅の比が、1:4〜1:6であり、
上記高圧側扁平管の屈曲半径(R)、上記高圧側扁平管の厚さ(t1)及び上記低圧側扁平管の厚さ(t2)との関係が、2.5≦R/(t1+t2)/2≦4.5、かつ、1≦t2/t1≦3/2である、
ことを特徴とする内部熱交換器。
Used in a refrigeration cycle in which the refrigerant circulates in four strokes of evaporation, compression, condensation, and expansion. An internal heat exchanger comprising a tube,
The high-pressure side flat tube is bent in a U shape, and both the refrigerant inlet side end and the refrigerant outlet side end on both ends are provided to be inclined in a straight line through the arc portion in the same direction,
The low-pressure side flat tube is bent in a U-shape, and the refrigerant inlet side end and the refrigerant outlet side end on both ends are provided to be inclined in a straight line through the arc portion in opposite directions,
The high-pressure side flat tubes are disposed inwardly relative to the low-pressure side flat tubes, each of the refrigerant inlet port side end portion of the high pressure side flat tubes and the low-flat tube and the refrigerant flow outlet end is provided in the header pipe A header pipe inserted into the header pipe through the slit and connected to the refrigerant inlet side end of the high-pressure flat tube, and a header connected to the refrigerant outlet side end of the low-pressure flat tube A header pipe connected to a refrigerant outlet side end of the high-pressure side flat tube, and a refrigerant inlet of the low-pressure side flat tube, the pipe being connected by a connector that is positioned substantially on the same line and attachable to the expansion valve header pipe connected to the side end, is connected to the expansion valve located on substantially the same line by attachable connector, the high-pressure side flat tubes, low-pressure side flat tubes, header pipes and connectors of the brazing material through It is integrally joined,
The amount of insertion into the header pipe of the refrigerant inlet side end of the high-pressure side flat tube and the low-pressure side flat tube is 15% to 35% of the inner diameter of the header pipe,
The thickness of the high-pressure side flat tube and the low-pressure side flat tube is 8 mm or less, and the thickness to width ratio of the flat tube is 1: 4 to 1: 6.
The relationship between the bending radius (R) of the high-pressure side flat tube, the thickness (t1) of the high-pressure side flat tube, and the thickness (t2) of the low-pressure side flat tube is 2.5 ≦ R / (t1 + t2) / 2 ≦ 4.5 and 1 ≦ t2 / t1 ≦ 3/2.
An internal heat exchanger characterized by that.
請求項1記載の内部熱交換器において、
上記高圧側扁平管に列設される冷媒流路の面積(A1)と、上記低圧側扁平管に設けられる冷媒流路の面積(A2)とが、1≦A2/A1≦4である、ことを特徴とする内部熱交換器。
The internal heat exchanger according to claim 1,
The area (A1) of the refrigerant flow path arranged in the high-pressure side flat tube and the area (A2) of the refrigerant flow path provided in the low-pressure side flat pipe satisfy 1 ≦ A2 / A1 ≦ 4. Features an internal heat exchanger.
請求項1又は2に記載の内部熱交換器において、
上記ヘッダーパイプはろう材がクラッドされている、ことを特徴とする内部熱交換器。
The internal heat exchanger according to claim 1 or 2,
An internal heat exchanger, wherein the header pipe is clad with a brazing material.
JP2012011662A 2012-01-24 2012-01-24 Internal heat exchanger Active JP5959209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011662A JP5959209B2 (en) 2012-01-24 2012-01-24 Internal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011662A JP5959209B2 (en) 2012-01-24 2012-01-24 Internal heat exchanger

Publications (2)

Publication Number Publication Date
JP2013152032A JP2013152032A (en) 2013-08-08
JP5959209B2 true JP5959209B2 (en) 2016-08-02

Family

ID=49048515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011662A Active JP5959209B2 (en) 2012-01-24 2012-01-24 Internal heat exchanger

Country Status (1)

Country Link
JP (1) JP5959209B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098424A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2003106793A (en) * 2001-09-28 2003-04-09 Zexel Valeo Climate Control Corp Heat exchanger
JP2004125340A (en) * 2002-10-07 2004-04-22 Denso Corp Heat exchanger
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007071426A (en) * 2005-09-06 2007-03-22 Hitachi Ltd Heat pump type water heater and heat exchanger used in the same
JP2007255872A (en) * 2006-03-27 2007-10-04 Japan Climate Systems Corp Heat exchanger for air conditioner
JP4962278B2 (en) * 2007-11-15 2012-06-27 三菱電機株式会社 Heat exchanger and heat pump system
JP2009299932A (en) * 2008-06-10 2009-12-24 Denso Corp Heat exchanger and brazing method of flat tube

Also Published As

Publication number Publication date
JP2013152032A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
US9459053B2 (en) Heat exchanger and air-conditioning apparatus
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
US9651317B2 (en) Heat exchanger and air conditioner
AU2002343716B2 (en) Split fin for a heat exchanger
US20130292098A1 (en) Heat exchanger and air conditioner
US20090084129A1 (en) Heat exchanger and refrigeration cycle apparatus having the same
US20090065183A1 (en) Flat heat transfer tube
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP6089340B2 (en) Finned tube heat exchanger
JP2018066531A (en) Heat exchanger and refrigeration system using the same
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2014134311A (en) Evaporator
JP4760542B2 (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2015059669A (en) Laminated heat exchanger
JP5959209B2 (en) Internal heat exchanger
CN116134282B (en) heat exchanger
WO2021095567A1 (en) Heat transfer pipe and heat exchanger
WO2013051653A1 (en) Heat exchange unit and refrigerating equipment
WO2021095439A1 (en) Heat exchanger
EP3599433B1 (en) Heat source unit for refrigeration apparatus
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP4334311B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5959209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250