JP5958528B2 - Mobile body position measurement system, central processing unit, and question control method used therefor - Google Patents
Mobile body position measurement system, central processing unit, and question control method used therefor Download PDFInfo
- Publication number
- JP5958528B2 JP5958528B2 JP2014500066A JP2014500066A JP5958528B2 JP 5958528 B2 JP5958528 B2 JP 5958528B2 JP 2014500066 A JP2014500066 A JP 2014500066A JP 2014500066 A JP2014500066 A JP 2014500066A JP 5958528 B2 JP5958528 B2 JP 5958528B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- question
- ssr
- mode
- mobile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 74
- 238000000034 method Methods 0.000 title claims description 65
- 238000005259 measurement Methods 0.000 title claims description 33
- 230000005540 biological transmission Effects 0.000 claims description 221
- 238000012544 monitoring process Methods 0.000 claims description 10
- 230000004083 survival effect Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 235000013399 edible fruits Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/91—Radar or analogous systems specially adapted for specific applications for traffic control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/06—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar Systems Or Details Thereof (AREA)
- Traffic Control Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Description
本発明は移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法に関し、特に航空機測定システム(マルチラテレーションシステム)及び当該システムに用いられる送信局の送信制御方法に関する。 The present invention relates to a mobile body position measurement system, a central processing unit, and a question control method used for them, and more particularly to an aircraft measurement system (multilateration system) and a transmission control method for a transmission station used in the system.
マルチラテレーションシステムは、航空機が送信するSSR(SSR:Secondary Surveillance Radar:二次監視レーダ)モードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号を地上の4局以上の受信局で受信し、それらのデータを通信回線を通じて中央処理部に集め、中央処理部にて各受信局の受信時刻から航空機の幾何学的位置を計測するシステムである(例えば、特許文献1参照)。 Multilateration system receives SSR (Secondary Surveillance Radar) mode A / C response, SSR mode S response, acquisition or extended squitter signal transmitted by aircraft at 4 or more receiving stations on the ground The system collects these data in a central processing unit through a communication line, and measures the geometric position of the aircraft from the reception time of each receiving station in the central processing unit (see, for example, Patent Document 1).
ここで、SSRモードAは航空機の識別情報を取得するモードであり、SSRモードCは気圧高度情報を取得するモードであり、SSRモードSは航空機の固有アドレス情報を取得して個別に質問するためのモードある。また、SSRモードA/Cは全ての航空機に対して共通の質問を行う方式であり、SSRモードSは全てあるいは特定の航空機に対して個別に質問、応答を可能としている方式である。 Here, the SSR mode A is a mode for acquiring aircraft identification information, the SSR mode C is a mode for acquiring atmospheric pressure altitude information, and the SSR mode S is for acquiring unique address information of the aircraft and individually asking questions. There are modes. The SSR mode A / C is a method for asking a common question for all aircraft, and the SSR mode S is a method for allowing questions and responses individually for all or specific aircraft.
マルチラテレーションシステムには、送信局を具備する場合もある。この送信局では、SSR装置が行うSSRモードA/C質問及びSSRモードS個別質問と同じ質問を送信することができる。これにより、SSRモードA/C応答のみの航空機の探知を可能とすると同時に、送信時刻をシステム自身が認識することができるため、送信から受信までの往復の時間を検出することができ、能動的マルチラテレーションとして位置測位の精度向上に利用することができる。 The multilateration system may include a transmitting station. In this transmitting station, the same question as the SSR mode A / C question and the SSR mode S individual question performed by the SSR device can be transmitted. As a result, it is possible to detect an aircraft with only an SSR mode A / C response, and at the same time, the system itself can recognize the transmission time. Therefore, it is possible to detect the round trip time from transmission to reception. As multi-lateration, it can be used to improve the accuracy of position measurement.
完全受動型マルチラテレーションシステムでは、空中線として無指向性もしくは広指向性の空中線を使用するため、多数のSSRモードA/C応答を受信してしまい、SSRモードA/C応答が重畳(ガーブル・フルーツ状態)となり、応答信号の解読ができないという問題等が多数発生する。 In a completely passive multilateration system, an omnidirectional or wide-directional antenna is used as an antenna, so that a large number of SSR mode A / C responses are received, and SSR mode A / C responses are superimposed (Garble There are many problems that the response signal cannot be decoded.
また同時に、SSRモードA/C応答を検出するためには、別々に、航空機に対して複数回質問されるモードA質問及びモードC質問に対応する複数回の応答信号を一つにまとめるための相関処理を行うために、既設SSRの送信タイミングと同期をとる必要がある。 At the same time, in order to detect the SSR mode A / C response, a plurality of response signals corresponding to the mode A question and the mode C question that are questioned multiple times with respect to the aircraft are combined into one. In order to perform the correlation process, it is necessary to synchronize with the transmission timing of the existing SSR.
しかしながら、既設SSRと遠隔地に置かれた送受信局とを連接することは、連接するための高額な経費が必要となり、現実的には困難であり、簡易に連接することができない。 However, connecting an existing SSR and a transmission / reception station located at a remote location requires a high cost for the connection, is practically difficult, and cannot be easily connected.
マルチラテレーションシステムが、目標(航空機)に対してモードS個別質問(送信)を行うためには、初期探知により航空機モードSアドレス(固有アドレス情報)の取得が必要であり、初期探知した目標から順番にモードS個別質問を実施する。 In order for the multilateration system to make a mode S individual question (transmission) to the target (aircraft), it is necessary to acquire the aircraft mode S address (unique address information) by the initial detection, and from the initial detected target The mode S individual question is carried out in order.
尚、既設SSR等への電波干渉等の影響を抑えるために、ICAO(International Civil Aviation Organization:国際民間航空機関)が発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。 In order to suppress the influence of radio wave interference on the existing SSR, etc., the International Civil Aviation Convention / 10th Annex (ICAO ANNEX 10 Vol4amendment85) issued by ICAO (International Civil Aviation Organization). 6.3) stipulates that the transponder occupancy should be kept below 2%.
これは、マルチラテレーションシステムの監視空域に多数の航空機が存在した場合において、トランスポンダ占有率を2%以下に抑えるために、監視空域に存在する全ての航空機に対して、必要な情報を得るためのSSRモードS個別質問を実施できない、もしくは必要な情報を取得するのに充分な質問をできない可能性がある。このため、航空管制運用において、マルチラテレーションシステムの信頼性と安全性の低下を招く可能性がある。 This is to obtain necessary information for all aircraft in the monitored airspace in order to keep the transponder occupation ratio to 2% or less when there are many aircraft in the monitored airspace of the multilateration system. There is a possibility that the SSR mode S individual question cannot be executed, or a sufficient question cannot be obtained to obtain necessary information. For this reason, in the air traffic control operation, there is a possibility that the reliability and safety of the multilateration system may be lowered.
上記のマルチラテレーションを用いた技術としては、空港面探知レーダによる空港面監視を、マルチラテレーションの情報を統合することで補完する技術(例えば、特許文献2参照)、受信局で受信される信号のみでモードA応答か、モードC応答かを判別する技術(例えば、特許文献3参照)、GPS(Global Positioning System)衛星から到来する信号に基づいて複数の受信局同士の高精度の時刻同期を行う技術(例えば、特許文献4参照)等がある。 As a technique using the above-described multilateration, a technique that complements airport surface monitoring by an airport surface detection radar by integrating multilateration information (see, for example, Patent Document 2), which is received by a receiving station. A technology for discriminating between a mode A response and a mode C response only by a signal (see, for example, Patent Document 3), high-accuracy time synchronization between a plurality of receiving stations based on a signal arriving from a GPS (Global Positioning System) satellite There is a technique (for example, see Patent Document 4) for performing the above.
上述した本発明に関連する航空機位置測定システムでは、無指向性もしくは広指向性の空中線を使用するマルチラテレーションシステムの場合、監視空域に存在する航空機に対するSSRモードA/C質問に対して多くのSSRモードA/C応答信号を受信するため、重畳(ガーブル・フルーツ状態)が発生し、SSRモードA/C応答信号を送受信局または受信局で解読できないという問題がある。 In the aircraft position measurement system related to the present invention described above, in the case of a multi-lateration system using an omnidirectional or wide directional antenna, many SSR mode A / C queries for aircraft existing in the surveillance airspace are performed. Since the SSR mode A / C response signal is received, superposition (garbled fruit state) occurs, and there is a problem that the SSR mode A / C response signal cannot be decoded by the transmitting / receiving station or the receiving station.
また、本発明に関連する航空機位置測定システムでは、マルチラテレーションシステムの場合、監視対象となる航空機としてはSSRモードS機、SSRモードA/C機の両方であり、ICAO(International Civil Aviation Organization:国際民間航空機関)が発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。 In the aircraft position measurement system related to the present invention, in the case of a multilateration system, aircraft to be monitored are both SSR mode S aircraft and SSR mode A / C aircraft, and ICAO (International Civil Aviation Organization: In the International Civil Aviation Convention issued by the International Civil Aviation Organization, the 10th Annex (ICAO ANNEX 10 Vol4amendment 85 6.6.3) stipulates that the transponder occupancy rate should be 2% or less.
上記のように、マルチラテレーションシステムにおいて送信局を具備する場合、受信した順番から単純に一定時間内(例えば、1秒間隔)に送信を行う送信手順が用いられる。この送信手順では、SSRモードS質問及びSSRモードA/C質問において、前述のICAOのトランスポンダ占有率2%以下という規定を満足させることができない場合が発生する可能性がある。 As described above, when a multi-lateration system includes a transmission station, a transmission procedure is used in which transmission is performed within a fixed time (for example, every one second) from the order of reception. In this transmission procedure, there is a possibility that the SICA mode S question and the SSR mode A / C question may not satisfy the above-mentioned rule that the ICAO transponder occupation ratio is 2% or less.
また、トランスポンダ占有率2%以下を満足させるために単純に送信を制限してしまうと、航空管制上において、マルチラテレーションシステムの信頼性及び安全性を低下させる可能性がある。尚、上記の特許文献1〜4に記載の技術では、マルチラテレーションシステムにおいて送信局を具備する場合に関する技術ではないため、これらの課題を解決することはできない。 Further, if transmission is simply limited to satisfy the transponder occupation ratio of 2% or less, the reliability and safety of the multilateration system may be reduced in air traffic control. Note that the techniques described in Patent Documents 1 to 4 are not related to the case where a multi-lateration system includes a transmission station, and thus cannot solve these problems.
そこで、本発明の目的は上記の問題点を解消し、効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができ、マルチラテレーションシステムの信頼性及び安全性を向上させることができる移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems, and to efficiently detect the SSR mode S response and the SSR mode A / C response, and to improve the reliability and safety of the multilateration system. Another object of the present invention is to provide a mobile body position measurement system, a central processing unit, and a question control method used for them.
本発明による移動体位置測定システムは、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムであって、
前記移動体に質問信号を送信する少なくとも1以上の送受信局を含み、
前記送受信局は、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行い、
前記中央処理部は、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を備えている。A mobile body position measurement system according to the present invention includes a plurality of receiving stations that receive response signals from mobile bodies that exist in a monitoring area, and a position of the mobile body based on reception times of the response signals at the plurality of receiving stations. A mobile unit position measuring system that measures a geometric position of the mobile unit from reception times of the plurality of receiving stations in the central processing unit,
Including at least one transmission / reception station that transmits an interrogation signal to the mobile body;
The transmission / reception station limits the transmission coverage of the interrogation signal to the coverage range of the question and response in the SSR (Secondary Survival Radar) mode A / C in which a common question is asked to all mobile units. , Perform SSR mode S individual questions in a method that allows questions and responses individually,
The central processing unit includes means for controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control.
本発明による中央処理部は、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる中央処理部であって、
前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を備えている。The central processing unit according to the present invention measures the position of the mobile unit based on a plurality of receiving stations that receive response signals from the mobile unit existing in the monitoring area and the reception times of the response signals at the plurality of receiving stations. A central processing unit that is used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit,
At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
Means is provided for controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control.
本発明による質問制御方法は、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる質問制御方法であって、
前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
前記中央処理部が、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行している。The question control method according to the present invention determines a position of the mobile unit based on a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and reception times of the response signals at the plurality of receiving stations. A question processing method used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing section.
At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
The central processing unit executes a process of controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control.
本発明は、上記のような構成及び動作とすることで、効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができるため、マルチラテレーションシステムの信頼性及び安全性を向上させることができるという効果が得られる。 Since the present invention is configured and operated as described above, the SSR mode S response and the SSR mode A / C response can be detected efficiently and reliably, so that the reliability and safety of the multilateration system can be obtained. The effect that can be improved is obtained.
次に、本発明の実施の形態について図面を参照して説明する。まず、本発明による移動体位置測定システムの概要について説明する。本発明による移動体位置測定システムは、航空機位置測定システム[MLAT(Multilateration):マルチラテレーションシステム]に関するものである。航空機位置測定システムでは、航空機や空港内の車両等の移動体の位置を測定することができるが、以下の説明では、移動体を航空機として説明する。 Next, embodiments of the present invention will be described with reference to the drawings. First, an outline of a moving body position measurement system according to the present invention will be described. The moving body position measurement system according to the present invention relates to an aircraft position measurement system [MLAT (Multilatation): multilateration system]. In the aircraft position measurement system, the position of a moving body such as an aircraft or a vehicle in an airport can be measured. In the following description, the moving body is described as an aircraft.
本発明は、航空機位置測定システム(マルチラテレーションシステム)、当該システムに用いられる送受信局の質問制御方式及び質問制御プログラムに係り、特にSSR(Secondary Surveillance Radar:二次監視レーダ)装置から質問された航空機からの応答信号、またはマルチラテレーションシステムから質問された航空機からの応答信号、もしくはSSR捕捉または拡張スキッタ信号を4局以上の受信局または送受信局で受信処理を行い、この受信信号を中央処理部で当該航空機の位置測定を行うマルチラテレーションシステムに関する。 The present invention relates to an aircraft position measurement system (multi-lateration system), a question control method and a question control program of a transmitting / receiving station used in the system, and in particular, interrogated from an SSR (Secondary Surveillance Radar). The response signal from the aircraft, the response signal from the aircraft queried from the multilateration system, or the SSR acquisition or extended squitter signal is received at four or more receiving stations or transmitting / receiving stations, and this received signal is centrally processed. The present invention relates to a multi-lateration system that measures the position of the aircraft in the department.
本発明は、上記のマルチラテレーションシステムにおいて、監視空域に存在する航空機に対するSSRモードA/C機を確実に検出するためのSSRモードA/C機検出方式、送信制御方式及びプログラムを提供するものである。尚、SSRモードA/C、SSRモードSについては、上述した本発明に関連する航空機位置測定システムについての説明と同様である。 The present invention provides an SSR mode A / C machine detection method, a transmission control method, and a program for reliably detecting an SSR mode A / C machine for an aircraft existing in a monitored airspace in the multilateration system described above. It is. In addition, about SSR mode A / C and SSR mode S, it is the same as that of the description about the aircraft position measuring system relevant to this invention mentioned above.
本発明は、上記の既設SSR装置と遠隔地に置かれた送受信局とを連接することができないという問題を解決するために、ウイスパーシャウト送信方式を利用したSSRモードA/C質問方式を用いることで、簡易にSSRモードA/C機を探知可能とすることができる。 The present invention uses an SSR mode A / C interrogation method using a whisper shout transmission method in order to solve the problem that the existing SSR device cannot be connected to a transmitting / receiving station located at a remote location. Thus, the SSR mode A / C machine can be easily detected.
つまり、本発明は、上記の問題を解決するために、監視対象となっている航空機に対して、ウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理する機能を具備すると同時に、航空管制上において重要度の高い航空機から優先的にSSRモードS個別質問を行う質問制御方式とを提供することにより、航空機の探知を確実に行うことが可能となるため、マルチラテレーションシステムの信頼性と安全性との向上を図ることができる。 In other words, in order to solve the above-mentioned problem, the present invention has a function of processing an SSR mode A / C question and response using a whisper shout transmission method for an aircraft to be monitored. By providing a question control method that makes SSR mode S individual questions preferentially from aircraft with high importance in air traffic control, it becomes possible to reliably detect aircraft, Reliability and safety can be improved.
図1は本発明による航空機位置測定システムの構成例を示すブロック図である。図1において、本発明による航空機位置測定システムは、送受信局1−1〜1−5と、中央処理部2とから構成され、送受信局1−1〜1−5と中央処理部2とは、通信回線4−1〜4−5にて接続されている。
FIG. 1 is a block diagram showing a configuration example of an aircraft position measurement system according to the present invention. In FIG. 1, the aircraft position measurement system according to the present invention includes transmission / reception stations 1-1 to 1-5 and a
本発明は、送受信局1−1〜1−5において、質問覆域を本発明の送信制御方式により、SSRモードA/C質問、応答の覆域範囲に制限し、SSRモードA/C応答の重畳(ガーブル・フルーツ状態)の発生を低減して、確実にSSRモードA/C応答を検出解読する方式を提供する。また、本発明は、図5に示す一例のような送信パターンでSSRモードS個別質問をも合わせて行う。 In the present invention, the transmission / reception stations 1-1 to 1-5 limit the question coverage to the coverage range of the SSR mode A / C question and response by the transmission control method of the present invention, and the SSR mode A / C response Provided is a method for reliably detecting and decoding an SSR mode A / C response by reducing the occurrence of superposition (a garbled fruit state). Further, the present invention also performs the SSR mode S individual question with the transmission pattern as shown in FIG.
中央処理部2は、送信制御信号を通信回線4−1〜4−5経由で送受信局1−1〜1−5に送り、監視覆域内で全ての送受信局1−1〜1−5が同時に質問するのではなく、質問に適した送受信局を選択する手段を提供する。
The
また、SSRモードA/C質問は、既存の航空機衝突防止システム(ACAS:Airborne Collision Avoidance System)で実施されているウイスパーシャウト(whisper−shout)送信方式によるSSRモードA/C機に対する質問手段を提供する。 In addition, SSR mode A / C questions provide a means for interrogating SSR mode A / C aircraft using the whisper-shout transmission system implemented in the existing Aircraft Collision Avidity System (ACAS). To do.
送受信局1−1〜1−5は、中央処理部2による送信制御で指定される送受信局の順番で、指定された送信時刻にSSRモードA/C質問7−1〜7−5を行うことにより、確実にSSRモードA/C機を探知する手段を提供する。
The transmitting / receiving stations 1-1 to 1-5 perform SSR mode A / C questions 7-1 to 7-5 at the specified transmission time in the order of the transmitting / receiving stations specified by the transmission control by the
また、SSRモードA/C機についても、上述したICAOのトランスポンダ占有率2%以下の規定を満足させるように送信制御を行う手段を提供する。 Also for the SSR mode A / C machine, a means is provided for performing transmission control so as to satisfy the above ICAO transponder occupation ratio of 2% or less.
これにより、本発明は、マルチラテレーションシステム主導で効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができるため、マルチラテレーションシステムの信頼性及び安全性を向上させることができる。 As a result, the present invention can reliably detect the SSR mode S response and the SSR mode A / C response led by the multi-lateration system, thereby improving the reliability and safety of the multi-lateration system. be able to.
次に、本発明の実施の形態について、図1を参照して説明する。本発明の実施の形態によるマルチラテレーションシステムは、図1に示すように、複数の送受信局1−1〜1−5と、中央処理部2と、通信回線4−1〜4−5とからなる。尚、送受信局1−1〜1−5は、全てを送受信局にする必要はなく、送信局と受信局との組み合わせ、送受信局と送信局と受信局との組み合わせ等も考えられる。
Next, an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the multilateration system according to the embodiment of the present invention includes a plurality of transmission / reception stations 1-1 to 1-5, a
送受信局1−1〜1−5は、GPS(Global Positioning System)衛星6からの時刻同期を用いた同期を行う。また、送受信局1−1〜1−5は、航空機5からのSSRモードA/C応答、モードS応答、捕捉または拡張スキッタ信号7−1〜7−5を無指向性もしくは広指向性の空中線にて受信し、信号解読した後に受信信号の到着した時刻のタイムスタンプを付与して、通信回線4−1〜4−5を用いて中央処理部2に応答データとして送信する。
The transmission / reception stations 1-1 to 1-5 perform synchronization using time synchronization from a GPS (Global Positioning System) satellite 6. Further, the transmitting / receiving stations 1-1 to 1-5 transmit the SSR mode A / C response, the mode S response, the acquisition or the extended squitter signals 7-1 to 7-5 from the
送受信局1−1〜1−5のうちの選択制御されたいずれかの1局は、通信回線4−1〜4−5を経由した中央処理部2からの送信制御信号による送信制御指示でウイスパーシャウト送信方式にてSSRモードA/C質問3−1〜3−5を行い、送受信局1−1〜1−5各々は、このSSRモードA/C質問3−1〜3−5に対するSSRモードA/C応答信号7−1〜7−5の受信処理を行う。
Any one of the transmission / reception stations 1-1 to 1-5, which is selected and controlled, receives whisper in response to a transmission control instruction from the
図2は図1の送受信局1−1〜1−5の構成例を示すブロック図であり、図3は図1の中央処理部2の構成例を示すブロック図である。図2においては、送受信局1−1〜1−5を送受信局1として表記しており、送受信局1−1〜1−5各々は送受信局1と同様の構成となっている。
2 is a block diagram showing a configuration example of the transmission / reception stations 1-1 to 1-5 in FIG. 1, and FIG. 3 is a block diagram showing a configuration example of the
図2において、送受信局1は、GPS空中線8と、GPS受信機9と、空中線10と、受信部11と、送信部20と、信号処理部21とを具備している。送信部20は、サーキュレータ12と、合成器13と、可変減衰器14−1〜14−2と、RFパルス切替スイッチ15と、送信制御器16と、変調パルス発生器17と、電力増幅器18と、発振器19とを備えている。
In FIG. 2, the transmission / reception station 1 includes a
図3において、中央処理部2は、送受信情報収集部22と、目標位置測位部23と、目標情報解析部24と、目標情報生成部25と、送信制御情報生成部26と、目標追尾部27と、目標優先順位判定部28とを具備している。
In FIG. 3, the
送受信局1−1〜1−5は、GPS衛星6からの時刻同期信号を受信するGPS空中線8とGPS受信機9とを有し、離れて設置された各送受信局1−1〜1−5間の時刻同期を行う。
The transmission / reception stations 1-1 to 1-5 each have a
また、無指向性もしくは広指向性の空中線10は、航空機5からのSSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7−1〜7−5の受信及びSSRモードA/C質問3−1〜3−5を行う。
In addition, the omnidirectional or wide-
受信部11は、SSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7−1〜7−5の受信処理を行い、受信ビデオ信号に変換し、信号処理部21に送る。次に、信号処理部21にて信号解読した後、解読データとともに、受信信号が到着した時刻のタイムスタンプを付与し、通信回線4−1〜4−5を用い、中央処理部2に応答データとして送出する。
The receiving
中央処理部2は、上記の応答データを通信部22で受信処理し、その受信した応答データを基に目標位置測位部23にて目標測位を行った後、測位データを基に目標情報解析部24にて応答データ内の情報解析を行う。目標情報生成部25は、目標情報解析部24からの解析データを入力し、外部出力用に目標位置測定情報を編集して外部(例えば、航空管制システム等)に出力する。
The
目標優先順位測定部28は、目標情報解析部24からの解析データを入力し、予め設定されたパラメータに基づいてSSRモードA/C質問を行うべき送受信局を決定するために目標優先順位を決定する。
The target priority
目標追尾部27は、目標位置測位部23からの測位データ及び目標優先順位判定部28からの順位データに基づいて追尾処理を行う。質問制御情報生成部26は、目標位置測位部23からの測位データ、目標追尾部27からの測位予想値、目標優先順位判定部28からの順位データを基にSSRモードA/C質問の送受信局の順番を決定するとともに、送信タイミングのスケジューリングを行い、送信時刻の決定を行う。また、質問制御情報生成部26は、上記の処理と並行して、SSRモードS個別質問の送信タイミングのスケジューリングを行う。尚、質問制御情報生成部26における上記の決定やスケジューリングは、目標追尾部27にて行うことも可能である。
The
質問制御情報生成部26は、上記の決定やスケジューリングの結果から質問制御情報の生成、編集を行い、通信部22、通信回線4−1〜4−5を経由して送受信局1−1〜1−5に、送信タイミングをスケジューリングした質問制御情報を送出する。
The question control
送受信局1−1〜1−5の信号処理部21及び送信部20は、中央処理部2からの質問制御情報に基づき、送信タイミングのスケジューリング通りにウイスパーシャウト送信方式にてSSRモードA/C質問を行う。また、送受信局1−1〜1−5の信号処理部21及び送信部20は、上記の処理と併せて、SSRモードS個別質問も行う。次に、送受信局1−1〜1−5は、この質問に対する応答信号の受信処理を行い、上記の処理を繰り返し行う。
Based on the question control information from the
送信部20は、発振器19にて送信のための高周波励振信号を発生させ、電力増幅器18にてRF送信信号のパルス変調と電力増幅を行い、RFパルス切替スイッチ15にRF送信信号を送り出す。また、送信制御器16は、信号処理部21からの送信制御情報データに基づき、送信時刻にウイスパーシャウト送信によるSSRモードA/C質問に必要な各種信号を生成し、また、SSRモードS個別質問に必要な各種信号を生成した後、可変減衰器14−1〜14−2、RFパルス切替スイッチ15、及び変調パルス発生器17の制御を行う。
The
送受信局1−1〜1−5は、GPS衛星6からの時刻同期信号を用いて同期を行う。GPS衛星6を用いた時刻同期に関しては、特許文献3(特開2010−230448号公報)に記載の技術があり、この技術を用いることで精度良く同期を取ることが可能である。 The transmission / reception stations 1-1 to 1-5 perform synchronization using a time synchronization signal from the GPS satellite 6. Regarding the time synchronization using the GPS satellite 6, there is a technique described in Patent Document 3 (Japanese Patent Laid-Open No. 2010-230448), and it is possible to synchronize with high accuracy by using this technique.
また、送受信局1−1〜1−5は、航空機5からのSSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7−1〜7−5を無指向性もしくは広指向性の空中線10を経由して、その受信信号に対する受信処理、信号解読処理を行った後、受信信号の到着時刻のタイムスタンプを付与し、応答データとして通信回線4−1〜4−5を用いて中央処理部2に送出する。
Further, the transmitting / receiving stations 1-1 to 1-5 transmit the SSR mode A / C response, the SSR mode S response, the capture or the extended squitter signals 7-1 to 7-5 from the
中央処理部2は、通信部22にて上述した応答データの受信処理を行い、目標位置測位部23にて上記の応答データに付与された到着時刻のタイムスタンプから各受信局の到着時刻差(TDOA:Time Difference Of Arrival)を算出し、航空機5の位置測位計算を行う。
The
2つの空中線間のTDOAは、数学的には3次元の双曲面に対応し、航空機の位置はその面上にあることとなる。4台以上の空中線で航空機の信号を検出することができれば、双曲線の交点を計算することで、航空機の位置を3次元で求めることができる。 The TDOA between two antennas mathematically corresponds to a three-dimensional hyperboloid, and the position of the aircraft is on that plane. If an aircraft signal can be detected by four or more antennas, the position of the aircraft can be obtained in three dimensions by calculating the intersection of hyperbolic curves.
目標位置測位部23にて位置測位した航空機5の測位データは、目標情報解析部24と質問制御情報生成部26と目標追尾部27とに送られる。
The positioning data of the
目標情報解析部24は、測位データ内の情報解析を行い、各種目標情報(モードSアドレス、モードAコード、高度、航空機動態情報等)の解析を行う。
The target
目標情報生成部25は、目標情報解析部24からの解析データを入力し、外部出力用に目標位置測定情報を編集して外部(例えば、航空管制システム等)に出力するためのメッセージ生成機能と外部のシステムと連接するための通信プロトコル機能とを有する。
The target
目標優先順位測定部28は、目標情報解析部24からの解析データと目標追尾部27からの測位予想値とを入力し、予め設定された各種パラメータに基づいてSSRモードA/C質問を行うべき送受信局を決定するために目標優先順位と質問(送信)を行う送受信局とを決定する。
The target
目標追尾部27は、目標位置測位部23からの測位データと目標優先順位判定部28からの優先順位が決定された順位データとに基づいて追尾処理を行う。質問制御情報生成部26は、目標優先順位判定部28からの優先順位が決定された順位データを基にSSRモードA/C質問の送受信局の順番を決定するとともに、送信タイミングのスケジューリングを行い、送信時刻の決定を行う。また、質問制御情報生成部26は、上記の処理と並行して、SSRモードS個別質問の送信タイミングのスケジューリングを行う。
The
また、国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)に記載されているトランスポンダ占有率を2%以下に抑えるようにするために、質問制御情報生成部26は、送信タイミング(送信時刻)のスケジューリング計画を実施し、それぞれの航空機に対するSSRモードA/C質問、SSRモードS個別質問の送信時刻の決定を行い、それらを基に生成した質問制御情報を送出する。
In order to keep the transponder occupancy described in the International Civil Aviation Convention / Annex 10 (
図5に送信パターンの一例を示すが、SSRモードA/C質問は、最大探知覆域距離で決定される一定周期の繰り返し周波数で質問を行い、一定周期のSSRモードA/C質問間隔の間にSSRモードS個別質問の送信タイミングのスケジューリングを行う。 FIG. 5 shows an example of a transmission pattern. In the SSR mode A / C question, a question is asked at a repetition frequency of a fixed period determined by the maximum detection coverage distance, and the SSR mode A / C question interval is set at a fixed period. The SSR mode S individual question transmission timing is scheduled.
質問制御情報生成部26は、生成した質問制御情報を通信部22と通信回線4−1〜4−5とを経由して送受信局1−1〜1−5に、送信タイミングがスケジューリングされた質問制御情報を順次送出する。
The question control
送受信局1−1〜1−5は、送受信情報収集部22と通信回線4−1〜4−5とを経由して、送信制御情報生成部26からの質問制御情報を受信すると、その質問制御情報に基づき、送信タイミングのスケジューリング通りにウイスパーシャウト送信方式にてSSRモードA/C質問とSSRモードS個別質問とを行う。次に、送受信局1−1〜1−5は、この質問に対する応答信号の受信処理を受信部11と信号処理部21とで行い、上記の処理を繰り返し行う。
When the transmission / reception stations 1-1 to 1-5 receive the question control information from the transmission control
ウイスパーシャウト送信方式は、図4Aに示す送信波形の4つのパルス(S,P1,P3,P4)を送信するが、SパルスとP1,P3,P4パルス(P1,P3,P4は、送信電力が同じ電力レベルで送信する:以下、Pパルスとする)との送信電力レベル比(WS覆域)を制御することで、図4Bの送信覆域(WS覆域)のリング状の幅(航空機を探知できる範囲)を決定している。 The whisper shout transmission method transmits four pulses (S, P1, P3, P4) of the transmission waveform shown in FIG. 4A. The S pulse and the P1, P3, P4 pulses (P1, P3, P4 have transmission power). By controlling the transmission power level ratio (WS coverage) with the transmission at the same power level (hereinafter referred to as P pulse), the ring-shaped width of the transmission coverage (WS coverage) in FIG. The range that can be detected is determined.
また、送信波形の送信1は、最短近距離覆域の送信波形を示しているが、近距離を探知するため、Sパルスは送信しない。送信波形の送信2、・・・・、送信N−1、送信Nは、SパルスとPパルスとに送信電力の差をつけて送信することで、ウイスパーシャウト送信方式を行う。
Moreover, although transmission 1 of the transmission waveform shows the transmission waveform of the shortest short distance coverage, the S pulse is not transmitted in order to detect the short distance.
送信波形の送信Nは、最大探知覆域の場合を示しているが、送信覆域のリング幅の面積が一番広いため、覆域内に航空機が複数存在する確率が高いため、中央処理部2からの質問制御情報データの制御により、SパルスとPパルスとの送信電力レベル比(WS覆域)を小さく設定する等、質問信号の送信を制御することで、SSRモードA/C応答の重畳状態を回避し、目標検出率の向上を図る制御も行われる。
Transmission N of the transmission waveform shows the case of the maximum detection coverage, but since the ring width area of the transmission coverage is the largest, there is a high probability that there are a plurality of aircraft in the coverage, so the
図4A及び図4Bはウイスパーシャウト送信順番の一例を示しているが、SSRモードA/C質問の基本動作は、近距離覆域の送信1から送信2、・・・・、送信N−1の順番に内側から最大覆域の送信Nの順番を切り返した質問を行う。また、SSRモードA/C質問は、送受信局1−1〜1−5の5局が同時に質問する必要がないため、中央処理部2からの送信制御情報データに基づく制御により、航空機に対して最適な位置関係にある送受信局からSSRモードA/C質問を行う。
4A and 4B show an example of the whisper shout transmission order, but the basic operation of the SSR mode A / C question is from transmission 1 to
例えば、図6は、マルチラテレーションシステムの送受信局の配置の一例を示しているが、この配置例において、図7及び図8に示すような送受信局と航空機との間の距離が一番近い送受信局から質問を実行する送受信局の選択方式や、複数の航空機がWS覆域内に在空する場合等、SSRモードA/C応答の重畳(ガブール・フルーツ)状態を回避するために、航空機の位置がWS覆域円と鉛直方向の送受信局を選択する方式等が考えられる。 For example, FIG. 6 shows an example of the arrangement of the transmission / reception stations of the multilateration system. In this arrangement example, the distance between the transmission / reception stations and the aircraft as shown in FIGS. 7 and 8 is the shortest. In order to avoid the SSR mode A / C response superposition (gabulu fruit) state, such as the selection method of the transmission / reception station that executes the inquiry from the transmission / reception station, or when multiple aircraft are in the WS coverage area, A method of selecting a transmission / reception station whose position is in the vertical direction with respect to the WS covered circle can be considered.
送受信局が2局以上存在する場合において、図7に示すように、送信局の送信覆域が重複している覆域内に存在する航空機に対して質問を行う場合、送受信局A及びBの2局から質問をすると、国際民間航空条約・第10附属書(ANNEX 10)において、トランスポンダ占有率を2%以下に抑える規定を満足できないことが想定される。また、同一航空機に対して送信覆域が重なる2局から質問することは、マルチラテレーションシステムとしては不要である。 When two or more transmission / reception stations exist, as shown in FIG. 7, when an inquiry is made to an aircraft existing in a coverage area where the transmission coverage areas of the transmission stations overlap, 2 of the transmission / reception stations A and B When asked by the Bureau, it is assumed that the provisions for keeping the transponder occupancy rate below 2% in the International Civil Aviation Convention / Annex 10 (ANNEX 10) cannot be satisfied. In addition, it is not necessary for a multi-lateration system to inquire from two stations with overlapping transmission coverage for the same aircraft.
このため、図8に示す「質問を実行する送受信局の選択方式」に記載したように、送受信局A及びBと覆域内の航空機との位置関係から質問する送受信局を選択する方式がある。 For this reason, there is a method of selecting a transmitting / receiving station to be inquired from the positional relationship between the transmitting / receiving stations A and B and the aircraft in the covered area, as described in “Selecting method of transmitting / receiving station to execute question” shown in FIG.
この方式では、図8において、質問を実行する航空機T1〜T3について、航空機T1〜T3各々から送受信局Aまでの距離(y1〜y3)と、航空機T1〜T3各々から送受信局Bまでの距離(x1〜x3)とを比較し、x>yの場合に送受信局Aを選択し、x≦yの場合に送受信局Bを選択する方式である。 In this method, in FIG. 8, for the aircrafts T1 to T3 that execute the questions, the distances (y1 to y3) from each of the aircrafts T1 to T3 to the transmission / reception station A and the distances from the respective aircrafts T1 to T3 to the transmission / reception station B ( x1 to x3), a transmission / reception station A is selected when x> y, and a transmission / reception station B is selected when x ≦ y.
図8において、航空機T1の場合はx1>y1なので送受信局Aを選択し、航空機T2の場合はx2<y2なので送受信局Bを選択し、航空機T3の場合はx3<y3なので送受信局Bを選択することとなる。 In FIG. 8, since the aircraft T1 is x1> y1, the transmission / reception station A is selected. In the case of the aircraft T2, the transmission / reception station B is selected because x2 <y2, and in the case of the aircraft T3, the transmission / reception station B is selected. Will be.
送信部20は、発振器19にて送信のための励振信号を発生させ、電力増幅器18にて、変調パルス発生器17からの制御により、RF送信信号のパルス変調と電力増幅とを行い、RFパルス切替スイッチ15にRF送信パルス信号を送出する。
The
RFパルス切替スイッチ15は、信号処理部21からの送信制御に基づいて送信制御器16の制御を行い、送信制御器16のパルス切り替えゲート信号によりSパルスとP1,P3,P4パルスとを分離して可変減衰器14−1にSパルスを送出し、可変減衰器14−2にP1,P3,P4パルスを送出する。可変減衰器14−1〜14−2は、ウイスパーシャウト送信方式のためにSパルスとPパルスとの送信電力レベルの制御を行う。
The RF pulse change-over
次に、可変減衰器14−1〜14−2の減衰量を決定する制御は、送信制御器16から制御されて決定される。その後に、分離されたSパルスとPパルスとを合成器13にて図4Aに示す送信波形となるように合成し、RF送受信信号を切り替えるサーキュレータ12経由で空中線10に送信RFパルス信号が送られる。
Next, the control for determining the attenuation amount of the variable attenuators 14-1 to 14-2 is controlled by the
また、送信制御器16は、信号処理部21からの送信制御情報データにより、送信時刻にウイスパーシャウト送信に必要な各種信号を生成し、可変減衰器14−1〜14−2、RFパルス切替スイッチ15、及び変調パルス発生器17の制御を行う。
Also, the
SSRモードS個別質問の場合は、RFパルス切替スイッチ15が、可変減衰器14−1のみにRF送信信号を供給するように送信制御器16から制御される。また、可変減衰器14−1は、減衰量が0dBとなるように送信制御器16から制御される。その後に、SSRモードS個別質問のRF送信信号は、合成器13とサーキュレータ12とを経由して空中線10に送られる。
In the case of the SSR mode S individual question, the RF
マルチラテレーションシステムには、次のような問題点がある。
(1)無指向性もしくは広指向性の空中線を使うため、SSRモードA/C機を確実に探知する手法がない。
(2)既設SSR等への電波干渉等の影響を抑えるために、ICAOが発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。これは、マルチラテレーションシステムの監視空域に多数の航空機が存在した場合において、トランスポンダ占有率を2%以下に抑える必要があり、監視空域に存在する全ての航空機に対してSSRモードS個別質問を一定時間内に実施できない可能性がある。このため、航空管制運用において目標検出率が低下する可能性があり、マルチラテレーションシステムの信頼性と安全性との低下を招く可能性がある。The multilateration system has the following problems.
(1) Since a non-directional or wide-directional antenna is used, there is no method for reliably detecting an SSR mode A / C machine.
(2) In order to suppress the effects of radio wave interference on the existing SSR, etc., the transponder occupancy rate is set in the International Civil Aviation Convention / Annex 10 (
本発明の手段を用いたマルチラテレーションシステムにおける効果は、次の6つが考えられる。 The following six effects can be considered in the multilateration system using the means of the present invention.
(1)完全受動型マルチラテレーションシステムの場合、既設SSRの質問タイミングと同期をとる手段がないため、SSRモードA/C応答を確実に検出する方法がないが、上記の送信機能によりSSRモードA/C機能のみの航空機の検出が可能となる。 (1) In the case of a completely passive multilateration system, there is no means for detecting the SSR mode A / C response reliably because there is no means for synchronizing with the query timing of the existing SSR. An aircraft with only the A / C function can be detected.
(2)既設SSR応答を受信した場合(スキッタ機能を具備しない航空機の場合)は、受信データレートが既設SSRのデータレートと同じ1回(受信)/4秒(空港監視レーダの場合)または1回(受信)/10秒(航空路監視レーダの場合)となるため、当該送信機能により1回(受信)/1秒の受信信号を得ることが可能となり、データレートを向上させることができる。 (2) When an existing SSR response is received (in the case of an aircraft not equipped with a squitter function), the received data rate is the same as the data rate of the existing SSR (received) / 4 seconds (in the case of an airport monitoring radar) or 1 Time (reception) / 10 seconds (in the case of airway surveillance radar), it is possible to obtain a reception signal of 1 time (reception) / 1 second by the transmission function, and the data rate can be improved.
(3)電波伝搬の状況により検出率の悪い目標の検出率を向上させることができる。 (3) The detection rate of a target with a low detection rate can be improved according to the situation of radio wave propagation.
(4)航空機内部に登録されている航空機動態情報(選択高度、気圧補正高度、マック数、指示対気高度、真対地速度、ロール角、真トラック角等)を必要な時に、リアルタイムに取得することが可能となる。 (4) Acquire aircraft dynamics information (selected altitude, barometric correction altitude, number of Macs, indicated air altitude, true ground speed, roll angle, true track angle, etc.) registered in the aircraft in real time. It becomes possible.
(5)既設SSRの覆域の下にある進入経路の低高度の航空機を探知することが可能となる。 (5) It is possible to detect low-altitude aircraft on the approach route under the coverage area of the existing SSR.
(6)送信することで、測距機能が可能となるため、完全受動型マルチラテレーションシステムの測位に比べて測位精度を向上させることが可能となる。 (6) Since the distance measurement function can be performed by transmitting, it is possible to improve the positioning accuracy as compared with the positioning of the completely passive multilateration system.
特に、本発明は、前述の送信機能の目的を達成するために、監視対象となっている航空機に対して、ウイスパーシャウト送信方式を用いたSSRモードA/C質問方式を実施することにより、SSRモードA/C機能のみの航空機の探知が可能となる。また、航空管制上において重要度の高い航空機から優先的にSSRモードS個別質問を行う質問制御方式を提供することにより、マルチラテレーションシステムの信頼性と安全性とを向上させることができる。 In particular, the present invention implements the SSR mode A / C interrogation method using the whisper shout transmission method for the aircraft to be monitored in order to achieve the purpose of the transmission function described above. It is possible to detect an aircraft having only the mode A / C function. In addition, the reliability and safety of the multi-lateration system can be improved by providing a question control method in which the SSR mode S individual question is preferentially given from an aircraft having high importance in air traffic control.
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
上記の実施の形態の一部又は全部は、以下の付記のようにも記載され得るが、以下の記載に限定されない。 A part or all of the above embodiment can be described as in the following supplementary notes, but is not limited to the following description.
[付記1]
監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる中央処理部であって、
前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を有し、
前記送受信局に、監視対象となっている移動体に対して、ACAS(Airborne Collision Avoidance System)で実施されているウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理させることを特徴とする中央処理部。[Appendix 1]
It is composed of a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and a central processing unit that measures the position of the mobile unit based on the reception times of the response signals at the plurality of receiving stations. A central processing unit used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit,
At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
Means for controlling the transmitting and receiving stations so as to preferentially perform the SSR mode S individual question from a mobile body having high importance in control;
Causing the transmitting / receiving station to process an SSR mode A / C question and response using a whisper shout transmission method implemented in an ACAS (Airborne Collision Avidance System) for a mobile object to be monitored; A central processing unit.
[付記2]
前記質問信号の送信に適した送受信局を選択する手段と、その選択した送受信局に質問制御信号を送出する手段とを含み、
前記送受信局が前記質問制御信号に基づいて前記監視領域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする付記1に記載の中央処理部。[Appendix 2]
Means for selecting a transmission / reception station suitable for transmission of the interrogation signal, and means for transmitting an interrogation control signal to the selected transmission / reception station,
The transmission / reception station transmits the interrogation signal to the mobile body in the monitoring area based on the interrogation control signal, thereby preventing all transmission / reception stations from transmitting the interrogation signal at the same time. The central processing unit according to 1.
[付記3]
前記送受信局に、前記質問制御信号で指定される送受信局の順番で、指定された送信時刻に前記SSRモードA/Cの質問信号を送信させることを特徴とする付記2に記載の中央処理部。[Appendix 3]
The central processing unit according to
[付記4]
前記送受信局において、前記質問制御信号に基づく制御により、前記移動体に対して最適な位置関係にある送信装置から前記SSRモードA/Cの質問信号を送信させることを特徴とする付記2または付記3に記載の中央処理部。[Appendix 4]
[付記5]
前記移動体位置測定システムが、少なくともMLAT(Multilateration:マルチラテレーション)システム及び広域で用いられるWAM[Wide Area MLAT(Multilateration)]システムのいずれかであることを特徴とする付記1から付記4のいずれかに記載の中央処理部。[Appendix 5]
Any one of appendix 1 to appendix 4, wherein the mobile body position measurement system is at least one of an MLAT (Multilatation) system and a WAM [Wide Area MLAT (Multilatation)] system used in a wide area. Central processing unit according to crab.
[付記6]
監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる送信制御方法であって、
前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
前記中央処理部が、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行し、
前記送受信局が、監視対象となっている移動体に対して、ACAS(Airborne Collision Avoidance System)で実施されているウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理することを特徴とする質問制御方法。[Appendix 6]
It is composed of a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and a central processing unit that measures the position of the mobile unit based on the reception times of the response signals at the plurality of receiving stations. A transmission control method used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit,
At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
The central processing unit executes a process of controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control,
The transmission / reception station processes an SSR mode A / C question and a response using a whisper shout transmission method implemented in an ACAS (Airborne Collation Aviationance System) for a mobile object to be monitored. A characteristic question control method.
[付記7]
前記中央処理部が、前記質問信号の送信に適した送受信局を選択する処理と、その選択した送受信局に質問送信制御信号を送出する処理とを実行し、
前記中央処理部は、前記送受信局が前記質問制御信号に基づいて前記監視空域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする付記6に記載の質問制御方法。[Appendix 7]
The central processing unit performs a process of selecting a transmission / reception station suitable for transmission of the interrogation signal, and a process of transmitting an interrogation transmission control signal to the selected transmission / reception station,
The central processing unit prevents the transmission / reception station from transmitting the interrogation signal at the same time by transmitting the interrogation signal to the mobile body in the monitored airspace based on the interrogation control signal. The question control method according to Supplementary Note 6, wherein
[付記8]
前記送受信局において、前記中央処理部からの前記質問制御信号で指定される送受信局の順番で、指定された送信時刻に前記SSRモードA/Cの質問信号を送信させることを特徴とする付記7に記載の質問制御方法。[Appendix 8]
The transmission / reception station transmits the SSR mode A / C interrogation signal at the designated transmission time in the order of the transmission / reception stations designated by the interrogation control signal from the central processing unit. The question control method described in 1.
[付記9]
前記送受信局において、前記中央処理部からの前記質問制御信号に基づく制御により、前記移動体に対して最適な位置関係にある送受信局から前記SSRモードA/Cの質問信号を送信させることを特徴とする付記7または付記8に記載の質問制御方法。[Appendix 9]
In the transmission / reception station, the SSR mode A / C interrogation signal is transmitted from the transmission / reception station in an optimal positional relationship with the mobile body by control based on the interrogation control signal from the central processing unit. The question control method according to Supplementary Note 7 or
[付記10]
前記移動体位置測定システムが、少なくともMLAT(Multilateration:マルチラテレーション)システム及び広域で用いられるWAM[Wide Area MLAT(Multilateration)]システムのいずれかであることを特徴とする付記6から付記9のいずれかに記載の質問制御方法。[Appendix 10]
Any one of appendix 6 to appendix 9, wherein the mobile body position measurement system is at least one of an MLAT (Multilatation) system and a WAM [Wide Area MLAT (Multilatation)] system used in a wide area. The question control method described in Crab.
この出願は、2012年2月15日に出願された日本出願特願2012−030051を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2012-030051 for which it applied on February 15, 2012, and takes in those the indications of all here.
本発明は、MLAT(Multilateration:マルチラテレーション)システムやWAM[Wide Area MLAT(Multilateration)]システムに適用可能である。 The present invention is applicable to MLAT (Multilatation) systems and WAM [Wide Area MLAT (Multilatation)] systems.
1−1〜1−5 送受信局
2 中央処理部
3−1〜3−5 SSRモードA/C質問
4−1〜4−5 通信回線
5 航空機
6 GPS衛星
7−1〜7−5 SSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号
8 GPS空中線
9 GPS受信機
10 空中線
11 受信部
12 サーキュレータ
13 合成器
14−1〜14−2 可変減衰器
15 RFパルス切替スイッチ
16 送信制御器
17 変調パルス発生器
18 電力増幅器
19 発振器
22 通信部
23 目標位置測位部
24 目標情報解析部
25 目標情報生成部
26 送信制御情報生成部
27 目標追尾部
28 目標優先順位判定部1-1 to 1-5 Transceiver
2 Central processing unit 3-1 to 3-5 SSR mode A / C questions 4-1 to 4-5 Communication line
5 Aircraft
6 GPS satellites 7-1 to 7-5 SSR mode A / C response, SSR mode S response, acquisition or extended squitter signal
8 GPS antenna
9 GPS receiver
10 Aerial
11 Receiver
12 Circulator
13 Synthesizer 14-1 to 14-2 Variable Attenuator
15 RF pulse selector switch
16 Transmission controller
17 Modulation pulse generator
18 Power amplifier
19 Oscillator
22 Communication Department
23 Target Positioning Unit
24 Target Information Analysis Department
25 Target information generator
26 Transmission control information generator
27 Target tracking part
28 Target priority order determination unit
Claims (8)
前記送受信局は、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行い、
前記移動体の位置を測位する中央処理部は、管制上において前記移動体の測位データに基づいて優先順位を決定し、前記優先順位の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を有することを特徴とする移動体位置測定システム。 Including at least one transmission / reception station for transmitting an interrogation signal to a mobile unit;
The transmission / reception station limits the transmission coverage of the interrogation signal to the coverage range of the question and response in the SSR (Secondary Survival Radar) mode A / C in which a common question is asked to all mobile units. , Perform SSR mode S individual questions in a method that allows questions and responses individually,
A central processing unit that measures the position of the mobile body determines priority based on the positioning data of the mobile body in control, and makes the SSR mode S individual question preferentially from the mobile body having a high priority. A mobile body position measuring system comprising means for controlling the transmitting / receiving station .
前記中央処理部は、前記送受信局が前記質問制御信号に基づいて監視領域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする請求項1または請求項2記載の移動体位置測定システム。 The central processing unit includes means for selecting a transmission / reception station suitable for transmission of the inquiry signal, and means for transmitting an inquiry control signal to the selected transmission / reception station,
Said central processing unit, by the transceiver station transmits said interrogation signal in a mobile object monitoring region on the basis of the inquiry control signal, to suppress all of the transceiver station transmits said interrogation signal simultaneously The moving body position measuring system according to claim 1 or 2, characterized in that
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
管制上において前記移動体の測位データに基づいて優先順位を決定し、前記優先順位の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を有することを特徴とする中央処理部。 At least one transmission / reception station that transmits an interrogation signal to the mobile unit is arranged in the mobile unit position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
It has means for determining the priority order based on the positioning data of the mobile body in the control, and controlling the transmitting / receiving station so that the SSR mode S individual question is preferentially performed from the mobile body having a high priority order. Central processing unit.
前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
前記移動体の位置を測位する中央処理部が、管制上において前記移動体の測位データに基づいて優先順位を決定し、前記優先順位の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行することを特徴とする質問制御方法。 At least one transmission / reception station that transmits an interrogation signal to the mobile unit is arranged in the mobile unit position measurement system,
In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units. , SSR mode S individual questions in a method that allows questions and responses individually,
A central processing unit for positioning the position of the moving body determines priority based on the positioning data of the moving body on the control, and preferentially asks the SSR mode S individual question from the moving body having a higher priority. A question control method characterized by executing a process for controlling said transmitting / receiving station.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012030051 | 2012-02-15 | ||
JP2012030051 | 2012-02-15 | ||
PCT/JP2013/000227 WO2013121694A1 (en) | 2012-02-15 | 2013-01-18 | Movable body position measuring system, central processing unit, and question control method used therein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013121694A1 JPWO2013121694A1 (en) | 2015-05-11 |
JP5958528B2 true JP5958528B2 (en) | 2016-08-02 |
Family
ID=48983836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014500066A Active JP5958528B2 (en) | 2012-02-15 | 2013-01-18 | Mobile body position measurement system, central processing unit, and question control method used therefor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5958528B2 (en) |
KR (1) | KR101690848B1 (en) |
MY (1) | MY172432A (en) |
WO (1) | WO2013121694A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014199214A (en) * | 2013-03-29 | 2014-10-23 | 株式会社東芝 | Secondary surveillance radar device, and radar system |
CN104035066B (en) * | 2014-03-13 | 2016-08-03 | 中国民用航空总局第二研究所 | Target travel-resting state determination methods based on Passive Multipoint location technology |
CN104821104B (en) * | 2015-04-15 | 2017-02-01 | 中国民用航空总局第二研究所 | Multilaser-action surveillance inquiry method and multilaser-action surveillance inquiry system |
GB2544463A (en) * | 2015-11-11 | 2017-05-24 | Leonardo Mw Ltd | Radar systems and methods |
JP6790465B2 (en) * | 2016-05-30 | 2020-11-25 | 日本電気株式会社 | ADS-B report acquisition device and method |
CN107038900A (en) * | 2017-04-25 | 2017-08-11 | 西安航空学院 | A kind of general aviation low-altitude monitor and service system |
JP7356681B2 (en) * | 2019-09-20 | 2023-10-05 | 日本無線株式会社 | Interrogation signal transmission system and interrogation signal transmission method |
FR3103568B1 (en) | 2019-11-25 | 2021-12-03 | Thales Sa | METHOD OF DETECTION OF CONFLICTS OF CODE II / SI OF IDENTIFICATION OF MODE S RADAR WITH SURROUNDING RADARS, AND SECONDARY RADAR IMPLEMENTING SUCH A PROCESS |
US20220082685A1 (en) * | 2020-09-11 | 2022-03-17 | Aviation Communication & Surveillance Systems, Llc | Systems and methods for adaptive whisper-shout for enhanced degarble capability |
KR102501708B1 (en) * | 2020-10-23 | 2023-02-21 | 주식회사 우리별 | Aircraft locating method using interrogator having time of transmission function |
KR102667104B1 (en) * | 2023-05-16 | 2024-05-20 | 한화시스템 주식회사 | Interrogating apparatus and method for identifying friend or foe |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61256272A (en) * | 1985-05-09 | 1986-11-13 | Unyusho Senpaku Gijutsu Kenkyusho | Airplane discrimination apparatus by ssr system |
JP2513125B2 (en) * | 1993-05-31 | 1996-07-03 | 日本電気株式会社 | Question control method in SSR mode S system |
WO2002018973A2 (en) * | 2000-08-31 | 2002-03-07 | Honeywell International Inc. | Method for reducing transmit power for airborne collision avoidance systems |
JP4694420B2 (en) | 2006-06-12 | 2011-06-08 | 三菱電機株式会社 | Airport surface monitoring device |
JP2008249391A (en) * | 2007-03-29 | 2008-10-16 | Nec Corp | Method and device for monitoring partial detected aircraft in ssr mode s |
JP5125784B2 (en) | 2008-06-11 | 2013-01-23 | 日本電気株式会社 | Aircraft position measurement system, signal type determination method, center station, and program |
JP5127748B2 (en) * | 2009-03-10 | 2013-01-23 | 株式会社東芝 | Question signal transmission method |
JP5056785B2 (en) * | 2009-03-26 | 2012-10-24 | 日本電気株式会社 | Aircraft position measurement system, receiving station, aircraft position measurement method and program |
JP5463875B2 (en) | 2009-11-25 | 2014-04-09 | 日本電気株式会社 | Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system |
JP5115580B2 (en) * | 2010-03-30 | 2013-01-09 | 日本電気株式会社 | Multilateration system, signal processing method for multilateration receiving station, and processing program therefor |
JP5444202B2 (en) * | 2010-12-08 | 2014-03-19 | 株式会社東芝 | Transmitter |
JP5678652B2 (en) * | 2010-12-27 | 2015-03-04 | 日本電気株式会社 | Aircraft position measurement system, receiving station, data amount reduction method and program |
-
2013
- 2013-01-18 JP JP2014500066A patent/JP5958528B2/en active Active
- 2013-01-18 KR KR1020147022471A patent/KR101690848B1/en active IP Right Grant
- 2013-01-18 MY MYPI2014701988A patent/MY172432A/en unknown
- 2013-01-18 WO PCT/JP2013/000227 patent/WO2013121694A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
MY172432A (en) | 2019-11-25 |
WO2013121694A1 (en) | 2013-08-22 |
KR101690848B1 (en) | 2016-12-28 |
KR20140121838A (en) | 2014-10-16 |
JPWO2013121694A1 (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958528B2 (en) | Mobile body position measurement system, central processing unit, and question control method used therefor | |
CN109901150B (en) | Multifunctional phased array radar device and detection method thereof | |
EP2548041B1 (en) | Systems and methods for short baseline, low cost determination of airborne aircraft location | |
US6094169A (en) | Multilateration auto-calibration and position error correction | |
US7477193B2 (en) | Method and system for elliptical-based surveillance | |
US6809679B2 (en) | Surveillance system and method for aircraft approach and landing | |
US8130135B2 (en) | Bi-static radar processing for ADS-B sensors | |
US3665464A (en) | Method and apparatus for high speed vehicle position acquisition | |
CN104134373A (en) | Device, system and methods using angle of arrival measurements for ADS-B authentication and navigation | |
KR20030041128A (en) | Digital receiving system for dense environment of aircraft | |
WO2010138696A1 (en) | System and method for passive range-aided multilateration using time lag of arrival (tloa) measurements | |
CN113030946B (en) | Secondary radar detection method, device, equipment, system, medium and program product | |
KR101635871B1 (en) | Movable body position measuring system, central station, question control method used therein, and storage medium on which program thereof has been stored | |
JPH09288175A (en) | Method for identifying airplane at airport surface | |
WO2013136648A1 (en) | Wide-area multilateration system, central station, and 2-dimensional-position calculation method using same | |
KR20170024323A (en) | Interrogator of the multilateration | |
JP2012122775A (en) | Aircraft position measuring system, time synchronization method, and time synchronization program for use in the system | |
JP7356681B2 (en) | Interrogation signal transmission system and interrogation signal transmission method | |
JP5892233B2 (en) | MOBILE POSITION MEASURING SYSTEM, CENTRAL OFFICE, QUERY CONTROL METHOD USED FOR THEM AND PROGRAM | |
JP3042469B2 (en) | Aircraft monitoring system | |
JPS61256272A (en) | Airplane discrimination apparatus by ssr system | |
JP2024037268A (en) | Impersonation detection system | |
Bojda | Air traffic surveillance method using an existing network of DME navigation system | |
Svyd et al. | Evaluation of the Responder Capacity of the Indication Channel of Near Navigation Radio Systems | |
JP2023036375A (en) | air traffic control radio system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5958528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |