JP5957538B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5957538B2
JP5957538B2 JP2014549700A JP2014549700A JP5957538B2 JP 5957538 B2 JP5957538 B2 JP 5957538B2 JP 2014549700 A JP2014549700 A JP 2014549700A JP 2014549700 A JP2014549700 A JP 2014549700A JP 5957538 B2 JP5957538 B2 JP 5957538B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
refrigerant flow
pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014549700A
Other languages
Japanese (ja)
Other versions
JPWO2014083651A1 (en
Inventor
シュン 薛
シュン 薛
禎夫 関谷
禎夫 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Application granted granted Critical
Publication of JP5957538B2 publication Critical patent/JP5957538B2/en
Publication of JPWO2014083651A1 publication Critical patent/JPWO2014083651A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes

Description

本発明は、多パス型の熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner including a multi-pass heat exchanger.

熱交換器の冷媒流路の細径化に伴い、冷媒側の流動損失が増大するため、冷媒流路を多パス化することで損失を低減することが行われている。また、蒸発器として機能する熱交換器では、多パス化した場合であっても、気液二相状態の冷媒の分配が適切でないと、空気調和機の性能が低下する問題がある。このような問題を解決する技術として、特許文献1では、複数のパスに分割された冷媒管(冷媒流路)の途中に各冷媒管を流れる冷媒を一旦合流させた直後に再び分流させる分流管を設ける技術が提案されている。   Since the flow loss on the refrigerant side increases as the diameter of the refrigerant flow path of the heat exchanger increases, reducing the loss by increasing the number of passes in the refrigerant flow path has been performed. Further, in the heat exchanger functioning as an evaporator, even when the number of passes is increased, if the distribution of the refrigerant in the gas-liquid two-phase state is not appropriate, there is a problem that the performance of the air conditioner decreases. As a technique for solving such a problem, in Japanese Patent Application Laid-Open No. H11-260260, a flow dividing pipe that once again divides the refrigerant flowing through each refrigerant pipe in the middle of the refrigerant pipes (refrigerant flow paths) divided into a plurality of paths, and then immediately divides the refrigerant pipe. A technique for providing the above has been proposed.

特開平8−313115号公報JP-A-8-313115

しかしながら、特許文献1に記載の技術では、パスを空気の流れる方向に対して前後(上流側と下流側)に分割しているため、前側(空気の流れ方向上流側)に位置するパスには暖かい空気が流れ、後側(空気の流れ方向下流側)に位置するパスには前側で冷やされた空気が流れ、効率的に熱交換を行うことができなかった。   However, in the technique described in Patent Document 1, the path is divided into the front and rear (upstream side and downstream side) with respect to the air flow direction, so the path located on the front side (upstream side in the air flow direction) Warm air flows, and air cooled on the front side flows through a path located on the rear side (downstream side in the air flow direction), and heat exchange cannot be performed efficiently.

そこで、熱交換器の冷媒流路を、空気の流れる方向に対し前後ではなく上下に分割すると、上下に離れた冷媒管に分配管(分流管)を設けた場合、分配管が水平ではないため重力の影響により冷媒を均等に分配できず、蒸発器としての熱交換性能を改善できない問題がある。   Therefore, if the refrigerant flow path of the heat exchanger is divided up and down rather than back and forth with respect to the direction of air flow, the distribution pipe is not horizontal when the distribution pipe (distribution pipe) is provided in the refrigerant pipe separated vertically. There is a problem that the refrigerant cannot be evenly distributed due to the influence of gravity and the heat exchange performance as an evaporator cannot be improved.

本発明は、前記した従来の問題を解決するためになされたものであり、蒸発器本来の熱交換能力を発揮させて、高性能な空気調和機を提供することを課題とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a high-performance air conditioner by exhibiting the heat exchange capability inherent to the evaporator.

第1の発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する減圧装置と、前記減圧装置で減圧された冷媒を蒸発させる蒸発器と、を少なくとも備え、前記蒸発器は、少なくとも一部が鉛直方向の上下に分割された複数の冷媒流路と、前記複数の冷媒流路の両端のうちの一方に冷媒を前記複数の冷媒流路に分流させる分配器と、前記複数の冷媒流路の両端のうちの他方に前記複数の冷媒流路を流れる冷媒を合流させる合流器と、前記複数の冷媒流路を連通させる連通路と、を有し、前記冷媒流路は、水平方向に延びて熱交換を行う伝熱流路と、前記伝熱流路から出て他の前記伝熱流路に戻る曲がり流路とを有し、前記連通路は、前記冷媒流路の途中で前記曲がり流路の外周側の面と連通していることを特徴とする。   According to a first aspect of the present invention, there is provided a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, a decompression device for decompressing the refrigerant condensed by the condenser, and a decompression by the decompression device. An evaporator for evaporating the refrigerant, wherein the evaporator is provided at one of a plurality of refrigerant flow paths divided at least partially in the vertical direction and at both ends of the plurality of refrigerant flow paths. A distributor for diverting the refrigerant to the plurality of refrigerant channels; a merger for merging the refrigerant flowing through the plurality of refrigerant channels to the other of the ends of the plurality of refrigerant channels; and the plurality of refrigerant channels A refrigerant passage that extends in a horizontal direction to exchange heat, and a bent passage that exits from the heat transfer passage and returns to the other heat transfer passage. And the communication path is located outside the bent flow path in the middle of the refrigerant flow path. It characterized in that it communicates with the side surface.

第2の発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する減圧装置と、前記減圧装置で減圧された冷媒を蒸発させる蒸発器と、を少なくとも備え、前記蒸発器は、少なくとも一部が鉛直方向の上下に分割された複数の冷媒流路と、前記複数の冷媒流路の両端のうちの一方に冷媒を前記複数の冷媒流路に分流させる分配器と、前記複数の冷媒流路の両端のうちの他方に前記複数の冷媒流路を流れる冷媒を合流させる合流器と、前記複数の冷媒流路を連通させる連通路と、を有し、前記冷媒流路は、水平方向に延びて熱交換を行う伝熱流路と、前記伝熱流路から出て他の前記伝熱流路に戻る曲がり流路とを有し、前記連通路は、前記冷媒流路の途中で前記曲がり流路の冷媒下流側の直後の外周側の面と連通していることを特徴とする。   According to a second aspect of the present invention, there is provided a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, a decompression device for decompressing the refrigerant condensed by the condenser, and a decompression by the decompression device. An evaporator for evaporating the refrigerant, wherein the evaporator is provided at one of a plurality of refrigerant flow paths divided at least partially in the vertical direction and at both ends of the plurality of refrigerant flow paths. A distributor for diverting the refrigerant to the plurality of refrigerant channels; a merger for merging the refrigerant flowing through the plurality of refrigerant channels to the other of the ends of the plurality of refrigerant channels; and the plurality of refrigerant channels A refrigerant passage that extends in a horizontal direction to exchange heat, and a bent passage that exits from the heat transfer passage and returns to the other heat transfer passage. And the communication path is provided in the middle of the refrigerant flow path to cool the bent flow path. Characterized in that it communicates with the outer peripheral side surface of the immediately downstream.

本発明によれば、蒸発器本来の熱交換能力を発揮させて、高性能な空気調和機を提供することができる。   According to the present invention, a high-performance air conditioner can be provided by exhibiting the heat exchange capability inherent to the evaporator.

空気調和機を示す全体構成図である。It is a whole block diagram which shows an air conditioner. 空気調和機の熱交換器の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the heat exchanger of an air conditioner. 第1実施形態に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on 1st Embodiment. 蒸発器内の冷媒の温度変化を示し、(a)は均等分配時の温度変化を示すグラフ、(b)は不均等分配時の温度変化を示すグラフである。The temperature change of the refrigerant | coolant in an evaporator is shown, (a) is a graph which shows the temperature change at the time of equal distribution, (b) is a graph which shows the temperature change at the time of non-uniform distribution. 蒸発器内の冷媒の圧力変化を示し、(a)は均等分配時の圧力変化、(b)は不均等分配時の圧力変化を示すグラフである。The pressure change of the refrigerant | coolant in an evaporator is shown, (a) is a pressure change at the time of equal distribution, (b) is a graph which shows the pressure change at the time of non-uniform distribution. 連通路の第1設置方式を示し、(a)は平面図、(b)はA−A線断面図である。The 1st installation system of a communicating path is shown, (a) is a top view, (b) is an AA sectional view. 連通路の第2設置方式を示し、(a)は平面図、(b)はB−B線断面図である。The 2nd installation system of a communicating path is shown, (a) is a top view, (b) is a BB sectional drawing. 連通路の第3設置方式を示し、(a)は平面図、(b)はC−C線断面図である。The 3rd installation system of a communicating path is shown, (a) is a top view, (b) is CC sectional view taken on the line. 連通路の第4設置方式を示す断面図である。It is sectional drawing which shows the 4th installation system of a communicating path. 気液二相流を示し、(a)は分離流であり、(b)は環状流である。A gas-liquid two-phase flow is shown, (a) is a separated flow, and (b) is an annular flow. 第2実施形態に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on 2nd Embodiment. 第3実施形態に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on 3rd Embodiment. 第4実施形態に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on 4th Embodiment.

以下、本発明の実施形態について、図面を用いて具体的に説明する。まず、空気調和機1の全体構成について図1を参照して説明する。なお、図3に示す第1実施形態では、簡略化した熱交換器、図11に示す第2実施形態では、家庭用の空気調和機の室外熱交換器、図12に示す第3実施形態および図13に示す第4実施形態では、家庭用の空気調和機の室内熱交換器を例に挙げて説明する。なお、家庭用に限定されるものではなく、業務用の空気調和機に適用することもできる。   Embodiments of the present invention will be specifically described below with reference to the drawings. First, the whole structure of the air conditioner 1 is demonstrated with reference to FIG. In the first embodiment shown in FIG. 3, a simplified heat exchanger, in the second embodiment shown in FIG. 11, an outdoor heat exchanger of a domestic air conditioner, the third embodiment shown in FIG. In the fourth embodiment shown in FIG. 13, an indoor heat exchanger of a domestic air conditioner will be described as an example. Note that the present invention is not limited to home use and can be applied to a commercial air conditioner.

図1に示すように、空気調和機1は、主に圧縮機2、室内熱交換器3、減圧装置4(膨張弁など)、室外熱交換器5、四方弁6などで構成されている。これらの要素機器は、冷媒配管120,121,122,123,124,125によって順に接続されている。なお、図示していないが、例えば、室内熱交換器3には貫流式のファンが設けられ、室外熱交換器5にはプロペラ式のファンが設けられている。   As shown in FIG. 1, the air conditioner 1 mainly includes a compressor 2, an indoor heat exchanger 3, a pressure reducing device 4 (such as an expansion valve), an outdoor heat exchanger 5, a four-way valve 6, and the like. These element devices are sequentially connected by refrigerant pipes 120, 121, 122, 123, 124, and 125. Although not shown, for example, the indoor heat exchanger 3 is provided with a once-through fan, and the outdoor heat exchanger 5 is provided with a propeller fan.

冷房運転時、室外熱交換器5は凝縮器、室内熱交換器3は蒸発器として機能する。このとき冷媒は、実線矢印で示すように、圧縮機2、冷媒配管120、四方弁6、冷媒配管121、室外熱交換器5、冷媒配管122、減圧装置4、冷媒配管123、室内熱交換器3、冷媒配管124、四方弁6、冷媒配管125、圧縮機2の順に状態変化をしながら空気調和機1内を循環する。   During the cooling operation, the outdoor heat exchanger 5 functions as a condenser, and the indoor heat exchanger 3 functions as an evaporator. At this time, as indicated by solid arrows, the refrigerant is the compressor 2, the refrigerant pipe 120, the four-way valve 6, the refrigerant pipe 121, the outdoor heat exchanger 5, the refrigerant pipe 122, the decompression device 4, the refrigerant pipe 123, and the indoor heat exchanger. 3, the refrigerant pipe 124, the four-way valve 6, the refrigerant pipe 125, and the compressor 2 are circulated in the air conditioner 1 while changing the state in this order.

具体的には、圧縮機2によって圧縮され、高圧高温の蒸気状態で吐出された冷媒は、室外熱交換器5に流入し、その中で熱を放出し高圧中温の液冷媒に変化する。その液冷媒は、減圧装置4を通過し、低圧低温の気液二相状態(気液二相流)となった後、室内熱交換器3内で周囲(室内の空気)から熱を奪い低圧低温の蒸気状態(ガス状態)となり、再び圧縮機2に吸入されるというサイクルを繰り返す。   Specifically, the refrigerant compressed by the compressor 2 and discharged in a high-pressure and high-temperature vapor state flows into the outdoor heat exchanger 5, releases heat therein, and changes to a high-pressure and medium-temperature liquid refrigerant. The liquid refrigerant passes through the decompression device 4 and enters a low-pressure and low-temperature gas-liquid two-phase state (gas-liquid two-phase flow), and then takes heat from the surroundings (indoor air) in the indoor heat exchanger 3 to reduce the pressure. The cycle of a low-temperature steam state (gas state) and suction into the compressor 2 is repeated.

一方、冷媒の流れ方向を四方弁6によって切り替えると、暖房運転となる。その場合、室外熱交換器5は蒸発器、室内熱交換器3は凝縮器として機能する。このとき冷媒は、破線矢印で示すように、圧縮機2、冷媒配管120、四方弁6、冷媒配管124、室内熱交換器3、冷媒配管123、減圧装置4、冷媒配管122、室外熱交換器5、冷媒配管121、四方弁6、冷媒配管125、圧縮機2の順に空気調和機1内を循環する。   On the other hand, when the flow direction of the refrigerant is switched by the four-way valve 6, the heating operation is performed. In that case, the outdoor heat exchanger 5 functions as an evaporator, and the indoor heat exchanger 3 functions as a condenser. At this time, as indicated by broken line arrows, the refrigerant is the compressor 2, the refrigerant pipe 120, the four-way valve 6, the refrigerant pipe 124, the indoor heat exchanger 3, the refrigerant pipe 123, the decompression device 4, the refrigerant pipe 122, and the outdoor heat exchanger. 5, the refrigerant pipe 121, the four-way valve 6, the refrigerant pipe 125, and the compressor 2 are circulated through the air conditioner 1 in this order.

図2は、空気調和機の熱交換器の概略を示す分解斜視図である。
図2に示すように、室内熱交換器3や室外熱交換器5として使用される熱交換器は、例えば、クロスフィンチューブ型の熱交換器であり、複数枚のアルミニウム製のフィン100を、U字状に曲げられた銅製のU字型伝熱管110(伝熱流路、以下、伝熱管110と略記する)が貫く構造となっている。フィン100と伝熱管110とは、フィン100に挿入された伝熱管110を液圧あるいは機械的に拡管することにより密着させている。なお、伝熱管110は、ほぼ水平方向(鉛直方向に直交する方向)に延びてフィン100を貫く構造となっている。
FIG. 2 is an exploded perspective view schematically showing a heat exchanger of the air conditioner.
As shown in FIG. 2, the heat exchanger used as the indoor heat exchanger 3 or the outdoor heat exchanger 5 is, for example, a cross fin tube type heat exchanger, and a plurality of aluminum fins 100 are A copper U-shaped heat transfer tube 110 bent in a U-shape (a heat transfer channel, hereinafter abbreviated as the heat transfer tube 110) penetrates. The fin 100 and the heat transfer tube 110 are brought into close contact with each other by expanding the heat transfer tube 110 inserted into the fin 100 either hydraulically or mechanically. The heat transfer tube 110 has a structure that extends in a substantially horizontal direction (a direction perpendicular to the vertical direction) and penetrates the fins 100.

また、伝熱管110の端部には、他の伝熱管110の端部と接続するためのリターンベンド(継手部品)111が溶接などで接合され、冷媒流路を構成している。このように熱交換器は、フィン100の積層方向の両端部において、折り返しながら蛇行する流路を有している。なお、リターンベンド111は、後記するように、U字型に限定されるものではない。   In addition, a return bend (joint part) 111 for connecting to the end of another heat transfer tube 110 is joined to the end of the heat transfer tube 110 by welding or the like to form a refrigerant flow path. As described above, the heat exchanger has flow paths that meander while being folded at both ends in the stacking direction of the fins 100. The return bend 111 is not limited to a U-shape as will be described later.

なお、フィン100と伝熱管110とが接して、フィン100とフィン100の間の空気が流れる部分が、熱交換器の熱交換領域に対応している。なお、フィン100の積層方向の一端側の伝熱管110のU字管部と、他端側のリターンベンド111の部分とは、熱交換に寄与しない領域である。   In addition, the part which the fin 100 and the heat exchanger tube 110 contact | connect and the air flows between the fin 100 and the fin 100 respond | corresponds to the heat exchange area | region of a heat exchanger. The U-shaped tube portion of the heat transfer tube 110 on one end side in the stacking direction of the fins 100 and the return bend 111 portion on the other end side are regions that do not contribute to heat exchange.

(第1実施形態)
図3は、第1実施形態に係る熱交換器を示す斜視図である。なお、図中の矢印(実線)は、熱交換器が蒸発器として機能するときの冷媒の流れる方向を示している。例えば、図3に示す熱交換器は、室外熱交換器5で、暖房運転時の場合である。
(First embodiment)
FIG. 3 is a perspective view showing the heat exchanger according to the first embodiment. In addition, the arrow (solid line) in a figure has shown the direction through which a refrigerant | coolant flows when a heat exchanger functions as an evaporator. For example, the heat exchanger shown in FIG. 3 is the outdoor heat exchanger 5 in the case of heating operation.

図3に示すように、第1実施形態に係る熱交換器は、2パスに分けられた複数の冷媒流路30,40、分配器11、合流器12、連通管990(連通路)を含んで構成されている。   As shown in FIG. 3, the heat exchanger according to the first embodiment includes a plurality of refrigerant flow paths 30 and 40 divided into two paths, a distributor 11, a merger 12, and a communication pipe 990 (communication path). It consists of

冷媒流路30は、熱交換器の鉛直方向(上下方向)の中央部よりも上側の領域に配置され(一点鎖線に対して上向きの矢印参照)、冷媒流路40は、熱交換器の鉛直方向(上下方向)の中央部よりも下側の領域に配置されている(一点鎖線に対して下向きの矢印参照)。このように、冷媒流路30と冷媒流路40は、空気の流れ方向に対して前後に配置されるものではなく、空気の流れ方向に対して直交する鉛直方向において上下に配置されるものである。   The refrigerant flow path 30 is disposed in a region above the central portion in the vertical direction (vertical direction) of the heat exchanger (see an arrow pointing upward with respect to the alternate long and short dash line), and the refrigerant flow path 40 is vertical to the heat exchanger. It arrange | positions in the area | region below the center part of a direction (up-down direction) (refer the downward arrow with respect to a dashed-dotted line). As described above, the refrigerant flow path 30 and the refrigerant flow path 40 are not arranged forward and backward with respect to the air flow direction, but are arranged vertically in the vertical direction orthogonal to the air flow direction. is there.

分配器11は、冷媒流路30,40の両端部のうちの一方(入口110a,110b)に接続される二又形状のものであり、減圧装置4(図1参照)によって減圧され、気液二相状態となった冷媒を冷媒流路30と冷媒流路40とに分流(分配)するものである。   The distributor 11 has a bifurcated shape connected to one of the both ends of the refrigerant flow paths 30 and 40 (inlet 110a and 110b). The distributor 11 is decompressed by the decompression device 4 (see FIG. 1), and the gas-liquid The refrigerant in the two-phase state is divided (distributed) into the refrigerant flow path 30 and the refrigerant flow path 40.

合流器12は、冷媒流路30,40の両端部のうちの他方(出口110c,110d)に接続される二又形状のものであり、蒸気状態となった冷媒を合流するものである。   The merger 12 has a bifurcated shape that is connected to the other end (the outlets 110c and 110d) of both ends of the refrigerant flow paths 30 and 40, and merges the refrigerant in a vapor state.

連通管990は、冷媒流路30の途中のリターンベンド111A(111)と、冷媒流路40の途中のリターンベンド111B(111)とを接続して、冷媒流路30と冷媒流路40とを連通する流路を構成している。なお、連通管990に示す矢印は、後記する不均等分配時に冷媒流路30の圧力よりも冷媒流路40の圧力が高い場合に冷媒が流れる方向を示している。また、連通管990の詳細な構成については後記する。   The communication pipe 990 connects the return bend 111A (111) in the middle of the refrigerant flow path 30 and the return bend 111B (111) in the middle of the refrigerant flow path 40 so that the refrigerant flow path 30 and the refrigerant flow path 40 are connected. A communication channel is formed. In addition, the arrow shown in the communication pipe 990 indicates the direction in which the refrigerant flows when the pressure of the refrigerant flow path 40 is higher than the pressure of the refrigerant flow path 30 during the uneven distribution described later. The detailed configuration of the communication pipe 990 will be described later.

図3に示す冷媒流路30では、例えば、冷媒が入口110aから空気の流れる方向(図中矢印参照)に対して前側(上流側)に位置する流路を蛇行しながら鉛直方向上方に流れ、熱交換器の最上部において空気の流れる方向に対して後側(下流側)に位置する流路を蛇行しながら鉛直方向下方に流れ、出口110cを出て合流器12に至る。   In the refrigerant flow path 30 shown in FIG. 3, for example, the refrigerant flows upward in the vertical direction while meandering the flow path located on the front side (upstream side) with respect to the air flow direction (see the arrow in the figure) from the inlet 110a. It flows downward in the vertical direction while meandering the flow path located on the rear side (downstream side) with respect to the air flow direction at the uppermost part of the heat exchanger, and exits from the outlet 110c to the merger 12.

また、図3に示す冷媒流路40では、例えば、冷媒が入口110bから空気の流れる方向に対して前側(上流側)に位置する流路を蛇行しながら鉛直方向下方に流れ、熱交換器の最下部において空気の流れる方向に対して後側(下流側)に位置する流路を蛇行しながら鉛直方向上方に流れ、出口110dを出て合流器12に至り、冷媒流路30と合流する。   Further, in the refrigerant flow path 40 shown in FIG. 3, for example, the refrigerant flows downward in the vertical direction while meandering the flow path located on the front side (upstream side) with respect to the air flow direction from the inlet 110 b, and the heat exchanger The lowermost part flows in the vertical direction while meandering the flow path located on the rear side (downstream side) with respect to the air flow direction, exits the outlet 110d, reaches the merger 12, and merges with the refrigerant flow path 30.

このように構成された第1実施形態に係る熱交換器では、冷媒流路30への冷媒は熱交換器(蒸発器)の上部を通り、冷媒流路40への冷媒は熱交換器(蒸発器)の下部を通って、ファン(不図示)によって送られてくる空気と熱交換して冷媒が蒸発する。そして、冷媒は、合流器12で合流し、圧縮機2へと流れる。   In the heat exchanger according to the first embodiment configured as described above, the refrigerant to the refrigerant channel 30 passes through the upper part of the heat exchanger (evaporator), and the refrigerant to the refrigerant channel 40 is the heat exchanger (evaporation). The refrigerant evaporates through heat exchange with air sent by a fan (not shown) through the lower part of the vessel. Then, the refrigerant merges at the merger 12 and flows to the compressor 2.

図4は、蒸発器内の冷媒の温度変化を示し、(a)は均等分配時の温度変化を示すグラフ、(b)は不均等分配時の温度変化を示すグラフである。なお、図4(b)の破線は、冷媒流路30を通る冷媒の温度変化を示し、実線は、冷媒流路40を通る冷媒の温度変化を示す。図4(a)は、冷媒流路30の温度変化と冷媒流路40の温度変化とが一致している場合である。   FIG. 4 shows the temperature change of the refrigerant in the evaporator, (a) is a graph showing the temperature change at the time of even distribution, and (b) is a graph showing the temperature change at the time of non-uniform distribution. In addition, the broken line of FIG.4 (b) shows the temperature change of the refrigerant | coolant which passes the refrigerant flow path 30, and a continuous line shows the temperature change of the refrigerant | coolant which passes the refrigerant flow path 40. FIG. FIG. 4A shows a case where the temperature change of the refrigerant flow path 30 and the temperature change of the refrigerant flow path 40 coincide with each other.

また、図4の横軸に示す「入口からの距離」とは、入口110a,110bを基準としたときの距離(長さ)である。また、「1パス当たりの全長」とは、それぞれの冷媒流路30,40の管の全長を意味し、入口110a,110bから出口110c,110dまでの伝熱管110(図3参照)およびリターンベンド111(図3参照)を含めた長さである。よって、横軸(入口からの距離/1パス当たりの全長)の数値(百分率)が低いと、入口110a,110bに近く、数値(百分率)が高くなるにつれて、入口110a,110bから遠くなる(出口110c,110dに近くなる)。   Further, the “distance from the inlet” shown on the horizontal axis in FIG. 4 is a distance (length) when the inlets 110a and 110b are used as a reference. The “full length per pass” means the total length of the pipes of the refrigerant flow paths 30 and 40, and the heat transfer pipe 110 (see FIG. 3) and the return bend from the inlets 110a and 110b to the outlets 110c and 110d. 111 (see FIG. 3). Accordingly, when the numerical value (percentage) of the horizontal axis (distance from the entrance / total length per path) is low, the distance is closer to the entrances 110a and 110b, and the distance (exit) becomes farther from the entrances 110a and 110b as the numerical value (percentage) increases. 110c and 110d).

なお、「入口」については、図3に示す入口110a,110bに限定されるものではなく、分配器11の分岐点P(図3参照)であってもよい。また、「1パス当たりの全長」について、フィン100の積層方向の端部から外方に突出した伝熱管110のU字部分およびリターンベンド111の部分は、熱交換に寄与しない部分であるので、これらの部分を除いた部分を「1パス当たりの全長」としてもよい。   The “inlet” is not limited to the inlets 110a and 110b shown in FIG. 3, and may be a branch point P (see FIG. 3) of the distributor 11. In addition, for the “total length per pass”, the U-shaped portion of the heat transfer tube 110 and the portion of the return bend 111 that protrude outward from the end of the fin 100 in the stacking direction are portions that do not contribute to heat exchange. The portion excluding these portions may be set as “the total length per pass”.

ところで、図4(a)に示すように、分配器11で冷媒が均等に分流(各冷媒流路30,40への液冷媒の流量もガス冷媒の流量も同じである)する場合には、冷媒流路30における冷媒温度と、冷媒流路40における冷媒温度とがほぼ同じ変化を示し、蒸発器本来の熱交換能力を発揮することができる。   By the way, as shown to Fig.4 (a), when a refrigerant | coolant equally divides | distributes in the divider | distributor 11 (The flow volume of the liquid refrigerant to each refrigerant flow path 30 and 40 and the flow volume of a gas refrigerant are the same), The refrigerant temperature in the refrigerant flow path 30 and the refrigerant temperature in the refrigerant flow path 40 show substantially the same change, and the original heat exchange capability of the evaporator can be exhibited.

しかし、分配器11の上流側に取り付けられる配管の形状などにより、気液二相流のガス冷媒と液冷媒とに偏りが生じる場合がある。なお、分配器11の上流側に取り付けられる配管の形状とは、分配器11の上流側のスペースは狭いのが一般的であり、入口110a,110b(図3参照)に対して真っ直ぐな配管が取り付けられることは少なく、L字状など曲がった配管が取り付けられる場合があること、つまり冷媒に対して遠心力が発生する場合があることを意味している。   However, depending on the shape of the pipe attached to the upstream side of the distributor 11, there may be a bias between the gas-liquid two-phase flow gas refrigerant and the liquid refrigerant. The shape of the pipe attached to the upstream side of the distributor 11 is generally that the space on the upstream side of the distributor 11 is narrow, and the pipe straight to the inlets 110a and 110b (see FIG. 3) is used. It is rarely attached, meaning that a bent pipe such as an L-shape may be attached, that is, centrifugal force may be generated with respect to the refrigerant.

例えば、冷媒流路30よりも冷媒流路40へ流れる液冷媒の量が多くなる不均等な冷媒分配が発生した場合には、図4(b)に示すように、冷媒流路40において冷媒温度が出口110d(図3参照)に向かって低下する。これに対して、冷媒流路30では、冷媒流路30の途中で液冷媒からガス冷媒への蒸発終了に伴って、冷媒温度が空気温度(不図示)付近まで上昇し、これ以降の流路(冷媒流路30の出口110c付近の流路)では有効な熱交換は行われなくなる。その結果、空気調和機としての性能は低下することになる。   For example, when an uneven refrigerant distribution occurs in which the amount of liquid refrigerant flowing to the refrigerant flow path 40 is larger than that of the refrigerant flow path 30, the refrigerant temperature in the refrigerant flow path 40 is as shown in FIG. Decreases toward the outlet 110d (see FIG. 3). On the other hand, in the refrigerant flow path 30, the refrigerant temperature rises to the vicinity of the air temperature (not shown) with the end of evaporation from the liquid refrigerant to the gas refrigerant in the middle of the refrigerant flow path 30, and the flow paths thereafter Effective heat exchange is not performed in the flow path in the vicinity of the outlet 110c of the refrigerant flow path 30. As a result, the performance as an air conditioner decreases.

そこで、図4(b)に示すような不均等な冷媒分配に起因する蒸発器の熱交換性能の低下を防止するために、第1実施形態では、例えば、冷媒流路30の途中のリターンベンド111A(111)と、冷媒流路40の途中のリターンベンド111B(111)とを接続する連通管990(連通路)を設けて、冷媒流路30と冷媒流路40とを連通するように構成したものである。   Therefore, in order to prevent the deterioration of the heat exchange performance of the evaporator due to the uneven refrigerant distribution as shown in FIG. 4B, in the first embodiment, for example, a return bend in the middle of the refrigerant flow path 30 is used. A communication pipe 990 (communication path) that connects 111A (111) and a return bend 111B (111) in the middle of the refrigerant flow path 40 is provided, and the refrigerant flow path 30 and the refrigerant flow path 40 are communicated with each other. It is a thing.

図5は、蒸発器内の冷媒の圧力変化を示し、(a)は均等分配時の圧力変化、(b)は不均等分配時の圧力変化を示すグラフである。なお、図5(b)の破線は、冷媒流路30を通る冷媒の圧力変化を示し、実線は、冷媒流路40を通る冷媒の圧力変化を示す。図5(a)は、冷媒流路30の圧力変化と冷媒流路40の圧力変化とが一致している場合である。   FIG. 5 is a graph showing the pressure change of the refrigerant in the evaporator, (a) is a pressure change at the time of even distribution, and (b) is a graph showing the pressure change at the time of non-uniform distribution. The broken line in FIG. 5B indicates the pressure change of the refrigerant passing through the refrigerant flow path 30, and the solid line indicates the pressure change of the refrigerant passing through the refrigerant flow path 40. FIG. 5A shows a case where the pressure change in the refrigerant flow path 30 matches the pressure change in the refrigerant flow path 40.

図5(a)に示すように、気液二相流の冷媒が均等に分配する場合には、冷媒流路30と冷媒流路40における冷媒の圧力変化は同じである。これに対して、不均等な冷媒分配が発生した場合には、より多くの液冷媒が流れ込んだ冷媒流路40と比較して、冷媒流路30に流れる液冷媒の流量が少ないため、蒸発の進行が速く、乾き度の増加も速い。したがって、冷媒流路30においては、図5(b)に示すように、冷媒圧力が初めにより速いペースで降下するが、ある位置(入口からの距離/1パス当たりの全長)を超えると冷媒圧力の降下速度が冷媒流路40の圧力の降下速度よりも遅くなり、出口110c,110dにおいて冷媒流路30,40の冷媒圧力が同じになる。つまり、冷媒流路30,40における冷媒の圧力変化が異なり、冷媒流路30,40の途中において、冷媒流路30と冷媒流路40との間で圧力差が存在している。   As shown in FIG. 5A, when the gas-liquid two-phase flow refrigerant is evenly distributed, the refrigerant pressure changes in the refrigerant flow path 30 and the refrigerant flow path 40 are the same. On the other hand, when uneven refrigerant distribution occurs, the flow rate of the liquid refrigerant flowing through the refrigerant flow path 30 is smaller than that of the refrigerant flow path 40 into which more liquid refrigerant has flowed, and therefore, It progresses quickly and the dryness increases rapidly. Accordingly, in the refrigerant flow path 30, as shown in FIG. 5 (b), the refrigerant pressure initially drops at a faster pace, but if it exceeds a certain position (distance from the inlet / total length per pass), the refrigerant pressure Of the refrigerant flow path 40 becomes slower than the pressure drop speed of the refrigerant flow path 40, and the refrigerant pressures of the refrigerant flow paths 30 and 40 become the same at the outlets 110c and 110d. That is, the refrigerant pressure changes in the refrigerant flow paths 30 and 40 are different, and a pressure difference exists between the refrigerant flow path 30 and the refrigerant flow path 40 in the middle of the refrigerant flow paths 30 and 40.

本実施形態では、前記した冷媒流路30と冷媒流路40との間で存在する圧力差を利用し、液冷媒を移動させることによって、蒸発器の熱交換性能を向上させるように構成したものである。   In the present embodiment, the heat exchange performance of the evaporator is improved by using the pressure difference existing between the refrigerant flow path 30 and the refrigerant flow path 40 and moving the liquid refrigerant. It is.

図5(b)で示したように、各冷媒流路30、40に流れる液冷媒、ガス冷媒の流量が異なる場合には、冷媒流路30,40の途中において、冷媒流路30と冷媒流路40との間で圧力差が存在していることになる。そこで、連通管990(図3参照)を設けることにより、前記圧力差に応じて、冷媒は、連通管990を通して、圧力の高い冷媒流路40から圧力の低い冷媒流路30へと移動する(図3の矢印参照)。   As shown in FIG. 5B, when the flow rates of the liquid refrigerant and the gas refrigerant flowing through the refrigerant flow paths 30 and 40 are different, the refrigerant flow path 30 and the refrigerant flow are arranged in the middle of the refrigerant flow paths 30 and 40. There is a pressure difference with the passage 40. Therefore, by providing the communication pipe 990 (see FIG. 3), the refrigerant moves from the high-pressure refrigerant flow path 40 to the low-pressure refrigerant flow path 30 through the communication pipe 990 according to the pressure difference ( (See arrow in FIG. 3).

連通管990を通る冷媒が液冷媒である場合には、蒸発の進行が速く、冷媒流路40よりも冷媒乾き度が高い(すなわち、液冷媒の割合が少ない)冷媒流路30に液冷媒が供給される。したがって、連通管990を設けない場合よりも蒸発の終了が遅くなる(図4(b)参照)ので、熱交換器の伝熱面積を有効に利用できる。また、冷媒流路40において、液冷媒が減少するので、蒸発が終了せず、液冷媒が圧縮機に戻る問題を解決できる。   When the refrigerant passing through the communication pipe 990 is a liquid refrigerant, the evaporation progresses quickly, and the refrigerant dryness is higher than the refrigerant flow path 40 (that is, the ratio of the liquid refrigerant is small). Supplied. Therefore, the end of evaporation is delayed as compared with the case where the communication pipe 990 is not provided (see FIG. 4B), so that the heat transfer area of the heat exchanger can be used effectively. In addition, since the liquid refrigerant decreases in the refrigerant flow path 40, the problem that evaporation does not end and the liquid refrigerant returns to the compressor can be solved.

しかし、連通管990を通る冷媒がガスである場合には、冷媒流路40よりも冷媒乾き度が高い冷媒流路30にガス冷媒が供給され、乾き度がさらに高くなるにつれて、連通管990を設けないよりも蒸発が早くに終了してしまい、有効に利用できない伝熱面積が増える。一方、冷媒流路40において、ガス冷媒の減少に伴って、伝熱性能が損なわれ、蒸発の進行が連通管990を設けない場合よりも遅くなる。結果、熱交換器の性能が低下することになる。   However, when the refrigerant passing through the communication pipe 990 is a gas, the gas refrigerant is supplied to the refrigerant flow path 30 having a higher dryness than the refrigerant flow path 40, and as the dryness becomes higher, the communication pipe 990 is connected. Evaporation is completed earlier than if it is not provided, increasing the heat transfer area that cannot be used effectively. On the other hand, in the refrigerant flow path 40, the heat transfer performance is impaired as the gas refrigerant decreases, and the progress of evaporation is slower than when the communication pipe 990 is not provided. As a result, the performance of the heat exchanger is degraded.

そこで、連通管990にガス冷媒ではなく液冷媒のみを移動させる手段が必要となる。その手段について、図6ないし図10を参照して説明する。図6は、連通路の第1設置方式を示す断面図、図7は、連通路の第2設置方式を示す断面図、図8は、連通路の第3設置方式を示す断面図、図9は、連通路の第4設置方式を示す断面図、図10は、気液二相流を示し、(a)は分離流であり、(b)は環状流である。   Therefore, a means for moving only the liquid refrigerant, not the gas refrigerant, to the communication pipe 990 is required. The means will be described with reference to FIGS. 6 is a cross-sectional view showing a first installation method of the communication passage, FIG. 7 is a cross-sectional view showing a second installation method of the communication passage, FIG. 8 is a cross-sectional view showing a third installation method of the communication passage, and FIG. FIG. 10 is a cross-sectional view showing a fourth installation method of the communication path, FIG. 10 shows a gas-liquid two-phase flow, (a) is a separated flow, and (b) is an annular flow.

図6に示す第1設置方式は、連通管990の一端をリターンベンド111A(111),111B(111)の半円状に湾曲している曲がり管111a(曲がり流路、1点鎖線で囲む範囲)の外周面111b(外周側の面、曲がりの外側の面)に接続するものである。   In the first installation method shown in FIG. 6, a bent pipe 111a (a range surrounded by a bent flow path and a one-dot chain line) is bent at one end of the communication pipe 990 in a semicircular shape of the return bends 111A (111) and 111B (111). ) Outer peripheral surface 111b (the outer peripheral surface, the outer surface of the bend).

このように、気液二相流が曲がり管111aを通過する際、遠心力の作用により密度の高い液冷媒が曲がり管111aの外周面111b側の内壁面を移動する。これに対して、曲がり管111aの内周面111c側の内壁面をガス冷媒が移動する。したがって、冷媒流路30の冷媒圧力が冷媒流路40の冷媒圧力よりも低い場合には(図5(b)参照)、リターンベンド111Bの曲がり管111aの外周面111bに接続された連通管990に液冷媒が流れ、リターンベンド111A側の冷媒流路40に流れ込む。   Thus, when the gas-liquid two-phase flow passes through the bent pipe 111a, the liquid refrigerant having a high density moves on the inner wall surface on the outer peripheral surface 111b side of the bent pipe 111a by the action of the centrifugal force. On the other hand, the gas refrigerant moves on the inner wall surface on the inner peripheral surface 111c side of the bent pipe 111a. Therefore, when the refrigerant pressure in the refrigerant channel 30 is lower than the refrigerant pressure in the refrigerant channel 40 (see FIG. 5B), the communication pipe 990 connected to the outer peripheral surface 111b of the bent pipe 111a of the return bend 111B. The liquid refrigerant flows into the refrigerant flow path 40 on the return bend 111A side.

このように、連通管990を、リターンベンド111A,111Bに単に接続するのではなく、リターンベンド111A,111Bの曲がり管111aの外周面111bに接続することにより、遠心力の作用で、連通管990を通して移動する冷媒が気相であることを防止し、液冷媒を流すことが可能になる。   As described above, the communication pipe 990 is not simply connected to the return bends 111A and 111B but is connected to the outer peripheral surface 111b of the bent pipe 111a of the return bends 111A and 111B. It is possible to prevent the refrigerant moving through the gas phase from being a gas phase and to allow the liquid refrigerant to flow.

これにより、液冷媒が乾き度の低い冷媒流路40から乾き度の高い冷媒流路30へ流れることになる。したがって、乾き度の高い冷媒流路30では液冷媒が供給され、それと同時に、乾き度の低い冷媒流路40では液冷媒が減少する。すなわち、連通管990以降の冷媒流路では、冷媒状態の差が縮まり、冷媒流路30と冷媒流路40との間で存在する冷媒の蒸発進行の程度の違いも小さくなる。   As a result, the liquid refrigerant flows from the refrigerant flow path 40 having a low dryness to the refrigerant flow path 30 having a high dryness. Accordingly, the liquid refrigerant is supplied in the refrigerant flow path 30 with a high dryness, and at the same time, the liquid refrigerant decreases in the refrigerant flow path 40 with a low dryness. That is, in the refrigerant flow path after the communication pipe 990, the difference in the refrigerant state is reduced, and the difference in the degree of evaporation of the refrigerant existing between the refrigerant flow path 30 and the refrigerant flow path 40 is also reduced.

なお、気液二相流の冷媒が均等に分配する場合には、図5(a)に示したように、冷媒流路30と冷媒流路40との間で圧力差が存在しないため、連通管990を設けても冷媒の移動が発生しない。つまり、連通管990の設置によって熱交換器の性能が損なわれることがない。   Note that when the gas-liquid two-phase flow refrigerant is evenly distributed, there is no pressure difference between the refrigerant flow path 30 and the refrigerant flow path 40 as shown in FIG. Even if the pipe 990 is provided, the refrigerant does not move. That is, the performance of the heat exchanger is not impaired by the installation of the communication pipe 990.

図6では、曲がり管111aの一端と他端の中間位置に連通管990を接続した場合を図示しているが、遠心力によって液冷媒が曲がり管111aの外周面111b側の内壁面に移動できる位置であれば、前記中間位置に限定されるものではない。なお、第1設置方式の場合には、図6の破線で示すように、リターンベンド111A,111Bの一方から冷媒が導入される場合であっても、図6の実線で示すように、リターンベンド111A,111Bの他方から冷媒が導入される場合であってもどちらでも適用できる。   Although FIG. 6 illustrates a case where the communication pipe 990 is connected to an intermediate position between one end and the other end of the bent pipe 111a, the liquid refrigerant can move to the inner wall surface on the outer peripheral face 111b side of the bent pipe 111a. The position is not limited to the intermediate position. In the case of the first installation method, as shown by the broken line in FIG. 6, even if the refrigerant is introduced from one of the return bends 111A and 111B, as shown by the solid line in FIG. Even if it is a case where a refrigerant | coolant is introduce | transduced from the other of 111A and 111B, it is applicable.

以上説明したように、第1実施形態では、複数の冷媒流路30,40が鉛直方向の上下に離れた熱交換器であっても、冷媒流路30,40の途中で連通管990を接続するとともに、その連通管990を曲がり管111aの外周面111bに接続することで、液冷媒が移動するにつれて、連通管990以降の冷媒流路では、冷媒流路間に存在する冷媒の蒸発進行の程度の差を小さくすることができ、蒸発器としての熱交換性能および空気調和機1の機器性能を向上させることができる。しかも、連通管990の構造は極めてシンプルであるため、ごく低コストで製造できる。   As described above, in the first embodiment, the communication pipe 990 is connected in the middle of the refrigerant flow paths 30 and 40 even if the plurality of refrigerant flow paths 30 and 40 are heat exchangers that are vertically separated from each other. In addition, by connecting the communication pipe 990 to the outer peripheral surface 111b of the bent pipe 111a, in the refrigerant flow path after the communication pipe 990, the evaporation of the refrigerant existing between the refrigerant flow paths progresses as the liquid refrigerant moves. The difference in degree can be reduced, and the heat exchange performance as an evaporator and the equipment performance of the air conditioner 1 can be improved. Moreover, since the structure of the communication pipe 990 is extremely simple, it can be manufactured at a very low cost.

また、第1実施形態では、連通管990を冷媒流路30,40の分配器11から略同じ距離(例えば冷媒流路30,40とも、冷媒が2本目の伝熱管110の出口側)にすることが好ましい。   Further, in the first embodiment, the communication pipe 990 is made substantially the same distance from the distributor 11 of the refrigerant flow paths 30 and 40 (for example, the refrigerant flow paths 30 and 40 both have the refrigerant on the outlet side of the second heat transfer pipe 110). It is preferable.

冷媒分配が不均等な場合(図5(b)参照)には、例えば、冷媒流路30の2本目の伝熱管110の出口と、冷媒流路40の3本目の伝熱管110の出口を連通管990で接続すると、連通管の上流の冷媒流路30と冷媒流路40の長さが異なることになる。その場合、冷媒流路30と冷媒流路40との間で圧力差がほとんどないため、冷媒の移動が発生せず、連通管990を設ける効果が全くない。或いは、冷媒流路30よりも冷媒流路40のほうが圧力が低いため、液冷媒は冷媒流路30から冷媒流路40へと移動する。その結果、連通管990以降の冷媒流路30では、液冷媒が連通管990を設けない場合よりも少なくなり、より早く過熱状態となってしまう。一方、連通管990以降の冷媒流路40では、液冷媒が連通管990を設けない場合よりも多くなるため、冷媒の蒸発を終了できなくなる。   When the refrigerant distribution is uneven (see FIG. 5B), for example, the outlet of the second heat transfer tube 110 of the refrigerant flow path 30 and the outlet of the third heat transfer pipe 110 of the refrigerant flow path 40 are communicated. When the pipe 990 is connected, the lengths of the refrigerant flow path 30 and the refrigerant flow path 40 upstream of the communication pipe are different. In that case, since there is almost no pressure difference between the refrigerant flow path 30 and the refrigerant flow path 40, no movement of the refrigerant occurs and there is no effect of providing the communication pipe 990. Alternatively, since the pressure in the refrigerant channel 40 is lower than that in the refrigerant channel 30, the liquid refrigerant moves from the refrigerant channel 30 to the refrigerant channel 40. As a result, in the refrigerant flow path 30 after the communication pipe 990, the liquid refrigerant becomes less than in the case where the communication pipe 990 is not provided, and the liquid refrigerant 30 is overheated earlier. On the other hand, in the refrigerant flow path 40 after the communication pipe 990, the liquid refrigerant becomes larger than in the case where the communication pipe 990 is not provided, so that the evaporation of the refrigerant cannot be completed.

例えば、冷媒流路30の3本目の伝熱管110の出口と、冷媒流路40の2本目の伝熱管110の出口を連通管990で接続すると、連通管の上流における冷媒流路30と冷媒流路40との長さが異なることになる。その場合、冷媒流路30と冷媒流路40との間で存在する圧力差が大きいため、冷媒流路40から多くの液冷媒が冷媒流路30へと流れる。しかし、冷媒流路30では、連通管990の下流には2本の伝熱管しかないため、冷媒の蒸発を終了できなくなる一方、冷媒流路40では、冷媒が連通管990の下流の3本の伝熱管を経て、早くに過熱状態となる問題が発生する可能性がある。その結果、熱交換器の性能を改善することができなくなる。   For example, when the outlet of the third heat transfer tube 110 of the refrigerant flow path 30 and the outlet of the second heat transfer pipe 110 of the refrigerant flow path 40 are connected by the communication pipe 990, the refrigerant flow path 30 and the refrigerant flow upstream of the communication pipe The length with the path 40 is different. In that case, a large pressure difference exists between the refrigerant flow path 30 and the refrigerant flow path 40, so that a large amount of liquid refrigerant flows from the refrigerant flow path 40 to the refrigerant flow path 30. However, in the refrigerant flow path 30, since there are only two heat transfer pipes downstream of the communication pipe 990, it is impossible to complete the evaporation of the refrigerant. On the other hand, in the refrigerant flow path 40, the refrigerant passes through the three downstream pipes of the communication pipe 990. There is a possibility that a problem of overheating occurs early through the heat transfer tube. As a result, the performance of the heat exchanger cannot be improved.

また、冷媒分配が均等な場合(図5(a)参照)には、冷媒流路間に液冷媒の移動が発生すると、液冷媒が増加する冷媒流路では冷媒の蒸発を終了できなくなる一方、液冷媒が減少する冷媒流路では、冷媒の蒸発が早くに終了してしまう。したがって、熱交換器の性能が損なわれることになる。   In addition, when the refrigerant distribution is uniform (see FIG. 5A), if the liquid refrigerant moves between the refrigerant flow paths, the refrigerant flow in which the liquid refrigerant increases cannot evaporate the refrigerant, In the refrigerant flow path in which the liquid refrigerant decreases, the evaporation of the refrigerant ends quickly. Therefore, the performance of the heat exchanger is impaired.

このように、前記したいずれの場合であっても、熱交換器の入口からの距離が異なる場所に連通管を設けると、熱交換器の性能を改善することができない。そこで、第1実施形態のように、連通管990を冷媒流路30,40の分配器11から略同じ距離にすることで、熱交換器の伝熱面積を有効に利用できるようになり、熱交換器の性能を改善できる。   As described above, in any of the cases described above, the performance of the heat exchanger cannot be improved if the communication pipe is provided at a place where the distance from the inlet of the heat exchanger is different. Therefore, as in the first embodiment, by setting the communication pipe 990 to substantially the same distance from the distributor 11 of the refrigerant flow paths 30 and 40, the heat transfer area of the heat exchanger can be used effectively, The performance of the exchanger can be improved.

また、第1実施形態では、連通管990を冷媒流路30と冷媒流路40との間の圧力差が大きくなる場所、例えば、図5(b)に示す範囲Qに設けることが好ましい。ちなみに、圧力差がとても小さいところに連通管を設けたとしても、各冷媒流路30,40の圧力がほとんど変化せず、連通管を設ける効果が全くなくなる可能性がある。   In the first embodiment, it is preferable to provide the communication pipe 990 in a place where the pressure difference between the refrigerant flow path 30 and the refrigerant flow path 40 becomes large, for example, in the range Q shown in FIG. Incidentally, even if the communication pipe is provided in a place where the pressure difference is very small, the pressure of each refrigerant flow path 30, 40 hardly changes, and the effect of providing the communication pipe may be lost at all.

なお、連通管990の設置方式は、図6に示すものに限定されるものではない。例えば、図7に示すように、第2設置方式として、リターンベンド111A,111Bの曲がり管111a(曲がり流路)の冷媒下流側の直後の外周面111dに連通管991を接続するようにしてもよい。このような設置方式であっても、遠心力の作用で液冷媒が曲がり管111aの外周面111b側に移動した状態を維持しながら曲がり管111aの直後の外周面111dまで移動できるので、連通管991には液冷媒のみが流れ込む。   The installation method of the communication pipe 990 is not limited to that shown in FIG. For example, as shown in FIG. 7, as a second installation method, the communication pipe 991 is connected to the outer peripheral surface 111d immediately after the refrigerant downstream side of the bent pipe 111a (bent flow path) of the return bends 111A and 111B. Good. Even in such an installation method, the liquid refrigerant can move to the outer peripheral surface 111d immediately after the bent tube 111a while maintaining the state where the liquid refrigerant has moved to the outer peripheral surface 111b side of the bent tube 111a by the action of centrifugal force. In 991, only the liquid refrigerant flows.

また、図8に示すように、第3設置方式として、断面視L字形状を有する冷媒配管142,143において、第2設置方式と同様に、冷媒配管142,143の曲がり管142a,143a(曲がり流路、一点鎖線で囲む範囲)の冷媒下流側の直後の外周面142b,143bに連通管991を接続するようにしてもよい(後記する図11の連通管991を参照)。このような設置方式であっても、遠心力の作用によって液冷媒が連通管990に流れ込む。   As shown in FIG. 8, as the third installation method, in the refrigerant pipes 142 and 143 having an L-shaped cross section, the bent pipes 142 a and 143 a (bends) of the refrigerant pipes 142 and 143 are the same as the second installation method. You may make it connect the communicating pipe | tube 991 to the outer peripheral surfaces 142b and 143b immediately after the refrigerant | coolant downstream of a flow path and the dashed-dotted line (refer the communicating pipe | tube 991 of FIG. 11 mentioned later). Even in such an installation method, the liquid refrigerant flows into the communication pipe 990 by the action of centrifugal force.

また、図9に示すように、熱交換器のフィン100を貫通して熱交換領域から突出する伝熱管110の底面110eに連通管991を接続するようにしてもよい。このような熱交換器では伝熱管110がほぼ水平に配置されているので、重力の影響で伝熱管110内の流動状態が、図10(a)に示すように、液冷媒が伝熱管110の底部を、ガス冷媒が伝熱管110の上側を流れるいわゆる分離流、または図10(b)に示すように、液冷媒が伝熱管110の内壁面を、ガス冷媒が伝熱管110の輪切り断面の中心部を流れるいわゆる環状流のいずれの場合であっても、伝熱管110の底面110e(管壁面)に接続された連通管991に液冷媒のみが流れ込む。   Further, as shown in FIG. 9, a communication tube 991 may be connected to the bottom surface 110 e of the heat transfer tube 110 that penetrates the fins 100 of the heat exchanger and protrudes from the heat exchange region. In such a heat exchanger, since the heat transfer tube 110 is arranged almost horizontally, the flow state in the heat transfer tube 110 due to the influence of gravity is such that the liquid refrigerant is in the heat transfer tube 110 as shown in FIG. The bottom part is a so-called separated flow in which the gas refrigerant flows above the heat transfer tube 110, or the liquid refrigerant is on the inner wall surface of the heat transfer tube 110 and the gas refrigerant is in the center of the ring section of the heat transfer tube 110, as shown in FIG. In any case of a so-called annular flow flowing through the section, only the liquid refrigerant flows into the communication pipe 991 connected to the bottom surface 110e (tube wall surface) of the heat transfer tube 110.

なお、第1実施形態では、連通管990をリターンベンド111A,111Bに接続する場合を例に挙げて説明したが、熱交換器の熱交換領域を挟んでリターンベンド111A,111Bとは反対側の伝熱管110のU字管部110s(図2参照)に連通管990を接続するようにしてもよい。   In the first embodiment, the case where the communication pipe 990 is connected to the return bends 111A and 111B has been described as an example. However, on the opposite side of the return bends 111A and 111B across the heat exchange region of the heat exchanger. The communication tube 990 may be connected to the U-shaped tube portion 110s (see FIG. 2) of the heat transfer tube 110.

また、連通管990は、溶接によってリターンベンド111A,111B,冷媒配管142,143、伝熱管110と接合されるものに限定されず、一体成形のものを使用してもよい。   Further, the communication pipe 990 is not limited to the one that is joined to the return bends 111A and 111B, the refrigerant pipes 142 and 143, and the heat transfer pipe 110 by welding, and may be integrally formed.

また、第1実施形態では、連通管990を1ヶ所のみに設けた場合を例に挙げて説明したが、1ヶ所に限定されるものではなく、後記するように2ヶ所以上に設けてもよい。これにより、冷媒流路30,40間の冷媒状態の差をさらに縮めることが可能になる。   In the first embodiment, the case where the communication pipe 990 is provided at only one place has been described as an example. However, the present invention is not limited to one place, and may be provided at two or more places as described later. . Thereby, the difference in the refrigerant state between the refrigerant flow paths 30 and 40 can be further reduced.

(第2実施形態)
図11は、第2実施形態に係る熱交換器を示す側面図である。なお、図11は、家庭用の室外熱交換器の一例を示し、図11の破線は、伝熱管(図2の伝熱管110に対応するもの)のU字管部を示し、太矢印は、熱交換器が蒸発器として機能するときの冷媒の流れる方向(暖房運転時、すなわち室外熱交換器5が蒸発器として機能し、室内熱交換器3が凝縮器として機能する時の冷媒の流れ方向)を示す。また、太実線で示す配管は、特許請求の範囲の連通路に対応する連通管991,992,993を示している。
(Second Embodiment)
FIG. 11 is a side view showing a heat exchanger according to the second embodiment. In addition, FIG. 11 shows an example of a household outdoor heat exchanger, the broken line in FIG. 11 shows the U-shaped tube portion of the heat transfer tube (corresponding to the heat transfer tube 110 in FIG. 2), Direction of refrigerant flow when the heat exchanger functions as an evaporator (direction of refrigerant flow during heating operation, that is, when the outdoor heat exchanger 5 functions as an evaporator and the indoor heat exchanger 3 functions as a condenser) ). Moreover, the piping shown with a thick continuous line has shown the communicating pipe | tube 991,992,993 corresponding to the communicating path of a claim.

図11に示すように、第2実施形態に係る熱交換器(蒸発器)は、冷媒配管122を介して減圧装置4(図1参照)と分配器933とが接続され、分配器933において、2つの冷媒流路31と冷媒流路41とに分かれる。   As shown in FIG. 11, in the heat exchanger (evaporator) according to the second embodiment, the decompression device 4 (see FIG. 1) and the distributor 933 are connected via the refrigerant pipe 122. It is divided into two refrigerant channels 31 and a refrigerant channel 41.

一方の冷媒流路31は、分配器933と伝熱管351の伝熱管開口端301(一端)とを接続する冷媒配管140を経て、熱交換器の下部の伝熱管351,352を通って、伝熱管352の伝熱管開口端304と接続する冷媒配管142を介して分配器953に至り、分配器953で2つの冷媒流路51と冷媒流路61とに分かれる。なお、冷媒流路51と冷媒流路61は、鉛直方向の上下に分割されている。   One refrigerant flow path 31 passes through the refrigerant pipe 140 connecting the distributor 933 and the heat transfer pipe open end 301 (one end) of the heat transfer pipe 351, passes through the heat transfer pipes 351 and 352 at the lower part of the heat exchanger, and passes through the refrigerant pipe. The refrigerant reaches the distributor 953 via the refrigerant pipe 142 connected to the heat transfer pipe opening end 304 of the heat pipe 352, and is divided into two refrigerant flow paths 51 and 61 by the distributor 953. The refrigerant channel 51 and the refrigerant channel 61 are divided into upper and lower parts in the vertical direction.

冷媒流路51は、分配器953と伝熱管551の伝熱管開口端501とを接続する冷媒配管144を経て、熱交換器の最上部の伝熱管551,552,553,554,555,556を通って、合流器954(他端)に至る。   The refrigerant flow path 51 passes through the refrigerant pipe 144 that connects the distributor 953 and the heat transfer pipe opening end 501 of the heat transfer pipe 551, and the heat transfer pipes 551, 552, 553, 554, 555 556 at the uppermost part of the heat exchanger. Through to the merger 954 (the other end).

冷媒流路61は、分配器953と伝熱管651の伝熱管開口端601とを接続する冷媒配管145を経て、熱交換器の上部の伝熱管651,652,653,654,655,656を通って、合流器954で冷媒流路51と合流する。   The refrigerant flow path 61 passes through the heat transfer pipes 651, 652, 653, 654, 655 and 656 in the upper part of the heat exchanger via the refrigerant pipe 145 connecting the distributor 953 and the heat transfer pipe open end 601 of the heat transfer pipe 651. The merger 954 merges with the refrigerant flow path 51.

他方の冷媒流路41は、分配器933と伝熱管451の伝熱管開口端401(一端)とを接続する冷媒配管141を経て、熱交換器の最下部の伝熱管451,452を通って、伝熱管452の伝熱管開口端404と接続する冷媒配管143を介して分配器973に至り、分配器973で2つの冷媒流路71と冷媒流路81とに分かれる。冷媒流路71と冷媒流路81は、鉛直方向の上下に分割されている。また、冷媒流路71と冷媒流路81は、冷媒流路51と冷媒流路61よりも鉛直方向下方に位置している。   The other refrigerant channel 41 passes through the refrigerant pipe 141 connecting the distributor 933 and the heat transfer pipe opening end 401 (one end) of the heat transfer pipe 451, passes through the heat transfer pipes 451 and 452 at the lowermost part of the heat exchanger, The refrigerant reaches the distributor 973 via the refrigerant pipe 143 connected to the heat transfer pipe opening end 404 of the heat transfer pipe 452, and is divided into two refrigerant flow paths 71 and a refrigerant flow path 81 by the distributor 973. The refrigerant channel 71 and the refrigerant channel 81 are divided into upper and lower parts in the vertical direction. Further, the refrigerant flow path 71 and the refrigerant flow path 81 are located below the refrigerant flow path 51 and the refrigerant flow path 61 in the vertical direction.

冷媒流路71は、分配器973と伝熱管751の伝熱管開口端701とを接続する冷媒配管146を経て、熱交換器の中間部の伝熱管751,752,753,754,755,756を通って、合流器974(他端)に至る。   The refrigerant flow path 71 passes through the refrigerant pipe 146 connecting the distributor 973 and the heat transfer pipe open end 701 of the heat transfer pipe 751, and connects the heat transfer pipes 751, 752, 753, 754, 755 756 in the middle part of the heat exchanger. To the merger 974 (the other end).

冷媒流路81は、分配器973と伝熱管851の伝熱管開口端801とを接続する冷媒配管147を経て、熱交換器の下部の伝熱管851,852,853,854,855,856を通って、合流器974で冷媒流路71と合流する。   The refrigerant flow path 81 passes through the refrigerant pipe 147 connecting the distributor 973 and the heat transfer pipe open end 801 of the heat transfer pipe 851, and passes through the heat transfer pipes 851, 852, 853, 854, 855, and 856 at the lower part of the heat exchanger. The merger 974 merges with the refrigerant flow path 71.

合流器954では、冷媒流路51と冷媒流路61とが合流し、合流器974では、冷媒流路71と冷媒流路81とが合流し、さらに冷媒配管148、冷媒配管149を介して合流器934で単一の冷媒流路となった後、冷媒配管121を介して、圧縮機2(図1参照)と接続する。   In the merger 954, the refrigerant flow path 51 and the refrigerant flow path 61 merge. In the merger 974, the refrigerant flow path 71 and the refrigerant flow path 81 merge, and further merge via the refrigerant pipe 148 and the refrigerant pipe 149. After becoming a single refrigerant flow path in the vessel 934, it is connected to the compressor 2 (see FIG. 1) via the refrigerant pipe 121.

このように、第2実施形態では、冷媒流路31と冷媒流路41の途中において、冷媒配管142と冷媒配管143とを連通管991によって接続して、冷媒流路31と冷媒流路41とを連通している。また、冷媒流路51と冷媒流路61の途中において、伝熱管552と伝熱管553とを接続するリターンベンド111C(111)と、伝熱管652と伝熱管653とを接続するリターンベンド111D(111)とを連通管992によって接続して、冷媒流路51と冷媒流路61とを連通している。また、冷媒流路71と冷媒流路81の途中において、伝熱管752と伝熱管753とを接続するリターンベンド111E(111)と、伝熱管852と伝熱管853とを接続するリターンベンド111F(111)とを連通管993によって接続して、冷媒流路71と冷媒流路81とを連通している。   Thus, in the second embodiment, the refrigerant pipe 142 and the refrigerant pipe 143 are connected by the communication pipe 991 in the middle of the refrigerant flow path 31 and the refrigerant flow path 41, and the refrigerant flow path 31 and the refrigerant flow path 41 are connected. Is communicated. Further, in the middle of the refrigerant flow path 51 and the refrigerant flow path 61, a return bend 111C (111) that connects the heat transfer pipe 552 and the heat transfer pipe 553, and a return bend 111D (111) that connects the heat transfer pipe 652 and the heat transfer pipe 653, respectively. ) Are connected by a communication pipe 992, and the refrigerant flow path 51 and the refrigerant flow path 61 are communicated with each other. Further, in the middle of the refrigerant flow path 71 and the refrigerant flow path 81, a return bend 111E (111) that connects the heat transfer pipe 752 and the heat transfer pipe 753, and a return bend 111F (111) that connects the heat transfer pipe 852 and the heat transfer pipe 853. ) Are connected by a communication pipe 993 to communicate the refrigerant flow path 71 and the refrigerant flow path 81.

また、連通管991は、冷媒配管142,143の曲がり管142a,143a(図8(b)参照)の冷媒下流側の直後の外周面(外周側の面、曲がりの外側の面)142b,143b(図8(b)参照)同士を接続している(図8参照)。連通管992は、リターンベンド111Cの曲がり管111aの外周面(外周側の面、曲がりの外側の面)111b(図6参照)、リターンベンド111Dの曲がり管111aの外周面(外周側の面、曲がりの外側の面)111b(図6参照)に接続されている。連通管993は、リターンベンド111Eの曲がり管111aの外周面(外周側の面、曲がりの外側の面)111b(図6参照)、リターンベンド111Fの曲がり管111aの外周面(外周側の面、曲がりの外側の面)111b(図6参照)に接続されている。   In addition, the communication pipe 991 has outer peripheral surfaces (outer peripheral surfaces, outer surfaces of the curves) 142b, 143b immediately after the refrigerant downstream side of the bent pipes 142a, 143a (see FIG. 8B) of the refrigerant pipes 142, 143. (See FIG. 8B) are connected to each other (see FIG. 8). The communication pipe 992 includes an outer peripheral surface (an outer peripheral surface, an outer surface of the bend) 111b (see FIG. 6) of the bent tube 111a of the return bend 111C, and an outer peripheral surface (an outer peripheral surface of the return bend 111D). It is connected to the outer surface 111b (see FIG. 6) of the bend. The communication pipe 993 includes an outer peripheral surface (an outer peripheral surface, an outer surface of the bend) 111b (see FIG. 6) of the bent tube 111a of the return bend 111E, and an outer peripheral surface (an outer peripheral surface of the bent tube 111a of the return bend 111F. It is connected to the outer surface 111b (see FIG. 6) of the bend.

第2実施形態に係る熱交換器(蒸発器)によれば、第1実施形態と同様に、複数の冷媒流路31,41(51,61/71,81)が鉛直方向の上下に離れた熱交換器であっても、冷媒流路31,41(51,61/71,81)の途中で連通管991(992/993)を接続するとともに、その連通管991を冷媒配管142,143の曲がり管142a,143aの冷媒の流れ方向下流側の直後の外周面142b,143b(連通管992,993をリターンベンド111E,111Fの曲がり管111aの外周面111b)に接続することで、熱交換性能を改善することができる。   According to the heat exchanger (evaporator) according to the second embodiment, as in the first embodiment, the plurality of refrigerant flow paths 31, 41 (51, 61/71, 81) are separated from each other in the vertical direction. Even in the heat exchanger, the communication pipe 991 (992/993) is connected in the middle of the refrigerant flow paths 31, 41 (51, 61/71, 81), and the communication pipe 991 is connected to the refrigerant pipes 142, 143. The heat exchange performance is achieved by connecting the outer peripheral surfaces 142b and 143b (the communication pipes 992 and 993 to the outer peripheral surface 111b of the return bends 111E and 111F) of the bent pipes 142a and 143a immediately downstream of the refrigerant flow direction. Can be improved.

また、連通管991によって分配器953前(上流)の冷媒の状態と、分配器973前(上流)の冷媒の状態とがほぼ同じになる。そして、連通管992および連通管993によって、冷媒流路51と冷媒流路61と冷媒流路71と冷媒流路81とを流れる冷媒は、ほぼ同じ状態変化を示し、蒸発器本来の熱交換能力を発揮でき、空気調和機1の性能が向上する。   Further, the state of the refrigerant in front of the distributor 953 (upstream) and the state of the refrigerant in front of the distributor 973 (upstream) are made substantially the same by the communication pipe 991. The refrigerant flowing through the refrigerant flow path 51, the refrigerant flow path 61, the refrigerant flow path 71, and the refrigerant flow path 81 by the communication pipe 992 and the communication pipe 993 show substantially the same state change, and the original heat exchange capability of the evaporator And the performance of the air conditioner 1 is improved.

このようにして冷媒流路間の冷媒の蒸発進行程度の違いを小さくすることができ、蒸発器としての熱交換性能および空気調和機1の機器性能を向上させることができる。しかも、連通管991,992,993の構造は極めてシンプルであるため、ごく低コストで製造できる。   In this way, the difference in the degree of evaporation of the refrigerant between the refrigerant channels can be reduced, and the heat exchange performance as an evaporator and the equipment performance of the air conditioner 1 can be improved. In addition, the structure of the communication pipes 991, 992, and 993 is extremely simple and can be manufactured at a very low cost.

また、第2実施形態では、連通管990を冷媒流路30,40の分配器11から略同じ距離(冷媒流路31,41,51,61,71,81とも、冷媒が2本の伝熱管110を通った後)で接続することで、熱交換器の伝熱面積を有効に利用できる。   In the second embodiment, the communication pipe 990 is disposed at substantially the same distance from the distributor 11 of the refrigerant flow paths 30 and 40 (the refrigerant flow paths 31, 41, 51, 61, 71, and 81 have two refrigerants. 110), the heat transfer area of the heat exchanger can be used effectively.

また、第2実施形態では、連通管991(992/993)を冷媒流路31(51/71)と冷媒流路41(61/81)との間の圧力差が大きくなる場所に設けることで、冷媒流路の間で液冷媒の移動が発生し、冷媒流路間の冷媒状態の差を小さくすることができる。   In the second embodiment, the communication pipe 991 (992/993) is provided in a place where the pressure difference between the refrigerant flow path 31 (51/71) and the refrigerant flow path 41 (61/81) becomes large. The liquid refrigerant moves between the refrigerant flow paths, and the difference in the refrigerant state between the refrigerant flow paths can be reduced.

なお、第2実施形態では、連通管992(993)が、リターンベンド111C(111E)とリターンベンド111D(111F)の外周側の面(曲がりの外側の面)に接続された場合(図6参照)を例に挙げて説明したが、これに限定されるものではなく、連通管992,993を図10に対応する位置に接続するようにしてもよい。   In the second embodiment, the communication pipe 992 (993) is connected to the outer peripheral surface (the outer surface of the bend) of the return bend 111C (111E) and the return bend 111D (111F) (see FIG. 6). However, the present invention is not limited to this, and the communication pipes 992 and 993 may be connected to positions corresponding to FIG.

(第3実施形態)
図12は、第3実施形態に係る熱交換器を示す側面図である。なお、図12は、家庭用の室内熱交換器の一例を示し、図12の破線は、伝熱管(図2の伝熱管110に対応するもの)のU字管部を示し、太矢印は、熱交換器が蒸発器として機能するときの冷媒の流れる方向(冷房運転時、すなわち室内熱交換器3が蒸発器として機能し、室外熱交換器5が凝縮器として機能する時の冷媒の流れ方向)を示す。また、太実線で示す配管は、特許請求の範囲の連通路に対応する連通管996を示している。
(Third embodiment)
FIG. 12 is a side view showing a heat exchanger according to the third embodiment. In addition, FIG. 12 shows an example of a household indoor heat exchanger, the broken line in FIG. 12 shows the U-shaped tube portion of the heat transfer tube (corresponding to the heat transfer tube 110 in FIG. 2), Direction of refrigerant flow when the heat exchanger functions as an evaporator (cooling operation, ie, the direction of refrigerant flow when the indoor heat exchanger 3 functions as an evaporator and the outdoor heat exchanger 5 functions as a condenser) ). A pipe indicated by a thick solid line indicates a communication pipe 996 corresponding to the communication path in the claims.

図12に示すように、第3実施形態に係る熱交換器(蒸発器)は、主熱交換器M、サブクーラA、サブクーラB、二方弁7、分配器931,951、合流器932,952,962,972を図示しない筐体内に備えている。なお、熱交換器は、筐体に設けられた空気吸込口(不図示)から貫流式のファン(不図示)までの風路の途中に配設されている。   As shown in FIG. 12, the heat exchanger (evaporator) according to the third embodiment includes a main heat exchanger M, a subcooler A, a subcooler B, a two-way valve 7, distributors 931 and 951, and mergers 932 and 952. , 962, 972 are provided in a housing (not shown). In addition, the heat exchanger is arrange | positioned in the middle of the air path from the air inlet (not shown) provided in the housing | casing to a once-through type fan (not shown).

第3実施形態に係る熱交換器では、減圧装置4(図1参照)と接続された冷媒配管123が、サブクーラAの伝熱管開口端201に接続されている。この伝熱管開口端201からの単一流路23は、サブクーラA、サブクーラAとサブクーラBとを接続した冷媒配管130、サブクーラBを通って、単一流路23の出口の伝熱管開口端206に至る。そして、伝熱管開口端206は、冷媒配管131を介して分配器931と接続される。   In the heat exchanger according to the third embodiment, the refrigerant pipe 123 connected to the decompression device 4 (see FIG. 1) is connected to the heat transfer pipe opening end 201 of the subcooler A. The single flow path 23 from the heat transfer tube opening end 201 passes through the subcooler A, the refrigerant pipe 130 connecting the subcooler A and the subcooler B, and the subcooler B to reach the heat transfer tube opening end 206 at the outlet of the single flow path 23. . The heat transfer tube opening end 206 is connected to the distributor 931 through the refrigerant pipe 131.

そして、分配器931では、冷媒流路が2つに分けられる。一方の冷媒流路33は、分配器931と伝熱管開口端301(一端)とを接続する冷媒配管132を経て、主熱交換器Mの背面側を通って、合流器932に至る。もう一方の冷媒流路43は、分配器931と伝熱管開口端401(一端)とを接続する冷媒配管133を経て、主熱交換器Mの前面側上部および背面側を通り、合流器932に至り、冷媒流路33と合流する。   In the distributor 931, the refrigerant flow path is divided into two. One refrigerant flow path 33 reaches the merger 932 through the refrigerant pipe 132 connecting the distributor 931 and the heat transfer tube opening end 301 (one end), through the back side of the main heat exchanger M. The other refrigerant flow path 43 passes through the refrigerant pipe 133 connecting the distributor 931 and the heat transfer tube opening end 401 (one end), passes through the front side upper part and the back side of the main heat exchanger M, and enters the merger 932. It reaches the refrigerant flow path 33.

その後、冷媒流路33と冷媒流路43とが合流した冷媒流路は、合流器932と二方弁7とを接続する冷媒配管134、二方弁7、二方弁7と分配器951とを接続する冷媒配管135を経てから、分配器951で4つの冷媒流路53,63,73,83に分けられる。   After that, the refrigerant flow path where the refrigerant flow path 33 and the refrigerant flow path 43 merge is the refrigerant pipe 134, the two-way valve 7, the two-way valve 7, and the distributor 951 that connect the merger 932 and the two-way valve 7. After the refrigerant pipe 135 is connected, the distributor 951 divides it into four refrigerant flow paths 53, 63, 73 and 83.

なお、二方弁7は、空気調和機1(図1参照)を除湿運転させる場合に作動させるものであり、絞り機能(減圧機能)を有している。除湿運転時には、減圧装置4(図1参照)で冷媒を絞らずに、室内熱交換器3(図1参照)の途中に設けた二方弁7で冷媒を絞って(減圧して)、二方弁7の下流の熱交換器で冷媒を冷却することにより、空気中の水分を取り除くようになっている。このとき室内熱交換器3(図1参照)では、二方弁7の上流側の熱交換器を通る熱い冷媒で暖められた空気と、二方弁7の下流側の熱交換器を通る冷たい冷媒で冷やされた空気とが混合され、室内熱交換器3(図1参照)の外部に排出される。   The two-way valve 7 is operated when the air conditioner 1 (see FIG. 1) is dehumidified, and has a throttling function (decompression function). During the dehumidifying operation, the refrigerant is not squeezed by the decompression device 4 (see FIG. 1), but is squeezed (depressurized) by the two-way valve 7 provided in the middle of the indoor heat exchanger 3 (see FIG. 1). Water in the air is removed by cooling the refrigerant with a heat exchanger downstream of the direction valve 7. At this time, in the indoor heat exchanger 3 (see FIG. 1), the air heated by the hot refrigerant passing through the heat exchanger upstream of the two-way valve 7 and the cold passing through the heat exchanger downstream of the two-way valve 7 The air cooled by the refrigerant is mixed and discharged outside the indoor heat exchanger 3 (see FIG. 1).

冷媒流路53は、分配器951と伝熱管開口端504とを接続する冷媒配管136を経て、主熱交換器Mの前面側中間部の伝熱管581,582,583を通って、合流器962(他端)に至る。   The refrigerant flow path 53 passes through the refrigerant pipe 136 connecting the distributor 951 and the heat transfer pipe opening end 504, passes through the heat transfer pipes 581, 582, and 583 in the front side intermediate portion of the main heat exchanger M, and enters the merger 962. (The other end).

冷媒流路63は、分配器951と伝熱管開口端604とを接続する冷媒配管137を経て、主熱交換器Mの前面側中間部の伝熱管681,682,683を通って、合流器962に至り、冷媒流路53と合流する。   The refrigerant flow path 63 passes through the refrigerant pipe 137 connecting the distributor 951 and the heat transfer pipe opening end 604, passes through the heat transfer pipes 681, 682, and 683 in the middle portion on the front side of the main heat exchanger M, and enters the merger 962. To join the refrigerant flow path 53.

冷媒流路73は、分配器951と伝熱管開口端703とを接続する冷媒配管138を経て、主熱交換器Mの前面側下部の伝熱管781,782,783を通って、合流器972(他端)に至る。   The refrigerant flow path 73 passes through the refrigerant pipe 138 connecting the distributor 951 and the heat transfer pipe opening end 703, passes through the heat transfer pipes 781, 782, 783 on the lower front side of the main heat exchanger M, and enters the merger 972 ( The other end).

冷媒流路83は、分配器951と伝熱管開口端804とを接続する冷媒配管139を経て、主熱交換器Mの前面側最下部の伝熱管881,882,883を通って、合流器972に至り、冷媒流路73と合流する。   The refrigerant flow path 83 passes through the refrigerant pipe 139 connecting the distributor 951 and the heat transfer pipe opening end 804, passes through the heat transfer pipes 881, 882, 883 on the lowermost side of the front side of the main heat exchanger M, and enters the merger 972. And merges with the refrigerant flow path 73.

合流器962において冷媒流路53と冷媒流路63とが合流し、合流器972において冷媒流路73と冷媒流路83とが合流した後、さらに冷媒配管151、冷媒配管152を介して合流器952において単一の冷媒流路となった後、冷媒配管124を介して、圧縮機2(図1参照)に至る。なお、冷媒流路53と冷媒流路63は、鉛直方向において上下に分割され、冷媒流路73と冷媒流路83は、鉛直方向において上下に分割されている。   After the refrigerant flow path 53 and the refrigerant flow path 63 merge in the merger 962 and the refrigerant flow path 73 and the refrigerant flow path 83 merge in the merger 972, the merger is further connected via the refrigerant pipe 151 and the refrigerant pipe 152. After a single refrigerant flow path 952, the refrigerant pipe 124 is reached and the compressor 2 (see FIG. 1) is reached. The refrigerant channel 53 and the refrigerant channel 63 are divided vertically in the vertical direction, and the refrigerant channel 73 and the refrigerant channel 83 are divided vertically in the vertical direction.

第3実施形態では、冷媒流路53と冷媒流路63と冷媒流路73と冷媒流路83の途中において、伝熱管581と伝熱管582とを接続するリターンベンド111Mと、伝熱管681と伝熱管682とを接続するリターンベンド111Nと、伝熱管781と伝熱管782とを接続するリターンベンド111Oと、伝熱管881と伝熱管882とを接続するリターンベンド111Pとが連通管996によって接続されている。なお、連通管996は、リターンベンド111M,111N,111O,111Pの曲がり管111aの外周面111bと接続されている(図6参照)。   In the third embodiment, in the middle of the refrigerant flow path 53, the refrigerant flow path 63, the refrigerant flow path 73, and the refrigerant flow path 83, the return bend 111M that connects the heat transfer pipe 581 and the heat transfer pipe 582, the heat transfer pipe 681, and the heat transfer pipe 681. A return bend 111N that connects the heat pipe 682, a return bend 111O that connects the heat transfer pipe 781 and the heat transfer pipe 782, and a return bend 111P that connects the heat transfer pipe 881 and the heat transfer pipe 882 are connected by a communication pipe 996. Yes. The communication pipe 996 is connected to the outer peripheral surface 111b of the bent pipe 111a of the return bends 111M, 111N, 111O, and 111P (see FIG. 6).

これにより、連通管996以降の冷媒流路では、冷媒流路53と冷媒流路63と冷媒流路73と冷媒流路83との間に存在する冷媒の蒸発進行の程度の差を小さくして、蒸発器本来の熱交換能力を発揮でき、空気調和機1の性能を向上できる。   Thereby, in the refrigerant flow path after the communication pipe 996, the difference in the degree of evaporation of the refrigerant existing between the refrigerant flow path 53, the refrigerant flow path 63, the refrigerant flow path 73, and the refrigerant flow path 83 is reduced. The original heat exchange capability of the evaporator can be exhibited, and the performance of the air conditioner 1 can be improved.

(第4実施形態)
図13は、第4実施形態に係る熱交換器を示す側面図である。第4実施形態は、第3実施形態の連通管996に替えて、連通管997,998,999としたものであり、第3実施形態と同様の構成については同一の符号を付して重複した説明を省略する。なお、連通管997,998,999は、特許請求の範囲の連通路に対応する。
(Fourth embodiment)
FIG. 13 is a side view showing a heat exchanger according to the fourth embodiment. In the fourth embodiment, communication pipes 997, 998, and 999 are used instead of the communication pipe 996 of the third embodiment, and the same components as those in the third embodiment are denoted by the same reference numerals and duplicated. Description is omitted. The communication pipes 997, 998, and 999 correspond to the communication paths in the claims.

図13に示すように、第4実施形態に係る熱交換器(蒸発器)は、冷媒流路53と冷媒流路63の途中において、伝熱管581と伝熱管582とを接続するリターンベンド111Mと、伝熱管681と伝熱管682とを接続するリターンベンド111Nとを接続する連通管997、また冷媒流路73と冷媒流路83の途中において、伝熱管781と伝熱管782とを接続するリターンベンド111Oと、伝熱管881と伝熱管882とを接続するリターンベンド111Pとを接続する連通管998、また冷媒流路63と冷媒流路73の途中において、伝熱管682と伝熱管683とを接続するリターンベンド111Qと、伝熱管782と伝熱管783とを接続するリターンベンド111Rとを接続する連通管999を備えている。   As shown in FIG. 13, the heat exchanger (evaporator) according to the fourth embodiment includes a return bend 111 </ b> M that connects the heat transfer pipe 581 and the heat transfer pipe 582 in the middle of the refrigerant flow path 53 and the refrigerant flow path 63. , A communication pipe 997 connecting the return bend 111N connecting the heat transfer pipe 681 and the heat transfer pipe 682, and a return bend connecting the heat transfer pipe 781 and the heat transfer pipe 782 in the middle of the refrigerant flow path 73 and the refrigerant flow path 83. The heat transfer tube 682 and the heat transfer tube 683 are connected in the middle of the communication pipe 998 that connects the return bend 111P that connects 111O and the heat transfer tube 881 and the heat transfer tube 882, and the refrigerant flow channel 63 and the refrigerant flow channel 73. A communication pipe 999 is provided for connecting the return bend 111Q and the return bend 111R that connects the heat transfer pipe 782 and the heat transfer pipe 783.

なお、連通管997,998,999は、いずれも、リターンベンド111M,111N,111O,111P,111Q,111Rの曲がり管111aの外周面(外周側の面、曲がりの外側の面)111b(図6参照)と連通している。   The communication pipes 997, 998, and 999 all have an outer peripheral surface (an outer peripheral surface, an outer surface of the bend) 111b (FIG. 6) of the bent pipe 111a of the return bends 111M, 111N, 111O, 111P, 111Q, and 111R. See).

これにより、連通管997と、連通管998と、連通管999によって、冷媒流路53と冷媒流路63と冷媒流路73と冷媒流路83で冷媒状態の変化がほぼ同じになることによって、蒸発器としての熱交換性能を向上させることができ、空気調和機1としての性能向上を図ることができる。   Thereby, the change in the refrigerant state is almost the same in the refrigerant flow path 53, the refrigerant flow path 63, the refrigerant flow path 73, and the refrigerant flow path 83 by the communication pipe 997, the communication pipe 998, and the communication pipe 999. The heat exchange performance as an evaporator can be improved, and the performance improvement as the air conditioner 1 can be aimed at.

本発明は前記した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々変更することができる。例えば、各実施形態において、連通管を接続する方法として第1設置方式ないし第4設置方式のうちの複数を選択して適用してもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in each embodiment, a plurality of first to fourth installation methods may be selected and applied as a method for connecting the communication pipes.

1 空気調和機
2 圧縮機
3 室内熱交換器
4 減圧装置
5 室外熱交換器
6 四方弁
30,31,40,41,51,53,61,63,71,73,81,83 冷媒流路
100 フィン
110 U字型伝熱管(伝熱流路)
111a,142a,143a 曲がり管(曲がり流路)
111b,111d,142b,143b 外周面(外周側の面)
110e 底面
111,111A,111B,111C,111D,111E,111F,111M,111N,111O,111P,111Q,111R,142,143 リターンベンド
11,933,951,953,973 分配器
12,934,952,954,974 合流器
990,991,992,993,996,997,998,999 連通管(連通路)
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Indoor heat exchanger 4 Pressure reducing device 5 Outdoor heat exchanger 6 Four way valve 30, 31, 40, 41, 51, 53, 61, 63, 71, 73, 81, 83 Refrigerant flow path 100 Fin 110 U-shaped heat transfer tube (heat transfer flow path)
111a, 142a, 143a bent pipe (bent flow path)
111b, 111d, 142b, 143b Outer peripheral surface (surface on the outer peripheral side)
110e Bottom 111, 111A, 111B, 111C, 111D, 111E, 111F, 111M, 111N, 111O, 111P, 111Q, 111R, 142, 143 Return bend 11, 933, 951, 953, 973 Distributor 12, 934, 952, 954,974 Combiner 990,991,992,993,996,997,998,999 Communication pipe (communication path)

Claims (5)

冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、
前記凝縮器で凝縮された冷媒を減圧する減圧装置と、
前記減圧装置で減圧された冷媒を蒸発させる蒸発器と、
を少なくとも備え、
前記蒸発器は、
少なくとも一部が鉛直方向の上下に分割された複数の冷媒流路と、
前記複数の冷媒流路の両端のうちの一方に冷媒を前記複数の冷媒流路に分流させる分配器と、
前記複数の冷媒流路の両端のうちの他方に前記複数の冷媒流路を流れる冷媒を合流させる合流器と、
前記複数の冷媒流路を連通させる連通路と、を有し、
前記冷媒流路は、水平方向に延びて熱交換を行う伝熱流路と、前記伝熱流路から出て他の前記伝熱流路に戻る曲がり流路とを有し、
前記連通路は、前記冷媒流路の途中で前記曲がり流路の外周側の面と連通していることを特徴とする空気調和機。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
A decompression device for decompressing the refrigerant condensed in the condenser;
An evaporator for evaporating the refrigerant decompressed by the decompression device;
Comprising at least
The evaporator is
A plurality of refrigerant flow paths at least partially divided vertically in the vertical direction;
A distributor for diverting a refrigerant to the plurality of refrigerant channels at one of both ends of the plurality of refrigerant channels;
A merger for merging the refrigerant flowing through the plurality of refrigerant channels to the other of the two ends of the plurality of refrigerant channels;
A communication path for communicating the plurality of refrigerant flow paths,
The refrigerant flow path has a heat transfer flow path that extends in the horizontal direction and performs heat exchange, and a bent flow path that returns from the heat transfer flow path to the other heat transfer flow path,
The air conditioner characterized in that the communication path communicates with a surface on an outer peripheral side of the bent flow path in the middle of the refrigerant flow path.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、
前記凝縮器で凝縮された冷媒を減圧する減圧装置と、
前記減圧装置で減圧された冷媒を蒸発させる蒸発器と、
を少なくとも備え、
前記蒸発器は、
少なくとも一部が鉛直方向の上下に分割された複数の冷媒流路と、
前記複数の冷媒流路の両端のうちの一方に冷媒を前記複数の冷媒流路に分流させる分配器と、
前記複数の冷媒流路の両端のうちの他方に前記複数の冷媒流路を流れる冷媒を合流させる合流器と、
前記複数の冷媒流路を連通させる連通路と、を有し、
前記冷媒流路は、水平方向に延びて熱交換を行う伝熱流路と、前記伝熱流路から出て他の前記伝熱流路に戻る曲がり流路とを有し、
前記連通路は、前記冷媒流路の途中で前記曲がり流路の冷媒下流側の直後の外周側の面と連通していることを特徴とする空気調和機。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
A decompression device for decompressing the refrigerant condensed in the condenser;
An evaporator for evaporating the refrigerant decompressed by the decompression device;
Comprising at least
The evaporator is
A plurality of refrigerant flow paths at least partially divided vertically in the vertical direction;
A distributor for diverting a refrigerant to the plurality of refrigerant channels at one of both ends of the plurality of refrigerant channels;
A merger for merging the refrigerant flowing through the plurality of refrigerant channels to the other of the two ends of the plurality of refrigerant channels;
A communication path for communicating the plurality of refrigerant flow paths,
The refrigerant flow path has a heat transfer flow path that extends in the horizontal direction and performs heat exchange, and a bent flow path that returns from the heat transfer flow path to the other heat transfer flow path,
The air conditioner characterized in that the communication path communicates with a surface on the outer peripheral side immediately after the refrigerant downstream side of the bent flow path in the middle of the refrigerant flow path.
前記連通路は、前記冷媒流路の前記分配器から略同じ距離に位置していることを特徴とする請求項1または請求項2に記載の空気調和機。 The air conditioner according to claim 1 or 2 , wherein the communication path is located at substantially the same distance from the distributor of the refrigerant flow path. 前記連通路は、高さの異なる冷媒流路との間に設けられていることを特徴とする請求項1または請求項2に記載の空気調和機。 The air conditioner according to claim 1 or 2 , wherein the communication path is provided between refrigerant channels having different heights. 前記連通路は、互いの前記冷媒流路の圧力差が大きくなる位置に設けられていることを特徴とする請求項1または請求項2に記載の空気調和機。 The air conditioner according to claim 1 or 2 , wherein the communication path is provided at a position where a pressure difference between the refrigerant flow paths becomes large.
JP2014549700A 2012-11-29 2012-11-29 Air conditioner Expired - Fee Related JP5957538B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080918 WO2014083651A1 (en) 2012-11-29 2012-11-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP5957538B2 true JP5957538B2 (en) 2016-07-27
JPWO2014083651A1 JPWO2014083651A1 (en) 2017-01-05

Family

ID=50827324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549700A Expired - Fee Related JP5957538B2 (en) 2012-11-29 2012-11-29 Air conditioner

Country Status (3)

Country Link
JP (1) JP5957538B2 (en)
TW (1) TWI551837B (en)
WO (1) WO2014083651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112149B2 (en) * 2017-03-09 2021-09-07 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171765B2 (en) * 2013-09-11 2017-08-02 ダイキン工業株式会社 Heat exchanger
AU2014410872B2 (en) * 2014-11-04 2018-09-20 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
CN105588371B (en) * 2015-04-14 2018-11-09 海信(山东)空调有限公司 A kind of heat exchanger and air-conditioning
JP6788355B2 (en) * 2016-02-15 2020-11-25 日立ジョンソンコントロールズ空調株式会社 Outdoor unit of air conditioner
JP2018169078A (en) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653359A (en) * 1979-10-09 1981-05-12 Tokyo Shibaura Electric Co Refrigerant distributor
JPH0949671A (en) * 1995-05-29 1997-02-18 Hitachi Ltd Refrigerating air conditioning apparatus
JP2002303468A (en) * 2001-04-02 2002-10-18 Hitachi Ltd Heat exchanger and air conditioner equipped with the same
JP2008215785A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653359A (en) * 1979-10-09 1981-05-12 Tokyo Shibaura Electric Co Refrigerant distributor
JPH0949671A (en) * 1995-05-29 1997-02-18 Hitachi Ltd Refrigerating air conditioning apparatus
JP2002303468A (en) * 2001-04-02 2002-10-18 Hitachi Ltd Heat exchanger and air conditioner equipped with the same
JP2008215785A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112149B2 (en) * 2017-03-09 2021-09-07 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Also Published As

Publication number Publication date
TW201430300A (en) 2014-08-01
JPWO2014083651A1 (en) 2017-01-05
TWI551837B (en) 2016-10-01
WO2014083651A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5957538B2 (en) Air conditioner
JP5927415B2 (en) Refrigeration cycle equipment
EP2868999B1 (en) Refrigeration cycle of refrigerator
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
JP6351494B2 (en) Air conditioner
KR102174510B1 (en) Refrigeration cycle of refrigerator
JP6145189B1 (en) Heat exchanger and air conditioner
JP6778851B2 (en) Heat exchanger and refrigeration system using it
CN107110568A (en) The collapsible micro-channel heat exchanger of many plates of multi-path
EP3760949B1 (en) Heat exchanger unit and air conditioner using same
JP6108332B2 (en) Air conditioner
KR20140106552A (en) Fin tube-type heat exchanger
JP2007147221A (en) Heat exchanger with fin
JP2013134024A (en) Refrigeration cycle device
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6120998B2 (en) Laminated header, heat exchanger, and air conditioner
JP6596541B2 (en) Air conditioner
JP5942248B2 (en) Refrigeration cycle equipment
US20220136740A1 (en) Refrigeration cycle apparatus
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP7281059B2 (en) heat exchanger and heat pump equipment
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP6537615B2 (en) Heat exchanger and method of manufacturing heat exchanger
WO2020079731A1 (en) Heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5957538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees