JP5954247B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP5954247B2
JP5954247B2 JP2013095094A JP2013095094A JP5954247B2 JP 5954247 B2 JP5954247 B2 JP 5954247B2 JP 2013095094 A JP2013095094 A JP 2013095094A JP 2013095094 A JP2013095094 A JP 2013095094A JP 5954247 B2 JP5954247 B2 JP 5954247B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
enlarged diameter
diameter portion
straight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013095094A
Other languages
Japanese (ja)
Other versions
JP2014214074A (en
Inventor
雅紀 高沢
雅紀 高沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013095094A priority Critical patent/JP5954247B2/en
Publication of JP2014214074A publication Critical patent/JP2014214074A/en
Application granted granted Critical
Publication of JP5954247B2 publication Critical patent/JP5954247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

本発明は、チョクラルスキー法(Czochralski method、以下、CZ法と略称することがある)によるシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal by a Czochralski method (hereinafter sometimes abbreviated as CZ method).

従来、CZ法によるシリコン単結晶の製造においては、シリコン単結晶の小片を種結晶として用い、これを原料融液(シリコン融液)に接触させた後、回転させながらゆっくりと引き上げることでシリコン単結晶棒(インゴット)を成長させている。   Conventionally, in the production of a silicon single crystal by the CZ method, a small piece of silicon single crystal is used as a seed crystal, which is brought into contact with a raw material melt (silicon melt) and then slowly pulled up while being rotated. Growing a crystal rod (ingot).

この際、種結晶を原料融液に接触(シーディング、種付)させた後に、熱衝撃により種結晶に高密度で発生するスリップ転位(単にスリップとも言う)から伝播により生ずる転位を消滅させるために、種結晶を絞り込むテーパ状の絞り込み部とそれに続く直径を3mm程度に一旦細くした絞り部(ネック部)を形成するいわゆる種絞り(ネッキング)を行うことが多い(ダッシュネッキング法)。   In this case, after the seed crystal is brought into contact with the raw material melt (seeding, seeding), the dislocation caused by the propagation from the slip dislocation (simply referred to as slip) generated in the seed crystal at a high density by thermal shock is eliminated. In addition, so-called seed drawing (necking) is often performed to form a tapered narrowing portion for narrowing the seed crystal and a subsequent narrowing portion (neck portion) once narrowed to about 3 mm in diameter (dash necking method).

このように種結晶の原料融液への接触を行い、ネッキングを行った後、所望の直径になるまで単結晶を太らせて拡径部(コーン部とも呼ばれる)を形成し(コーン工程)、次いで直胴部を成長させ、無転位のシリコン単結晶を引き上げている。   After making contact with the raw material melt of the seed crystal in this way and performing necking, the single crystal is thickened to a desired diameter to form an enlarged diameter portion (also called a cone portion) (cone step), Next, the straight body is grown, and the dislocation-free silicon single crystal is pulled up.

従来、このような無転位のシリコン単結晶を引き上げるための技術が種々提案されている。
例えば、特許文献1には、シーディング(種付)時の転位の増殖を抑えるために、ネッキング中に取り込まれる好ましい格子間酸素濃度が開示されている。
Conventionally, various techniques for pulling up such dislocation-free silicon single crystals have been proposed.
For example, Patent Document 1 discloses a preferable interstitial oxygen concentration that is incorporated during necking in order to suppress dislocation growth during seeding (seeding).

また近年、半導体デバイス用シリコンウエーハの大口径化が進み、直径300mm以上、さらには直径450mmのウエーハの需要が高まっている。それを受けて、このような大口径シリコンウエーハ製造用の単結晶の製造が増加している。   In recent years, the diameter of silicon wafers for semiconductor devices has been increased, and the demand for wafers with a diameter of 300 mm or more and further with a diameter of 450 mm is increasing. Accordingly, the production of single crystals for producing such large-diameter silicon wafers is increasing.

特にはこのような大口径のシリコン単結晶の製造を行う際に、300mm未満の小口径の場合と同様にして製造を行うと、コーン工程において結晶は無転位で成長するが、後発的に拡径部のある部分、例えば直径150mm程度の部分にスリップ転位が導入されることがあった。そして成長条件によっては、拡径部で後発的に導入されたスリップが、無転位で直胴部を成長しているときに固液界面に達し、直胴部が有転位化してしまう問題があった。   In particular, when such a large-diameter silicon single crystal is manufactured in the same manner as in the case of a small-diameter of less than 300 mm, the crystal grows without dislocations in the cone process, but is later expanded. Slip dislocations may be introduced into a portion having a diameter portion, for example, a portion having a diameter of about 150 mm. Depending on the growth conditions, there is a problem that the slip introduced later in the enlarged diameter part reaches the solid-liquid interface when the straight body part is grown without dislocation, and the straight body part is dislocated. It was.

特開平11−349398号公報JP 11-349398 A

上記のように結晶成長中に後発的に拡径部にスリップが発生することがあるものの、これを防ぐ有効な手段はなかった。特許文献1にしても、シーディング時の転位の増殖を抑えるためのネッキング中の格子間酸素濃度に関するものである。   As described above, although slip may occur in the enlarged diameter portion later during crystal growth, there has been no effective means for preventing this. Even Patent Document 1 relates to the interstitial oxygen concentration during necking for suppressing the growth of dislocations during seeding.

そこで本発明は、上記問題点に鑑みてなされたものであって、CZ法によるシリコン単結晶の製造において、拡径部を形成中のみならず、拡径部を形成した後、シリコン単結晶の直胴部の成長中に、後発的に拡径部にスリップ転位が発生することを抑制し、効率良く高重量、大直径のシリコン単結晶を製造することができる製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and in the production of a silicon single crystal by the CZ method, not only during the formation of the enlarged diameter part, but also after the formation of the enlarged diameter part, An object of the present invention is to provide a production method capable of efficiently producing a high-weight, large-diameter silicon single crystal by suppressing the occurrence of slip dislocation in the enlarged diameter portion during the growth of the straight body portion. And

上記目的を達成するために、本発明は、チョクラルスキー法により、種結晶を原料融液に接触させ、コーン工程で拡径部を形成し、該拡径部に続いて直胴部を成長してシリコン単結晶を製造するシリコン単結晶の製造方法であって、前記コーン工程で育成する拡径部のうち、前記直胴部を成長する間に応力が集中する応力集中位置が存在する領域において、格子間酸素濃度[atoms/cm(ASTM ’79)]<4.0×1017、かつ、格子間酸素濃度[atoms/cm(ASTM ’79)]+窒素濃度[atoms/cm]×10≧3.6×1017の関係を満たすように、窒素をドープしながら窒素濃度および格子間酸素濃度を制御して、前記拡径部の応力集中位置が存在する領域においてスリップ転位が発生しないように制御しつつシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。 To achieve the above object, according to the present invention, the Czochralski method is used to bring the seed crystal into contact with the raw material melt, to form a diameter-expanded portion by a cone process, and to grow a straight body portion following the diameter-expanded portion. A silicon single crystal manufacturing method for manufacturing a silicon single crystal, wherein a region where a stress concentration position where stress is concentrated during the growth of the straight body portion is present among the enlarged diameter portion grown in the cone process , Interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] <4.0 × 10 17 , and interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] + nitrogen concentration [atoms / cm 3 ] In order to satisfy the relationship of × 10 3 ≧ 3.6 × 10 17 , the nitrogen concentration and interstitial oxygen concentration are controlled while doping nitrogen, so that slip dislocations exist in the region where the stress concentration position of the expanded diameter portion exists. Does not occur It provides a method for manufacturing a silicon single crystal, characterized by producing a silicon single crystal while controlling so.

拡径部を無転位で形成するためには、コーン工程において拡径部をゆっくりと時間をかけて形成する必要がある。そしてこのようにゆっくりと拡径部を形成する場合、原料融液の表面が大きい状態が維持され、原料融液表面から酸素が蒸発しやすく、拡径部における格子間酸素濃度は低下する。格子間酸素濃度を4.0×1017[atoms/cm(ASTM ’79)]未満になるような条件でシリコン単結晶を製造することにより、コーン工程において結晶を無転位で成長させることができる。
また、格子間酸素濃度と窒素濃度を上記のような関係を満たすように制御するので、拡径部の応力集中位置が存在する領域においてスリップ転位が後発的に発生するのを効果的に抑制することが可能である。
このため、コーン工程中および後発的に拡径部にスリップが発生することを効果的に抑制しながら、効率良く高重量、大直径のCZシリコン単結晶を製造することができる。
In order to form the expanded portion without dislocation, it is necessary to form the expanded portion slowly over time in the cone process. And when forming a diameter expansion part slowly in this way, the state where the surface of a raw material melt is large is maintained, oxygen tends to evaporate from the raw material melt surface, and the interstitial oxygen concentration in a diameter expansion part falls. By producing a silicon single crystal under such a condition that the interstitial oxygen concentration is less than 4.0 × 10 17 [atoms / cm 3 (ASTM '79)], the crystal can be grown without dislocation in the cone process. it can.
In addition, since the interstitial oxygen concentration and the nitrogen concentration are controlled so as to satisfy the above-described relationship, it is possible to effectively suppress the occurrence of slip dislocations in the region where the stress concentration position of the enlarged diameter portion exists. It is possible.
For this reason, a CZ silicon single crystal having a large weight and a large diameter can be efficiently produced while effectively suppressing the occurrence of slip in the enlarged diameter portion during and after the cone process.

このとき、前記拡径部における応力集中位置を、シミュレーション解析により求めた、前記拡径部における相当応力と臨界分解剪断応力の比の値が最大となる位置とすることが好ましい。
このように、シミュレーション解析により、拡径部における相当応力と臨界分解剪断応力の比の値が最大となる位置を求め、これを拡径部における応力集中位置とすれば、直胴部を成長する間に拡径部において応力が集中する領域を、より確実に特定することができ、より効率良く高重量、大直径のシリコン単結晶を製造することができる。
なお、本明細書中では、臨界分解剪断応力をCRSS(Critical Resolved Shear Stress)と言うことがあり、相当応力と臨界分解剪断応力の比の値(相当応力を臨界分解剪断応力で割った値)をCRSS比と言うことがある。
At this time, it is preferable that the stress concentration position in the diameter-expanded portion is a position where the value of the ratio of the equivalent stress to the critical decomposition shear stress in the diameter-expanded portion is obtained by simulation analysis.
As described above, the position where the ratio of the equivalent stress and the critical decomposition shear stress in the enlarged diameter portion is maximized is obtained by simulation analysis, and if this is set as the stress concentration position in the enlarged diameter portion, the straight body portion is grown. A region where stress is concentrated in the expanded diameter portion can be identified more reliably, and a high-weight, large-diameter silicon single crystal can be manufactured more efficiently.
In the present specification, the critical decomposition shear stress is sometimes referred to as CRSS (Critical Resolved Shear Stress), and the value of the ratio between the equivalent stress and the critical decomposition shear stress (the value obtained by dividing the equivalent stress by the critical decomposition shear stress). Is sometimes referred to as a CRSS ratio.

また、このとき、前記シミュレーション解析によって求める前記比の値が最大となる位置を、前記直胴部の成長開始から前記直胴部の長さが30cmになるまでの範囲で求め、該求めた位置が存在する領域を、前記拡径部における応力集中位置が存在する領域とすることができる。
このように、シミュレーション解析によって求める比の値(CRSS比)が最大となる位置は、直胴部の成長開始から直胴部の長さが30cmになるまでの範囲で求めればよい。そして、このような範囲においてシミュレーション解析によって求めた、CRSS比が最大となる位置が存在する領域を、拡径部における応力集中位置が存在する領域とすることができる。
Further, at this time, the position where the value of the ratio obtained by the simulation analysis is maximized is obtained in a range from the start of growth of the straight body part to the length of the straight body part being 30 cm, and the obtained position The region where there is a stress can be a region where there is a stress concentration position in the enlarged diameter portion.
In this way, the position where the ratio value (CRSS ratio) obtained by simulation analysis is maximized may be obtained within the range from the start of growth of the straight body portion to the length of the straight body portion of 30 cm. And the area | region where the position where CRSS ratio becomes the maximum calculated | required by simulation analysis in such a range exists can be made into the area | region where the stress concentration position in a diameter expansion part exists.

このとき、前記製造するシリコン単結晶を、前記直胴部の直径が450mm以上のものとし、前記拡径部における応力集中位置が、前記拡径部の直径が150mmの領域に存在するものとすることができる。
このように、本発明は、直胴部の直径が450mm以上のような大直径のシリコン単結晶を製造する場合に特に好適に採用することができる。そして、このような場合、拡径部における応力集中位置は、拡径部の直径が150mmの領域に存在することとなる。
At this time, the silicon single crystal to be manufactured is assumed to have a diameter of the straight body portion of 450 mm or more, and a stress concentration position in the enlarged diameter portion exists in a region where the diameter of the enlarged diameter portion is 150 mm. be able to.
As described above, the present invention can be particularly suitably employed when manufacturing a silicon single crystal having a large diameter such that the diameter of the straight body portion is 450 mm or more. In such a case, the stress concentration position in the enlarged diameter portion exists in a region where the diameter of the enlarged diameter portion is 150 mm.

以上のように、本発明によれば、CZ法によるシリコン単結晶の製造において、後発的に拡径部にスリップが発生することを抑制し、効率良く高重量、大直径のシリコン単結晶を製造することができる。   As described above, according to the present invention, in the production of a silicon single crystal by the CZ method, it is possible to efficiently suppress the occurrence of slip in the enlarged diameter portion and efficiently produce a high-weight, large-diameter silicon single crystal. can do.

拡径部の応力集中位置が存在する領域における格子間酸素濃度および窒素濃度と、拡径部の後発的なスリップ転位の発生の有無との関係を示すグラフである。It is a graph which shows the relationship between the interstitial oxygen concentration and nitrogen concentration in the area | region where the stress concentration position of an enlarged diameter part exists, and the presence or absence of generation | occurrence | production of the late slip dislocation in an enlarged diameter part. シミュレーション解析により求めたCRSS比(相当応力と臨界分解剪断応力の比の値)の、結晶成長方向での分布を示すグラフである。It is a graph which shows distribution in the crystal growth direction of CRSS ratio (value of ratio of equivalent stress and critical decomposition shear stress) calculated | required by simulation analysis.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
前述したように、特に大口径のシリコン単結晶の製造を行う際、コーン工程後、拡径部にスリップ転位が後発的に発生してしまい、該スリップ転位が、無転位で直胴部を成長しているときに固液界面に達することがあり、これによって直胴部が有転位化してしまう問題があった。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
As described above, when manufacturing a silicon single crystal having a large diameter, slip dislocations occurred later in the enlarged diameter portion after the cone process, and the slip dislocations grew the straight body portion without dislocations. When this occurs, the solid-liquid interface may be reached, which causes a problem of dislocation of the straight body portion.

そこで本発明者は、拡径部に導入されるスリップ転位等について鋭意研究を行った。その結果、まず、コーン工程中、拡径部のうち直胴部を成長する間に応力が集中する応力集中位置が存在する領域において、格子間酸素濃度[atoms/cm(ASTM ’79)]を4.0×1017未満になるような育成条件であればコーン工程での無転位化率を向上させることができることを見出した。さらには格子間酸素濃度[atoms/cm(ASTM ’79)]+窒素濃度[atoms/cm]×10≧3.6×1017の関係を満たすように制御することで後発的なスリップ転位の発生を防止できることを見出し、本発明を完成させた。 Therefore, the present inventor has intensively studied slip dislocation introduced into the enlarged diameter portion. As a result, first, in the region where the stress concentration position where stress concentrates during the growth of the straight body portion of the enlarged diameter portion during the cone process, the interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] It was found that the dislocation-free rate in the corn process can be improved if the growth conditions are less than 4.0 × 10 17 . Furthermore, the slip occurs later by controlling the interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] + nitrogen concentration [atoms / cm 3 ] × 10 3 ≧ 3.6 × 10 17. The inventors have found that the occurrence of dislocations can be prevented and have completed the present invention.

以下、本発明のシリコン単結晶の製造方法について詳述する。
本発明のシリコン単結晶の製造方法はチョクラルスキー法によるものである。使用するシリコン単結晶製造装置は特に限定されず、例えば従来から使用されているものと同様のものを使用することができる。なお、例えば、磁界をかけながらシリコン単結晶の引上げを行う、MCZ法(Magnetic Field Applied Czochralski method:磁界下引上げ法)に対応した製造装置を採用することもできる。
Hereinafter, the method for producing a silicon single crystal of the present invention will be described in detail.
The method for producing a silicon single crystal of the present invention is based on the Czochralski method. The silicon single crystal manufacturing apparatus to be used is not specifically limited, For example, the thing similar to what is used conventionally can be used. In addition, for example, a manufacturing apparatus corresponding to the MCZ method (Magnetic Field Applied Czochralski method) that pulls up a silicon single crystal while applying a magnetic field can be employed.

(原料投入工程)
まず、装置内に収容した石英ルツボ内に原料となるシリコン多結晶原料を投入する。このとき、引上げるシリコン単結晶中に窒素がドープされるように、窒素ドープ剤も混入しておく。例えば窒化膜付シリコンウエーハなどを混入することができる。この窒化膜付シリコンウエーハなどの量は、所望のドープ量に応じて適宜決定することができる。ただし本発明では、後述するように、格子間酸素濃度との関係を考慮した上で拡径部に所定量がドープされるように投入量を調節する必要がある。
(Raw material input process)
First, a silicon polycrystalline raw material as a raw material is put into a quartz crucible housed in the apparatus. At this time, a nitrogen dopant is also mixed so that the silicon single crystal to be pulled is doped with nitrogen. For example, a silicon wafer with a nitride film can be mixed. The amount of the silicon wafer with nitride film or the like can be appropriately determined according to the desired doping amount. However, in the present invention, as described later, it is necessary to adjust the input amount so that a predetermined amount is doped in the enlarged diameter portion in consideration of the relationship with the interstitial oxygen concentration.

(種付け工程)
これらの原料をヒーターにより溶融して原料融液を得た後、シリコン単結晶の小片を種結晶として用い、これを原料融液に接触させた後、回転させながらゆっくりと引き上げることでシリコン単結晶を成長させる。
この際、種結晶を原料融液に接触させた後に、熱衝撃により種結晶に高密度で発生するスリップ転位から伝播により生ずる転位を消滅させるために、種結晶を絞り込むテーパ状の絞り込み部とそれに続く直径を3mm程度に一旦細くした絞り部を形成するいわゆる種絞りを行う(ダッシュネッキング法)。
(Seeding process)
After these raw materials are melted with a heater to obtain a raw material melt, a small piece of silicon single crystal is used as a seed crystal, and this is brought into contact with the raw material melt, and then slowly pulled up while rotating. Grow.
At this time, after bringing the seed crystal into contact with the raw material melt, in order to eliminate the dislocation caused by propagation from the slip dislocation generated in the seed crystal at a high density due to thermal shock, a tapered narrowing portion for narrowing the seed crystal and Next, so-called seed drawing is performed to form a drawn portion whose diameter is once narrowed to about 3 mm (dash necking method).

または、このような種絞りを行わず、先端が尖った種結晶を用意して原料融液に静かに接触して所定径まで浸漬させてから引き上げを行う無転位種付け法を適用してシリコン単結晶を引上げることもできる。   Alternatively, without using such seed squeezing, a dislocation-free seeding method is applied in which a seed crystal having a sharp tip is prepared, gently contacted with the raw material melt, immersed to a predetermined diameter, and then pulled up. Crystals can be pulled up.

(コーン工程および直胴部成長工程)
この後、所望の直径になるまで単結晶を太らせて拡径部を形成し(コーン工程)、次いで直胴部を成長させ、無転位のシリコン単結晶を引き上げる(直胴部成長工程)。
なお、本発明において直胴部の直径の大きさは特に限定されない。ただし、特には300mm以上、さらには450mm又はそれ以上のような大直径のシリコン単結晶を製造する場合に本発明は特に好適に採用することができる。すなわち、本発明に従えば、直胴部の直径が300mm以上、特には450mm以上のような高重量、大直径のシリコン単結晶を、コーン工程において拡径部を無転位で形成するとともに、後発的に拡径部にスリップが発生することを効果的に抑制しながら効率良く製造することができる。
(Cone process and straight body growth process)
Thereafter, the single crystal is thickened to a desired diameter to form an enlarged diameter portion (cone step), then the straight body portion is grown, and the dislocation-free silicon single crystal is pulled up (straight body portion growth step).
In the present invention, the diameter of the straight body portion is not particularly limited. However, the present invention can be particularly preferably employed when manufacturing a silicon single crystal having a large diameter of 300 mm or more, or even 450 mm or more. That is, according to the present invention, the diameter of the straight body portion is 300 mm or more, particularly 450 mm or more, and a high-weight, large-diameter silicon single crystal is formed in the cone process without expanding the diameter-expanded portion. Thus, it is possible to efficiently manufacture while effectively suppressing the occurrence of slip in the enlarged diameter portion.

本発明では上記コーン工程において、格子間酸素濃度および窒素濃度が所定範囲になるよう制御する。
ここで、まず、上記のようにコーン工程で格子間酸素濃度および窒素濃度を制御する必要性について詳述する。
本発明者が拡径部で後発的に発生するスリップ転位について調査を行ったところ、その原因は、このスリップは拡径部の成長時に発生したものではなく、拡径部の成長後に後発的に発生しているので、結晶中心部と周辺部の温度差に起因した圧縮応力により発生していると推定される。
この温度差は、拡径部の直径が小さい位置よりも大きい位置の方が大きくなりやすいため、拡径部の内部からスリップが発生しやすくなる。
In the present invention, in the cone process, the interstitial oxygen concentration and the nitrogen concentration are controlled to be in a predetermined range.
Here, first, the necessity of controlling the interstitial oxygen concentration and the nitrogen concentration in the cone process as described above will be described in detail.
When the present inventor investigated the slip dislocation that occurs later in the enlarged diameter portion, the cause is that this slip did not occur during the growth of the enlarged diameter portion, but later after the growth of the enlarged diameter portion. Since it has occurred, it is presumed that it has occurred due to the compressive stress caused by the temperature difference between the crystal central part and the peripheral part.
Since this temperature difference tends to be larger at a position where the diameter of the enlarged diameter portion is larger than a position where the diameter of the enlarged diameter portion is small, slip is likely to occur from the inside of the enlarged diameter portion.

スリップが拡径部の内部で発生することの理解を助けるために、本発明者は、以下のように数値シミュレーション解析を行った。まず、CrysMAS(ドイツFraunhofer Institute製)を用いた総合伝熱解析によりシリコン単結晶内の温度分布を求め、この温度分布を元にANSYS(米国ANSYS Inc.製)を用いて重力を考慮した応力解析を行うことにより、シリコン単結晶内部の相当応力を求めた。これを、温度依存性を持つ臨界分解剪断応力(CRSS)で割り、この値(CRSS比)の結晶成長方向分布を算出した。このようなシミュレーション解析方法としたのは、引き上げ中のシリコン単結晶は内部に温度分布を持つため、単に相当応力を比較するだけでは、シリコン単結晶の有転位化のし易さを評価できないためである。   In order to help understanding that slip occurs inside the enlarged diameter portion, the present inventor conducted a numerical simulation analysis as follows. First, the temperature distribution in a silicon single crystal is obtained by comprehensive heat transfer analysis using CrysMAS (manufactured by Fraunhofer Institute, Germany), and stress analysis considering gravity using ANSYS (manufactured by ANSYS Inc., USA) based on this temperature distribution. The equivalent stress inside the silicon single crystal was determined. This was divided by temperature-dependent critical decomposition shear stress (CRSS), and the crystal growth direction distribution of this value (CRSS ratio) was calculated. The reason for this simulation analysis method is that since the silicon single crystal being pulled has a temperature distribution inside, it is not possible to evaluate the ease of dislocation of the silicon single crystal simply by comparing the equivalent stress. It is.

図2に、上記の数値シミュレーション解析により求めたCRSS比の結晶成長方向分布を示した。シミュレーション解析に用いた拡径部の形状は、実際に引き上げたシリコン単結晶の形状を概ね再現し、直胴部の直径は456mmとした。なお、横軸は拡径部の直径、縦軸はCRSS比である。線種の違いは結晶化した直胴部の長さの違いであり、凡例に示した通り、例えば太い実線(直胴5cm)は、直胴部を5cmまで成長したときの拡径部におけるCRSS比を示している。   FIG. 2 shows the crystal growth direction distribution of the CRSS ratio obtained by the above numerical simulation analysis. The shape of the enlarged diameter portion used for the simulation analysis was almost the same as the shape of the actually pulled silicon single crystal, and the diameter of the straight body portion was 456 mm. The horizontal axis represents the diameter of the expanded portion, and the vertical axis represents the CRSS ratio. The difference in the line type is the difference in the length of the crystallized straight body part. As shown in the legend, for example, the thick solid line (the straight body 5 cm) is the CRSS in the enlarged diameter part when the straight body part is grown to 5 cm. The ratio is shown.

図2からわかるように、成長したシリコン単結晶の直胴長さ(直胴部の長さ)が30cmより短い場合に、拡径部の直径が100mm以上の領域(例えば150mmの領域)にCRSS比がピークを有する(すなわち、CRSS比が最大となる位置が存在する)ことがわかった。一方、実際に引き上げたシリコン単結晶のスリップ起点位置は拡径部の直径が100mm以上の領域(より具体的には150mm付近)であったことから、CRSS比のピーク位置、すなわちスリップが発生しやすい領域で実際にスリップが発生していることが確認された。   As can be seen from FIG. 2, when the straight body length of the grown silicon single crystal (the length of the straight body portion) is shorter than 30 cm, the diameter of the enlarged portion is 100 mm or more (for example, a region of 150 mm). It was found that the ratio has a peak (ie, there is a position where the CRSS ratio is maximum). On the other hand, the slip starting point of the actually pulled silicon single crystal was in a region where the diameter of the expanded portion was 100 mm or more (more specifically, around 150 mm), so the peak position of the CRSS ratio, that is, slip occurred. It was confirmed that slip actually occurred in the easy region.

なお、図2で示したシミュレーション解析によるCRSS比が1未満の領域、すなわち、相当応力がCRSSよりも小さい領域で、実際に引き上げたシリコン単結晶でスリップが発生していることになるが、これは上記シミュレーション解析に用いたシリコンの物性値、特に高温域における弾性係数が現実とずれているためと考えられる。文献(N. Miyazaki et al.,J.Crystal Growth 125(1992)102)には、シリコン中のCRSS比とスリップの相関が論じられているが、無転位成長可能なシリコンであってもスリップが存在する結果となることから、高温での物性値の信頼性に問題があると指摘している。   It should be noted that slip is generated in the actually pulled silicon single crystal in the region where the CRSS ratio by the simulation analysis shown in FIG. 2 is less than 1, that is, in the region where the equivalent stress is smaller than CRSS. This is probably because the physical property values of silicon used in the simulation analysis described above, particularly the elastic modulus in the high temperature range, deviate from the actual ones. The literature (N. Miyazaki et al., J. Crystal Growth 125 (1992) 102) discusses the correlation between CRSS ratio and slip in silicon. It is pointed out that there is a problem in the reliability of the physical property value at high temperature because it exists.

したがって、図2に示したシミュレーション解析によるCRSS比は、実際に引き上げたシリコン単結晶と比較すると任意単位を意味することになる。ただし、拡径部におけるスリップが発生しやすい位置を知るためには、CRSS比の絶対値を知る必要はなく、CRSS比の拡径部におけるピーク位置がわかればよい。すなわち、図2に示したような情報により、拡径部におけるスリップが発生しやすい位置を十分に知ることができる。   Therefore, the CRSS ratio according to the simulation analysis shown in FIG. 2 means an arbitrary unit as compared with the actually pulled silicon single crystal. However, it is not necessary to know the absolute value of the CRSS ratio in order to know the position where slip is likely to occur in the enlarged diameter portion, and it is only necessary to know the peak position in the enlarged diameter portion of the CRSS ratio. That is, it is possible to sufficiently know the position where the slip is likely to occur in the enlarged diameter portion by the information as shown in FIG.

なお、本発明の拡径部における応力集中位置としては、例えば上記のようにして、直胴部の成長開始から直胴部の長さが30cmになるまでの範囲で求めたCRSS比が最大となる位置とすることができ、該CRSS比が最大となる位置が存在する領域を、拡径部における応力集中位置が存在する領域とみなすことができる。
特には、前述したように、直胴部の直径が450mm以上の単結晶製造の場合は、応力集中位置が拡径部の直径が150mmの領域に存在することになる。
当然これに限定されず、種々の方法によって、拡径部における応力集中位置が存在する領域を適宜決定することができる。
As the stress concentration position in the enlarged diameter portion of the present invention, for example, as described above, the CRSS ratio obtained in the range from the start of growth of the straight body portion to the length of the straight body portion becomes 30 cm is the maximum. The region where the position where the CRSS ratio is maximum exists can be regarded as the region where the stress concentration position in the enlarged diameter portion exists.
In particular, as described above, in the case of manufacturing a single crystal having a diameter of the straight body portion of 450 mm or more, the stress concentration position exists in a region where the diameter of the enlarged diameter portion is 150 mm.
Of course, it is not limited to this, The area | region where the stress concentration position in an enlarged diameter part exists can be suitably determined with various methods.

そして、この応力集中位置における種々のパラメータについて調査を行ったところ、格子間酸素濃度や窒素濃度がスリップ転位等に大きな影響を与えていることが分かった。その調査内容を下記実験1、実験2に示す。
(実験1)
まず、拡径部の応力集中位置が存在する領域(ここでは拡径部の直径が150mmの位置の部分)の格子間酸素濃度を変化させて、直胴部の直径が450mmのシリコン単結晶を実際に引上げた。そして、その格子間酸素濃度ごとに、コーン工程での無転位化率と、拡径部の後発的なスリップ転位の発生の有無について調べた。表1にその結果をまとめた。
When various parameters at the stress concentration position were investigated, it was found that the interstitial oxygen concentration and the nitrogen concentration had a great influence on the slip dislocation. The contents of the investigation are shown in Experiment 1 and Experiment 2 below.
(Experiment 1)
First, by changing the interstitial oxygen concentration in a region where the stress concentration position of the enlarged diameter portion exists (here, the portion where the diameter of the enlarged diameter portion is 150 mm), a silicon single crystal having a diameter of the straight barrel portion of 450 mm is obtained. Actually pulled up. Then, for each interstitial oxygen concentration, the dislocation-free rate in the cone process and the presence or absence of subsequent slip dislocations in the expanded diameter portion were examined. Table 1 summarizes the results.

Figure 0005954247
Figure 0005954247

表1に示すように、格子間酸素濃度が4.0×1017[atoms/cm(ASTM ’79)]以上になるような拡径部の育成環境では、そもそもコーン工程の無転位化率が格段に低く、無転位結晶が得られにくいことが分った.
一方、格子間酸素濃度が4.0×1017[atoms/cm(ASTM ’79)]よりも低濃度になるような育成条件では、コーン工程での無転位化率は高いものの、後発的なスリップが拡径部の直径が150mmの位置に確認された。
As shown in Table 1, in the growth environment of the enlarged diameter portion where the interstitial oxygen concentration is 4.0 × 10 17 [atoms / cm 3 (ASTM '79)] or more, the dislocation-free rate of the corn process is essentially the first. It was found that dislocation-free crystals were difficult to obtain.
On the other hand, under the growth conditions in which the interstitial oxygen concentration is lower than 4.0 × 10 17 [atoms / cm 3 (ASTM '79)], the dislocation-free rate in the corn process is high, but the latter Slip was confirmed at a position where the diameter of the expanded portion was 150 mm.

そこで、コーン工程での無転位化率が高いもの、すなわち、拡径部の直径が150mmの位置の部分の格子間酸素濃度が4.0×1017[atoms/cm(ASTM ’79)]未満の場合のものについて、後発的なスリップの発生防止の条件を調査するための実験2をさらに行った。 Therefore, a high dislocation-free rate in the cone process, that is, the interstitial oxygen concentration at the position where the diameter of the expanded portion is 150 mm is 4.0 × 10 17 [atoms / cm 3 (ASTM '79)]. Experiment 2 for investigating the conditions for preventing the occurrence of subsequent slip was further conducted for the case of less than the above.

(実験2)
拡径部の応力集中位置が存在する領域(拡径部の直径が150mmの位置の部分)の格子間酸素濃度を4.0×1017[atoms/cm(ASTM ’79)]未満の範囲で変化させるとともに、その領域での窒素濃度も変化させて、直胴部の直径が450mmのシリコン単結晶を実際に引上げた。そして、その格子間酸素濃度および窒素濃度の組み合わせごとに、コーン工程での無転位化率や、拡径部における後発的なスリップ転位の発生の有無について調べた。表2および図1にその結果をまとめた。
(Experiment 2)
The interstitial oxygen concentration in the region where the stress concentration position of the enlarged diameter portion exists (the portion where the diameter of the enlarged diameter portion is 150 mm) is less than 4.0 × 10 17 [atoms / cm 3 (ASTM '79)]. In addition, the nitrogen concentration in the region was also changed, and a silicon single crystal having a diameter of the straight body portion of 450 mm was actually pulled up. Then, for each combination of interstitial oxygen concentration and nitrogen concentration, the dislocation-free rate in the cone process and the presence or absence of subsequent slip dislocations in the enlarged diameter portion were examined. The results are summarized in Table 2 and FIG.

Figure 0005954247
Figure 0005954247

表2に示すように、格子間酸素濃度は4.0×1017[atoms/cm(ASTM ’79)]未満であり、コーン工程での無転位化率はいずれも比較的高く、74%以上にすることができた。 As shown in Table 2, the interstitial oxygen concentration is less than 4.0 × 10 17 [atoms / cm 3 (ASTM '79)], and the dislocation-free rate in the cone process is relatively high, 74% I was able to do more.

一方、後発的なスリップ転位の発生の有無に関しては、特には図1に示すように、格子間酸素濃度[atoms/cm(ASTM ’79)]と窒素濃度[atoms/cm]×10との和が3.6×1017以上である場合と、3.6×1017未満である場合とで結果が分かれた。
それらの和が3.6×1017以上の場合では、後発的なスリップ転位は発生しなかった。このため比較的容易に無転位結晶を得ることができた。
一方、それらの和が3.6×1017未満の場合では、後発的なスリップ転位が拡径部の直径が150mmの位置に発生してしまい、そのスリップ転位が直胴部を成長中に固液界面に達し、無転位結晶を得られない場合があった。
On the other hand, regarding the presence or absence of subsequent slip dislocations, interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] and nitrogen concentration [atoms / cm 3 ] × 10 3 , particularly as shown in FIG. The result was divided into the case where the sum of and was 3.6 × 10 17 or more and the case where it was less than 3.6 × 10 17 .
When the sum thereof was 3.6 × 10 17 or more, no subsequent slip dislocation occurred. For this reason, dislocation-free crystals could be obtained relatively easily.
On the other hand, if the sum of these is less than 3.6 × 10 17 , a subsequent slip dislocation occurs at a position where the diameter of the enlarged diameter portion is 150 mm, and the slip dislocation is fixed during the growth of the straight body portion. In some cases, the liquid interface was reached, and dislocation-free crystals could not be obtained.

以上、コーン工程において格子間酸素濃度および窒素濃度が所定範囲になるよう制御する必要性を説明してきたが、これらを踏まえた結果、本発明で行う格子間酸素濃度および窒素濃度の制御範囲は以下の通りである。
コーン工程で育成する拡径部のうち応力集中位置が存在する領域(例えば直胴部の直径が450mm以上のものの場合、拡径部の直径が150mmの部分)において、まず、格子間酸素濃度[atoms/cm(ASTM ’79)]<4.0×1017の関係を満たすように制御を行い、コーン工程中にスリップ転位が発生しないように制御する。さらには、上記領域において、格子間酸素濃度[atoms/cm(ASTM ’79)]+窒素濃度[atoms/cm]×10≧3.6×1017の関係を満たすように、窒素をドープしながら窒素濃度および格子間酸素濃度を制御し、上記領域に後発的にスリップ転位が発生しないように制御する。
As described above, the necessity of controlling the interstitial oxygen concentration and the nitrogen concentration to be in the predetermined ranges in the cone process has been described. As a result of taking these into consideration, the control range of the interstitial oxygen concentration and the nitrogen concentration performed in the present invention is as follows. It is as follows.
First, in the region where the stress concentration position exists in the enlarged diameter portion grown in the cone process (for example, when the diameter of the straight body portion is 450 mm or more, the diameter of the enlarged diameter portion is 150 mm), first, the interstitial oxygen concentration [ atoms / cm 3 (ASTM '79)] <4.0 × 10 17 is controlled so that slip dislocation does not occur during the cone process. Further, in the above region, nitrogen is added so as to satisfy the relationship of interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] + nitrogen concentration [atoms / cm 3 ] × 10 3 ≧ 3.6 × 10 17. While doping, the nitrogen concentration and interstitial oxygen concentration are controlled so that slip dislocation does not occur later in the region.

このようにすることで、コーン工程や後の直胴部成長工程においてスリップ転位が発生するのを防止することができ、特には高重量、大直径のシリコン単結晶を効率良く製造することが可能である。   By doing so, slip dislocation can be prevented from occurring in the cone process and the subsequent straight body growth process, and in particular, a high-weight, large-diameter silicon single crystal can be efficiently manufactured. It is.

なお、上記領域において、格子間酸素濃度の下限は、例えば2.0×1017[atoms/cm(ASTM ’79)]とすることができる。
また、窒素ドープ量が多すぎると直胴成長工程で有転位化しやすくなるため、上記領域での窒素濃度の上限に関しては4.5×1013[atoms/cm]とするのが好ましい。
In the above region, the lower limit of the interstitial oxygen concentration can be set to 2.0 × 10 17 [atoms / cm 3 (ASTM '79)], for example.
Further, if the nitrogen doping amount is too large, dislocations are easily formed in the straight body growth step. Therefore, the upper limit of the nitrogen concentration in the region is preferably 4.5 × 10 13 [atoms / cm 3 ].

また、格子間酸素濃度や窒素濃度の制御方法は特には限定されない。
格子間酸素濃度に関しては、例えば、結晶回転やルツボ回転の回転速度を調整することによってその濃度範囲を所望のように制御することができる。
また窒素濃度に関しては、前述したように、原料中に混入する窒化膜付シリコンウエーハの量を調整することによってその濃度範囲を所望のように制御することができる。
Moreover, the control method of interstitial oxygen concentration and nitrogen concentration is not particularly limited.
Regarding the interstitial oxygen concentration, for example, the concentration range can be controlled as desired by adjusting the rotation speed of crystal rotation or crucible rotation.
Regarding the nitrogen concentration, as described above, the concentration range can be controlled as desired by adjusting the amount of the silicon wafer with nitride film mixed in the raw material.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例、比較例)
MCZ法により、石英ルツボ内の原料融液から直径450mmのシリコン単結晶を引上げた。このときの拡径部の応力集中位置はシミュレーション解析から拡径部の直径が150mmの領域であった。
なお、実施例では、シリコン単結晶を引上げる際、その回転速度を変化させたり、原料に用いる窒化膜付シリコンウエーハの量を調整することにより、シリコン単結晶の拡径部の直径が150mmの位置の部分における格子間酸素濃度と窒素濃度を調整した。具体的には、格子間酸素濃度を4.0×1017[atoms/cm(ASTM ’79)]未満の範囲で、かつ、格子間酸素濃度[atoms/cm(ASTM ’79)]と窒素濃度[atoms/cm]×10との和が3.6×1017以上になるような格子間酸素および窒素濃度に制御した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Examples and comparative examples)
A single crystal silicon having a diameter of 450 mm was pulled from the raw material melt in the quartz crucible by the MCZ method. At this time, the stress concentration position of the enlarged diameter portion was an area where the diameter of the enlarged diameter portion was 150 mm from the simulation analysis.
In the example, when pulling up the silicon single crystal, the diameter of the expanded portion of the silicon single crystal is 150 mm by changing the rotation speed or adjusting the amount of the silicon wafer with nitride film used as a raw material. The interstitial oxygen concentration and nitrogen concentration in the position portion were adjusted. Specifically, the interstitial oxygen concentration is within a range of less than 4.0 × 10 17 [atoms / cm 3 (ASTM '79)], and the interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] The interstitial oxygen and nitrogen concentrations were controlled so that the sum of the nitrogen concentration [atoms / cm 3 ] × 10 3 was 3.6 × 10 17 or more.

一方、比較例では、実施例のような拡径部における格子間酸素濃度や窒素濃度は特に考慮せず、従来法でシリコン単結晶を引上げた。
その結果、拡径部の上記部分における格子間酸素濃度は実施例とほぼ同様の範囲であったものの、格子間酸素濃度と窒素濃度の組み合わせに関しては実施例と異なっており、上記和はいずれも3.6×1017未満であった。
On the other hand, in the comparative example, the interstitial oxygen concentration and the nitrogen concentration in the enlarged diameter portion as in the example were not particularly taken into consideration, and the silicon single crystal was pulled by the conventional method.
As a result, although the interstitial oxygen concentration in the above-mentioned part of the enlarged diameter portion was in a range almost similar to that in the example, the combination of the interstitial oxygen concentration and the nitrogen concentration was different from that in the example. It was less than 3.6 × 10 17 .

実施例および比較例でのシリコン単結晶について、コーン工程中の無転位化率や後発的なスリップ転位の発生について調査を行ったところ、表2や図1とほぼ同様の結果が得られた。
すなわち本発明を実施した実施例では、コーン工程での無転位化率が高く、また、スリップ転位が後発的に発生することもなく、容易に無転位結晶を得ることができた。
一方で比較例では、コーン工程での無転位化率は高かったものの、コーン工程後、直胴部を成長中に拡径部にスリップ転位が発生してしまい、該スリップ転位が固液界面に達して無転位結晶を得られない場合があった。
When the silicon single crystals in the examples and comparative examples were investigated for the dislocation-free rate during the cone process and the occurrence of subsequent slip dislocations, the results were almost the same as in Table 2 and FIG.
That is, in the examples in which the present invention was carried out, the dislocation-free rate in the cone process was high, and slip dislocation did not occur later, and dislocation-free crystals could be obtained easily.
On the other hand, in the comparative example, the dislocation-free rate in the cone process was high, but after the cone process, slip dislocations occurred in the enlarged diameter part during growth of the straight body part, and the slip dislocations became a solid-liquid interface. In some cases, dislocation-free crystals could not be obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (3)

チョクラルスキー法により、種結晶を原料融液に接触させ、コーン工程で拡径部を形成し、該拡径部に続いて直胴部を成長してシリコン単結晶を製造するシリコン単結晶の製造方法であって、
前記コーン工程で育成する拡径部のうち、前記直胴部を成長する間に応力が集中する応力集中位置が存在する領域において、
格子間酸素濃度[atoms/cm(ASTM ’79)]<4.0×1017、かつ、格子間酸素濃度[atoms/cm(ASTM ’79)]+窒素濃度[atoms/cm]×10≧3.6×1017の関係を満たすように、窒素をドープしながら窒素濃度および格子間酸素濃度を制御して、前記拡径部の応力集中位置が存在する領域においてスリップ転位が発生しないように制御しつつシリコン単結晶を製造するとき、
前記拡径部における応力集中位置を、シミュレーション解析により求めた、前記拡径部における相当応力と臨界分解剪断応力の比の値が最大となる位置とすることを特徴とするシリコン単結晶の製造方法。
A silicon single crystal is manufactured by contacting a seed crystal with a raw material melt by the Czochralski method, forming an enlarged diameter portion by a cone process, and growing a straight body portion following the enlarged diameter portion. A manufacturing method comprising:
In the region where there is a stress concentration position where stress concentrates while growing the straight body portion, among the expanded diameter portion grown in the cone process,
Interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] <4.0 × 10 17 and interstitial oxygen concentration [atoms / cm 3 (ASTM '79)] + nitrogen concentration [atoms / cm 3 ] × Slip dislocation occurs in the region where the stress concentration position of the expanded portion exists by controlling the nitrogen concentration and interstitial oxygen concentration while doping nitrogen so as to satisfy the relationship of 10 3 ≧ 3.6 × 10 17 When manufacturing silicon single crystal while controlling not to
A method for producing a silicon single crystal, characterized in that the stress concentration position in the enlarged diameter portion is determined by simulation analysis and is a position where the value of the ratio of the equivalent stress and the critical decomposition shear stress in the enlarged diameter portion is maximized .
前記シミュレーション解析によって求める前記比の値が最大となる位置を、前記直胴部の成長開始から前記直胴部の長さが30cmになるまでの範囲で求め、該求めた位置が存在する領域を、前記拡径部における応力集中位置が存在する領域とすることを特徴とする請求項1に記載のシリコン単結晶の製造方法。 The position where the value of the ratio obtained by the simulation analysis is maximized is determined in the range from the start of growth of the straight body part to the length of the straight body part being 30 cm, and the region where the obtained position exists The method for producing a silicon single crystal according to claim 1 , wherein a region where stress concentration positions exist in the enlarged diameter portion is used. 前記製造するシリコン単結晶を、前記直胴部の直径が450mm以上のものとするものとすることを特徴とする請求項1または請求項2に記載のシリコン単結晶の製造方法。 The silicon manufacturing single crystal, manufacturing method of a silicon single crystal according to claim 1 or claim 2 the diameter of the straight body portion, characterized in that the be shall and more than 450 mm.
JP2013095094A 2013-04-30 2013-04-30 Method for producing silicon single crystal Active JP5954247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095094A JP5954247B2 (en) 2013-04-30 2013-04-30 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095094A JP5954247B2 (en) 2013-04-30 2013-04-30 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2014214074A JP2014214074A (en) 2014-11-17
JP5954247B2 true JP5954247B2 (en) 2016-07-20

Family

ID=51940196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095094A Active JP5954247B2 (en) 2013-04-30 2013-04-30 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5954247B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128691A (en) * 1998-10-16 2000-05-09 Shin Etsu Handotai Co Ltd Silicon seed crystal and production of silicon single crystal
JP4791073B2 (en) * 2005-04-26 2011-10-12 Sumco Techxiv株式会社 Silicon wafer manufacturing method
JP2010062466A (en) * 2008-09-05 2010-03-18 Sumco Corp Silicon wafer for vertical silicon device and its manufacturing method, silicon single crystal, and vertical silicon device
JP5453749B2 (en) * 2008-09-05 2014-03-26 株式会社Sumco Manufacturing method of silicon wafer for vertical silicon device and silicon single crystal pulling apparatus for vertical silicon device
JP2010275137A (en) * 2009-05-27 2010-12-09 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal

Also Published As

Publication number Publication date
JP2014214074A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP2006312576A (en) Method for production of silicon single crystal and silicon wafer
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
JP5056122B2 (en) Method for producing silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
JP2017222551A (en) Production method of silicon single crystal
JP2973917B2 (en) Single crystal pulling method
WO2004092455A1 (en) Process for producing single crystal
WO2013088646A1 (en) Method for producing silicon single crystal
JP5954247B2 (en) Method for producing silicon single crystal
JP2001240493A (en) Manufacturing method of non-dislocational, single crystal silicon
JP4894848B2 (en) Method for producing silicon single crystal
JP2010275137A (en) Method for producing silicon single crystal
JP2003246695A (en) Method for producing highly doped silicon single crystal
JP5907045B2 (en) Method of pulling silicon single crystal
JP6070626B2 (en) Method for growing silicon single crystal
JP2004175620A (en) Manufacturing method of single crystal
JP2006327874A (en) Method for production of silicon single crystal
JP3402210B2 (en) Method for producing silicon single crystal
KR101173764B1 (en) A Method for Eliminating a Dislocation in Growing Single Si Crystal
JP5070916B2 (en) Silicon single crystal and silicon wafer
JP2005067927A (en) Silicone seed crystal and production method for silicon single crystal
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
TWI751028B (en) Method for manufacturing single crystal silicon
JP2001199789A (en) Method for producing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250