JP5953045B2 - バイオマスを用いたエタノール製造方法 - Google Patents

バイオマスを用いたエタノール製造方法 Download PDF

Info

Publication number
JP5953045B2
JP5953045B2 JP2012004795A JP2012004795A JP5953045B2 JP 5953045 B2 JP5953045 B2 JP 5953045B2 JP 2012004795 A JP2012004795 A JP 2012004795A JP 2012004795 A JP2012004795 A JP 2012004795A JP 5953045 B2 JP5953045 B2 JP 5953045B2
Authority
JP
Japan
Prior art keywords
reaction
yeast
amount
fermentation
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012004795A
Other languages
English (en)
Other versions
JP2013143915A (ja
Inventor
林 俊介
俊介 林
伸介 増成
伸介 増成
典子 吉良
典子 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012004795A priority Critical patent/JP5953045B2/ja
Priority to CN2013100112604A priority patent/CN103205467A/zh
Publication of JP2013143915A publication Critical patent/JP2013143915A/ja
Application granted granted Critical
Publication of JP5953045B2 publication Critical patent/JP5953045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、バイオマスを原料とした同時糖化発酵によるエタノール製造方法のうち、原料の混合使用による発酵用微生物の初期使用量低減技術に関する。
近年、化石燃料代替として温暖化ガスの発生抑制に寄与すると言われているバイオ燃料が注目されている。そのうち、バイオエタノールはカーボンニュートラルの思想の下、ブラジルやアメリカなど世界中で生産量が増加している。一方で、食物由来のバイオエタノールは、原料生産時に多くのエネルギーを使用していることから温暖化ガス低減への疑問や、食料との競合から食料価格の高騰問題、新規農地開墾に伴う更なる環境悪化などが懸念されており、食料と競合しない既存のバイオマスの利活用として、林地残材や農作物の非可食部、稲わらなどの農業残渣といったセルロース系バイオマスの利活用が望まれている。
このようなセルロース系バイオマスは、ホロセルロースがその有機物組成の半分以上を占めており、その構成単位が単糖であることから、分解し、エネルギー転換を行うことが検討されている。
このようなセルロース系バイオマスは、酸やアルカリを用いた化学的処理や、熱や圧力をかける物理的な処理、酵素による加水分解が試みられ、またこれらの併用も検討されている。特に環境負荷が少なく、副産物の生成がほとんどない酵素糖化法は有用な方法の1つである。
セルロース系バイオマスの酵素糖化を行い、エタノール製造原料とする場合、糖化後に糖化液を発酵させるという糖化後発酵方法、および糖化と発酵を同時に行う同時糖化発酵(simultaneous saccharification and fermentation以下、SSF)の2つの方法に大別される。糖化後発酵を選択した場合、エタノール発酵後に蒸留を行うことを考えれば蒸留時のエネルギー損失を考慮して、高原料濃度由来の糖化液を作製するか、低原料濃度由来の糖化液を濃縮するかの2つが考えられる。前者は酵素の競争阻害(生成物阻害)により酵素活性が徐々に低下し、後者は糖液の濃縮に多くのエネルギーが必要である。このような高濃度原料に対する問題を解決できる方法として近年特にSSFが有用な方法の1つとして認識されてきている。
SSF反応は原料以外に少なくとも発酵用微生物と加水分解酵素が必要であり、その量のバランスにより効率的な反応を実現できる。セルロース系バイオマスを原料としてSSF反応を行う際にはセルロースを加水分解する酵素であるセルラーゼを加え、発酵用微生物には酵母やザイモモナスなどを用いて、加水分解により得られた糖からエタノールへの変換が行われる。現在セルラーゼの値段が高く、コストの低下が必要であると言われているが、一方で酵母などの微生物も反応に多くの量が必要となる。例えば、非特許文献1には、100mLのSSF反応において、8gのコーンストーバーを原料に用い、各種栄養塩を添加後、1gの乾燥酵母を使用して反応を行い、最大27.8g/Lのエタノール濃度が得られているが、このときに使用する1g の乾燥酵母を生産するためには、一般的にはプラトーに達した酵母培養液が少なくとも25mL程度以上必要となり、SSF反応の少なくとも1/4以上の規模で前培養を行わなければならなくなる。一方、非特許文献2には乾燥重量当たり0.5g/Lの酵母使用の報告がある。
また、特許文献1で検討されているSSF(並行複発酵)の開始時の酵母使用量はOD600nm=2の濁度に調製しており、0.5〜2g/L程度の使用量と考えられる。
SSF反応時に必要な酵母量は、少なくとも競争阻害により活性が低下するほど糖が生成してしまうとSSF反応の利点が抑制されてしまうため、使用する酵素の活性である加水分解能の維持のために、多めに添加する必要があると考えられる。
現在工業化されている回分発酵によるエタノール発酵反応では、反応容量当たり、時間当たりに生成するエタノール量は、1.3〜1.5g/L/h(非特許文献3)であり、2日間あれば60−70g/Lのエタノールが製造できるが、この場合発酵槽の数分の1の容量の前培養槽が必要となり、前培養に必要な培地や栄養分などが大量に必要となる。
特開2011−004730号公報
Fuel Processing Technology, Volume 90, Issue 10, October 2009, Pages 1193-1197 Bioresource Technology, Volume 101, Issue 9, May 2010, Pages 3126-3131 アルコールハンドブック第9版(1997)、発酵ハンドブック2001
SSF反応により、セルロース系バイオマスを用いたエタノール製造において、酵母の使用量は高コストの原因となりうるが、使用量を低減することは安定的な反応が実現できず、酵素の使用量も増大する原因となる。実際に検討されている酵母使用量では、SSF反応槽の数分の1という容量での前培養が必要となり、前培養コストおよび設備負担の点で問題であり、ひいては発酵によるバイオエタノールの普及の障害となる可能性が高い。
本発明は、上記事情に鑑みてなされたものであり、発酵用微生物の初期使用量を低減させることができ、なおかつ、安定的な反応を実現することができる、エタノール製造方法を提供することを目的とする。
本発明者らが鋭意検討した結果、セルロース系バイオマスを有機性廃棄物とともに同時糖化発酵反応に付すことにより上記課題が解決されることを見出し、本発明を完成するに至った。
すなわち、本発明は、
(1)セルロース系バイオマスを、加水分解酵素と発酵微生物である酵母とにより同時に反応させる同時糖化発酵反応によりエタノールを製造する方法において、
該セルロース系バイオマスを、厨芥、食品廃棄物、農産廃棄物、畜産廃棄物、下水汚泥、有機性汚泥のうちの1種以上から構成される有機性廃棄物とともに同時糖化発酵反応に付し、
反応槽当たりの酵母の初期添加乾燥重量を0.125〜0.0025g/kgとすることを特徴とする、方法;および
(2)同時糖化発酵反応時の前記セルロース系バイオマスの濃度が、総反応量に対して10〜25%である、上記(1)に記載の方法;
に関する。
本発明は、セルロース系バイオマスを、厨芥、食品廃棄物、農産廃棄物、畜産廃棄物、下水汚泥、有機性汚泥のうちの1種以上から構成される有機性廃棄物とともに同時糖化発酵反応に付し、反応槽当たりの酵母の初期添加乾燥重量を0.125〜0.0025g/kgとした。これにより、本発明では、発酵用微生物の初期使用量を低減させることができ、なおかつ、安定的な反応を実現することができる。
比較例1の結果を示すグラフである。 実施例1の結果を示すグラフである。 実施例2において、SSF反応により得られたエタノール濃度の結果を示すグラフである。 実施例2において、反応中のCFUの推移を示すグラフである。 本発明により得られる効果を表すグラフである。
以下、本発明について詳細に説明する。
本発明にいう、セルロース系バイオマスとは、そのバイオマスの構成成分中のホロセルロース含量が最も主要であるものであれば特に限定されないが例えば、廃材、おがくず、剪定枝、紙、紙くず、製紙スラッジ、藻類、草本類、綿類、布類などや、それらの混合物が考えられる。
また、セルロース系バイオマスとともに同時糖化発酵原料とする有機性廃棄物は、食料と競合せず、酵母の増殖に必要な成分を含んでいるものであれば限定されるものではないが、例えば厨芥、食品廃棄物、農産廃棄物、畜産廃棄物、下水汚泥、有機性汚泥のうちの1種以上から構成され得る。セルロース系バイオマスに対する有機性廃棄物の比率は、乾燥重量比で10〜60%が好ましい。
SSF反応を行う際に用いる加水分解酵素は、セルロース系バイオマスを原料とすることからセルラーゼは必須であり、さらに付加的にキシラナーゼ、ガラクトシダーゼ、マンノシダーゼといった他の糖鎖の加水分解酵素を加えてもよい。また、ともに原料として用いる厨芥、食品廃棄物、農産廃棄物、畜産廃棄物、下水汚泥、有機性汚泥を加水分解する酵素としてアミラーゼ、リパーゼ、プロテアーゼ、といった加水分解酵素を少なくとも1種以上加えることで、反応の進行を促進することができると考えられる。
これら原料はSSF反応に用いる前に、反応をより良好に行うための前処理を行うこともできる。それら前処理としては、微細化、曝砕、加圧、加熱、薬剤処理、pH調整、濃度調整、脱水、加水、腐敗、混和、などや、これらの複合処理が考えられるが、特に限定されるものではない。
本発明で、混合したバイオマスを原料に用いた場合のSSF反応に必要な酵母量については、反応量当たりの酵母の乾燥重量0.125g/kg以下で反応を行うことができ、0.0025g/kg以上の量で反応を行うことができる。これは、濁度で換算すると、およそOD600nmで計測した場合には、使用する酵母の種類にもよるが、最大でも0.1以下と考えられる。一般的な回分発酵で用いられる菌体量が数g/Lであり、研究報告が行われているSSF反応に用いられる酵母量でも0.5g/kg程度が下限であることを鑑みると、酵母の使用量は数分の1から数百分の1の使用量となる。
SSF反応を行う時の原料濃度は特段限定されるものではないが、バイオマスを原料としているため、原料から100%エタノールに変換されることはなく、後段の蒸留におけるエネルギー損失を抑制することを考えると、セルロース系バイオマスの濃度は総反応量に対して10〜25%の濃度、すなわち含水率が75〜90%であることが望ましい。
酵素による競争阻害を抑制することで酵素活性の維持による酵素コストの低減がSSF反応の最も大きな利点であるが、反応時間を多くとることでも酵素コストが低減でき、また酵母の増殖期間を多くとる方が安定したSSF反応が実現する可能性が高くなることを考慮すると、SSF反応期間は特段限定されるものではないが、2日以上で行うことが望ましい。
一般的な回分発酵で用いられる酵母菌体量が少なくとも数g/Lであり、研究報告が行われているSSF反応に用いられる酵母量が0.5g/kg程度が下限であることを鑑みると、本発明の反応量当たりの酵母の乾燥重量が0.125g/kg以下という使用量は、酵母培地コストは数分の1から数百分の1以下となる。
一般的に酵母は、プレートで培養からフラスコ培養を経て、約10倍ずつのスケールで前培養が行われていく。したがって、本発明により、最も大きな前培養槽設備の削減や、冷蔵保存する場合の保存場所および保存施設の低減が図れる。
このとき、本発明の要素であるセルロース系バイオマスと、ともに反応させる有機性廃棄物との混合原料、酵母及び酵素を添加することで開始されるSSF反応は、酵母の添加量を減らすことで、反応開始直後から、主に有機性廃棄物由来の栄養塩と酵素による加水分解で得られた構成糖を用いて、SSF反応に十分な量まで増殖が起こるため、酵母量が低減される。したがって、増殖に要するエネルギー、すなわち本来ならエタノールに転換されるはずの糖類が消費されることからエタノール生成量が低下するとも考えられるが、実際の効果としては増加することを確認している。増殖に適さない条件下であるセルロース系バイオマスのみを原料として用いた場合には初期に大量の酵母を用いてSSF反応を開始しなければ、酵素の競争阻害によりSSF反応の進行が抑制されてしまうが、その分大量に存在する酵母をSSF反応期間中維持するためにカロリーが消費されてしまい、エタノールへと変換されないと考えられる。このように、本発明での低減された酵母使用量は、過剰な菌体により消費されるエネルギーを回収する効果もある。図5は、このような回収されるエネルギーをグラフ中の網掛け部分で示している。
また、SSF反応後に多くの酵母が残存するため、反応液の再利用時には酵母の再添加量を減量もしくは割愛できる。
次に、本発明について実施例により具体的に説明する。
(実施例)
(比較例1)
一般廃棄物から手選別により紙類を抽出し、パルピング(離解)処理を行った。得られたパルプをスクリーンにより異物を除去後、スクリュープレスにて脱水した紙パルプをセルロース系バイオマスとした。得られた紙パルプのホロセルロース含量は約85%であった。
調製した紙パルプを重量濃度10%に調製したスラリーに、加水分解酵素と酵母を同時に作用させ、同時糖化発酵反応を行った。加水分解酵素はジェネンコア社製アクセルレースを用い、酵母使用量は0.125−2.5g-dry/kg-反応量の範囲で行ない、38℃でSSF反応を行った。エタノール濃度はサンプリング後、沸騰水中にて失活処理を行い、遠心後の上清をバイオセンサー(王子計測機製BF-5)により分析を行った。
その結果を図1に示す。紙パルプのみを原料として用いた場合には、酵母使用量依存的に生成エタノール量が増加し、安定的および効率的なSSF反応のためにはおよそ1g-dry/kg程度以上の酵母使用量が必要であった。
(実施例1)
前記紙パルプに、一般廃棄物より手選別後ミキサーにて細分化した厨芥を混合してSSF反応を行った。
紙パルプおよび厨芥をそれぞれ15%および10%の重量比率で混合して、これを混合原料として用いて、加水分解酵素と酵母を同時に作用させ、同時糖化発酵反応を38℃で行った。加水分解酵素はジェネンコア社製アクセルレースとともに、ノヴォザイム社製スピリザイムを用い、酵母使用量は0.0025-2.5g-dry/kg-反応量の範囲で行った。エタノール濃度はサンプリング後、沸騰水中にて処理を行い、遠心後の上清についてバイオセンサー(王子計測機製BF-5)により分析を行った。
その結果を図2に示す。比較例1で示した紙パルプのみの原料で必要と考えられる酵母使用量である1g-dry/kgよりも百分の1量の使用量でも反応が進行しており、さらに酵母使用量が少ない方が得られるエタノール量が多い結果であった。
したがって、セルロース系バイオマスである紙類に厨芥を混合して得られる混合原料のSSF反応により、酵母使用量を軽減することができ、その減少率は最大数百分の1以下であることが確認できた。
また、軽減した酵母使用量での反応により、エタノール生成量が増加することも示された。
(実施例2)
紙パルプのみの原料において十分な酵母量(1.25g/kg)を用いた場合、紙パルプのみの原料において少ない酵母使用量(0.025g/kg)を用いた場合、厨芥を1割含む混合原料において十分な酵母使用量(0.025g/kg)を用いた場合、および厨芥を2割含む混合原料において十分な酵母使用量(0.025g/kg)を用いた場合の4通りについて、実施例1と同様の条件にてSSF反応を行った。
エタノール濃度はサンプリング後、沸騰水中にて処理を行い、遠心後の上清についてバイオセンサー(王子計測機製BF-5)により分析を行った。また、別途サンプリングを行い、10〜10に希釈後YPD(2%グルコース)プレートにまき、30℃で培養後、酵母のコロニーを計数することでCFU(コロニーフォーミングユニット)を調べた。
SSF反応により得られたエタノール濃度の結果を図3に、反応中のCFUの推移を図4に示す。
紙パルプのみを原料とした場合では、十分な酵母量(1.25g/kg)を用いたSSF反応に比べて、1/50だけ少ない酵母使用量(0.025g/kg)を用いたSSF反応では明らかにエタノール生成量が少なかった。
一方、厨芥を1割もしくは2割混合した原料を用いたSSF反応では、1日後のエタノール量が若干少ないものの、2日目以降においては紙パルプ単独で酵母を50倍加えた場合と同等のエタノール量が生成した。
CFUの結果では、紙パルプのみを原料とした場合に、十分な酵母量を加えた場合、減少するのみであったが、1/50量では1日後以降に増殖していた。しかし、その増殖量は等量の酵母を用いた厨芥混合原料に比べると少なかった。
SSF反応では、エタノールの含有量が多くなるにつれて酵母へのストレスが増加し、さらに反応中の酵素活性の低下や基質の減少により、単位時間当たりに加水分解され生成する糖量は減少する。したがって、反応時間が進行するほど酵母の生育可能数は減少すると考えられるが、図4において、混合原料では生菌数が維持されていることが確認できた。

Claims (2)

  1. セルロース系バイオマスを、加水分解酵素と発酵微生物である酵母とにより同時に反応させる同時糖化発酵反応によりエタノールを製造する方法において、
    該セルロース系バイオマスを、厨芥、食品廃棄物、農産廃棄物、畜産廃棄物、下水汚泥、有機性汚泥のうちの1種以上から構成される有機性廃棄物とともに同時糖化発酵反応に付し、
    該有機性廃棄物は、同時糖化発酵反応に付す前に細分化の処理のみが施されたものであり、
    同時糖化発酵反応期間が2日以上を要するものであり、
    反応槽当たりの酵母の初期添加乾燥重量を0.125〜0.0025g/kgとすることを特徴とする、方法。
  2. 同時糖化発酵反応時の前記セルロース系バイオマスの濃度が、総反応量に対して10〜25%である、請求項1に記載の方法。
JP2012004795A 2012-01-13 2012-01-13 バイオマスを用いたエタノール製造方法 Active JP5953045B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012004795A JP5953045B2 (ja) 2012-01-13 2012-01-13 バイオマスを用いたエタノール製造方法
CN2013100112604A CN103205467A (zh) 2012-01-13 2013-01-11 利用生物质制备乙醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004795A JP5953045B2 (ja) 2012-01-13 2012-01-13 バイオマスを用いたエタノール製造方法

Publications (2)

Publication Number Publication Date
JP2013143915A JP2013143915A (ja) 2013-07-25
JP5953045B2 true JP5953045B2 (ja) 2016-07-13

Family

ID=48752871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004795A Active JP5953045B2 (ja) 2012-01-13 2012-01-13 バイオマスを用いたエタノール製造方法

Country Status (2)

Country Link
JP (1) JP5953045B2 (ja)
CN (1) CN103205467A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006891A (ja) * 2015-06-26 2017-01-12 日立造船株式会社 廃棄物中のバイオマスを原料として有用物を得る廃棄物処理方法
CN111902542A (zh) * 2018-03-27 2020-11-06 积水化学工业株式会社 乙醇的制造方法和乙醇组合物
CN116120114B (zh) * 2022-12-09 2024-01-12 杭州楠大环保科技有限公司 一种厨房垃圾资源化利用生产新型肥料的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211805A (ja) * 2004-01-30 2005-08-11 Hitachi Kiden Kogyo Ltd 廃棄物焼却施設におけるエタノール生産方法
DE602006012536D1 (de) * 2005-09-30 2010-04-08 Dong Energy Generation As Ohne druck erfolgende vorbehandlung, enzymatische hydrolyse und fermentation von abfallfraktionen
JP5311548B2 (ja) * 2008-07-31 2013-10-09 独立行政法人農業・食品産業技術総合研究機構 稲の糖化法
JP2010094093A (ja) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology 柑橘類外皮からエタノールを製造する方法
JP2011211973A (ja) * 2010-03-31 2011-10-27 Hitachi Zosen Corp バイオエタノールの製造方法
JP5564309B2 (ja) * 2010-03-31 2014-07-30 日立造船株式会社 廃棄物由来バイオマス原料の調製方法
JP5564310B2 (ja) * 2010-03-31 2014-07-30 日立造船株式会社 廃棄物由来バイオマス原料の糖化発酵方法
CN102174591A (zh) * 2011-02-01 2011-09-07 中国科学院过程工程研究所 一种连续固态发酵餐厨垃圾生产乙醇的方法

Also Published As

Publication number Publication date
JP2013143915A (ja) 2013-07-25
CN103205467A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
Ayodele et al. An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks
Chavan et al. Bioconversion of organic wastes into value-added products: A review
Lin et al. Ethanol fermentation from biomass resources: current state and prospects
Chandel et al. Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498
Urbaniec et al. Biomass residues as raw material for dark hydrogen fermentation–A review
Chen et al. Key technologies for bioethanol production from lignocellulose
Thatoi et al. Bioethanol production from tuber crops using fermentation technology: a review
Rodríguez et al. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation
Gao et al. ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs
Whangchai et al. Comparative analysis of fresh and dry free-floating aquatic plant Pistia stratiotes via chemical pretreatment for second-generation (2G) bioethanol production
Kumar et al. Bioethanol production: generation-based comparative status measurements
Khoshkho et al. Production of bioethanol from carrot pulp in the presence of Saccharomyces cerevisiae and beet molasses inoculum; a biomass based investigation
CN103103217B (zh) 一种燃料乙醇的生产方法
da Silva et al. Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)
Itelima et al. Simultaneous saccharification and fermentation of corn cobs to bio-ethanol by co-culture of Aspergillus niger and Saccharomyces cerevisiae
Kassim et al. Bioprocessing of sustainable renewable biomass for bioethanol production
Cheng et al. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects
Karimi et al. Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review
CN101638673B (zh) 一种利用植物秸秆发酵生产酒精的方法
Ebrahimian et al. Efficient coproduction of butanol, ethanol, and biohydrogen from municipal solid waste through a cocultivated biorefinery
Wagner et al. One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04
Jain et al. A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives
Ungureanu et al. Capitalization of wastewater-grown algae in bioethanol production
Zhang et al. Lipid accumulation by xylose metabolism engineered Mucor circinelloides strains on corn straw hydrolysate
Ebrahimian et al. Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250