JP5952997B2 - Termite control method - Google Patents

Termite control method Download PDF

Info

Publication number
JP5952997B2
JP5952997B2 JP2010040295A JP2010040295A JP5952997B2 JP 5952997 B2 JP5952997 B2 JP 5952997B2 JP 2010040295 A JP2010040295 A JP 2010040295A JP 2010040295 A JP2010040295 A JP 2010040295A JP 5952997 B2 JP5952997 B2 JP 5952997B2
Authority
JP
Japan
Prior art keywords
wavelength
light
termites
irradiation
termite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010040295A
Other languages
Japanese (ja)
Other versions
JP2011172528A (en
Inventor
和香子 大村
和香子 大村
厚 片岡
厚 片岡
実 木口
実 木口
加藤 英雄
英雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Original Assignee
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute filed Critical Forestry and Forest Products Research Institute
Priority to JP2010040295A priority Critical patent/JP5952997B2/en
Publication of JP2011172528A publication Critical patent/JP2011172528A/en
Application granted granted Critical
Publication of JP5952997B2 publication Critical patent/JP5952997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catching Or Destruction (AREA)

Description

本発明はシロアリの防除方法に関するものである。   The present invention relates to a method for controlling termites.

従来から、シロアリ防除には薬剤を使用する化学的防除が主として行われているが、薬剤使用量が少ないレスケミカル工法、薬剤を使用しないノンケミカル工法(生物的防除・物理的防除)も行われている。   Conventionally, chemical control using chemicals is mainly used for termite control, but less chemical methods that use less chemicals and non-chemical methods that do not use chemicals (biological control and physical control) are also used. ing.

化学的防除は、ピレスロイド系、ネオニコチノイド系等の有機系薬剤を使用し、床下土壌等に散布して化学的バリアを形成することにより、シロアリの侵入を防ぐもので、効果が迅速かつ的確であり、適用範囲が広く、防除法の中で最も安価かつ確実な方法である。シロアリ等昆虫に選択的に効果を有する薬剤を、シロアリをおびきよせた場所にだけ施用するベイト工法や、高分子系シートに薬剤を混入して、他所への薬剤の流出を抑えたシート工法などが考案され、レスケミカル工法として実用化されている。   Chemical control uses pyrethroids, neonicotinoids, and other organic chemicals and sprays them under the floor to form a chemical barrier that prevents termites from entering and is effective quickly and accurately. It has a wide application range and is the cheapest and most reliable method among the control methods. A bait method that applies drugs that have an effect on insects, such as termites, only to the place where termites are terrified, or a sheet method that suppresses the outflow of drugs to other locations by mixing drugs in polymer sheets Has been devised and put into practical use as a less chemical method.

ノンケミカル工法のうち生物的防除とは、例えばシロアリ等の昆虫に寄生する微生物や線虫を利用して、宿主であるシロアリ等の昆虫を防除する方法である。物理的防除とは、建物の下部にステンレスメッシュを敷いたり、 床下の地面に小石を敷き詰めたりすることにより、床下からのシロアリ侵入を阻止する工法が実用化されているほか、超音波・超短波・振動・加熱・冷却・放射線・電撃などによる防除が研究され、一部実用化されている。このような物理的防除は建設当初に設置が必要であり、一般にかなり高額の経費を要するという問題点が指摘されている。そのため、比較的安価な経費でシロアリを物理的に防除する方法として、シロアリが紫外線を感ずると本能的に忌避行動をとる習性を利用し、建物床下に紫外線照射装置を設置する方法が提案されている(特許文献1)。   Biological control in the non-chemical method is a method for controlling insects such as termites that are hosts by using microorganisms or nematodes parasitic on insects such as termites. Physical control is a method that prevents the entry of termites from under the floor by laying a stainless mesh under the building or laying pebbles on the ground under the floor. Control by vibration, heating, cooling, radiation, electric shock, etc. has been studied and partly put into practical use. It has been pointed out that such physical control requires installation at the beginning of construction and generally requires a considerably high cost. Therefore, as a method of physically controlling termites at a relatively low cost, a method has been proposed in which an ultraviolet irradiation device is installed under the floor of a building using the habit of instinctively avoiding termites when they sense ultraviolet rays. (Patent Document 1).

しかし紫外線照射装置を用いる方法は、床下の木材など住宅部材にも紫外線が照射されるため、部材の表層には強度低下や変色などの紫外線劣化が生じる。また、紫外線は眼に見えないことから照射状況が確認し難く、照射状況の点検時には人体が紫外線に曝され悪影響を受ける恐れがあるなどの問題点があり、あまり実用化されていないのが現状である。   However, in the method using the ultraviolet irradiation device, since ultraviolet rays are also irradiated to a house member such as a wood under the floor, the surface layer of the member is deteriorated by ultraviolet rays such as a decrease in strength and discoloration. In addition, since ultraviolet rays are not visible to the eyes, it is difficult to confirm the irradiation status, and there are problems such as the human body being exposed to ultraviolet rays and being adversely affected when checking the irradiation status. It is.

特開2001−321055号公報JP 2001-321055 A

本発明が解決しようとする課題は、床下の木材などの住宅部材の強度低下や変色を起こすことなく、人体にも安全なシロアリの防除方法を提供することにある。   The problem to be solved by the present invention is to provide a termite control method that is safe for the human body without causing a decrease in strength or discoloration of a house member such as wood under the floor.

本発明者らはシロアリの忌避行動を研究したところ、シロアリが特定波長の可視光線を忌避することを見出し、本発明を完成するに至った。   The present inventors have studied the termite repelling behavior. As a result, the present inventors have found that termites repel visible light having a specific wavelength, and have completed the present invention.

すなわち、本発明は、400〜550nm、好ましくは400〜450nmの可視光線をシロアリに照射することを特徴とするシロアリの防除方法に関するものである。   That is, the present invention relates to a method for controlling termites, which comprises irradiating termites with visible light having a wavelength of 400 to 550 nm, preferably 400 to 450 nm.

本発明は、紫外線を用いることがないので、床下の木材などの住宅部材の強度低下や変色を起こすことはなく、人体に悪影響を及ぼすこともない。   In the present invention, since ultraviolet rays are not used, the strength and discoloration of a housing member such as wood under the floor are not caused, and the human body is not adversely affected.

実施例で使用した試験装置の説明図。Explanatory drawing of the test apparatus used in the Example. 光量子束密度60μmol/m2/s一定の場合の異なる波長におけるシロアリ明所存在率(%)を示したグラフ。The graph which showed the termite light place presence rate (%) in the different wavelength in case the photon flux density is constant 60μmol / m 2 / s. 波長400nm一定の場合の異なる光量子束密度における照射開始後30秒後のシロアリ明所存在率(%)を示したグラフ。The graph which showed the termite light place abundance ratio (%) 30 seconds after the start of irradiation in different photon flux densities when the wavelength is constant 400 nm. 波長425nm一定の場合の異なる光量子束密度における照射開始後30秒後のシロアリ明所存在率(%)を示したグラフ。The graph which showed the termite light place abundance ratio (%) 30 seconds after the start of irradiation in the different photon flux density when the wavelength is 425 nm.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

光照射によるシロアリの防除では、住宅部材の劣化を引き起こしにくいこと、人体への影響が小さいこと、照射状況を確認しやすいことが重要である。そこで、従来の紫外線を用いた防除法とは全く異なる、可視光線を用いた防除法を検討した。可視光線を用いれば、住宅部材の劣化を引き起こしにくく、人体への影響が小さく、さらにシロアリ防除システムに用いた場合に、可視光線であれば照射状況を確認しやすいと考えられる。   In the control of termites by light irradiation, it is important that the housing members are not easily deteriorated, the influence on the human body is small, and the irradiation status is easy to confirm. Therefore, a control method using visible light, which is completely different from the conventional control method using ultraviolet rays, was examined. If visible light is used, it is difficult to cause deterioration of the housing members, and the influence on the human body is small. Further, when used in a termite control system, it is considered that if it is visible light, the irradiation status can be easily confirmed.

シロアリの光に対する行動特性(走光性)については、これまでシロアリの階級による違いなどが報告されている。しかし、シロアリの巣の構成員の大部分を占め、実際に建築物への加害に関与する職蟻と兵蟻については報告が少ないうえ、光源の波長を精密に制御せずに評価が行われていた。このため、可視光線を含む白熱灯で照射されたシロアリの職蟻と兵蟻が、忌避行動(負の走光性)を示す場合があることが報告されていたが、果たしてどの波長域の可視光線に対してどの程度の忌避行動(負の走光性)を示すのかは不明であった。   Regarding the behavioral characteristics (phototaxis) of termites with respect to light, differences due to the class of termites have been reported so far. However, there are few reports on ants and soldiers that make up the majority of termite nests and are actually involved in the damage to buildings, and evaluation is performed without precisely controlling the wavelength of the light source. It was. For this reason, it has been reported that termite craftsmen and soldier ants irradiated with incandescent lamps that contain visible light may exhibit repellent behavior (negative phototaxis). It was unclear how much repellent behavior (negative phototaxis) was exhibited.

そこで本発明では、まず、光の波長を精密に制御した近似単色光を用いて、シロアリの職蟻と兵蟻に照射し、それらの走光性に及ぼす波長の影響を精査した。その結果、波長400〜550 nmの可視光線によって照射された職蟻と兵蟻が、忌避行動(負の走光性)を示すことを発見した。特に波長400〜450 nmの可視光線を用いた場合には忌避効果が高く、紫外線を用いた場合と同程度の忌避効果が得られた。すなわち、従来の紫外線に代えて波長400〜550 nmの可視光線を用いればシロアリの職蟻と兵蟻を物理的に防除することができること、特に波長400〜450 nmの可視光線を用いた場合には、紫外線を用いた場合と同程度の高い防除効果が得られることを明らかにして本発明に至った。   Therefore, in the present invention, first, termite worker ants and soldier ants were irradiated using approximate monochromatic light in which the wavelength of light was precisely controlled, and the influence of the wavelength on the phototaxis was examined closely. As a result, we found that craft ants and soldier ants irradiated with visible light having a wavelength of 400 to 550 nm show repellent behavior (negative phototaxis). In particular, when visible light having a wavelength of 400 to 450 nm was used, the repellent effect was high, and the same repellent effect as that obtained when ultraviolet rays were used was obtained. In other words, if you use visible light with a wavelength of 400-550 nm instead of conventional ultraviolet light, you can physically control termite ants and soldiers, especially when using visible light with a wavelength of 400-450 nm. Clarified that the same high control effect as that obtained when ultraviolet rays were used was obtained, and the present invention was achieved.

本発明方法によりシロアリを防除するには、波長400〜550 nmの可視光線を照射することのできる光源を、建築物の床下空間の部材等に設置し、床下の地面あるいは基礎の立ち上がり部に照射して、床下からのシロアリの侵入を阻止する。また、シロアリの種類やシロアリの侵入状況に応じて、屋根裏等を含めた構造部材各箇所に照射し、シロアリの侵入を阻止する。   In order to control termites by the method of the present invention, a light source capable of irradiating visible light having a wavelength of 400 to 550 nm is installed on a member of an underfloor space of a building, etc., and irradiated to the ground under the floor or the rising part of the foundation. This prevents termites from entering under the floor. Moreover, according to the kind of termite and the intrusion situation of a termite, it irradiates each structural member place including an attic etc., and the invasion of a termite is prevented.

照射光源については、上記の例のように精密に分光された波長幅の狭い近似単色光を用いても良いが、波長400〜550 nmの可視光線を有効な光量で照射できれば、いずれのタイプ(LED、蛍光灯、白熱灯など)の光源でも使用できる。   The irradiation light source may be approximate monochromatic light with a narrow wavelength width that is finely divided as in the above example, but any type (if it can irradiate visible light with a wavelength of 400 to 550 nm with an effective light amount) LED, fluorescent light, incandescent light source).

照射光量については、上記の例のように25 nmの波長帯幅で分光された近似単色光の場合、実施例で示したように最大60 μmol/m2/s以上の光量子束密度があれば十分であると考えられるが、忌避効果の得られる範囲内で光量を減量することができる。例えば、以下の実施例では、波長400 nmでは3.6 μmol/m2/s程度まで、波長425 nmにおいては12 μmol/m2/s程度まで減量できることが示されている。 As for the amount of irradiation light, in the case of approximate monochromatic light that has been dispersed with a wavelength band of 25 nm as in the above example, if the photon flux density is at most 60 μmol / m 2 / s or more as shown in the examples, Although it is considered sufficient, the amount of light can be reduced within a range in which a repellent effect is obtained. For example, the following examples show that the dose can be reduced to about 3.6 μmol / m 2 / s at a wavelength of 400 nm and to about 12 μmol / m 2 / s at a wavelength of 425 nm.

照射時間については、以下の実施例では30秒から5分間の照射を行っているが、これに限らず、忌避効果の得られる範囲内で時間を増減し、また照射を断続的に行うことにより、電力の消費を節約することができると考えられる。   Regarding the irradiation time, in the following examples, irradiation is performed for 30 seconds to 5 minutes, but not limited to this, by increasing or decreasing the time within a range in which a repellent effect is obtained, and by performing irradiation intermittently It is thought that power consumption can be saved.

本発明方法の防除の対象となるシロアリとは、イエシロアリ属、ヤマトシロアリ属、アメリカカンザイシロアリ属、ダイコクシロアリ属のシロアリである。このうちイエシロアリ属、ヤマトシロアリ属に関しては、主に床下や基礎への照射が効果的であるが、それ以外の侵入経路への照射も有効であると考えられる。アメリカカンザイシロアリ属、ダイコクシロアリ属に関しては、建物内部での被害多発箇所が主に屋根裏等上部材であることから、屋根裏等を含めた構造部材各箇所への照射が効果的であるが、それ以外の侵入経路への照射も有効であると考えられる。   The termites to be controlled by the method of the present invention are termites belonging to the genus Termite, Yamato Termite, American White Termite, and Daikokite Termite. Among these, the termite genus and the termite genus are mainly effective for irradiation under the floor and the foundation, but it is considered that irradiation for other invasion routes is also effective. As for the American genus termite genus and daikoku termite genus, it is effective to irradiate each part of the structural member including the attic etc. Irradiation to other intrusion routes is also considered effective.

(試験方法)
森林総合研究所において飼育中のイエシロアリ (Coptotermes formosanusShiraki) の巣から採取した個体を、1日間実験条件に慣らした後、直ちに光照射試験に供した。光照射試験には、図1に示すスチロール製透明容器1(幅60 × 奥行き100 × 高さ26 mm)を用い、短側面に高さ26 mm×幅20 mmの孔を開けて石英グラス3を装着し、光の導入口を設けた。容器の底部には黒色画用紙2を敷設した。
(Test method)
Individuals collected from the nests of termites (Coptotermes formosanus Shiraki) bred at the Forest Research Institute were acclimated to the experimental conditions for one day and immediately subjected to a light irradiation test. For the light irradiation test, the transparent glass container 1 (width 60 × depth 100 × height 26 mm) shown in Fig. 1 is used, and a hole of 26 mm height × 20 mm width is drilled on the short side, and quartz glass 3 is attached. A light inlet was installed. Black drawing paper 2 was laid at the bottom of the container.

この容器を温度23 ± 3 ℃、相対湿度65 ± 5 %R.H.の暗室内に10分間以上静置した後、容器内にイエシロアリ職蟻150頭、兵蟻15頭を投入し、さらに5分間静置してシロアリを暗所に順応させた。そして下記の条件で単色化した光を、図1に示すように容器の半分の面積が照射されるよう、上記の暗室内で容器内のシロアリに照射した。   After leaving this container in a dark room with a temperature of 23 ± 3 ° C and relative humidity of 65 ± 5% RH for at least 10 minutes, put 150 termite ants and 15 soldier ants into the container, and leave for another 5 minutes. And termites were adapted to the dark. Then, the light monochromatized under the following conditions was irradiated to the termites in the container in the dark room so that half the area of the container was irradiated as shown in FIG.

光照射の光源には、ハイパーモノライト(分光計器製SM-25型)を用い、350 nmの紫外域から650 nmの可視域まで波長帯幅25 nm、波長間隔50 nmまたは100 nmの条件で分光した。各波長での光量子量を一定にするため、図1の光量子束密度測定点(1)において、光軸垂直面の光量子束密度(単位面積・単位時間あたりの光量子モル数)が60 μmol/m2/sになるよう、あらかじめNDフィルタ4を用いて調光した。 Hypermonolite (SM-25 Model made by Spectrometer Co., Ltd.) is used as the light source for light irradiation. The wavelength band is 25 nm from the ultraviolet range of 350 nm to the visible range of 650 nm, and the wavelength interval is 50 nm or 100 nm. Spectroscopic. In order to make the photon quantity at each wavelength constant, the photon flux density (unit area / number of photon moles per unit time) on the vertical axis of the optical axis is 60 μmol / m at the photon flux density measurement point (1) in FIG. The light was adjusted in advance using the ND filter 4 so as to be 2 / s.

光照射開始から30、120および300秒経過後にデジタルカメラを用いて容器上部よりシロアリを撮影し、撮影画像をもとに光が照射されている範囲に存在するシロアリの頭数を計数した。各検定区における繰り返し数は3とした。光照射後は、シロアリを明所に順応させるため昼色蛍光灯点灯下で5分間以上静置し、さらに消灯後5分間暗所に順応させてから別波長による試験を開始した。   After 30, 120, and 300 seconds from the start of light irradiation, termites were photographed from the top of the container using a digital camera, and the number of termites present in the range irradiated with light was counted based on the photographed images. The number of repetitions in each test section was 3. After the light irradiation, in order to adjust the termites to the light place, they were allowed to stand for 5 minutes or more under the daytime fluorescent lamp lighting, and further adjusted to the dark place for 5 minutes after the light was turned off.

(試験結果)
各照射波長における光量子束密度を一定(60 μmol/m2/s)に保った場合の、光が照射された範囲内に存在したイエシロアリ個体数の百分率(平均値。以下、「明所存在率」とする)を表1と図2に示す。
(Test results)
When the photon flux density at each irradiation wavelength is kept constant (60 μmol / m 2 / s), the percentage of the termite individuals that existed in the range irradiated with light (average value. Are shown in Table 1 and FIG.

波長550 nm以下の可視光線を照射した場合、波長の減少とともに職蟻と兵蟻の「明所存在率」が低くなり、波長450 nm以下では、明所存在率は25%以下でほぼ横ばいになる傾向が見られた(図2)。表1において、照射波長550 nm以下の場合の明所存在率を、照射波長650 nmの場合と比較すると、照射30秒後の一部の値を除いて有意に低く(p<0.05)、シロアリの忌避行動(負の走光性)が認められる。さらに、波長450 nm以下では、波長650 nmだけではなく波長550 nmの場合と比較しても明所存在率が有意に低い場合が認められる。これは、イエシロアリ職蟻と兵蟻の負の走光性が、波長450 nm以下ではより顕著になることを示している。なお、全ての波長域において照射時間の延長とともに明所存在率が低くなる傾向が見られた。   When irradiating visible light with a wavelength of 550 nm or less, the “light place abundance” of craftsmen and soldiers decreases as the wavelength decreases, and at a wavelength of 450 nm or less, the light place abundance ratio is almost 25% or less. (Figure 2). In Table 1, when compared to the case of the irradiation wavelength of 650 nm, the abundance of the bright place when the irradiation wavelength is 550 nm or less is significantly lower (p <0.05) except for some values after 30 seconds of irradiation. Repellent behavior (negative phototaxis) is observed. Furthermore, when the wavelength is 450 nm or less, not only the wavelength 650 nm but also the case where the photopic abundance is significantly lower than the wavelength 550 nm is recognized. This indicates that the negative light mobility of termite ants and soldier ants becomes more pronounced at wavelengths below 450 nm. In all the wavelength regions, there was a tendency that the abundance ratio of the photopic spot decreased with the extension of the irradiation time.

図2において、短時間照射(30秒間)の場合には、波長400〜450 nmの可視光線による「明所存在率」が、波長350 〜375 nmの紫外線よりも低く、高い忌避効果(負の走光性)をもたらすことが示されている。これは、波長400〜450 nmの可視光線に対してシロアリがより鋭敏に反応する可能性を示している。そこで波長400 nm(紫色光)および425 nm(紫色〜青色光)の可視光線を用いて、NDフィルタにより光量子束密度を段階的に減少させ、シロアリに30秒間照射することで、どの程度の強さの光に対してまで負の走光性が見られるかを精査した。表2および図3に、波長400nm一定の場合の異なる光量子束密度における照射開始30秒後のシロアリ明所存在率(%)を平均値±標準偏差で示した。また表3および図4に波長425nm一定の場合の異なる光量子束密度における照射開始30秒後のシロアリ明所存在率(%)を平均値±標準偏差で示した。   In Fig. 2, in the case of short-time irradiation (30 seconds), the "light place abundance ratio" by visible light with a wavelength of 400 to 450 nm is lower than that of ultraviolet light with a wavelength of 350 to 375 nm, and a high repellent effect (negative It has been shown to produce phototaxis. This indicates that termites may react more sensitively to visible light having a wavelength of 400 to 450 nm. Therefore, using visible light with a wavelength of 400 nm (purple light) and 425 nm (purple to blue light), the photon flux density is gradually reduced by an ND filter and the termites are irradiated for 30 seconds to determine how strong the light is. We examined whether negative phototacticity was seen up to the light. Table 2 and FIG. 3 show the termite light place abundance ratio (%) 30 seconds after the start of irradiation at different photon flux densities when the wavelength is constant at 400 nm as an average value ± standard deviation. Further, Table 3 and FIG. 4 show the termite light place abundance ratio (%) 30 seconds after the start of irradiation at different photon flux densities when the wavelength is 425 nm constant, as an average value ± standard deviation.

表2と図3に示すように、照射波長400 nmでは、光量子束密度(初期値:60 μmol/m2/s)が3.6 μmol/m2/sまで低下しても、「明所存在率」に有意な変化は見られず(p>0.05)、 すなわち高い忌避効果(負の走光性)が保たれていた。一方、表3と図4に示すように波長425 nmでは、光量子束密度(初期値:60 μmol/m2/s)が12 μmol/m2/s以下まで低下すると、「明所存在率」が有意に増加しており(p<0.05)、明瞭な忌避効果(負の走光性)が見られなくなった。以上のことから、波長425 nmにおいて忌避効果(負の走光性)を保つためには、12 μmol/m2/s以上の光量子束密度が必要であるが、波長400 nmでは3.6 μmol/m2/s程度の光量子束密度でも十分な効果が得られることが明らかになった。 As shown in Table 2 and Fig. 3, at the irradiation wavelength of 400 nm, even if the photon flux density (initial value: 60 μmol / m 2 / s) decreases to 3.6 μmol / m 2 / s, No significant change was observed (p> 0.05), that is, a high repellent effect (negative phototaxis) was maintained. On the other hand, as shown in Table 3 and Fig. 4, when the photon flux density (initial value: 60 μmol / m 2 / s) drops to 12 μmol / m 2 / s or less at the wavelength of 425 nm, Increased significantly (p <0.05), and no clear repellent effect (negative phototaxis) was observed. From the above, in order to maintain the repellent effect (negative light mobility) at a wavelength of 425 nm, a photon flux density of 12 μmol / m 2 / s or more is necessary, but at a wavelength of 400 nm, 3.6 μmol / m 2 It has been clarified that a sufficient effect can be obtained even with a photon flux density of about / s.

以上の結果により、波長400〜550 nmの可視光線を用いれば、光を感じたシロアリが忌避行動をとること、さらに波長400〜450 nmの可視光線を用いれば、その効果が特に高いことが分かる。   From the above results, it can be seen that when using visible light with a wavelength of 400 to 550 nm, termites that feel light take repelling action, and further, when using visible light with a wavelength of 400 to 450 nm, the effect is particularly high. .

本発明により、床下の木材などの住宅部材の強度低下や変色を起こすことなく、しかも人体に悪影響を及ぼすこともなくシロアリを防除できる。   According to the present invention, termites can be controlled without causing a decrease in strength or discoloration of a housing member such as wood under the floor and without adversely affecting the human body.

1 スチロール製容器
2 黒色画用紙
3 石英グラス
4 NDフィルタ
1 Styrofoam container 2 Black drawing paper 3 Quartz glass 4 ND filter

Claims (2)

400〜550nmの可視光線のみをシロアリに照射することを特徴とするシロアリの防除方法。 Termite control method characterized by irradiating termites with only visible light of 400 to 550 nm. 400〜450nmの可視光線のみを用いることを特徴とする請求項1に記載のシロアリの防除方法。 The termite control method according to claim 1, wherein only visible light having a wavelength of 400 to 450 nm is used.
JP2010040295A 2010-02-25 2010-02-25 Termite control method Expired - Fee Related JP5952997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040295A JP5952997B2 (en) 2010-02-25 2010-02-25 Termite control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040295A JP5952997B2 (en) 2010-02-25 2010-02-25 Termite control method

Publications (2)

Publication Number Publication Date
JP2011172528A JP2011172528A (en) 2011-09-08
JP5952997B2 true JP5952997B2 (en) 2016-07-13

Family

ID=44686031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040295A Expired - Fee Related JP5952997B2 (en) 2010-02-25 2010-02-25 Termite control method

Country Status (1)

Country Link
JP (1) JP5952997B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118239B2 (en) * 2013-11-29 2017-04-19 雅敏 堀 Pest control method and control device
CN104350984A (en) * 2014-11-11 2015-02-18 南京市六合区水利科技推广服务中心站 Dam termite prevention and treatment technique
CN110292031B (en) * 2019-06-28 2024-03-29 广西科技大学 Termite killing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327392A (en) * 1993-03-22 1994-11-29 Kazuo Kawashima Termite-expelling system
JPH11192044A (en) * 1997-12-26 1999-07-21 Toshiba Plant Kensetsu Co Ltd Device and method for controlling insect pest
JP2001258454A (en) * 2000-03-17 2001-09-25 N Bii T Kk Mothproofing tool comprising light source for suppressing behavior of insect
JP2001321055A (en) * 2000-05-16 2001-11-20 Matsushita Electric Ind Co Ltd Device for repelling pest
JP2007016561A (en) * 2005-07-11 2007-01-25 Air Cycle Sangyo Kk Light-irradiation device into space within building frame
KR100795435B1 (en) * 2006-10-24 2008-01-17 박경보 Vermin exterminating apparatus

Also Published As

Publication number Publication date
JP2011172528A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
KR102447363B1 (en) Adhesive type insect trap
JP6688223B2 (en) Lighting system for insect control
Jovanović Review of titanium dioxide nanoparticle phototoxicity: Developing a phototoxicity ratio to correct the endpoint values of toxicity tests
DE202016009084U1 (en) Device for attracting and catching flying insects
US11102971B2 (en) Slim insect trap using UV LED
US9258992B2 (en) See-through manhole cover
US20110047860A1 (en) Bed bug capturing device
WO2010098252A1 (en) Destructive insect-controlling device
JP2008104444A (en) Insect eliminator
Russo et al. Effects of artificial illumination on drinking bats: a field test in forest and desert habitats
JP5952997B2 (en) Termite control method
Wiesner et al. Influence of environmental humidity and dietary protein on pyramidal growth of carapaces in African spurred tortoises (Geochelone sulcata)
JP5945867B2 (en) Lighting device
CN205736191U (en) A kind of anti-mosquito tent cloth
TWI732378B (en) Fly trap
Tang et al. Impact of visual features on capture of Aedes aegypti with host decoy traps (HDT)
DE50304521D1 (en) INSECT TRAP
Kubba Indoor environmental quality (IEQ)
US11968971B2 (en) Trapping method, light source device, and trapping device for adult moths belonging to indoor Phycitinae subfamily
JP2012152125A (en) Insect capturing system
JP2007082479A (en) Insect-trapping and killing apparatus
CN115868465A (en) Pest extermination device, pest extermination method, and pest extermination system
JP2023014145A (en) Pest invasion obstructing product, and pest invasion obstructing method
Sanou et al. Assessment of novel Lehmann’s funnel entry trap prototypes performance to control malaria mosquito populations
TWI691271B (en) A method for driving insects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150818

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5952997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees