JP5952038B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP5952038B2
JP5952038B2 JP2012058191A JP2012058191A JP5952038B2 JP 5952038 B2 JP5952038 B2 JP 5952038B2 JP 2012058191 A JP2012058191 A JP 2012058191A JP 2012058191 A JP2012058191 A JP 2012058191A JP 5952038 B2 JP5952038 B2 JP 5952038B2
Authority
JP
Japan
Prior art keywords
polarizing plate
liquid crystal
absorption axis
substrate
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012058191A
Other languages
Japanese (ja)
Other versions
JP2013190717A (en
Inventor
岩本 宜久
宜久 岩本
英利 龍花
英利 龍花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012058191A priority Critical patent/JP5952038B2/en
Publication of JP2013190717A publication Critical patent/JP2013190717A/en
Application granted granted Critical
Publication of JP5952038B2 publication Critical patent/JP5952038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液晶表示素子に関する。   The present invention relates to a liquid crystal display element.

基板に対して水平に液晶分子が配向し、上下基板間で液晶分子の配向方位が90°ねじれたTN液晶セルを互いに平行ニコルな2枚の偏光板間に配置し、一方の基板面における液晶分子配向方位と平行又は直交に偏光板吸収軸を配置した時、透過光強度Tは、液晶材料の屈折率異方性をΔn、上下基板間距離をd、入射波長をλとした時、下式(1)により示される。
・・・・(1)
A TN liquid crystal cell in which liquid crystal molecules are aligned horizontally with respect to the substrate and the alignment direction of the liquid crystal molecules is twisted by 90 ° between the upper and lower substrates is placed between two parallel Nicols polarizers, and the liquid crystal on one substrate surface When the polarizing plate absorption axis is arranged parallel or perpendicular to the molecular orientation, the transmitted light intensity T is as follows when the refractive index anisotropy of the liquid crystal material is Δn, the distance between the upper and lower substrates is d, and the incident wavelength is λ. It is shown by Formula (1).
(1)

上記式(1)においてλ=450,550,650nmそれぞれについて、Δndを
パラメータにした時の透過光強度の変化をプロットしたのを図14に示す。Δnd増加に従って透過光強度が0になる極小値が得られ、最も小さいΔndで得られるパラメータを第1ミニマム、以下第2、第3ミニマムと続く。透過光の波長により極小値を取るΔndの値が異なることもわかる。
FIG. 14 shows a plot of changes in transmitted light intensity when Δnd is a parameter for each of λ = 450, 550, and 650 nm in the above equation (1). As the Δnd increases, the minimum value at which the transmitted light intensity becomes 0 is obtained, and the parameters obtained at the smallest Δnd are followed by the first minimum, and the second and third minimums. It can also be seen that the value of Δnd that takes the minimum value varies depending on the wavelength of the transmitted light.

従来のノーマリーホワイト型TN液晶表示素子の場合、Δndを第1ミニマムに設定することが多いが、ノーマリーブラック型TN液晶表示素子の場合は図14で示した通り良好な無彩色暗状態を得ることは困難であると考えられる。   In the case of the conventional normally white type TN liquid crystal display element, Δnd is often set to the first minimum, but in the case of the normally black type TN liquid crystal display element, a good achromatic dark state is obtained as shown in FIG. It is considered difficult to obtain.

90°ねじれTN液晶セルにおいて液晶層のリタデーションΔndが入射波長λより著しく大きい、すなわちΔnd>>λの場合、液晶セルの一方の基板面から入射した直線偏光はすべての波長において液晶層内で偏光状態を全く変化させず90°旋光し、もう一方の基板面から直線偏光で出射する。   In a 90 ° twisted TN liquid crystal cell, when the retardation Δnd of the liquid crystal layer is significantly larger than the incident wavelength λ, that is, Δnd >> λ, linearly polarized light incident from one substrate surface of the liquid crystal cell is polarized in the liquid crystal layer at all wavelengths. The light is rotated 90 ° without changing the state at all, and is emitted as linearly polarized light from the other substrate surface.

この条件はモーガン条件と呼ばれるが、実際の液晶表示素子に適用する場合、明暗表示をスイッチングする応答時間が遅くなり実用に堪えないことから、少なくともRGBの主3波長において透過率を低くすることにより、略無彩色暗状態を実現するための技術が知られている(例えば、特許文献1及び2参照)。特許文献1には、ねじれ角が90°のTN液晶表示素子においてΔndを略2.64μmにすることが示されており、特許文献2にはΔndを2.3〜2.5μmにすることが示されている。なお、これらの液晶表示素子において液晶セルの外側に配置される偏光板はいずれも平行ニコル配置である。   This condition is called the Morgan condition, but when applied to an actual liquid crystal display element, the response time for switching between bright and dark displays becomes slow and unpractical. Therefore, by reducing the transmittance at least at the three main wavelengths of RGB A technique for realizing a substantially achromatic dark state is known (see, for example, Patent Documents 1 and 2). Patent Document 1 discloses that Δnd is set to approximately 2.64 μm in a TN liquid crystal display element having a twist angle of 90 °, and Patent Document 2 discloses that Δnd can be set to 2.3 to 2.5 μm. It is shown. In these liquid crystal display elements, all the polarizing plates arranged outside the liquid crystal cell have a parallel Nicol arrangement.

特開平6−160800号公報JP-A-6-160800 特開2002−107765号公報JP 2002-107765 A

例えば、自動車内の運転席と助手席間のダッシュボード等に表示器を配置する場合、正面観察時よりも、左右斜め方向である運転席と助手席からコントラストが高く観察された方が好ましい場合がある。ところが、従来のノーマリーブラック型TN液晶表示素子においては正面観察時におけるコントラストを重視した設計手法にて製品が製造されていることから、その改善が求められている。   For example, when placing a display on the dashboard between the driver's seat and front passenger seat in a car, it is preferable that the contrast between the driver's seat and front passenger seat, which are diagonally left and right, is observed higher than when viewed from the front There is. However, in the conventional normally black type TN liquid crystal display element, since a product is manufactured by a design method in which the contrast at the time of front observation is emphasized, improvement thereof is demanded.

本発明の目的は、左右方位の斜めから観察した場合に良好な暗状態が得られるノーマリーブラック型TN液晶表示素子を提供することである。   An object of the present invention is to provide a normally black type TN liquid crystal display element that can obtain a good dark state when observed from an oblique direction in the horizontal direction.

本発明の一観点によれば、液晶表示素子は、所定の間隔で対向して配置された第1の基板及び第2の基板と、前記第1及び第2の基板のそれぞれの対向面側に形成された電極と、前記第1の基板の対向面側に形成され、第1の方向に配向処理を行った第1の配向膜と、前記第2の基板の対向面側に形成され、第2の方向に配向処理を行った第2の配向膜と、前記一対の基板に挟持され、一方の基板から他方の基板に向かって捩れた配向状態を有し、ねじれ角が60°以上90°以下であり、リタデーションΔndが2μm〜3μmである液晶層と、前記第1及び第2の基板を挟んで配置される、前記第1の基板に近接する第1の偏光板及び前記第2の基板に近接する第2の偏光板とを有し、前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記第1の偏光板から前記第2の偏光板へ光が伝播した時の前記液晶層のねじれ方向に対して5°以下、前記ねじれ方向とは逆の方向に対して2.5°以下の範囲内となるように配置され、前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向とは逆の方向に90°回転した後、前記ねじれ方向に前記ねじれ角から2.5°〜15°引いた角度回転させて配置され、正面観察時の暗状態が、正面観察時を基準に液晶表示素子の左右方位に対して斜めに傾けたときの透過率より高いことを特徴とする。   According to one aspect of the present invention, a liquid crystal display element is provided on a first substrate and a second substrate that are arranged to face each other at a predetermined interval, and on each facing surface side of the first and second substrates. Formed on the opposing surface side of the first substrate and formed on the opposing surface side of the second substrate, and on the opposing surface side of the second substrate; A second alignment film that has been subjected to alignment treatment in the direction 2 and an alignment state that is sandwiched between the pair of substrates and twisted from one substrate toward the other substrate, with a twist angle of 60 ° or more and 90 ° A liquid crystal layer having retardation [Delta] nd of 2 [mu] m to 3 [mu] m, and a first polarizing plate and the second substrate adjacent to the first substrate, sandwiching the first and second substrates A second polarizing plate adjacent to the first polarizing plate, wherein the first polarizing plate has an absorption axis and the first direction. The angle formed is 5 ° or less with respect to the twisting direction of the liquid crystal layer when light propagates from the first polarizing plate to the second polarizing plate, and is 2. with respect to the direction opposite to the twisting direction. The second polarizing plate is disposed so as to be within a range of 5 ° or less, and the absorption axis of the second polarizing plate is rotated by 90 ° in a direction opposite to the twist direction with reference to the absorption axis of the first polarizing plate. After that, the twisted direction is arranged by rotating the twisted angle by 2.5 ° to 15 ° from the twisted angle, and the dark state at the time of the front observation is relative to the horizontal direction of the liquid crystal display element based on the front observation. It is characterized by being higher than the transmittance when tilted obliquely.

また、本発明の他の観点によれば、液晶表示素子は、所定の間隔で対向して配置された第1の基板及び第2の基板と、前記第1及び第2の基板のそれぞれの対向面側に形成された電極と、前記第1の基板の対向面側に形成され、第1の方向に配向処理を行った第1の配向膜と、前記第2の基板の対向面側に形成され、第2の方向に配向処理を行った第2の配向膜と、前記一対の基板に挟持され、一方の基板から他方の基板に向かって捩れた配向状態を有し、ねじれ角が90°より大きく120°以下であり、リタデーションΔndが2μm〜3μmである液晶層と、前記第1及び第2の基板を挟んで配置される、前記第1の基板に近接する第1の偏光板及び前記第2の基板に近接する第2の偏光板とを有し、前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記第1の偏光板から前記第2の偏光板へ光が伝播した時の前記液晶層のねじれ方向に対して5°以下、前記ねじれ方向とは逆の方向に対して2.5°以下の範囲内となるように配置され、前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向に90°回転した後、前記ねじれ方向とは逆の方向に前記ねじれ角から2.5°〜15°引いた角度回転させて配置され、正面観察時の暗状態が、正面観察時を基準に液晶表示素子の左右方位に対して斜めに傾けたときの透過率より高いことを特徴とする。   According to another aspect of the present invention, a liquid crystal display element includes a first substrate and a second substrate that are disposed to face each other at a predetermined interval, and each of the first and second substrates facing each other. An electrode formed on the surface side, a first alignment film formed on the opposite surface side of the first substrate and subjected to alignment treatment in the first direction, and formed on the opposite surface side of the second substrate A second alignment film that has been subjected to an alignment treatment in the second direction, and is held between the pair of substrates and has an alignment state twisted from one substrate to the other, and a twist angle of 90 ° A liquid crystal layer having a retardation of greater than or equal to 120 ° and a retardation Δnd of 2 μm to 3 μm, a first polarizing plate disposed close to the first substrate, and the first polarizing plate disposed between the first and second substrates; A second polarizing plate proximate to the second substrate, the first polarizing plate having its absorption axis and front The angle formed by the first direction is 5 ° or less with respect to the twist direction of the liquid crystal layer when light propagates from the first polarizing plate to the second polarizing plate, and is opposite to the twist direction. The second polarizing plate is arranged so that the absorption axis of the second polarizing plate is 90 in the twist direction with reference to the absorption axis of the first polarizing plate. After rotating, it is arranged by rotating 2.5 degrees to 15 degrees from the twist angle in a direction opposite to the twist direction, and the dark state at the time of front observation is a liquid crystal display based on the front observation It is characterized by being higher than the transmittance when tilted with respect to the lateral direction of the element.

本発明によれば、左右方位の斜めから観察した場合に良好な暗状態が得られるノーマリーブラック型TN液晶表示素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the normally black type | mold TN liquid crystal display element from which a favorable dark state is acquired when it observes from the diagonal of a horizontal direction can be provided.

本発明の実施例によるノーマリーブラック型TN液晶表示素子100の一画素内の概略的な断面図である。1 is a schematic cross-sectional view of a normally black TN liquid crystal display element 100 in one pixel according to an embodiment of the present invention. 本発明の実施例によるノーマリーブラック型TN液晶表示素子100の座標系を表す概念図である。1 is a conceptual diagram showing a coordinate system of a normally black TN liquid crystal display element 100 according to an embodiment of the present invention. 左ねじれ90°液晶セル(Δnd=2.5μm)の正面観察時及び極角観察時における透過率の計算結果をまとめた表である。It is the table | surface which put together the calculation result of the transmittance | permeability at the time of front observation and polar angle observation of a left twist 90 degree liquid crystal cell ((DELTA) nd = 2.5micrometer). 左ねじれ90°液晶セルの正面観察時及び極角観察時に最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。Backside substrate orientation orientation R1, front side substrate orientation orientation R2, backside polarizing plate absorption axis P1, front side polarizing plate absorption axis P2, center of liquid crystal layer, which can obtain the minimum transmittance at the time of front view and polar angle observation of a left-handed 90 ° liquid crystal cell It is a graph which shows the relationship of a molecular orientation direction. 左ねじれ90°液晶セル(Δnd=2μm及び3μm)の極角観察時における透過率の計算結果をまとめた表である。It is the table | surface which put together the calculation result of the transmittance | permeability at the time of polar angle observation of the left twist 90 degree liquid crystal cell ((DELTA) nd = 2micrometer and 3 micrometers). 左ねじれ90°液晶セル(P1、P2=125°〜145°)の極角観察時における透過率の計算結果をまとめた表である。It is the table | surface which put together the calculation result of the transmittance | permeability at the time of polar angle observation of the left twist 90 degree liquid crystal cell (P1, P2 = 125 degrees -145 degrees). 図6の表において左ねじれ90°液晶セルの正面観察時及び極角観察時に最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。In the table of FIG. 6, the back side substrate orientation direction R1, the front side substrate orientation direction R2, the back side polarizing plate absorption axis P1, and the front side polarizing plate absorption axis that can obtain the minimum transmittance at the time of front observation and polar angle observation of the left twist 90 ° liquid crystal cell. It is a graph which shows the relationship between P2 and a liquid crystal layer center molecular orientation direction. 右ねじれ90°液晶セル(Δnd=2.5μm)の極角観察時における透過率の計算結果をまとめた表である。It is the table | surface which put together the calculation result of the transmittance | permeability at the time of polar angle observation of a right twist 90 degree liquid crystal cell ((DELTA) nd = 2.5micrometer). 図8の表において右ねじれ90°液晶セルの正面観察時及び極角観察時に最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。In the table of FIG. 8, the back side substrate orientation direction R1, the front side substrate orientation direction R2, the back side polarizing plate absorption axis P1, and the front side polarizing plate absorption axis that can obtain the minimum transmittance at the time of front observation and polar angle observation of the right twist 90 ° liquid crystal cell. It is a graph which shows the relationship between P2 and a liquid crystal layer center molecular orientation direction. 左ねじれ70°液晶セルの正面観察時及び極角観察時における透過率の計算結果をまとめた表である。It is the table | surface which put together the calculation result of the transmittance | permeability at the time of front observation and polar angle observation of the left twist 70 degree liquid crystal cell. 図10の表において右ねじれ90°液晶セルの正面観察時及び極角観察時に最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。In the table of FIG. 10, the back side substrate orientation direction R1, the front side substrate orientation direction R2, the back side polarizing plate absorption axis P1, and the front side polarizing plate absorption axis that can obtain the minimum transmittance at the time of front observation and polar angle observation of the right twist 90 ° liquid crystal cell. It is a graph which shows the relationship between P2 and a liquid crystal layer center molecular orientation direction. 左ねじれ110°液晶セルの極角観察時における透過率の計算結果をまとめた表及び最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。A table summarizing the calculation results of transmittance during polar angle observation of a left-twisted 110 ° liquid crystal cell, and a back side substrate orientation direction R1, a front side substrate orientation direction R2, a back side polarizing plate absorption axis P1, and a front side polarizing plate that can obtain the minimum transmittance It is a graph which shows the relationship between the absorption axis P2 and a liquid crystal layer center molecular orientation direction. 左ねじれ110°液晶セルの極角観察時における透過率の計算結果をまとめた表及び最低透過率を得られる裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。A table summarizing the calculation results of transmittance during polar angle observation of a left-twisted 110 ° liquid crystal cell, and a back side substrate orientation direction R1, a front side substrate orientation direction R2, a back side polarizing plate absorption axis P1, and a front side polarizing plate that can obtain the minimum transmittance It is a graph which shows the relationship between the absorption axis P2 and a liquid crystal layer center molecular orientation direction. 入射波長λ=450,550,650nmそれぞれについて、Δndをパラメータにした時の透過光強度の変化をプロットしたグラフである。It is the graph which plotted the change of the transmitted light intensity when (DELTA) nd was made into the parameter about each of incident wavelength (lambda) = 450,550,650nm.

図1は、本発明の実施例によるノーマリーブラック型TN液晶表示素子100の一画素内の概略的な断面図である。実施例によるノーマリーブラック型TN液晶表示素子100は、相互に平行に対向配置された表側基板1、裏側基板2、及び両基板1、2間に挟持されたツイストネマチック液晶層3を含んで構成される。   FIG. 1 is a schematic cross-sectional view in a pixel of a normally black TN liquid crystal display element 100 according to an embodiment of the present invention. A normally black type TN liquid crystal display element 100 according to the embodiment includes a front side substrate 1, a back side substrate 2, and a twisted nematic liquid crystal layer 3 sandwiched between the substrates 1 and 2, which are opposed to each other in parallel. Is done.

表側基板1は、表側透明基板12、表側透明基板12上に形成された透明電極13、及び透明電極13上に形成された表側配向膜14を含む。裏側基板2は、裏側透明基板22、裏側透明基板22上に形成された透明電極23、透明電極23上に形成された裏側配向膜24を含む。   The front substrate 1 includes a front transparent substrate 12, a transparent electrode 13 formed on the front transparent substrate 12, and a front alignment film 14 formed on the transparent electrode 13. The back side substrate 2 includes a back side transparent substrate 22, a transparent electrode 23 formed on the back side transparent substrate 22, and a back side alignment film 24 formed on the transparent electrode 23.

表側、裏側透明基板12、22は、たとえばガラスで形成される。透明電極13、23は、たとえばITO等の透明導電材料で形成される。   The front and back transparent substrates 12 and 22 are made of glass, for example. The transparent electrodes 13 and 23 are made of a transparent conductive material such as ITO, for example.

液晶層3は、表側基板1の表側配向膜14と、裏側基板2の裏側配向膜24との間に配置される。液晶層3内の液晶分子は分子配列が略水平で一方の基板から他方の基板に向かって捩れた配向状態を有する。液晶層3に使用する液晶材料は、例えば、Δnが0.25のネマチック液晶である。液晶層3を形成する液晶材料にはカイラル剤が添加されている。カイラルピッチp、液晶層の厚さ(セル厚)dとしたとき、d/pが0.1となるように調整する。なお、後述するシミュレータによる解析では、液晶層3の厚さdは、それぞれ10μm、8μm、12μmに設定した。   The liquid crystal layer 3 is disposed between the front side alignment film 14 of the front side substrate 1 and the back side alignment film 24 of the back side substrate 2. The liquid crystal molecules in the liquid crystal layer 3 have an alignment state in which the molecular arrangement is substantially horizontal and twisted from one substrate to the other substrate. The liquid crystal material used for the liquid crystal layer 3 is, for example, nematic liquid crystal having Δn of 0.25. A chiral agent is added to the liquid crystal material forming the liquid crystal layer 3. When the chiral pitch p and the liquid crystal layer thickness (cell thickness) d are set, d / p is adjusted to be 0.1. In the analysis by the simulator described later, the thickness d of the liquid crystal layer 3 was set to 10 μm, 8 μm, and 12 μm, respectively.

表側及び裏側配向膜14、24には、ラビングにより配向処理が施されている。表側配向膜14と裏側配向膜24の配向処理方向(ラビング方位)間角度ψを、後述するように、90°、75°、110°等に設定してシミュレータによる解析を行った。なお、配向処理により発現したプレティルト角は1.5°とした。   The front side and back side alignment films 14 and 24 are subjected to an alignment process by rubbing. Analysis by the simulator was performed with the angle ψ between the orientation treatment directions (rubbing orientations) of the front side orientation film 14 and the back side orientation film 24 set to 90 °, 75 °, 110 °, etc. as will be described later. The pretilt angle expressed by the orientation treatment was 1.5 °.

駆動電源20が、表裏透明電極13、23に電気的に接続されている。駆動電源20によって、電極13及び23に電圧を印加することが可能である。   A driving power source 20 is electrically connected to the front and back transparent electrodes 13 and 23. A voltage can be applied to the electrodes 13 and 23 by the drive power supply 20.

表側基板1、裏側基板2それぞれの液晶層3と反対側の面には、表側偏光板11、裏側偏光板21が配置される。両偏光板11、21は、例えば、ポラテクノ製SHC13Uを用いることが可能である。   A front-side polarizing plate 11 and a back-side polarizing plate 21 are disposed on the surfaces of the front-side substrate 1 and the back-side substrate 2 opposite to the liquid crystal layer 3. As both the polarizing plates 11 and 21, for example, SHC13U made by Polatechno can be used.

なお、光源は裏側偏光板21の下に配置され、光源からの光は裏側偏光板21から入射して、液晶層3等を介して、表側偏光板11から出射する。   The light source is disposed under the back side polarizing plate 21, and light from the light source enters from the back side polarizing plate 21 and exits from the front side polarizing plate 11 through the liquid crystal layer 3 and the like.

図2は、本発明の実施例によるノーマリーブラック型TN液晶表示素子100の座標系を表す概念図である。本明細書及び全ての図面において図2に示す座標系を用いる。   FIG. 2 is a conceptual diagram illustrating a coordinate system of a normally black TN liquid crystal display element 100 according to an embodiment of the present invention. The coordinate system shown in FIG. 2 is used in this specification and all drawings.

本発明の実施例によるノーマリーブラック型TN液晶表示素子100の座標系は、図2に示すように観察者から(表側基板1側から)見て右方位が0°の反時計回り方位座標系であり、各種軸方位は液晶表示素子の表面から観察した時のものである。   As shown in FIG. 2, the coordinate system of the normally black type TN liquid crystal display element 100 according to the embodiment of the present invention is a counterclockwise azimuth coordinate system having a right azimuth of 0 ° as viewed from the observer (from the front substrate 1 side). The various axis orientations are those observed from the surface of the liquid crystal display element.

裏側基板2のラビング方位(点線の矢印)を裏側基板配向方位R1、表側基板1のラビング方位(破線の矢印)を表側基板配向方位R2、裏側偏光板21の吸収軸(二点鎖線の矢印)を裏側偏光板吸収軸P1、表側偏光板11の吸収軸(一点鎖線の矢印)を表側偏光板吸収軸P2とし、裏側偏光板21から表側偏光板11へ光が伝播した時の2枚の基板1、2間の液晶層3のねじれ角である裏側基板配向方位R1と表側基板配向方位R2間の角度をψ、裏側基板配向方位R1と裏側偏光板吸収軸P1間角度をφ1、表側基板配向方位R2と表側偏光板吸収軸P2間角度をφ2と定義する。また、本実施例では、液晶層中央分子配向方向は、270°(6時方位)に固定した。   The rubbing orientation (dotted arrow) of the back substrate 2 is the back substrate orientation R1, the rubbing orientation (broken arrow) of the front substrate 1 is the front substrate orientation R2, and the absorption axis of the back polarizing plate 21 (dotted line arrow). Is the back side polarizing plate absorption axis P1, and the front side polarizing plate 11 is the front side polarizing plate absorption axis P2, and the two substrates when light propagates from the back side polarizing plate 21 to the front side polarizing plate 11 The angle between the back side substrate orientation direction R1 and the front side substrate orientation direction R2, which is the twist angle of the liquid crystal layer 3 between 1 and 2, is ψ, the angle between the back side substrate orientation direction R1 and the back side polarizing plate absorption axis P1 is φ1, and the front side substrate orientation The angle between the orientation R2 and the front-side polarizing plate absorption axis P2 is defined as φ2. Further, in this example, the liquid crystal layer central molecular orientation direction was fixed at 270 ° (6 o'clock orientation).

なお、本明細書及び図面における「ねじれ方向」は、裏側偏光板21から表側偏光板11へ光が伝播した時、すなわち紙面裏面から光が入射し表面から出射する場合における方向であり、紙面上、時計回りが「左ねじれ」、反時計回りが「右ねじれ」である。例えば、図4に示すように、「90°左回り」の場合は、図面上(観察者から見た場合)は時計回り方向(右方向)に90°回転するように示される。したがって、液晶層3のツイスト方向が「左回り」の場合は、反時計回りの方向が「ねじれ方向」であり、時計回りの方向が「逆ねじれ方向」である。また、液晶層3のツイスト方向が「右回り」の場合は、時計回りの方向が「ねじれ方向」であり、反時計回りの方向が「逆ねじれ方向」である。   The “twist direction” in the present specification and drawings is a direction when light propagates from the back-side polarizing plate 21 to the front-side polarizing plate 11, that is, when light enters from the back surface of the paper and exits from the front surface. The clockwise rotation is “left twist”, and the counterclockwise rotation is “right twist”. For example, as shown in FIG. 4, in the case of “90 ° counterclockwise”, it is shown to rotate 90 ° in the clockwise direction (rightward) on the drawing (when viewed from the observer). Therefore, when the twist direction of the liquid crystal layer 3 is “counterclockwise”, the counterclockwise direction is “twist direction” and the clockwise direction is “reverse twist direction”. Further, when the twist direction of the liquid crystal layer 3 is “clockwise”, the clockwise direction is the “twist direction”, and the counterclockwise direction is the “reverse twist direction”.

本発明の実施例は、裏側基板配向(ラビング)方位R1、表側基板配向(ラビング)方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を調整することにより、正面観察時よりも、左右方位において斜めから観察した時に暗状態(電圧無印加時)における透過率が低くなるノーマリーブラック型TN液晶表示素子を実現するものである。したがって、裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の最適値を得るために、本発明者らは、液晶表示素子100の光学特性をシンテック製液晶表示機シミュレータLCDMASTER7.2により解析した。   The embodiment of the present invention adjusts the relationship among the back side substrate orientation (rubbing) orientation R1, the front side substrate orientation (rubbing) orientation R2, the back side polarizing plate absorption axis P1, the front side polarizing plate absorption axis P2, and the liquid crystal layer central molecular orientation direction. Thus, a normally black type TN liquid crystal display element is realized in which the transmittance in the dark state (when no voltage is applied) is lower when observed obliquely in the left-right direction than when viewed from the front. Therefore, in order to obtain the optimum values of the back side substrate orientation direction R1, the front side substrate orientation direction R2, the back side polarizing plate absorption axis P1, the front side polarizing plate absorption axis P2, and the liquid crystal layer central molecular orientation direction, the present inventors The optical characteristics of the element 100 were analyzed by a liquid crystal display simulator LCDMASTER 7.2 manufactured by Shintec.

図3は、裏側基板配向方位R1=−45°、表側基板配向方位R2=+45°、ねじれ角Ψ=−90°の左ねじれ90°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を35°〜55°までそれぞれ変化させたときの正面観察時の透過率及び液晶表示素子法線方向を基準に左右方位(180°及び0°)極角40°における透過率の計算結果をまとめた表である。図3(A)に正面観察時、図3(B)に右方位極角40°観察時、図3(C)に左方位極角40°観察時の暗状態(電圧無印加時)における透過率を示す。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。   FIG. 3 shows a back side polarizing plate absorption axis P1 and a front side polarizing plate using a left side twisted 90 ° liquid crystal cell with a back side substrate orientation direction R1 = −45 °, a front side substrate orientation direction R2 = + 45 °, and a twist angle Ψ = −90 °. Calculation of transmittance at the right and left azimuth (180 ° and 0 °) polar angle 40 ° with reference to the transmittance at the time of frontal observation and the normal direction of the liquid crystal display element when the absorption axis P2 is changed from 35 ° to 55 °. It is the table | surface which put together the result. 3A is a front view, FIG. 3B is a right azimuth polar angle of 40 ° observation, and FIG. 3C is a left azimuth polar angle of 40 ° observation in a dark state (when no voltage is applied). Indicates the rate. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm.

図4は、裏側基板配向方位R1、表側基板配向方位R2、裏側偏光板吸収軸P1、表側偏光板吸収軸P2、液晶層中央分子配向方向の関係を示すグラフである。図4(A)には、正面観察時における最適値(最低透過率)、図4(B)には、左右方位極角40°観察時における最適値(最低透過率)を得るための関係を示す。   FIG. 4 is a graph showing the relationship between the back side substrate orientation azimuth R1, the front side substrate orientation azimuth R2, the back side polarizing plate absorption axis P1, the front side polarizing plate absorption axis P2, and the liquid crystal layer central molecular orientation direction. FIG. 4A shows the relationship for obtaining the optimum value (minimum transmittance) at the time of frontal observation, and FIG. 4B shows the relationship for obtaining the optimum value (minimum transmittance) at the time of observation at the left and right azimuth polar angles of 40 °. Show.

図3(A)の表に示すように、正面観察時に透過率が最低となるのは、裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°の条件で、そのときの透過率は0.188%であった。表から明らかなように、裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°を中心にこの値から離れるほど透過率が上昇することが分かる。このときの条件を、図2と同様の座標系で示すと、図4(A)のようになる。すなわち、表側基板吸収軸P2は、近接する表側基板の配向方位R2と同一の方位である45°に配置され、裏側基板吸収軸P1も45°に配置される、いわゆる平行ニコル配置である。   As shown in the table of FIG. 3 (A), the transmittance is lowest when viewed from the front under the condition of the back side polarizing plate absorption axis P1 = front side polarizing plate absorption axis P2 = 45 °. It was 0.188%. As is apparent from the table, it can be seen that the transmittance increases with distance from this value centering on the back side polarizing plate absorption axis P1 = front side polarizing plate absorption axis P2 = 45 °. If the conditions at this time are shown in the same coordinate system as FIG. 2, it will become like FIG. 4 (A). That is, the front side substrate absorption axis P2 is a so-called parallel Nicol arrangement in which the front side substrate absorption axis P2 is arranged at 45 ° which is the same direction as the orientation direction R2 of the adjacent front side substrate, and the back side substrate absorption axis P1 is also arranged at 45 °.

図3〜図13に示す表において、2重線の枠で囲んで示す数値は正面観察時に最低透過率を得られる条件(側偏光板吸収軸P1及び表側偏光板吸収軸P2の角度)における暗状態(電圧無印加時)での透過率を表し、太字で示す数値は裏側偏光板吸収軸P1及び表側偏光板吸収軸P2の角度(方位)が正面観察時と同一の場合に、正面観察時よりも暗状態(電圧無印加時)での透過率が低く、且つ正面観察時において最低透過率を示した条件(図3(A)〜(C)の場合は、裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°)における左右方位極角40°観察時の透過率(図3(B)では、「0.494%」、図3(C)では「0.404%」)よりも低い暗状態(電圧無印加時)での透過率である。また、太字に下線を施した数値は、正面観察時における最低透過率(図3(A)では「0.188%」)よりも低い又はほぼ同等の透過率を示した暗状態(電圧無印加時)での透過率である。すなわち、太字及び太字に下線を施した数値を得られた条件(裏側偏光板吸収軸P1及び表側偏光板吸収軸P2の角度)では、正面観察時よりも左右方位40°極角にて優れた光学特性(暗状態(電圧無印加時)での低い透過率)を得られる。   In the tables shown in FIG. 3 to FIG. 13, the numerical value enclosed by the double line frame is dark under the conditions (angle of the side polarizing plate absorption axis P <b> 1 and the front side polarizing plate absorption axis P <b> 2) at which the minimum transmittance can be obtained during frontal observation. The transmittance in the state (when no voltage is applied), and the numerical values shown in bold are when the angle (azimuth) of the back-side polarizing plate absorption axis P1 and the front-side polarizing plate absorption axis P2 is the same as the front observation, In the case of the condition (FIGS. 3A to 3C) where the transmittance in the dark state (when no voltage is applied) is low and the minimum transmittance is shown during front observation, the back side polarizing plate absorption axis P1 = Transmissivity at the time of observation of left and right azimuth polar angles of 40 ° at the front side polarizing plate absorption axis P2 = 45 ° (“0.494%” in FIG. 3B, “0.404%” in FIG. 3C)) The transmittance in a dark state (when no voltage is applied). In addition, the numerical value in which bold is underlined is a dark state (no voltage applied) that shows a transmittance that is lower than or substantially equivalent to the minimum transmittance (“0.188%” in FIG. 3A) during frontal observation. ). That is, in the condition (the angle between the back-side polarizing plate absorption axis P1 and the front-side polarizing plate absorption axis P2) obtained in bold and bold underlined values (angles of the back-side polarizing plate absorption axis P2), it was superior in the left and right azimuth 40 ° polar angle than in the front observation. Optical characteristics (low transmittance in dark state (no voltage applied)) can be obtained.

図3(B)の表から、右方位40°極角にて観察した場合には、裏側偏光板吸収軸P1が35°〜40°、表側偏光板吸収軸P2が42.5〜50°のときに、図3(A)に示す正面観察時の同一条件下(同一の吸収軸P1及び表側偏光板吸収軸P2角度)における透過率よりも透過率が低く、且つ正面観察時において最低透過率を示した条件(裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°)における左右方位極角40°観察時の透過率(「0.494%」)よりも低い透過率が得られたことが分かる。   From the table of FIG. 3 (B), when observed at a right angle of 40 ° polar angle, the back side polarizing plate absorption axis P1 is 35 ° to 40 °, and the front side polarizing plate absorption axis P2 is 42.5 to 50 °. Sometimes, the transmittance is lower than the transmittance under the same conditions (same absorption axis P1 and front-side polarizing plate absorption axis P2 angle) during frontal observation shown in FIG. 3 (A), and the minimum transmittance during frontal observation. The transmittance is lower than the transmittance ("0.494%") observed at the right and left azimuth polar angles of 40 ° under the conditions (back side polarizing plate absorption axis P1 = front side polarizing plate absorption axis P2 = 45 °). I understand that.

また、裏側偏光板吸収軸P1が37.5°〜40°、表側偏光板吸収軸P2が45°のときには、正面観察時における最低透過率(「0.188%」)とほぼ同等の透過率(それぞれ「0.19%」、「0.196%」)が得られたことが分かる。   Further, when the back side polarizing plate absorption axis P1 is 37.5 ° to 40 ° and the front side polarizing plate absorption axis P2 is 45 °, the transmittance is almost the same as the minimum transmittance (“0.188%”) during frontal observation. It can be seen that (0.19% and 0.196%, respectively) were obtained.

図3(C)の表から、左方位40°極角にて観察した場合には、裏側偏光板吸収軸P1が35°、表側偏光板吸収軸P2が45〜47.5°のとき、裏側偏光板吸収軸P1が37.5°〜40°、表側偏光板吸収軸P2が42.5〜50°のとき、及び、裏側偏光板吸収軸P1が42.5°、表側偏光板吸収軸P2が50°のときに、図3(A)に示す正面観察時の同一条件下(同一の吸収軸P1及び表側偏光板吸収軸P2角度)における透過率よりも透過率が低く、且つ正面観察時において最低透過率を示した条件(裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°)における左右方位極角40°観察時の透過率(「0.494%」)よりも低い透過率が得られたことが分かる。   From the table of FIG. 3 (C), when observed at a left orientation of 40 ° polar angle, when the back side polarizing plate absorption axis P1 is 35 ° and the front side polarizing plate absorption axis P2 is 45 to 47.5 °, the back side When the polarizing plate absorption axis P1 is 37.5 ° to 40 °, the front side polarizing plate absorption axis P2 is 42.5 to 50 °, and the back side polarizing plate absorption axis P1 is 42.5 °, the front side polarizing plate absorption axis P2 When the angle is 50 °, the transmittance is lower than the transmittance under the same conditions (same absorption axis P1 and front-side polarizing plate absorption axis P2 angle) during frontal observation shown in FIG. The transmittance is lower than the transmittance ("0.494%") at the observation of the left and right azimuth polar angles of 40 ° under the conditions showing the minimum transmittance (back side polarizing plate absorption axis P1 = front side polarizing plate absorption axis P2 = 45 °). It can be seen that the rate was obtained.

また、裏側偏光板吸収軸P1が40°、表側偏光板吸収軸P2が45°のときには、正面観察時における最低透過率(「0.188%」)より低い透過率(「0.182%」)が得られたことが分かる。   Further, when the back-side polarizing plate absorption axis P1 is 40 ° and the front-side polarizing plate absorption axis P2 is 45 °, the transmittance (“0.182%”) lower than the minimum transmittance (“0.188%”) during frontal observation. ) Is obtained.

以上より、左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が35°〜40°で表側偏光板吸収軸P2が42.5〜50°の条件であり、より好ましくは裏側偏光板吸収軸P1が37.5〜40°、表側偏光板吸収軸P2が42.5〜47.5°の条件である。さらに好ましいのは正面観察時の同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が40°、表側偏光板吸収軸P2が45°の条件であると考えられる。   As mentioned above, the conditions which show the optical characteristic which was superior to the time of front observation at the right and left azimuth 40 ° polar angle are 35 ° to 40 ° for the back side polarizing plate absorption axis P1 and 42.5 to 50 ° for the front side polarizing plate absorption axis P2. More preferably, the back side polarizing plate absorption axis P1 is 37.5 to 40 ° and the front side polarizing plate absorption axis P2 is 42.5 to 47.5 °. More preferably, it is considered that the back side polarizing plate absorption axis P1 is 40 ° and the front side polarizing plate absorption axis P2 is 45 °.

図3(B)及び図3(C)に示す表における最適条件を、図2と同様の座標系で示すと、図4(B)のようになる。すなわち、裏側基板配向方位R1=−45°、表側基板配向方位R2=+45°、ねじれ角Ψ=−90°の左ねじれ90°液晶セルでは、表側基板吸収軸P2は、近接する表側基板の配向方位R2と同一の方位である45°に配置される場合、裏側基板吸収軸P1は40°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が35°〜40°で表側偏光板吸収軸P2が42.5〜50°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   When the optimum conditions in the tables shown in FIGS. 3B and 3C are shown in the same coordinate system as in FIG. 2, the result is as shown in FIG. That is, in the left-side twist 90 ° liquid crystal cell with the back side substrate orientation direction R1 = −45 °, the front side substrate orientation direction R2 = + 45 °, and the twist angle Ψ = −90 °, the front side substrate absorption axis P2 is the orientation of the adjacent front side substrate. When arranged at 45 °, which is the same orientation as the orientation R2, the back substrate absorption axis P1 is arranged at 40 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, if the back side polarizing plate absorption axis P1 satisfies the conditions of 35 ° to 40 ° and the front side polarizing plate absorption axis P2 of 42.5 to 50 °, it is superior in the left-right orientation observation than in the front observation. Optical characteristics can be obtained.

次に液晶層3の厚さがd=8μmとd=12μm、すなわちΔnd=2μm及び3μmにおける正面観察時及び右方位40°極角観察時の光学特性を計算した。図5(A)は、Δnd=2μmの右方位40°極角観察時の光学特性計算結果を示す表であり、図5(B)は、Δnd=3μmの右方位40°極角観察時の光学特性計算結果を示す表である。   Next, the optical characteristics at the time of front observation and right-angle 40 ° polar angle observation when the thickness of the liquid crystal layer 3 is d = 8 μm and d = 12 μm, that is, Δnd = 2 μm and 3 μm were calculated. FIG. 5A is a table showing calculation results of optical characteristics when observing a right-angle 40 ° polar angle of Δnd = 2 μm. FIG. 5B is a table showing a right-angle 40 ° polar angle observation of Δnd = 3 μm. It is a table | surface which shows an optical characteristic calculation result.

Δnd=2μmの場合、正面観察時における最低透過率は0.314%であったので、図3(A)に示すΔnd=2.5μmの場合の最低透過率に比べてかなり上昇している。このことから、図5(A)に示す表では、この透過率(「0.314%」)より低い領域(裏側偏光板吸収軸P1が37.5〜40°、表側偏光板吸収軸P2が42.5〜45°の条件)が太字に下線を施して表示されており、図3(B)に示す例に比べて、右方位40°極角で良好な光学特性が得られる範囲が広くなっている。   In the case of Δnd = 2 μm, the minimum transmittance at the time of frontal observation was 0.314%, which is considerably higher than the minimum transmittance in the case of Δnd = 2.5 μm shown in FIG. From this, in the table shown in FIG. 5A, the region (the back side polarizing plate absorption axis P1 is 37.5 to 40 °, the front side polarizing plate absorption axis P2 is lower than the transmittance (“0.314%”). 42.5-45 ° condition) is displayed in bold and underlined. Compared to the example shown in FIG. 3B, the range in which good optical characteristics can be obtained at the right-side 40 ° polar angle is wide. It has become.

一方、Δnd=3μmの場合、正面観察時における最低透過率は0.136%となりΔnd=2.5μmの条件に比べ低くなっているが、太字及び太字に下線を施して示す範囲はほぼ等しい領域(裏側偏光板吸収軸P1が35〜40°、表側偏光板吸収軸P2が40〜50°、但し裏側偏光板吸収軸P1が35°、表側偏光板吸収軸P2が50°の場合を除く条件)であることが分かった。   On the other hand, when Δnd = 3 μm, the minimum transmittance at the time of front observation is 0.136%, which is lower than the condition of Δnd = 2.5 μm. (Conditions except that the back side polarizing plate absorption axis P1 is 35 to 40 °, the front side polarizing plate absorption axis P2 is 40 to 50 °, except that the back side polarizing plate absorption axis P1 is 35 ° and the front side polarizing plate absorption axis P2 is 50 °. )

したがって、左右方位40°極角にて正面観察時より優れた光学特性を示す条件はΔnd=2μm、3μmともに上述した図3に示すΔnd=2.5μmの場合の範囲がカバーされていることが分かった。   Therefore, the conditions that show superior optical characteristics at the 40 ° polar angle in the horizontal direction from the front observation cover that both Δnd = 2 μm and 3 μm cover the range of Δnd = 2.5 μm shown in FIG. I understood.

よって、Δnd=2.5μm、2μm及び3μmのいずれの場合においても、裏側基板配向方位R1=−45°、表側基板配向方位R2=+45°、ねじれ角Ψ=−90°の左ねじれ90°液晶セルでは、左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が35°〜40°で表側偏光板吸収軸P2が42.5〜50°の条件であり、より好ましくは裏側偏光板吸収軸P1が37.5〜40°、表側偏光板吸収軸P2が42.5〜47.5°の条件である。さらに好ましいのは正面観察時の同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が40°、表側偏光板吸収軸P2が45°の条件であると考えられる。   Therefore, in both cases of Δnd = 2.5 μm, 2 μm, and 3 μm, the back-side substrate orientation azimuth R1 = −45 °, the front-side substrate orientation azimuth R2 = + 45 °, and the left twist 90 ° liquid crystal with the twist angle Ψ = −90 ° In the cell, the conditions showing the optical characteristics superior to those at the time of front observation at the right and left azimuth angle of 40 ° are as follows: the back side polarizing plate absorption axis P1 is 35 ° to 40 ° and the front side polarizing plate absorption axis P2 is 42.5 to 50 °. More preferably, the back side polarizing plate absorption axis P1 is 37.5 to 40 ° and the front side polarizing plate absorption axis P2 is 42.5 to 47.5 °. More preferably, it is considered that the back side polarizing plate absorption axis P1 is 40 ° and the front side polarizing plate absorption axis P2 is 45 °.

次に、裏側基板配向方位R1=−45°、表側基板配向方位R2=+45°、ねじれ角Ψ=−90°の左ねじれ90°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を125°〜145°までそれぞれ変化させたときの正面観察時及び、液晶表示素子法線方向を基準に左右方位(180°及び0°)極角40°における透過率を計算した。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。左方位(180°)及び右方位(0°)極角40°における透過率の計算結果を図6(A)及び(B)にそれぞれ示す。   Next, a back side polarizing plate absorption axis P1, front side polarizing plate absorption, using a left side twist 90 ° liquid crystal cell with a back side substrate orientation direction R1 = −45 °, a front side substrate orientation direction R2 = + 45 °, and a twist angle Ψ = −90 °. The transmittance at the frontal observation when the axis P2 was changed from 125 ° to 145 ° and at the left and right azimuth (180 ° and 0 °) polar angle of 40 ° with respect to the normal direction of the liquid crystal display element was calculated. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm. FIGS. 6A and 6B show the calculation results of the transmittance in the left azimuth (180 °) and right azimuth (0 °) polar angles of 40 °, respectively.

図6(A)及び(B)の表で2重線で囲んで示すように、正面観察時に透過率が最低となるのは、裏側偏光板吸収軸P1=表側偏光板吸収軸P2=135°の条件であった。このときの条件を、図2と同様の座標系で示すと、図7(A)のようになる。すなわち、裏側基板吸収軸P1は、近接する裏側基板の配向方位R1と同一の方位である135°(−45°)に配置され、表側基板吸収軸P2も135°に配置される、いわゆる平行ニコル配置である。   6A and 6B, the transmittance is lowest when viewed from the front. The back side polarizing plate absorption axis P1 = the front side polarizing plate absorption axis P2 = 135 °. It was the condition of. FIG. 7A shows the conditions at this time in the same coordinate system as that in FIG. That is, the back side substrate absorption axis P1 is arranged at 135 ° (−45 °) which is the same orientation as the orientation direction R1 of the adjacent back side substrate, and the front side substrate absorption axis P2 is also arranged at 135 °, so-called parallel Nicols. Arrangement.

図6(A)及び(B)に示す表から、左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が130°〜137.5°、表側偏光板吸収軸P2が140〜145°、より好ましくは裏側偏光板吸収軸P1が132.5〜137.5°、表側偏光板吸収軸P2が140〜142.5°、さらに好ましいのは正面観察時の同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が135°、表側偏光板吸収軸P2が140°の条件であると考えられる。   From the tables shown in FIGS. 6 (A) and (B), the conditions indicating the optical properties superior to those at the time of front observation at the 40 ° polar angle in the horizontal direction are such that the back side polarizing plate absorption axis P1 is 130 ° to 137.5 °, The front side polarizing plate absorption axis P2 is 140 to 145 °, more preferably the back side polarizing plate absorption axis P1 is 132.5 to 137.5 °, the front side polarizing plate absorption axis P2 is 140 to 142.5 °, and the front side is more preferable. It is considered that the back side polarizing plate absorption axis P1 and the front side polarizing plate absorption axis P2 at which the equivalent transmittance during observation is obtained at a 40 ° polar angle are 135 ° and 140 °.

図6(A)及(B)に示す表における最適条件を、図2と同様の座標系で示すと、図7(B)のようになる。すなわち、裏側基板配向方位R1=−45°、表側基板配向方位R2=+45°、ねじれ角Ψ=−90°の左ねじれ90°液晶セルにおいて、裏側基板吸収軸P1が、近接する裏側基板の配向方位R1と同一の方位である45°に配置される場合、表側基板吸収軸P2は140°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が130°〜137.5°で表側偏光板吸収軸P2が140〜145°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   When the optimum conditions in the tables shown in FIGS. 6A and 6B are shown in the same coordinate system as in FIG. 2, the result is as shown in FIG. That is, in the left twist 90 ° liquid crystal cell with the back substrate orientation R1 = −45 °, the front substrate orientation R2 = + 45 °, and the twist angle Ψ = −90 °, the back substrate absorption axis P1 is the orientation of the adjacent back substrate. When it is arranged at 45 °, which is the same orientation as the orientation R1, the front substrate absorption axis P2 is arranged at 140 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, if the back side polarizing plate absorption axis P1 satisfies the conditions of 130 ° to 137.5 ° and the front side polarizing plate absorption axis P2 satisfies 140 to 145 °, it is superior in the left-right orientation observation than in the front observation. Optical characteristics can be obtained.

次に、裏側基板配向方位R1=−135°、表側基板配向方位R2=+135°、ねじれ角Ψ=+90°の右ねじれ90°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を35°〜55°までそれぞれ変化させたときの正面観察時及び、液晶表示素子法線方向を基準に左右方位(180°及び0°)極角40°における透過率を計算した。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。左方位(180°)及び右方位(0°)極角40°における透過率の計算結果を図8(A)及び(B)にそれぞれ示す。   Next, a back-side polarizing plate absorption axis P1, a front-side polarizing plate absorption axis, using a right-handed 90 ° liquid crystal cell with a back-side substrate orientation direction R1 = −135 °, a front-side substrate orientation direction R2 = + 135 °, and a twist angle Ψ = + 90 ° The transmittance at the time of front observation when P2 was changed from 35 ° to 55 ° and the horizontal direction (180 ° and 0 °) polar angle of 40 ° with respect to the normal direction of the liquid crystal display element was calculated. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm. FIGS. 8A and 8B show the calculation results of the transmittance at the left azimuth (180 °) and right azimuth (0 °) polar angle 40 °, respectively.

図8(A)及び(B)の表で2重線で囲んで示すように、正面観察時に透過率が最低となるのは、裏側偏光板吸収軸P1=表側偏光板吸収軸P2=45°の条件であった。このときの条件を、図2と同様の座標系で示すと、図9(A)のようになる。すなわち、裏側基板吸収軸P1は、近接する裏側基板の配向方位R1と同一の方位である45°に配置され、表側基板吸収軸P2も45°に配置される、いわゆる平行ニコル配置である。   8A and 8B, the transmittance is lowest when viewed from the front, as indicated by the double lines in the table. The back side polarizing plate absorption axis P1 = the front side polarizing plate absorption axis P2 = 45 °. It was the condition of. If the conditions at this time are shown in the same coordinate system as FIG. 2, it will become like FIG. 9 (A). That is, the back substrate absorption axis P1 is a so-called parallel Nicol arrangement in which the back substrate absorption axis P1 is arranged at 45 °, which is the same orientation as the orientation direction R1 of the adjacent back substrate, and the front substrate absorption axis P2 is also arranged at 45 °.

図8(A)及び(B)の表から、左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が42.5°〜50°、表側偏光板吸収軸P2が35〜40°、より好ましくは裏側偏光板吸収軸P1が45〜47.5°、表側偏光板吸収軸P2が37.5〜40°、さらに好ましいのは正面観察時の同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が45°、表側偏光板吸収軸P2が40°の条件であると考えられる。   8A and 8B, the conditions indicating the optical characteristics superior to those at the time of frontal observation at the 40 ° polar angle in the horizontal direction are 42.5 ° to 50 ° on the back side polarizing plate absorption axis P1, and the front side. The polarizing plate absorption axis P2 is 35 to 40 °, more preferably the back side polarizing plate absorption axis P1 is 45 to 47.5 °, the front side polarizing plate absorption axis P2 is 37.5 to 40 °, and more preferably at the time of frontal observation. It is considered that the back side polarizing plate absorption axis P1 at which the equivalent transmittance is obtained at a 40 ° polar angle is 45 ° and the front side polarizing plate absorption axis P2 is 40 °.

図8(A)及(B)に示す表における最適条件を、図2と同様の座標系で示すと、図9(B)のようになる。すなわち、裏側基板配向方位R1=−135°、表側基板配向方位R2=+135°、ねじれ角Ψ=+90°の右ねじれ90°液晶セルにおいて、裏側基板吸収軸P1が、近接する裏側基板の配向方位R1と同一の方位である45°(−135°)に配置される場合、表側基板吸収軸P2は40°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が42.5°〜50°、表側偏光板吸収軸P2が35〜40°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   When the optimum conditions in the table shown in FIGS. 8A and 8B are shown in the same coordinate system as that in FIG. 2, it is as shown in FIG. 9B. That is, in the right-handed 90 ° liquid crystal cell with the back side substrate orientation R1 = −135 °, the front side substrate orientation R2 = + 135 °, and the twist angle Ψ = + 90 °, the back side substrate absorption axis P1 is the orientation direction of the adjacent back side substrate. When arranged at 45 ° (−135 °) which is the same orientation as R1, the front substrate absorption axis P2 is arranged at 40 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, if the back side polarizing plate absorption axis P1 satisfies the conditions of 42.5 ° to 50 ° and the front side polarizing plate absorption axis P2 satisfies 35 to 40 °, it is superior in the left-right orientation observation than in the front observation. Optical characteristics can be obtained.

次に、裏側基板配向方位R1=−55°、表側基板配向方位R2=+55°、ねじれ角Ψ=−70°の左ねじれ70°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を25°〜65°までそれぞれ変化させたときの正面観察時及び、液晶表示素子法線方向を基準に左右方位(180°及び0°)極角40°における透過率を計算した。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。正面観察時、左方位(180°)及び右方位(0°)極角40°における透過率の計算結果を図10(A)〜(C)にそれぞれ示す。   Next, a back side polarizing plate absorption axis P1, front side polarizing plate absorption, using a left side twisted 70 ° liquid crystal cell with a back side substrate orientation direction R1 = −55 °, a front side substrate orientation direction R2 = + 55 °, and a twist angle Ψ = −70 °. The transmittance was calculated at the time of front observation when the axis P2 was changed from 25 ° to 65 ° and at the left and right azimuth (180 ° and 0 °) polar angles of 40 ° with reference to the normal direction of the liquid crystal display element. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm. 10A to 10C show the calculation results of the transmittance at the left azimuth (180 °) and right azimuth (0 °) polar angle 40 ° during frontal observation.

図10(A)の表中二重線で囲んだように、正面観察時における最低透過率が得られる条件は裏側偏光板吸収軸P1=35°、表側偏光板吸収軸P2=55°であった。この条件下で得られた透過率は0.122%と低いものであった。正面観察時の最適条件を、図2と同様の座標系で示すと、図11(A)のようになる。すなわち、表側基板吸収軸P2は、近接する表側基板の配向方位R2と同一の方位である55°に配置され、裏側基板吸収軸P1は35°に配置される。   As surrounded by a double line in the table of FIG. 10 (A), the conditions for obtaining the minimum transmittance during frontal observation were the back side polarizing plate absorption axis P1 = 35 ° and the front side polarizing plate absorption axis P2 = 55 °. It was. The transmittance obtained under these conditions was as low as 0.122%. When the optimum condition at the time of frontal observation is shown in the same coordinate system as in FIG. 2, it becomes as shown in FIG. That is, the front side substrate absorption axis P2 is arranged at 55 ° which is the same direction as the orientation direction R2 of the adjacent front side substrate, and the back side substrate absorption axis P1 is arranged at 35 °.

図10(B)及び(C)の表から、左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が25°〜30°、表側偏光板吸収軸P2が55〜60°、さらに好ましいのは正面観察時の同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が30°、表側偏光板吸収軸P2が55°の条件であると考えられる。正面観察時の透過率が低いため、上述したねじれ角が90°の場合と比べて、左右方位40°極角にて正面観察時より優れた光学特性を示す条件の範囲が狭くなっている。   10 (B) and 10 (C), the conditions that show the optical characteristics superior to those at the time of front observation at the right / left azimuth angle of 40 ° are as follows: the back side polarizing plate absorption axis P1 is 25 ° to 30 °, and the front side polarizing plate. The absorption axis P2 is 55 to 60 °, and more preferably, the back side polarizing plate absorption axis P1 is 30 °, and the front side polarizing plate absorption axis P2 is 55 ° so that an equivalent transmittance during front observation is obtained at a 40 ° polar angle. It is considered to be a condition. Since the transmittance at the time of frontal observation is low, the range of conditions showing optical characteristics superior to those at the time of frontal observation at the 40 ° polar angle in the horizontal direction is narrower than in the case where the twist angle is 90 °.

図10(B)及(C)に示す表における最適条件を、図2と同様の座標系で示すと、図11(B)のようになる。すなわち、裏側基板配向方位R1=−55°、表側基板配向方位R2=+55°、ねじれ角Ψ=−70°の左ねじれ70°液晶セルにおいて、表側基板吸収軸P2が、近接する表側基板の配向方位R2と同一の方位である55°に配置される場合、裏側基板吸収軸P2は30°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が25°〜30°、表側偏光板吸収軸P2が55〜60°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   When the optimum conditions in the tables shown in FIGS. 10B and 10C are shown in the same coordinate system as in FIG. 2, the result is as shown in FIG. That is, in a left-handed twisted 70 ° liquid crystal cell with a rear-side substrate orientation direction R1 = −55 °, a front-side substrate orientation direction R2 = + 55 °, and a twist angle Ψ = −70 °, the front-side substrate absorption axis P2 is the orientation of the adjacent front-side substrate. When arranged at 55 °, which is the same orientation as the orientation R2, the back substrate absorption axis P2 is arranged at 30 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, if the back side polarizing plate absorption axis P1 satisfies the conditions of 25 ° to 30 °, and the front side polarizing plate absorption axis P2 satisfies 55 to 60 °, the optical performance is superior in the left-right direction observation than in the front view. It is possible to obtain characteristics.

なお、本発明者らは、シミュレーション解析以外の解析により、ねじれ角60°〜90°の液晶素子において、上述のシミュレーション解析結果と同様の傾向が観察されることを確認した。   In addition, the present inventors have confirmed by the analysis other than the simulation analysis that the same tendency as the above-described simulation analysis result is observed in the liquid crystal element having a twist angle of 60 ° to 90 °.

以上の計算結果をまとめると、ねじれ角が60°以上90°以下で液晶層3のリタデーションΔndが2μm〜3μmのノーマリーブラック型TN液晶表示素子100において、正面観察時を基準に当該液晶表示素子100を左右方位に傾けたときの暗状態の透過率が、正面観察時の暗状態における透過率よりも低くなる条件が導き出せる。   Summarizing the above calculation results, in the normally black TN liquid crystal display element 100 in which the twist angle is 60 ° or more and 90 ° or less and the retardation Δnd of the liquid crystal layer 3 is 2 μm to 3 μm, the liquid crystal display element is based on the front observation time. It is possible to derive a condition that the transmittance in the dark state when the 100 is tilted in the left-right direction is lower than the transmittance in the dark state during frontal observation.

すなわち、表側偏光板吸収軸P2と近接する表側基板1上の配向方位R2間の角度φ2が、裏側偏光板21から表側偏光板11へ光が伝播した時の2枚の基板1、2間の液晶層3のねじれ方向に対して2.5°以下、逆ねじれ方向に対して5°以下、より好ましくは、ねじれ方向、逆ねじれ方向ともに2.5°以下、さらに好ましくは0°となるように表側偏光板吸収軸P2を配置する場合、裏側偏光板吸収軸P1は表側偏光板吸収軸P2を基準に、ねじれ方向へ90°回転したのち逆ねじれ方向へねじれ角から所定角度αを引いた角度(ねじれ角分−α)回転させ配置する。この時αは2.5°以上15°以下、より好ましくは2.5°以上10°以下、さらに好ましくは5°である。   That is, the angle φ2 between the orientation orientation R2 on the front side substrate 1 adjacent to the front side polarizing plate absorption axis P2 is between the two substrates 1 and 2 when light propagates from the back side polarizing plate 21 to the front side polarizing plate 11. 2.5 ° or less with respect to the twist direction of the liquid crystal layer 3 and 5 ° or less with respect to the reverse twist direction, more preferably 2.5 ° or less, and more preferably 0 ° in both the twist direction and the reverse twist direction. When the front-side polarizing plate absorption axis P2 is disposed on the back side, the back-side polarizing plate absorption axis P1 is rotated by 90 ° in the twist direction with respect to the front-side polarizing plate absorption axis P2, and then the predetermined angle α is subtracted from the twist angle in the reverse twist direction. Rotate the angle (twist angle-α). At this time, α is 2.5 ° or more and 15 ° or less, more preferably 2.5 ° or more and 10 ° or less, and further preferably 5 °.

また、裏側偏光板吸収軸P1と近接する表側基板2上の配向方位R1間の角度φ1が、裏側偏光板21から表側偏光板11へ光が伝播した時の2枚の基板1、2間の液晶層3のねじれ方向に対して5°以下、逆ねじれ方向に対して2.5°以下、より好ましくは、ねじれ方向、逆ねじれ方向ともに2.5°以下、さらに好ましくは0°となるように裏側偏光板吸収軸P1を配置する場合、表側偏光板吸収軸P2は裏側偏光板吸収軸P1を基準に、逆ねじれ方向へ90°回転したのちねじれ方向へねじれ角から所定角度αを引いた角度(ねじれ角分−α)回転させ配置する。この時αは2.5°以上15°以下、より好ましくは2.5°以上10°以下、さらに好ましくは5°である。   In addition, the angle φ1 between the orientation direction R1 on the front side substrate 2 adjacent to the back side polarizing plate absorption axis P1 is between the two substrates 1 and 2 when light propagates from the back side polarizing plate 21 to the front side polarizing plate 11. 5 ° or less with respect to the twist direction of the liquid crystal layer 3 and 2.5 ° or less with respect to the reverse twist direction, more preferably 2.5 ° or less, and more preferably 0 ° in both the twist direction and the reverse twist direction. When the back side polarizing plate absorption axis P1 is disposed on the front side, the front side polarizing plate absorption axis P2 is rotated by 90 ° in the reverse twist direction with respect to the back side polarizing plate absorption axis P1, and then the predetermined angle α is subtracted from the twist angle in the twist direction. Rotate the angle (twist angle-α). At this time, α is 2.5 ° or more and 15 ° or less, more preferably 2.5 ° or more and 10 ° or less, and further preferably 5 °.

なお、上記2つの条件は、液晶層3のねじれ方向を、光が光源(バックライト)から観察者に向かう場合の通常観察時の光のねじれ方向ではなく、基準となる一方の偏光板からもう他方の偏光板に光が伝播した場合に光がねじれる方向をねじれ方向として定義することにより、以下のようにまとめることが可能である。すなわち、一方の偏光板の吸収軸と当該一方の偏光板が近接する基板の配向方位とがなす角度が、当該一方の偏光板から他方の偏光板へ光が伝播したときの2枚の基板間の液晶層のねじれ方向に対して5°以下、逆ねじれ方向に対して2.5°以下の範囲、より好ましくは、ねじれ方向、逆ねじれ方向ともに2.5°以下の範囲、さらに好ましくは0°(平行)となるように一方の偏光板の吸収軸を配置する場合、他方の偏光板の吸収軸は、上記一方の偏光板の吸収軸を基準として、逆ねじれ方向へ90°回転したのちねじれ方向へねじれ角から所定角度αを引いた角度(ねじれ角分−α)回転させ配置する。この時αは2.5°以上15°以下の範囲、より好ましくは2.5°以上10°以下の範囲、さらに好ましくは5°である。   Note that the above two conditions are that the twist direction of the liquid crystal layer 3 is not the twist direction of light during normal observation when the light is directed from the light source (backlight) to the observer, but from the one polarizing plate as a reference. By defining the direction in which light is twisted when light propagates to the other polarizing plate as the twist direction, it is possible to summarize as follows. That is, the angle formed by the absorption axis of one polarizing plate and the orientation direction of the substrate adjacent to the one polarizing plate is the distance between the two substrates when light propagates from the one polarizing plate to the other polarizing plate. 5 ° or less with respect to the twist direction of the liquid crystal layer and 2.5 ° or less with respect to the reverse twist direction, more preferably within a range of 2.5 ° or less in both the twist direction and the reverse twist direction, more preferably 0. When the absorption axis of one polarizing plate is arranged so as to be (parallel), the absorption axis of the other polarizing plate is rotated 90 ° in the reverse twist direction with respect to the absorption axis of the one polarizing plate. A twist angle is obtained by rotating the twist angle by subtracting a predetermined angle α from the twist angle (a twist angle minus α). At this time, α is in the range of 2.5 ° to 15 °, more preferably in the range of 2.5 ° to 10 °, and still more preferably 5 °.

次に、裏側基板配向方位R1=−35°、表側基板配向方位R2=+35°、ねじれ角Ψ=−110°の左ねじれ110°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を25°〜65°までそれぞれ変化させたときの正面観察時及び、液晶表示素子法線方向を基準に右方位(180°及び0°)極角40°における透過率を計算した。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。右方位(0°)極角40°における透過率の計算結果を図12(A)に示す。なお正面観察時における最低透過率は裏側偏光板吸収軸P1=55°、表側偏光板吸収軸P2=35°で得られた0.269%であった。   Next, a back-side polarizing plate absorption axis P1, front-side polarizing plate absorption, using a left-side twisted 110 ° liquid crystal cell with a back-side substrate orientation azimuth R1 = −35 °, a front-side substrate orientation azimuth R2 = + 35 °, and a twist angle Ψ = −110 °. The transmittance was calculated at the time of front observation when the axis P2 was changed from 25 ° to 65 ° and at the right azimuth (180 ° and 0 °) polar angle of 40 ° with reference to the normal direction of the liquid crystal display element. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm. FIG. 12A shows the calculation result of the transmittance at the right orientation (0 °) polar angle of 40 °. The minimum transmittance during frontal observation was 0.269% obtained with the back side polarizing plate absorption axis P1 = 55 ° and the front side polarizing plate absorption axis P2 = 35 °.

図12(A)の表に示すように、正面観察時の最低透過率と同等、又は下回る40°極角観察時透過率は得られなかったため太字に下線を施した数値は存在しないが、それぞれの偏光板配置条件において正面観察時より40°極角観察時の方が、正面観察時最低透過率が得られる条件の40°極角観察時の透過率(二重線枠)よりも低い、太字で示す透過率は得られることが分かった。左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が45〜50°、表側偏光板吸収軸P2が30〜40°、より好ましくは裏側偏光板吸収軸P1が50°、表側偏光板吸収軸P2が30〜40°、さらに好ましいのは正面観察時と同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が50°、表側偏光板吸収軸P2が35°の条件であると考えられる。   As shown in the table of FIG. 12 (A), there is no numerical value underlined in bold because there was no 40 ° polar angle transmittance equal to or lower than the minimum transmittance during frontal observation, In the polarizing plate arrangement condition of 40 ° polar angle observation at the time of 40 ° polar angle observation is lower than the transmittance at the time of 40 ° polar angle observation (double line frame) under the condition of obtaining the minimum transmittance at the front observation. It was found that the transmittance shown in bold is obtained. The conditions that show superior optical characteristics at the time of 40 ° polar angle in the horizontal direction are 45 to 50 ° for the back side polarizing plate absorption axis P1 and 30 to 40 ° for the front side polarizing plate absorption axis P2, more preferably the back side polarized light. The plate absorption axis P1 is 50 °, the front-side polarizing plate absorption axis P2 is 30 to 40 °, and more preferably, the back-side polarizing plate absorption axis P1 that provides a transmittance equivalent to that at the front observation at a 40 ° polar angle is 50 °. The front-side polarizing plate absorption axis P2 is considered to be 35 °.

図12(A)に示す表における最適条件を、図2と同様の座標系で示すと、図12(B)のようになる。すなわち、裏側基板配向方位R1=−35°、表側基板配向方位R2=+35°、ねじれ角Ψ=−110°の左ねじれ110°液晶セルにおいて、表側基板吸収軸P2が、近接する表側基板の配向方位R2と同一の方位である35°に配置される場合、裏側基板吸収軸P1は50°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が45°〜50°、表側偏光板吸収軸P2が30〜40°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   When the optimum conditions in the table shown in FIG. 12 (A) are shown in the same coordinate system as in FIG. 2, it becomes as shown in FIG. 12 (B). That is, in the left-handed 110 ° liquid crystal cell with the back-side substrate orientation direction R1 = −35 °, the front-side substrate orientation direction R2 = + 35 °, and the twist angle Ψ = −110 °, the front-side substrate absorption axis P2 is the orientation of the adjacent front-side substrate. When arranged at 35 °, which is the same orientation as the orientation R2, the back side substrate absorption axis P1 is arranged at 50 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, when the back side polarizing plate absorption axis P1 satisfies the conditions of 45 ° to 50 ° and the front side polarizing plate absorption axis P2 satisfies 30 to 40 °, the optical system is superior in the left-right direction observation than in the front observation. It is possible to obtain characteristics.

次に、裏側基板配向方位R1=−35°、表側基板配向方位R2=+35°、ねじれ角Ψ=−110°の左ねじれ110°液晶セルを用い、裏側偏光板吸収軸P1、表側偏光板吸収軸P2を115°〜155°までそれぞれ変化させたときの正面観察時及び、液晶表示素子法線方向を基準に右方位(180°及び0°)極角40°における透過率を計算した。なお、液晶層厚dは10μmとして、Δnd=2.5μmとした。右方位(0°)極角40°における透過率の計算結果を図13(A)に示す。なお正面観察時における最低透過率は裏側偏光板吸収軸P1=145°、表側偏光板吸収軸P2=125°で得られた0.269%であった。   Next, a back-side polarizing plate absorption axis P1, front-side polarizing plate absorption, using a left-side twisted 110 ° liquid crystal cell with a back-side substrate orientation azimuth R1 = −35 °, a front-side substrate orientation azimuth R2 = + 35 °, and a twist angle Ψ = −110 °. The transmittance at the time of front observation when the axis P2 was changed from 115 ° to 155 ° and the right direction (180 ° and 0 °) polar angle of 40 ° with respect to the normal direction of the liquid crystal display element was calculated. The liquid crystal layer thickness d was 10 μm, and Δnd = 2.5 μm. FIG. 13A shows the calculation result of the transmittance at the right orientation (0 °) polar angle of 40 °. The minimum transmittance during frontal observation was 0.269% obtained with the back side polarizing plate absorption axis P1 = 145 ° and the front side polarizing plate absorption axis P2 = 125 °.

図13(A)の表に示すように、正面観察時の最低透過率と同等、又は下回る40°極角観察時透過率は得られなかったため太字に下線を施した数値は存在しないが、それぞれの偏光板配置条件において正面観察時より40°極角観察時の方が、正面観察時最低透過率が得られる条件の40°極角観察時の透過率(二重線枠)よりも低い、太字で示す透過率は得られることが分かった。左右方位40°極角にて正面観察時より優れた光学特性を示す条件は、裏側偏光板吸収軸P1が145〜150°、表側偏光板吸収軸P2が130〜135°、より好ましくは裏側偏光板吸収軸P1が145°、表側偏光板吸収軸P2が130〜135°、さらに好ましいのは正面観察時と同等の透過率が40°極角にて得られる裏側偏光板吸収軸P1が145°、表側偏光板吸収軸P2が130°の条件であると考えられる。   As shown in the table of FIG. 13 (A), there is no numerical value underlined in bold because a transmittance at 40 ° polar angle observation equal to or lower than the minimum transmittance at the front observation was not obtained. In the polarizing plate arrangement condition of 40 ° polar angle observation at the time of 40 ° polar angle observation is lower than the transmittance at the time of 40 ° polar angle observation (double line frame) under the condition of obtaining the minimum transmittance at the front observation. It was found that the transmittance shown in bold is obtained. The conditions that show superior optical characteristics at the 40 ° polar angle in the horizontal direction are as follows: the back side polarizing plate absorption axis P1 is 145 to 150 °, the front side polarizing plate absorption axis P2 is 130 to 135 °, more preferably the back side polarized light. The plate absorption axis P1 is 145 °, the front-side polarizing plate absorption axis P2 is 130 to 135 °, and more preferably, the back-side polarizing plate absorption axis P1 is 145 °, which provides a transmittance equivalent to that at the front observation at a 40 ° polar angle. The front side polarizing plate absorption axis P2 is considered to be 130 °.

図13(A)に示す表における最適条件を、図2と同様の座標系で示すと、図13(B)のようになる。すなわち、裏側基板配向方位R1=−35°、表側基板配向方位R2=+35°、ねじれ角Ψ=−110°の左ねじれ110°液晶セルにおいて、裏側基板吸収軸P1が、近接する裏側基板の配向方位R1と同一の方位である−35°(145°)に配置される場合、表側基板吸収軸P1は130°に配置される。これにより、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能となる。なお、上述したように、裏側偏光板吸収軸P1が145°〜150°、表側偏光板吸収軸P2が130〜135°の条件を満たせば、正面観察時よりも左右方位観察時において優れた光学特性を得ることが可能である。   FIG. 13B shows the optimum conditions in the table shown in FIG. 13A in the same coordinate system as that in FIG. That is, in the left twist 110 ° liquid crystal cell with the back substrate orientation R1 = −35 °, the front substrate orientation R2 = + 35 °, and the twist angle Ψ = −110 °, the back substrate absorption axis P1 is the orientation of the adjacent back substrate. When arranged at −35 ° (145 °) which is the same orientation as the orientation R1, the front substrate absorption axis P1 is arranged at 130 °. As a result, it is possible to obtain superior optical characteristics during left-right orientation observation than during frontal observation. As described above, if the back side polarizing plate absorption axis P1 satisfies the conditions of 145 ° to 150 ° and the front side polarizing plate absorption axis P2 satisfies 130 ° to 135 °, the optical performance is superior in the lateral direction observation than in the front direction observation. It is possible to obtain characteristics.

なお、本発明者らは、シミュレーション解析以外の解析により、ねじれ角が90°より大きく120°以下の液晶素子において、上述のシミュレーション解析結果と同様の傾向が観察されることを確認した。   Note that the present inventors have confirmed by analysis other than simulation analysis that the same tendency as the above-described simulation analysis result is observed in a liquid crystal element having a twist angle of greater than 90 ° and not greater than 120 °.

以上の計算結果をまとめると、ねじれ角が90°より大きく120°以下で液晶層3のリタデーションΔndが2μm〜3μmのノーマリーブラック型TN液晶表示素子100において、正面観察時を基準に当該液晶表示素子100を左右方位に傾けたときの暗状態の透過率が、正面観察時の暗状態における透過率よりも低くなる条件が導き出せる。   Summarizing the above calculation results, in the normally black type TN liquid crystal display element 100 in which the twist angle is greater than 90 ° and not more than 120 ° and the retardation Δnd of the liquid crystal layer 3 is 2 μm to 3 μm, the liquid crystal display is based on the front observation. A condition can be derived in which the transmittance in the dark state when the element 100 is tilted in the left-right direction is lower than the transmittance in the dark state during frontal observation.

液晶層3のねじれ方向を、光が光源(バックライト)から観察者に向かう場合の通常観察時の光のねじれ方向ではなく、基準となる一方の偏光板からもう他方の偏光板に光が伝播した場合に光がねじれる方向をねじれ方向として定義すると、一方の偏光板の吸収軸と当該一方の偏光板が近接する基板の配向方位とがなす角度が、当該一方の偏光板から他方の偏光板へ光が伝播したときの2枚の基板間の液晶層のねじれ方向に対して5°以下、逆ねじれ方向に対して2.5°以下の範囲、より好ましくは、ねじれ方向、逆ねじれ方向ともに2.5°以下の範囲、さらに好ましくは0°(平行)となるように一方の偏光板の吸収軸を配置する場合、他方の偏光板の吸収軸は、上記一方の偏光板の吸収軸を基準として、ねじれ方向へ90°回転したのち逆ねじれ方向へねじれ角から所定角度αを引いた角度(ねじれ角分−α)回転させ配置する。この時αは2.5°以上15°以下の範囲、より好ましくは2.5°以上10°以下の範囲、さらに好ましくは5°である。   The direction of twist of the liquid crystal layer 3 is not the twist direction of light during normal observation when light travels from the light source (backlight) to the viewer, but light propagates from one polarizing plate as a reference to the other polarizing plate. If the direction in which the light is twisted is defined as the twist direction, the angle formed by the absorption axis of one polarizing plate and the orientation direction of the substrate adjacent to the one polarizing plate is the one polarizing plate to the other polarizing plate. 5 ° or less with respect to the twist direction of the liquid crystal layer between the two substrates when light propagates to the surface, and within a range of 2.5 ° or less with respect to the reverse twist direction, more preferably both the twist direction and the reverse twist direction. In the case where the absorption axis of one polarizing plate is arranged in a range of 2.5 ° or less, more preferably 0 ° (parallel), the absorption axis of the other polarizing plate is the absorption axis of the one polarizing plate. As a reference, after rotating 90 ° in the twist direction In the reverse twist direction, the rotation angle is set by subtracting a predetermined angle α from the twist angle (twist angle portion minus α). At this time, α is in the range of 2.5 ° to 15 °, more preferably in the range of 2.5 ° to 10 °, and still more preferably 5 °.

以上、本発明の実施例によれば、ノーマリーブラック型TN液晶表示素子を左右方位の斜めから観察した場合に良好な暗状態が得られるようになり、外観上視角特性が広がる効果が得られる。よって、斜め方向から観察する表示機に好適な液晶表示素子を提供することができる。   As described above, according to the embodiment of the present invention, when a normally black type TN liquid crystal display element is observed from an oblique direction in the left-right direction, a good dark state can be obtained, and the effect of widening the viewing angle characteristics can be obtained. . Therefore, a liquid crystal display element suitable for a display device that is observed from an oblique direction can be provided.

なお、上述の実施例においては、液晶表示素子100のセル厚dが均一である場合のみを説明したが、少なくとも一方の基板面に凹凸がランダムに配置され、液晶層3のリタデーションΔndが2μm〜3μmの範囲内に収まる構造であれば、実施例と同様の効果を得ることが可能である。   In the above-described embodiment, only the case where the cell thickness d of the liquid crystal display element 100 is uniform has been described. However, irregularities are randomly arranged on at least one substrate surface, and the retardation Δnd of the liquid crystal layer 3 is 2 μm to 2 μm. If the structure is within the range of 3 μm, it is possible to obtain the same effect as the embodiment.

また、液晶層3内に2wt%以下程度の二色性色素を添加すると電圧無印加時における暗状態がさらに改善される。   Further, when a dichroic dye of about 2 wt% or less is added in the liquid crystal layer 3, the dark state when no voltage is applied is further improved.

以上、実施例に沿って本発明を説明したが、本発明はこれに限定されるものではない。種々の変更、改良、組み合わせ等が可能なことは当業者には自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to this. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

1…表側基板、2…裏側基板、3…ツイストネマチック液晶層、11…表側偏光板、12…表側透明基板、13…透明電極、14…表側配向膜、21…裏側偏光板、22…裏側透明基板、23…透明電極、24…裏側配向膜、R1…裏側基板配向方位、R2…表側基板配向方位、P1…裏側偏光板吸収軸、P2…表側偏光板吸収軸、100…ノーマリーブラック型TN液晶表示素子 DESCRIPTION OF SYMBOLS 1 ... Front side substrate, 2 ... Back side substrate, 3 ... Twist nematic liquid crystal layer, 11 ... Front side polarizing plate, 12 ... Front side transparent substrate, 13 ... Transparent electrode, 14 ... Front side oriented film, 21 ... Back side polarizing plate, 22 ... Back side transparent Substrate, 23 ... transparent electrode, 24 ... back side orientation film, R1 ... back side substrate orientation, R2 ... front side substrate orientation, P1 ... back side polarizing plate absorption axis, P2 ... front side polarizing plate absorption axis, 100 ... normally black type TN Liquid crystal display element

Claims (8)

所定の間隔で対向して配置された第1の基板及び第2の基板と、
前記第1及び第2の基板のそれぞれの対向面側に形成された電極と、
前記第1の基板の対向面側に形成され、第1の方向に配向処理を行った第1の配向膜と、
前記第2の基板の対向面側に形成され、第2の方向に配向処理を行った第2の配向膜と、
前記一対の基板に挟持され、一方の基板から他方の基板に向かって捩れた配向状態を有し、ねじれ角が60°以上90°以下であり、リタデーションΔndが2μm〜3μmである液晶層と、
前記第1及び第2の基板を挟んで配置される、前記第1の基板に近接する第1の偏光板及び前記第2の基板に近接する第2の偏光板とを有し、
前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記第1の偏光板から前記第2の偏光板へ光が伝播した時の前記液晶層のねじれ方向に対して5°以下、前記ねじれ方向とは逆の方向に対して2.5°以下の範囲内となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向とは逆の方向に90°回転した後、前記ねじれ方向に前記ねじれ角から2.5°〜15°引いた角度回転させて配置され、
正面観察時の暗状態が、正面観察時を基準に液晶表示素子の左右方位に対して斜めに傾けたときの透過率より高いことを特徴とする液晶表示素子。
A first substrate and a second substrate disposed to face each other at a predetermined interval;
Electrodes formed on opposing surfaces of the first and second substrates,
A first alignment film formed on the opposite surface side of the first substrate and subjected to an alignment treatment in a first direction;
A second alignment film formed on the opposite surface side of the second substrate and subjected to an alignment treatment in a second direction;
A liquid crystal layer sandwiched between the pair of substrates, having an orientation state twisted from one substrate toward the other, a twist angle of 60 ° to 90 °, and a retardation Δnd of 2 μm to 3 μm;
A first polarizing plate disposed adjacent to the first substrate and a second polarizing plate disposed adjacent to the second substrate, the first polarizing plate disposed between the first substrate and the second substrate;
The angle between the absorption axis of the first polarizing plate and the first direction is in the twist direction of the liquid crystal layer when light propagates from the first polarizing plate to the second polarizing plate. It is arrange | positioned so that it may become in the range of 2.5 degrees or less with respect to the direction opposite to the said twist direction with respect to 5 degrees or less,
The second polarizing plate is rotated by 90 ° in the direction opposite to the twisting direction with respect to the absorption axis of the first polarizing plate, and then the second polarizing plate is rotated by 2. from the twist angle. Placed at an angle of 5 ° to 15 ° rotated,
A liquid crystal display element characterized in that a dark state during front viewing is higher than a transmittance when tilted obliquely with respect to the left and right orientations of the liquid crystal display element with reference to front viewing.
前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記ねじれ方向及び前記ねじれ方向とは逆の方向に対して2.5°以下の範囲となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向とは逆の方向に90°回転した後、前記ねじれ方向に前記ねじれ角から2.5°〜10°引いた角度回転させて配置される請求項1記載の液晶表示素子。
The first polarizing plate is disposed such that an angle formed between the absorption axis and the first direction is within a range of 2.5 ° or less with respect to the twist direction and the direction opposite to the twist direction. And
The second polarizing plate is rotated by 90 ° in the direction opposite to the twisting direction with respect to the absorption axis of the first polarizing plate, and then the second polarizing plate is rotated by 2. from the twist angle. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is arranged by being rotated at an angle of 5 ° to 10 °.
前記第1の偏光板は、その吸収軸と前記第1の方向が、平行となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向とは逆の方向に90°回転した後、前記ねじれ方向に前記ねじれ角から5°引いた角度回転させて配置される請求項1記載の液晶表示素子。
The first polarizing plate is disposed such that its absorption axis and the first direction are parallel,
The second polarizing plate is rotated by 90 ° in the direction opposite to the twisting direction with respect to the absorption axis of the first polarizing plate, and then 5 ° from the twisting angle in the twisting direction. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is arranged to be rotated at a pulled angle.
所定の間隔で対向して配置された第1の基板及び第2の基板と、
前記第1及び第2の基板のそれぞれの対向面側に形成された電極と、
前記第1の基板の対向面側に形成され、第1の方向に配向処理を行った第1の配向膜と、
前記第2の基板の対向面側に形成され、第2の方向に配向処理を行った第2の配向膜と、
前記一対の基板に挟持され、一方の基板から他方の基板に向かって捩れた配向状態を有し、ねじれ角が90°より大きく120°以下であり、リタデーションΔndが2μm〜3μmである液晶層と、
前記第1及び第2の基板を挟んで配置される、前記第1の基板に近接する第1の偏光板及び前記第2の基板に近接する第2の偏光板とを有し、
前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記第1の偏光板から前記第2の偏光板へ光が伝播した時の前記液晶層のねじれ方向に対して5°以下、前記ねじれ方向とは逆の方向に対して2.5°以下の範囲内となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向に90°回転した後、前記ねじれ方向とは逆の方向に前記ねじれ角から2.5°〜15°引いた角度回転させて配置され、
正面観察時の暗状態が、正面観察時を基準に液晶表示素子の左右方位に対して斜めに傾けたときの透過率より高いことを特徴とする液晶表示素子。
A first substrate and a second substrate disposed to face each other at a predetermined interval;
Electrodes formed on opposing surfaces of the first and second substrates,
A first alignment film formed on the opposite surface side of the first substrate and subjected to an alignment treatment in a first direction;
A second alignment film formed on the opposite surface side of the second substrate and subjected to an alignment treatment in a second direction;
A liquid crystal layer sandwiched between the pair of substrates, having an orientation state twisted from one substrate toward the other, a twist angle of greater than 90 ° and not greater than 120 °, and a retardation Δnd of 2 μm to 3 μm; ,
A first polarizing plate disposed adjacent to the first substrate and a second polarizing plate disposed adjacent to the second substrate, the first polarizing plate disposed between the first substrate and the second substrate;
The angle between the absorption axis of the first polarizing plate and the first direction is in the twist direction of the liquid crystal layer when light propagates from the first polarizing plate to the second polarizing plate. It is arrange | positioned so that it may become in the range of 2.5 degrees or less with respect to the direction opposite to the said twist direction with respect to 5 degrees or less,
The second polarizing plate is rotated by 90 ° in the twisting direction with respect to the absorption axis of the first polarizing plate as a reference, and then from the twisting angle in a direction opposite to the twisting direction. Placed at an angle of 5 ° to 15 ° rotated,
A liquid crystal display element characterized in that a dark state during front viewing is higher than a transmittance when tilted obliquely with respect to the left and right orientations of the liquid crystal display element with reference to front viewing.
前記第1の偏光板は、その吸収軸と前記第1の方向とがなす角度が、前記ねじれ方向及び前記ねじれ方向とは逆の方向に対して2.5°以下の範囲となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向に90°回転した後、前記ねじれ方向とは逆の方向に前記ねじれ角から2.5°〜10°引いた角度回転させて配置される請求項4記載の液晶表示素子。
The first polarizing plate is disposed such that an angle formed between the absorption axis and the first direction is within a range of 2.5 ° or less with respect to the twist direction and the direction opposite to the twist direction. And
The second polarizing plate is rotated by 90 ° in the twisting direction with respect to the absorption axis of the first polarizing plate as a reference, and then from the twisting angle in a direction opposite to the twisting direction. The liquid crystal display element according to claim 4, wherein the liquid crystal display element is disposed by being rotated at an angle of 5 ° to 10 °.
前記第1の偏光板は、その吸収軸と前記第1の方向が、平行となるように配置され、
前記第2の偏光板は、その吸収軸を前記第1の偏光板の吸収軸を基準に、前記ねじれ方向に90°回転した後、前記ねじれ方向とは逆の方向に前記ねじれ角から5°引いた角度回転させて配置される請求項4記載の液晶表示素子。
The first polarizing plate is disposed such that its absorption axis and the first direction are parallel,
The second polarizing plate is rotated by 90 ° in the twist direction with respect to the absorption axis of the first polarizing plate, and then 5 ° from the twist angle in a direction opposite to the twist direction. The liquid crystal display element according to claim 4, wherein the liquid crystal display element is arranged to be rotated at a pulled angle.
前記第1及び第2の基板の少なくとも一方の表面に、ランダムな凹凸が配置され、
前記液晶層のリタデーションΔndが2μm〜3μmの範囲で分布する請求項1〜6のいずれか1項に記載の液晶表示素子。
Random irregularities are arranged on at least one surface of the first and second substrates,
The liquid crystal display element according to claim 1, wherein retardation Δnd of the liquid crystal layer is distributed in a range of 2 μm to 3 μm.
前記液晶層内に2wt%以下の二色性色素が添加された請求項1〜7のいずれか1項に記載の液晶表示素子。   The liquid crystal display element according to claim 1, wherein 2 wt% or less of a dichroic dye is added in the liquid crystal layer.
JP2012058191A 2012-03-15 2012-03-15 Liquid crystal display element Active JP5952038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058191A JP5952038B2 (en) 2012-03-15 2012-03-15 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058191A JP5952038B2 (en) 2012-03-15 2012-03-15 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2013190717A JP2013190717A (en) 2013-09-26
JP5952038B2 true JP5952038B2 (en) 2016-07-13

Family

ID=49390994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058191A Active JP5952038B2 (en) 2012-03-15 2012-03-15 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP5952038B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359338B2 (en) * 2014-05-22 2018-07-18 スタンレー電気株式会社 Liquid crystal display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463925A (en) * 1987-09-04 1989-03-09 Asahi Glass Co Ltd Liquid crystal display device
JPH01136920U (en) * 1988-03-11 1989-09-19
JPH01136922U (en) * 1988-03-11 1989-09-19
JP2520682Y2 (en) * 1988-03-11 1996-12-18 カシオ計算機株式会社 Liquid crystal display element
JP2933258B2 (en) * 1993-08-04 1999-08-09 シャープ株式会社 Liquid crystal display
JP2001147414A (en) * 1999-11-22 2001-05-29 Stanley Electric Co Ltd Tn type liquid crystal display device
JP4603141B2 (en) * 2000-09-29 2010-12-22 オプトレックス株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JP2013190717A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4948871B2 (en) Liquid crystal display element
JP4801363B2 (en) Liquid crystal display element
JP5129682B2 (en) Liquid crystal display element
JP4894036B2 (en) Liquid crystal display
JP5508427B2 (en) Liquid crystal display
JP2009156930A (en) Liquid crystal display unit
JP2008083546A (en) Liquid crystal display device
JP5301927B2 (en) Liquid crystal display element
JP2014095756A (en) Image display device and liquid crystal lens
JP2006313342A (en) Ocb mode liquid crystal display device
JP5367277B2 (en) Liquid crystal display
JP5952038B2 (en) Liquid crystal display element
JP5292020B2 (en) Liquid crystal display element
WO2007032356A1 (en) Liquid crystal display
JP5912713B2 (en) Liquid crystal display element
JP4846222B2 (en) Liquid crystal display element
JP6363006B2 (en) Liquid crystal display
JP6307013B2 (en) Liquid crystal display
JP5367289B2 (en) Liquid crystal display
JP2010039281A (en) Vertically oriented liquid crystal display
JP2010128094A (en) Liquid crystal display element and method of manufacturing the same
JP2006301466A (en) Liquid crystal display device
JP4545770B2 (en) Liquid crystal display
JP2007178496A (en) Liquid crystal display element
JP2018105908A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160609

R150 Certificate of patent or registration of utility model

Ref document number: 5952038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250