JP5950757B2 - Metal plate material, resin coating method on metal plate surface and use thereof - Google Patents

Metal plate material, resin coating method on metal plate surface and use thereof Download PDF

Info

Publication number
JP5950757B2
JP5950757B2 JP2012183245A JP2012183245A JP5950757B2 JP 5950757 B2 JP5950757 B2 JP 5950757B2 JP 2012183245 A JP2012183245 A JP 2012183245A JP 2012183245 A JP2012183245 A JP 2012183245A JP 5950757 B2 JP5950757 B2 JP 5950757B2
Authority
JP
Japan
Prior art keywords
metal plate
resin
plate material
fine particles
resin coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012183245A
Other languages
Japanese (ja)
Other versions
JP2014040043A (en
Inventor
金 容薫
容薫 金
小泉 正治
正治 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012183245A priority Critical patent/JP5950757B2/en
Publication of JP2014040043A publication Critical patent/JP2014040043A/en
Application granted granted Critical
Publication of JP5950757B2 publication Critical patent/JP5950757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、銅箔などの金属板材の表面に樹脂被覆層を形成した金属板材と金属板材表面の選択的樹脂被覆方法に関するものである。   The present invention relates to a metal plate material in which a resin coating layer is formed on the surface of a metal plate material such as copper foil, and a selective resin coating method on the surface of the metal plate material.

従来、リチウムイオン二次電池用の負極は、銅箔などの集電体上に、活物質粒子と導電助剤、結着材などを含むスラリーを塗布して負極活物質層を形成することで作製されていた(例えば、特許文献1参照)。   Conventionally, a negative electrode for a lithium ion secondary battery is formed by applying a slurry containing active material particles, a conductive additive, a binder and the like on a current collector such as a copper foil to form a negative electrode active material layer. It was produced (for example, refer to Patent Document 1).

特開2008−027664号公報JP 2008-027664 A

しかしながら、活物質粒子や導電助剤は、結着材を介して銅箔表面に固定されているのであるが、通常用いられるスチレンブタジエンゴムとカルボキシメチルセルロースとの混合物などの結着材は銅箔表面との密着性が悪く、活物質層が集電体から剥離しやすいという問題点があった。   However, although the active material particles and the conductive auxiliary agent are fixed to the copper foil surface through the binder, the binder such as a mixture of styrene butadiene rubber and carboxymethyl cellulose that is usually used is the surface of the copper foil. There is a problem in that the active material layer easily peels off from the current collector.

本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、集電体である金属表面の導電性を維持しながら、樹脂との密着性に優れる選択的に樹脂被覆を行った金属板材を得ることである。   The present invention has been made in view of the above-described problems, and the object of the present invention is to selectively coat the resin with excellent adhesion to the resin while maintaining the conductivity of the metal surface as a current collector. It is to obtain the metal plate material which performed.

前述した目的を達成するために、以下の発明を提供する。
(1)表面が樹脂被覆された金属板材であって、前記金属板材が、アルミニウム、銅、金、銀からなる群より選ばれるいずれか一つの金属を含み、前記金属板材の表面の凹部には、樹脂微粒子により樹脂被覆層が選択的に形成され、前記金属板材の表面の凸部には、樹脂微粒子による樹脂被覆層が形成されていないことを特徴とする金属板材。
(2)前記樹脂被覆層に、金属ナノ構造体および/または導電性炭素を含むことを特徴とする(1)に記載の金属板材。
(3)前記樹脂被覆層を形成する樹脂微粒子が、スチレンブタジエンゴム、アクリルゴム、アクリルニトリルブタジエンゴム、イソプレンゴム、ブタジエンゴムからなる群より選ばれる少なくとも一つの樹脂を含む樹脂微粒子であることを特徴とする(1)または(2)に記載の金属板材。
(4)前記金属板材が、厚さが50μm以下の銅箔であることを特徴とする(1)から(3)のいずれかに記載の金属板材。
(5)金属板材の樹脂被覆された表面の凹部には、選択的に樹脂被覆層が形成され、金属板材の樹脂被覆された表面の凸部には、樹脂被覆層が形成されておらず、前記金属板材および前記樹脂被覆層上に負極活物質層を有し、前記樹脂被覆層により、負極活物質層の密着性を向上させることを特徴とする負極。
(6)分散媒に、平均粒径が10〜1000nmである樹脂微粒子を固形分濃度が3〜20wt%で分散させた微粒子液を金属板材の表面に塗布した後、金属板材を乾燥させて樹脂微粒子を金属板材の凸部から凹部に移動させ、前記金属板材の表面の凹部には、樹脂微粒子により樹脂被覆層を選択的に形成し、前記金属板材の表面の凸部には、樹脂微粒子による樹脂被覆層が形成されないようにすることを特徴とする金属板材表面の樹脂被覆方法。
(7)前記樹脂の微粒子は、表面に、金属ナノ構造体および/または導電性炭素が付着していることを特徴とする(6)に記載の金属板材表面の樹脂被覆方法。
(8)表面が樹脂被覆される前の前記金属板材の被覆される面の十点平均粗さRzが0.5μm以上10μm以下で、さらにRzが樹脂微粒子の平均粒径の少なくとも2倍であることを特徴とする(6)または(7)に記載の金属板材表面の樹脂被覆方法。
In order to achieve the above-mentioned object, the following invention is provided.
(1) A metal plate material whose surface is resin-coated, wherein the metal plate material includes any one metal selected from the group consisting of aluminum, copper, gold, and silver, and the concave portion on the surface of the metal plate material A metal plate material, wherein a resin coating layer is selectively formed with resin fine particles, and a resin coating layer with resin fine particles is not formed on a convex portion of the surface of the metal plate material.
(2) The metal plate according to (1), wherein the resin coating layer contains a metal nanostructure and / or conductive carbon.
(3) The resin fine particles forming the resin coating layer are resin fine particles containing at least one resin selected from the group consisting of styrene butadiene rubber, acrylic rubber, acrylonitrile butadiene rubber, isoprene rubber, and butadiene rubber. The metal plate material according to (1) or (2).
(4) The metal plate material according to any one of (1) to (3), wherein the metal plate material is a copper foil having a thickness of 50 μm or less.
(5) The resin coating layer is selectively formed on the resin-coated surface recesses of the metal plate material, and the resin coating layer is not formed on the resin-coated surface projections of the metal plate material, A negative electrode comprising a negative electrode active material layer on the metal plate and the resin coating layer, wherein the resin coating layer improves adhesion of the negative electrode active material layer.
(6) A fine particle liquid in which resin fine particles having an average particle size of 10 to 1000 nm are dispersed in a dispersion medium at a solid content concentration of 3 to 20 wt% is applied to the surface of the metal plate, and then the metal plate is dried to obtain a resin. The fine particles are moved from the convex portion of the metal plate material to the concave portion, and a resin coating layer is selectively formed on the concave portion of the surface of the metal plate material by resin fine particles, and the convex portion on the surface of the metal plate material is formed of resin fine particles A resin coating method on the surface of a metal plate, wherein a resin coating layer is not formed.
(7) The resin coating method on the surface of a metal plate according to (6), wherein the fine particles of the resin have metal nanostructures and / or conductive carbon attached to the surface.
(8) The ten-point average roughness Rz of the surface to be coated of the metal plate before the surface is coated with the resin is 0.5 μm or more and 10 μm or less, and Rz is at least twice the average particle size of the resin fine particles. (6) or (7), the method for coating a resin on the surface of a metal plate.

本発明により、金属表面の導電性を維持しながら、樹脂との密着性に優れる金属板材を得ることができる。   By this invention, the metal plate material which is excellent in adhesiveness with resin can be obtained, maintaining the electroconductivity of a metal surface.

本発明の実施形態に係る、表面が樹脂被覆された金属板材1の断面を示す図。The figure which shows the cross section of the metal plate material 1 by which the surface was resin-coated based on embodiment of this invention. (a)〜(c)本発明の実施形態に係る、金属板材表面の樹脂被覆方法を示す図。(A)-(c) The figure which shows the resin coating method of the metal plate material surface based on embodiment of this invention. 本発明の実施形態に係る負極13の断面を示す図。The figure which shows the cross section of the negative electrode 13 which concerns on embodiment of this invention. 銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と、表面が樹脂被覆された銅箔の表面抵抗の関係を示すグラフ。The graph which shows the relationship between the density | concentration of the organic fine particle liquid used for resin coating of the copper foil surface, and the surface resistance of copper foil by which the surface was resin-coated. (a)表面が樹脂被覆された銅箔の表面を示す写真、(b)拡大写真、(c)さらなる拡大写真。(A) The photograph which shows the surface of the copper foil by which the surface was resin-coated, (b) An enlarged photograph, (c) The further enlarged photograph. (a)表面が樹脂被覆された銅箔の断面を示す写真、(b)表面が樹脂被覆された銅箔の傾斜断面写真、(c)表面が樹脂被覆された銅箔の他の領域の傾斜断面写真。(A) Photograph showing a cross section of a copper foil whose surface is resin-coated, (b) Inclined cross-sectional photograph of a copper foil whose surface is resin-coated, (c) Inclination of another region of the copper foil whose surface is resin-coated Cross section photo. 銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と、活物質層表面の抵抗値の関係を示すグラフ。The graph which shows the relationship between the density | concentration of the organic fine particle liquid used for resin coating on the copper foil surface, and the resistance value of the active material layer surface. 銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と、表面が樹脂被覆された銅箔の表面に塗布された活物質層との密着力の関係を示すグラフ。The graph which shows the relationship between the density | concentration of the organic fine particle liquid used for resin coating of the copper foil surface, and the adhesive force with the active material layer apply | coated to the surface of the copper foil by which the surface was resin-coated.

以下図面に基づいて、本発明の実施形態を詳細に説明する。
(表面が樹脂被覆された金属板材の構成)
以下、金属板材の代表例として金属箔を例として本発明の実施形態を説明する。図1は、本発明の実施形態に係る表面が樹脂被覆された金属板材1の断面を示す図である。表面が樹脂被覆された金属板材1は、金属板材1の凹部4に樹脂被覆層3を有するが、金属板材1の凸部6には樹脂被覆層3を有しない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Configuration of metal plate with resin-coated surface)
Hereinafter, an embodiment of the present invention will be described taking a metal foil as an example of a metal plate material. FIG. 1 is a view showing a cross section of a metal plate 1 having a resin-coated surface according to an embodiment of the present invention. The metal plate 1 whose surface is coated with resin has the resin coating layer 3 in the concave portion 4 of the metal plate 1, but does not have the resin coating layer 3 on the convex portion 6 of the metal plate 1.

有機微粒子からなる樹脂被覆層3は、スチレンブタジエンゴム、アクリルゴム、アクリルニトリル、アクリルニトリルブタジエンゴム、イソプレンゴム、ブタジエンゴムからなる群より選ばれる少なくとも一つの樹脂を含むことが好ましく、特にスチレンブタジエンゴムが好ましく、更に分子内にヒドロキシル基またはカルボキシル基の官能基を含有することを特徴とする。これらの材料は、分散媒として水を用いた懸濁液を容易に得ることができるため、本実施形態に係る樹脂被覆方法に適している。   The resin coating layer 3 made of organic fine particles preferably contains at least one resin selected from the group consisting of styrene butadiene rubber, acrylic rubber, acrylonitrile, acrylonitrile butadiene rubber, isoprene rubber, and butadiene rubber, and particularly styrene butadiene rubber. Is preferable, and further contains a hydroxyl group or a carboxyl functional group in the molecule. Since these materials can easily obtain a suspension using water as a dispersion medium, they are suitable for the resin coating method according to this embodiment.

また、金属板材5は、アルミニウム、銅、金、銀からなる群より選ばれる少なくとも一つの金属を含むことが好ましい。これらの金属を含む金属板材5は、圧延、又は電解法により容易に得ることができ、さらに水が分散媒の懸濁液を塗布しても、金属板材5の表面にさびを生じるなどの深刻なダメージを与えない。   The metal plate 5 preferably contains at least one metal selected from the group consisting of aluminum, copper, gold, and silver. The metal plate 5 containing these metals can be easily obtained by rolling or electrolysis, and even when water is applied with a suspension of a dispersion medium, the surface of the metal plate 5 is rusted. Will not cause any damage.

特に金属板材5として、厚さが50μm以下の銅箔を用いることが好ましい。このような薄い銅箔は、リチウムイオン二次電池用負極の集電体として広く用いられているからである。   In particular, it is preferable to use a copper foil having a thickness of 50 μm or less as the metal plate material 5. This is because such a thin copper foil is widely used as a current collector for a negative electrode for a lithium ion secondary battery.

さらに、樹脂被覆層3に、金属ナノ構造体および/または導電性炭素を含むことが好ましい。金属ナノ構造体としては金、銀、銅などのナノ粒子やナノワイヤ、ナノシートなどを用いることができる。導電性炭素としては黒鉛、炭素ナノチューブ(CNT)、フラーレン(C60)、活性炭素、炭素ナノホーン(円錐形の炭素ナノチューブ)などを使用できる。これらを含むことで、樹脂被覆層3自体に導電性が生じ、表面が樹脂被覆された金属板材1の表面抵抗が良好となる。   Furthermore, it is preferable that the resin coating layer 3 contains a metal nanostructure and / or conductive carbon. As the metal nanostructure, nanoparticles such as gold, silver, and copper, nanowires, and nanosheets can be used. As the conductive carbon, graphite, carbon nanotube (CNT), fullerene (C60), activated carbon, carbon nanohorn (conical carbon nanotube) and the like can be used. By including these, conductivity is generated in the resin coating layer 3 itself, and the surface resistance of the metal plate 1 whose surface is resin-coated is improved.

(金属板材表面の樹脂被覆方法)
金属板材表面の樹脂被覆方法を、図2を用いて説明する。
まず、図2(a)に示すように、金属板材5の表面に、微粒子液7を供給し、さらにコーター棒11をA方向へ動かして塗布する。微粒子液7は、水の分散媒に、樹脂微粒子9などを分散させた液体である。塗布方法としては、バーコートやブレード塗布などの、微粒子液7が金属板材5の表面にある程度とどまり、乾燥にある程度時間の必要な塗布方法を用いることが好ましく、オーブンではなく、例えば、室温における自然乾燥が好ましい。後述の乾燥過程において、表面張力の強い水などにより樹脂微粒子9が金属板材5の表面の凹部4に引き寄せられる必要があるため、ある程度の乾燥時間がある方が、凹部4に選択的に樹脂被覆層3が形成されやすいためである。一方で、スピンコートなどの一瞬にして液滴を飛ばすような塗布方法では、金属板材5の表面の全面に樹脂被覆層3が形成され、金属板材表面の導電率は悪化してしまう。
(Resin coating method on metal plate surface)
A resin coating method on the surface of the metal plate will be described with reference to FIG.
First, as shown in FIG. 2A, the fine particle liquid 7 is supplied to the surface of the metal plate 5, and the coater bar 11 is moved in the A direction and applied. The fine particle liquid 7 is a liquid in which resin fine particles 9 and the like are dispersed in a water dispersion medium. As a coating method, it is preferable to use a coating method such as bar coating or blade coating in which the fine particle liquid 7 stays on the surface of the metal plate 5 to some extent and requires a certain amount of time for drying. Drying is preferred. In the drying process described later, since the resin fine particles 9 need to be attracted to the concave portion 4 on the surface of the metal plate 5 by water having a strong surface tension, the resin coating is selectively applied to the concave portion 4 when there is a certain amount of drying time. This is because the layer 3 is easily formed. On the other hand, in a coating method such as spin coating where droplets are blown in an instant, the resin coating layer 3 is formed on the entire surface of the metal plate 5 and the conductivity of the surface of the metal plate is deteriorated.

微粒子液7とは、水に樹脂微粒子9が、分散している液体である。また微粒子液7には有機溶媒が添加されていても良い。また、ここで、分散液の液体として、水の代わりに有機溶媒を用いることができる。また、塗布する微粒子液7の固形分濃度は、3〜20wt%であることが好ましく、5〜20wt%であることがより好ましい。固形分濃度が薄すぎると凹部4に形成される樹脂被覆層3の量が少なくなり、樹脂被覆層3を形成した効果がほとんどなく、被覆樹脂表面側の金属板材の密着性が不足する。また、固形分濃度が濃すぎると、樹脂被覆層3が金属板材5の表面の全部を覆ってしまい、電気抵抗が高くなりすぎる。   The fine particle liquid 7 is a liquid in which resin fine particles 9 are dispersed in water. An organic solvent may be added to the fine particle liquid 7. Here, an organic solvent can be used as the dispersion liquid instead of water. Moreover, it is preferable that the solid content concentration of the fine particle liquid 7 to apply | coat is 3-20 wt%, and it is more preferable that it is 5-20 wt%. If the solid content concentration is too thin, the amount of the resin coating layer 3 formed in the recess 4 is reduced, there is almost no effect of forming the resin coating layer 3, and the adhesion of the metal plate material on the surface side of the coating resin is insufficient. On the other hand, if the solid content concentration is too high, the resin coating layer 3 covers the entire surface of the metal plate 5 and the electrical resistance becomes too high.

その後、図2(b)に示すように、金属板材5の表面を乾燥させる。表面張力の強い水により、樹脂微粒子9が金属板材5の表面の凹部4に引き寄せられるため、金属板材5の凹部4に樹脂微粒子9が集まる。   Then, as shown in FIG.2 (b), the surface of the metal plate material 5 is dried. Since the resin fine particles 9 are attracted to the concave portions 4 on the surface of the metal plate material 5 by the water having a strong surface tension, the resin fine particles 9 gather in the concave portions 4 of the metal plate material 5.

そうすると、図2(c)および図1に示すように、金属板材5の凹部4に樹脂被覆層3が形成され、凸部6には樹脂被覆層3が形成されない、表面が樹脂被覆された金属板材1が得られる。   Then, as shown in FIG. 2C and FIG. 1, the resin coating layer 3 is formed in the concave portion 4 of the metal plate 5, and the resin coating layer 3 is not formed on the convex portion 6. A plate 1 is obtained.

微粒子液7に含まれる樹脂微粒子9の平均粒径が10〜1000nmであることが好ましい。後述するとおり、表面の樹脂被覆前の金属板材5の表面の十点平均粗さが10μm以下であることから、金属板材5の表面の凹部4に樹脂微粒子が入り込むような大きさであることが好ましいためである。   The average particle diameter of the resin fine particles 9 contained in the fine particle liquid 7 is preferably 10 to 1000 nm. As will be described later, since the ten-point average roughness of the surface of the metal plate 5 before resin coating on the surface is 10 μm or less, the size may be such that the resin fine particles enter the recesses 4 on the surface of the metal plate 5. This is because it is preferable.

表面が樹脂被覆される前の金属板材5の被覆される面の十点平均粗さRzは特に限定するものではないが、0.5μm以上10μm以下が望ましい。ここで、Rzを0.5μm以上としたのは、Rzが0.5μm以下では、金属板材表面で樹脂微粒子が移動するために必要な凹凸形状が十分に形成されずに、樹脂微粒子による凹部の選択的被覆を安定して行うことができないからである。さらに、Rzが2.0μm以上であると、樹脂微粒子が微粒子液中で移動するための凹凸がより安定的に形成されるため、Rzは、2.0μm以上がさらに好ましい。
また、逆にRzが10μmを超えると、金属板材の表面の凹凸が大きすぎて、凹部に選択的に被覆された樹脂による密着性が確保できないからである。
平均粒径10〜1000nmの樹脂微粒子9を用いるが、表面の樹脂被覆前の金属板材5の表面の十点平均粗さは、樹脂微粒子9の平均粒径の5倍以上であることが好ましい。さらに望ましくは、10倍以上であることが望ましい。本発明の効果を実現する上で、金属面の凸と凸の間隔も、微粒子の平均粒子径に対し、5倍以上であることが好ましく、10倍以上であることがより好ましい。
The ten-point average roughness Rz of the surface to be coated of the metal plate 5 before the surface is coated with the resin is not particularly limited, but is preferably 0.5 μm or more and 10 μm or less. Here, the Rz is set to 0.5 μm or more. When the Rz is 0.5 μm or less, the uneven shape necessary for the movement of the resin fine particles on the surface of the metal plate material is not sufficiently formed, and the concave portions due to the resin fine particles are not formed. This is because selective coating cannot be performed stably. Furthermore, when Rz is 2.0 μm or more, unevenness for the resin fine particles to move in the fine particle liquid is more stably formed. Therefore, Rz is more preferably 2.0 μm or more.
On the other hand, if Rz exceeds 10 μm, the unevenness of the surface of the metal plate material is too large, and the adhesion by the resin selectively coated on the recesses cannot be ensured.
Although resin fine particles 9 having an average particle diameter of 10 to 1000 nm are used, the ten-point average roughness of the surface of the metal plate 5 before resin coating on the surface is preferably 5 times or more the average particle diameter of the resin fine particles 9. More desirably, it is 10 times or more. In realizing the effect of the present invention, the convexity of the metal surface is preferably 5 times or more, more preferably 10 times or more the average particle diameter of the fine particles.

また、樹脂微粒子9は、表面に、金属ナノ構造体および/または導電性炭素が付着していることが好ましい。樹脂微粒子9の表面に、これらの導電材料が付着していると、形成される樹脂被覆層3にもこれらの導電材料が添加されることとなり、樹脂被覆層3の導電性が向上するためである。   The resin fine particles 9 preferably have a metal nanostructure and / or conductive carbon attached to the surface. If these conductive materials adhere to the surface of the resin fine particles 9, these conductive materials are also added to the formed resin coating layer 3, and the conductivity of the resin coating layer 3 is improved. is there.

(表面が樹脂被覆された金属板材を用いた電極)
本実施形態に係る表面が樹脂被覆された金属板材1を、負極の集電体として用いることができる。図3は、本発明の実施形態に係る負極13の断面を示す図である。図3に示すように、ここでは、負極13は、金属板材5の凹部4に樹脂被覆層3を有し、凸部6に樹脂被覆層3を有しない表面が樹脂被覆された金属板材1の表面に、負極活物質層15を形成してなる。負極活物質層15は、負極活物質、導電剤、結着材などを含むスラリーを、表面が樹脂被覆された金属板材5の表面に塗布・乾燥させ、必要に応じて焼成することにより得られる。負極13は、リチウムイオン二次電池用の負極として用いることができる。
(Electrode using metal plate with resin-coated surface)
The metal plate 1 having a resin-coated surface according to the present embodiment can be used as a negative electrode current collector. FIG. 3 is a view showing a cross section of the negative electrode 13 according to the embodiment of the present invention. As shown in FIG. 3, here, the negative electrode 13 has the resin coating layer 3 in the concave portion 4 of the metal plate material 5 and the surface of the metal plate material 1 in which the convex portion 6 does not have the resin coating layer 3 is resin-coated. A negative electrode active material layer 15 is formed on the surface. The negative electrode active material layer 15 is obtained by applying and drying a slurry containing a negative electrode active material, a conductive agent, a binder, and the like on the surface of the metal plate 5 coated with a resin and firing it as necessary. . The negative electrode 13 can be used as a negative electrode for a lithium ion secondary battery.

また、負極の場合と同様に、正極活物質層を金属板材5の上に形成して、リチウムイオン二次電池用の正極を得ることができる。正極活物質層は、正極活物質、導電剤、結着材などを含むスラリーを塗布して得られる。ここで、金属板材5としては、種々の金属板材を用いることができるが、銅箔やアルミニウム箔を用いることが望ましい。銅箔やアルミニウム箔を、リチウムイオン二次電池用の負極や正極の集電体として用いれば、コスト、性能ともに優れた好適な負極や正極を得ることができる。   Similarly to the negative electrode, a positive electrode active material layer can be formed on the metal plate 5 to obtain a positive electrode for a lithium ion secondary battery. The positive electrode active material layer is obtained by applying a slurry containing a positive electrode active material, a conductive agent, a binder, and the like. Here, various metal plate materials can be used as the metal plate material 5, but it is desirable to use copper foil or aluminum foil. If copper foil or aluminum foil is used as a current collector for a negative electrode or a positive electrode for a lithium ion secondary battery, a suitable negative electrode or positive electrode excellent in cost and performance can be obtained.

(本実施形態の効果)
本実施形態に係る表面が樹脂被覆された金属板材1は、表面の凸部6には樹脂被覆層3が形成されていないため、金属板材5の表面の表面抵抗が少ない。そのため、表面に負極活物質層15を形成しても金属板材5(集電体)と負極活物質層15との間に電気的接続を形成できる。
(Effect of this embodiment)
In the metal plate 1 with the resin-coated surface according to the present embodiment, the resin coating layer 3 is not formed on the convex portion 6 on the surface, so that the surface resistance of the surface of the metal plate 5 is small. Therefore, even if the negative electrode active material layer 15 is formed on the surface, electrical connection can be formed between the metal plate 5 (current collector) and the negative electrode active material layer 15.

また、本実施形態に係る表面が樹脂被覆された金属板材1は、表面の凹部4には樹脂被覆層3が形成されているため、樹脂材料との密着性が高い。そのため、表面に負極活物質層15を形成した場合、金属板材5(集電体)と負極活物質層15との間の密着性が高い。   Moreover, since the resin coating layer 3 is formed in the recessed part 4 of the surface, the metal plate material 1 by which the surface which concerns on this embodiment was resin-coated has high adhesiveness with the resin material. For this reason, when the negative electrode active material layer 15 is formed on the surface, the adhesion between the metal plate 5 (current collector) and the negative electrode active material layer 15 is high.

また、正極活物質層を金属板材5の上に形成したリチウムイオン二次電池用の正極を得た場合でも、同様に金属板材5と正極活物質層との間は、良好な電気的接続が得られ、密着性が高い。   Further, even when a positive electrode for a lithium ion secondary battery in which a positive electrode active material layer is formed on a metal plate material 5 is obtained, a good electrical connection is similarly made between the metal plate material 5 and the positive electrode active material layer. Obtained and highly adhesive.

以下、本発明について実施例を用いて具体的に説明する。
[実施例]
古河電気工業社製銅箔NC−WS(塗布面の十点平均粗さRz=1.5μm)に、日本ゼオン社製スチレンブタジエン系ゴムラテックス(BM−400B、平均粒径100nm)の分散液(10wt%)を、ブレードコートにより塗布し、銅箔の表面の樹脂被覆を行った。塗布から乾燥までは大気の室温下で約20分程度必要であった。スチレンブタジエン系ゴムラテックスの原液を希釈することにより、その他、固形分濃度の異なるラテックス分散液(0.625wt%、1.25wt%、2.5wt%、5wt%、20wt%)を作製し、上記と同様に銅箔の表面上に樹脂被覆を行った。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example]
A dispersion of styrene butadiene rubber latex (BM-400B, average particle size 100 nm) manufactured by Nippon Zeon Co., Ltd. on copper foil NC-WS (Furukawa Electric Co., Ltd., 10-point average roughness Rz = 1.5 μm) 10 wt%) was applied by blade coating, and the surface of the copper foil was coated with a resin. From application to drying, about 20 minutes were required at room temperature in the atmosphere. By diluting the stock solution of styrene-butadiene rubber latex, other latex dispersions with different solid content concentrations (0.625 wt%, 1.25 wt%, 2.5 wt%, 5 wt%, 20 wt%) were prepared. Similarly, resin coating was performed on the surface of the copper foil.

[比較例]
表面に樹脂被覆を行わない、銅箔を比較例として用いた。また、スチレンブタジエン系ゴムラテックスの原液を希釈することにより、その他、固形分濃度が30wt%、40wt%のラテックス分散液を作成し、上記の実施例と同様に銅箔の表面上に樹脂被覆した。
[Comparative example]
A copper foil with no resin coating on the surface was used as a comparative example. In addition, by diluting the stock solution of styrene butadiene rubber latex, other latex dispersions having solid content concentrations of 30 wt% and 40 wt% were prepared and coated on the surface of the copper foil in the same manner as in the above examples. .

[表面抵抗の測定]
三菱化学アナリテック社製の抵抗率計(ロレスタGP MCP−T610型、4端子4探針法)により、実施例、比較例の材料の表面抵抗を測定した。
[Measurement of surface resistance]
The surface resistance of the materials of Examples and Comparative Examples was measured with a resistivity meter (Loresta GP MCP-T610 type, 4-terminal 4-probe method) manufactured by Mitsubishi Chemical Analytech.

図4は、銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と銅箔の表面抵抗の関係を示す。図4より、表面の樹脂被覆を行っても、銅箔の表面抵抗に大きな変化がないことが分かる。なお、固形分濃度が30wt%を超えると、選択的に被覆された凹部の面積が増加するとともに、微粒子が凹部のみでなく凸部にも残留するようになり、本発明の特徴的な構造である凹部のみに樹脂微粒子が集まって、凹部に樹脂被覆層が選択的に形成されるものでなく、凸部にも存在した。また、固形分濃度が40wt%の微粒子液を塗布した銅箔は、同様の構造が認められるだけなく、表面抵抗が高すぎて測定できなかった。   FIG. 4 shows the relationship between the concentration of the organic fine particle liquid used for resin coating on the copper foil surface and the surface resistance of the copper foil. FIG. 4 shows that there is no significant change in the surface resistance of the copper foil even when the surface is coated with resin. Note that when the solid content concentration exceeds 30 wt%, the area of the selectively covered recesses increases, and the fine particles remain not only in the recesses but also in the protrusions, which is a characteristic structure of the present invention. Resin fine particles gathered only in a certain concave portion, and the resin coating layer was not selectively formed in the concave portion, but was also present in the convex portion. Further, the copper foil coated with the fine particle liquid having a solid content concentration of 40 wt% was not only observed in the same structure but also could not be measured because the surface resistance was too high.

ここで、写真は省略するが、固形分濃度が40wt%の微粒子液を塗布した場合は、後述する固形分濃度が10wt%の銅箔表面の状態からも判るように、選択的に被覆された樹脂部分の凹部の面積率が急激に増加することで、凸部の面積率が急激に減少するため、電気抵抗の急激な増加をもたらして表面抵抗が測定できなかったものである。   Here, although the photograph is omitted, when a fine particle liquid having a solid content concentration of 40 wt% was applied, the fine coating was selectively coated so as to be understood from the state of the copper foil surface having a solid content concentration of 10 wt% described later. Since the area ratio of the concave portion of the resin portion is rapidly increased, the area ratio of the convex portion is rapidly decreased, so that the electrical resistance is rapidly increased and the surface resistance cannot be measured.

実施例に係る銅箔(微粒子液濃度10wt%)を走査型電子顕微鏡(SEM)で観察した。図5(a)は、表面が樹脂被覆された銅箔の表面を示す写真であり、上半分の白い部分が未処理部分で、下半分の黒い部分が樹脂被覆された表面である。また、図5(b)は表面が樹脂被覆された部分を拡大した写真であり、図5(c)は、図5(b)よりもさらに拡大した写真である。白く見える部分は銅が露出した箇所であり、黒く見える部分が樹脂で被覆された部分である。このように、微粒子液濃度10wt%の場合でも、樹脂が被覆されていない凸部は、銅箔表面に細長い笹の葉形状でアイランド状に分布し、選択的に樹脂被覆された凹部の面積より、明らかに少ないことがわかる。   The copper foil (fine particle liquid concentration 10 wt%) according to the example was observed with a scanning electron microscope (SEM). FIG. 5A is a photograph showing the surface of a copper foil whose surface is resin-coated, with the white portion in the upper half being an untreated portion and the black portion in the lower half being a resin-coated surface. Further, FIG. 5B is an enlarged photograph of a portion whose surface is coated with resin, and FIG. 5C is an enlarged photograph of FIG. 5B. The part that appears white is the part where copper is exposed, and the part that appears black is the part covered with resin. As described above, even when the concentration of the fine particle liquid is 10 wt%, the convex portions not coated with the resin are distributed in the shape of islands in the shape of elongated bamboo leaves on the copper foil surface, and from the area of the concave portion selectively coated with the resin Clearly, there are few.

図6(a)は、表面が樹脂被覆された銅箔の断面を示す写真であり、図6(b)、(c)は、垂直より20°傾けて観察した断面写真である。銅箔表面の凹凸の凹部に樹脂がたまって樹脂被覆層が形成されている様子が観察される。   6A is a photograph showing a cross-section of a copper foil whose surface is coated with a resin, and FIGS. 6B and 6C are cross-sectional photographs observed at an angle of 20 ° with respect to the vertical. It is observed that resin is accumulated in the concave and convex recesses on the surface of the copper foil and a resin coating layer is formed.

[活物質を含む負極スラリーの調製と負極の製造]
負極活物質として日立化成製天然黒鉛(SMG−N)をミキサーに投入した後、さらに結着材としてのスチレンブタジエン系ゴムラテックス40wt%のエマルジョン(日本ゼオン(株)製、BM−400B)、スラリーの粘度を調整する増粘剤としてのカルボキシメチルセルロースナトリウム(ダイセル化学工業(株)製、#2200)1wt%溶液を混合してスラリーを作製した。スラリーの配合は、負極活物質96重量%、結着材(固形分換算)2重量%、増粘材(固形分換算)2重量%とした。前記スラリーを金属板材としての銅箔上に塗布乾燥し、焼成して負極を得た。銅箔としては、樹脂被覆しない銅箔と、固形分濃度が10wt%、20wt%、40wt%のいずれかのラテックス分散液を用いて樹脂被覆した銅箔を用いた。
[Preparation of negative electrode slurry containing active material and production of negative electrode]
After putting natural graphite (SMG-N) manufactured by Hitachi Chemical as a negative electrode active material into a mixer, a 40 wt% styrene butadiene rubber latex emulsion (manufactured by Nippon Zeon Co., Ltd., BM-400B), slurry as a binder A 1 wt% solution of sodium carboxymethylcellulose (manufactured by Daicel Chemical Industries, Ltd., # 2200) as a thickener for adjusting the viscosity of the slurry was prepared. The composition of the slurry was 96% by weight of the negative electrode active material, 2% by weight of the binder (converted to solid content), and 2% by weight of the thickener (converted to solid content). The slurry was applied and dried on a copper foil as a metal plate, and baked to obtain a negative electrode. As the copper foil, a copper foil not coated with a resin and a copper foil coated with a resin using a latex dispersion having a solid content concentration of 10 wt%, 20 wt%, or 40 wt% were used.

図7は、銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と、活物質層表面の抵抗値の関係を示すグラフである。活物質層の表面抵抗は、銅箔の表面抵抗と同様の測定方法により測定した。図7より、銅箔の樹脂被覆に用いた有機微粒子液の濃度が高くなっても、活物質層表面の抵抗値は特に変化がない。   FIG. 7 is a graph showing the relationship between the concentration of the organic fine particle liquid used for resin coating on the copper foil surface and the resistance value on the active material layer surface. The surface resistance of the active material layer was measured by the same measurement method as that of the copper foil. From FIG. 7, even when the concentration of the organic fine particle liquid used for resin coating of the copper foil is increased, the resistance value on the surface of the active material layer is not particularly changed.

[密着力の測定]
実施例、比較例の銅箔に、上記スラリーを自動塗工装置のドクターブレードを用いて、厚さ10μmの集電体用電解銅箔(古河電気工業(株)製、NC−WS)上に15μmの厚みで塗布し、70℃で10分間乾燥させて負極を製造した。活物質層と銅箔との間の密着性は、島津製作所社製オートグラフ(AG−10kN)を用い、90°ピール試験(クロスヘッド速度=10mm/min)により測定した。
[Measurement of adhesion]
Using the doctor blade of an automatic coating apparatus, the copper slurry of Examples and Comparative Examples was coated on an electrolytic copper foil for current collector having a thickness of 10 μm (Furukawa Electric Co., Ltd., NC-WS). The negative electrode was manufactured by coating with a thickness of 15 μm and drying at 70 ° C. for 10 minutes. The adhesion between the active material layer and the copper foil was measured by a 90 ° peel test (crosshead speed = 10 mm / min) using an autograph (AG-10 kN) manufactured by Shimadzu Corporation.

図8は、前述のように、銅箔表面の樹脂被覆に用いた有機微粒子液の濃度と、銅箔の表面に塗布された活物質層との密着力の関係を示すが、表面の樹脂被覆を行うことで、活物質層と銅箔との密着性が高まっていることが分かる。これは、活物質層に含まれる結着材樹脂が、銅箔表面の樹脂被覆層と強く密着するためである。特に、微粒子液の濃度は1wt%や2wt%では、比較例と大きな差はないが、濃度が3wt%を超えると急激に密着力が向上し、5wt%以上では密着力が徐々に飽和し、大きな変化はなく安定している。   FIG. 8 shows the relationship between the concentration of the organic fine particle liquid used for resin coating on the copper foil surface and the adhesive force between the active material layer applied on the copper foil surface as described above. It can be seen that the adhesion between the active material layer and the copper foil is increased by performing the above. This is because the binder resin contained in the active material layer closely adheres to the resin coating layer on the copper foil surface. In particular, when the concentration of the fine particle liquid is 1 wt% or 2 wt%, there is no significant difference from the comparative example, but when the concentration exceeds 3 wt%, the adhesion is rapidly improved, and when the concentration is 5 wt% or more, the adhesion is gradually saturated. There is no big change and it is stable.

〔電池特性評価〕
試験極に負極と、対極と参照極にリチウム、セパレータにはポリオレフィン製の微孔膜、電解液に1.3mol/LのLiPFを含むエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)の混合溶液にビニレンカーボネート(VC)を1重量%添加した電解液を用いて評価用セルを構成し、充放電特性を調べた。なお、充放電特性の評価は、初回の放電容量および30サイクルの充電・放電後の放電容量を測定し、初回放電容量に対する30サイクルの充電・放電後の放電容量の割合を百分率で求め、容量維持率とした。
[Battery characteristics evaluation]
Negative electrode for test electrode, lithium for counter electrode and reference electrode, microporous membrane made of polyolefin for separator, ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl containing 1.3 mol / L LiPF 6 in electrolyte An evaluation cell was constructed using an electrolytic solution obtained by adding 1% by weight of vinylene carbonate (VC) to a mixed solution of carbonate (DMC), and the charge / discharge characteristics were examined. The charge / discharge characteristics were evaluated by measuring the initial discharge capacity and the discharge capacity after 30 cycles of charge / discharge, and determining the ratio of the discharge capacity after charge / discharge of 30 cycles to the initial discharge capacity as a percentage. The maintenance rate.

上記条件で電池特性の確認を行った結果、未処理品銅箔を用いた場合、初期電池容量(=360mAh/g)に対し、30サイクル目で25%まで容量低下が確認された。一方、2.5wt%のスチレンブタジエン系ラテックス分散液によって表面の樹脂被覆を施した銅箔を用いた場合、初期電池容量(=350mAh/g)に対し、15%の容量低下が確認され、表面が樹脂被覆された銅箔を用いることで良好な充放電サイクル特性が得られた。更に2.5wt%のラテックス分散液に導電性炭素としてカーボンナノチューブ(保土ヶ谷化学社製NT-7K)を10.7ppm添加し、上記と同様な銅箔表面被覆処理を施した結果、初期電池容量(=355mAh/g)に対し、6%の容量低下が確認され、非常に良好な充放電サイクル特性が得られた。
〔産業上の利用可能性〕
As a result of confirming the battery characteristics under the above conditions, when untreated copper foil was used, the capacity was confirmed to be reduced to 25% at the 30th cycle with respect to the initial battery capacity (= 360 mAh / g). On the other hand, when using a copper foil whose surface was coated with a 2.5 wt% styrene-butadiene latex dispersion, a 15% capacity reduction was confirmed with respect to the initial battery capacity (= 350 mAh / g). Good charge / discharge cycle characteristics were obtained by using a copper foil coated with resin. Further, 10.7 ppm of carbon nanotubes (NT-7K manufactured by Hodogaya Chemical Co., Ltd.) was added as a conductive carbon to a 2.5 wt% latex dispersion, and the same copper foil surface coating treatment as described above was performed. = 355 mAh / g), a 6% capacity reduction was confirmed, and very good charge / discharge cycle characteristics were obtained.
[Industrial applicability]

本発明に係る表面が樹脂被覆された金属箔は、リチウムイオン二次電池の電極の集電体として用いることができる。また、絶縁層の表面に、本発明に係る表面が樹脂被覆された金属箔を貼ることで、樹脂の絶縁層と金属箔とが高密着で積層された高周波向けの基板を得ることができる。   The metal foil having a resin-coated surface according to the present invention can be used as a current collector for an electrode of a lithium ion secondary battery. In addition, a high-frequency substrate in which a resin insulating layer and a metal foil are laminated with high adhesion can be obtained by sticking a metal foil having a resin-coated surface according to the present invention to the surface of the insulating layer.

他に、本発明に係る表面が樹脂被覆された金属箔は、アルミニウムと銅との間の接続界面を有する端子に用いることができる。つまり、アルミニウムや銅の表面に本発明に係る樹脂被覆を行った後にアルミニウムと銅を接合させると、アルミニウムと銅の表面の凹部は樹脂微粒子で埋められているため、界面に隙間が生じにくくなり、毛細管現象によって界面に水が入ることが起きにくくなる。そのため、界面に水が入ってアルミニウムの腐食が発生することを防止できる。   In addition, the metal foil having a resin-coated surface according to the present invention can be used for a terminal having a connection interface between aluminum and copper. In other words, if aluminum and copper are bonded after the resin coating according to the present invention is applied to the surface of aluminum or copper, the recesses on the surface of aluminum and copper are filled with resin fine particles, so that a gap is hardly generated at the interface. Capillary phenomenon makes it difficult for water to enter the interface. Therefore, it is possible to prevent water from entering the interface and causing corrosion of aluminum.

絶縁樹脂と金属との密着性を高めるために、樹脂コートを行う前に、部分絶縁が必要な金属の表面に、本発明に係る金属箔の表面に樹脂被覆を行うことができる。特に、樹脂被覆合金条のFコート(登録商標)において、合金条の上に樹脂を被覆する際に、本発明に係る金属箔の表面への樹脂被覆方法を適用することで、樹脂被覆が剥がれにくい合金条を得ることができる。   In order to improve the adhesion between the insulating resin and the metal, the resin coating can be applied to the surface of the metal foil according to the present invention on the surface of the metal that requires partial insulation before the resin coating. In particular, in the F-coating (registered trademark) of the resin-coated alloy strip, when the resin is coated on the alloy strip, the resin coating is peeled off by applying the resin coating method to the surface of the metal foil according to the present invention. Difficult alloy strips can be obtained.

フレキシブルプリント基板において、本発明に係る表面が樹脂被覆された金属箔を用いれば、絶縁体と金属箔との密着性を高めることができる。そのため、折り曲げ時に絶縁体から金属箔が剥離することがなく、折り曲げ特性が向上する。   In the flexible printed circuit board, when a metal foil having a resin-coated surface according to the present invention is used, the adhesion between the insulator and the metal foil can be improved. Therefore, the metal foil does not peel from the insulator during bending, and the bending characteristics are improved.

以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
特に、本発明は、金属箔にのみ限定されるわけではなく、金属薄板材を含む金属の表面を有する金属板材全般を含む。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.
In particular, the present invention is not limited to metal foils but includes all metal plate materials having a metal surface including metal sheet materials.

1………表面が樹脂被覆された金属板材
3………樹脂被覆層
4………凹部
5………金属板材
6………凸部
7………微粒子液
9………樹脂微粒子
11………コーター棒
DESCRIPTION OF SYMBOLS 1 ......... Metal plate material by which resin coating was carried out on the surface 3 ......... Resin coating layer 4 ......... Concave part 5 ......... Metal plate material 6 ......... Convex part 7 ......... Particulate liquid 9 ......... Resin fine particle 11 ... ...... Coater stick

Claims (6)

表面が樹脂被覆された金属板材であって、
前記金属板材が、アルミニウム、銅、金、銀からなる群より選ばれるいずれか一つの金属を含み、
前記金属板材の表面の凹部には、樹脂微粒子により樹脂被覆層が選択的に形成され、
前記金属板材の表面の凸部には、樹脂微粒子による樹脂被覆層が形成されていないことを特徴とする金属板材であって、
前記樹脂被覆層に、金属ナノ構造体および/または導電性炭素を含むことを特徴とする金属板材。
A metal plate whose surface is coated with resin,
The metal plate material includes any one metal selected from the group consisting of aluminum, copper, gold, and silver,
In the concave portion of the surface of the metal plate material, a resin coating layer is selectively formed by resin fine particles,
The metal plate material is characterized in that a resin coating layer made of resin fine particles is not formed on the convex portion of the surface of the metal plate material ,
A metal plate material comprising a metal nanostructure and / or conductive carbon in the resin coating layer.
前記樹脂被覆層を形成する樹脂微粒子が、スチレンブタジエンゴム、アクリルゴム、アクリルニトリルブタジエンゴム、イソプレンゴム、ブタジエンゴムからなる群より選ばれる少なくとも一つの樹脂を含む樹脂微粒子であることを特徴とする請求項1に記載の金属板材。 Claims wherein the resin fine particles to form a resin coating layer is a styrene-butadiene rubber, and wherein the acrylic rubber, a resin fine particles containing the acrylonitrile butadiene rubber, isoprene rubber, at least one resin selected from the group consisting of butadiene rubber Item 2. The metal plate material according to Item 1 . 前記金属板材が、厚さが50μm以下の銅箔であることを特徴とする請求項1または2に記載の金属板材。 The metal plate material according to claim 1 , wherein the metal plate material is a copper foil having a thickness of 50 μm or less. 分散媒に、平均粒径が10〜1000nmである樹脂微粒子を固形分濃度が3〜20wt%で分散させた微粒子液を金属板材の表面に塗布した後、金属板材を乾燥させて樹脂微粒子を金属板材の凸部から凹部に移動させ、前記金属板材の表面の凹部には、樹脂微粒子により樹脂被覆層を選択的に形成し、前記金属板材の表面の凸部には、樹脂微粒子による樹脂被覆層が形成されないようにすることを特徴とする金属板材表面の樹脂被覆方法。 After a fine particle liquid in which resin fine particles having an average particle size of 10 to 1000 nm are dispersed in a dispersion medium at a solid content concentration of 3 to 20 wt% is applied to the surface of the metal plate material, the metal plate material is dried to convert the resin fine particles into metal A resin coating layer is selectively formed with resin fine particles in the concave portions on the surface of the metal plate material, and the resin coating layer with resin fine particles is formed on the convex portions on the surface of the metal plate material. A resin coating method on the surface of a metal plate material, characterized in that it is not formed. 前記樹脂の微粒子は、表面に、金属ナノ構造体および/または導電性炭素が付着していることを特徴とする請求項4に記載の金属板材表面の樹脂被覆方法。 5. The resin coating method for the surface of a metal plate according to claim 4, wherein the fine particles of the resin have metal nanostructures and / or conductive carbon attached to the surface. 表面が樹脂被覆される前の前記金属板材の被覆される面の十点平均粗さRzが0.5μm以上10μm以下で、さらにRzが樹脂微粒子の平均粒径の少なくとも2倍であることを特徴とする請求項4または請求項5に記載の金属板材表面の樹脂被覆方法。 The ten-point average roughness Rz of the surface to be coated of the metal plate before the surface is coated with the resin is 0.5 μm or more and 10 μm or less, and Rz is at least twice the average particle size of the resin fine particles. The resin coating method on the surface of a metal plate according to claim 4 or 5 .
JP2012183245A 2012-08-22 2012-08-22 Metal plate material, resin coating method on metal plate surface and use thereof Expired - Fee Related JP5950757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183245A JP5950757B2 (en) 2012-08-22 2012-08-22 Metal plate material, resin coating method on metal plate surface and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183245A JP5950757B2 (en) 2012-08-22 2012-08-22 Metal plate material, resin coating method on metal plate surface and use thereof

Publications (2)

Publication Number Publication Date
JP2014040043A JP2014040043A (en) 2014-03-06
JP5950757B2 true JP5950757B2 (en) 2016-07-13

Family

ID=50392742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183245A Expired - Fee Related JP5950757B2 (en) 2012-08-22 2012-08-22 Metal plate material, resin coating method on metal plate surface and use thereof

Country Status (1)

Country Link
JP (1) JP5950757B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304380B2 (en) * 2021-04-26 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Electrode current collector and secondary battery
CN116581247B (en) * 2023-07-12 2023-09-22 深圳海辰储能控制技术有限公司 Composite electrode plate, preparation method thereof and lithium battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534031B2 (en) * 2000-02-02 2004-06-07 トヨタ自動車株式会社 Method for manufacturing electrode for battery / capacitor
JP4237975B2 (en) * 2002-04-24 2009-03-11 株式会社神戸製鋼所 Aluminum plate for electronic equipment and molded product for electronic equipment using the same
JP2005135826A (en) * 2003-10-31 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2014040043A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5598356B2 (en) Conductive primer for lithium ion batteries
CN103187576B (en) Collector, electrochemical cell electrode and electrochemical cell
JP5511691B2 (en) Carbon-coated aluminum material and manufacturing method thereof
JP4980052B2 (en) Electrode and manufacturing method thereof
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
WO2006008930A1 (en) Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
KR20100065205A (en) Positive electrode mixture for nonaqueous battery and positive electrode structure
KR20100112127A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2007226969A (en) Current collector for secondary battery, positive electrode for the secondary battery, negative electrode for the secondary battery, the secondary battery, and manufacturing method of them
EP3605666A1 (en) Positive electrode for lithium ion secondary cell, and lithium ion secondary cell
WO2011053811A1 (en) Conductive fibrous materials
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
TW201604899A (en) Metal foils with conductive layers and methods of forming such foils
WO2018110133A1 (en) Secondary battery electrode, secondary battery, and method for producing same
JP2012227274A (en) Conductive underlying coating material for capacitor, electrode for capacitor, electric double layer capacitor and lithium ion capacitor
JP5950757B2 (en) Metal plate material, resin coating method on metal plate surface and use thereof
JP6504378B1 (en) Hybrid capacitor
JP4997810B2 (en) Method for forming porous heat-resistant layer and apparatus for forming porous heat-resistant layer
TW201405924A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JPWO2010128548A1 (en) Battery separator manufacturing method
JP2012014929A (en) Battery
JP2018073645A (en) Method of manufacturing electrode for lithium ion secondary battery
WO2013114698A1 (en) Carbon conductive film and method for producing same
KR20180001519A (en) Manufacturing method of anode for lithium secondary battery
JPWO2022191150A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R151 Written notification of patent or utility model registration

Ref document number: 5950757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees