JP5950103B2 - Separation of precious metals and sulfate impurities - Google Patents

Separation of precious metals and sulfate impurities Download PDF

Info

Publication number
JP5950103B2
JP5950103B2 JP2012147408A JP2012147408A JP5950103B2 JP 5950103 B2 JP5950103 B2 JP 5950103B2 JP 2012147408 A JP2012147408 A JP 2012147408A JP 2012147408 A JP2012147408 A JP 2012147408A JP 5950103 B2 JP5950103 B2 JP 5950103B2
Authority
JP
Japan
Prior art keywords
sulfate
mass
ternary
noble metal
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012147408A
Other languages
Japanese (ja)
Other versions
JP2014009383A (en
Inventor
山口 健一
健一 山口
淳宏 鍋井
淳宏 鍋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012147408A priority Critical patent/JP5950103B2/en
Publication of JP2014009383A publication Critical patent/JP2014009383A/en
Application granted granted Critical
Publication of JP5950103B2 publication Critical patent/JP5950103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、貴金属等の乾式精製を行う際に、不純物成分である鉛やバリウムを溶融塩として分離除去する方法に関する。 The present invention relates to a method for separating and removing lead and barium, which are impurity components, as a molten salt when dry purification of noble metals and the like is performed.

銅の電解精製によって生じる陽極泥(スライム)には銀等の貴金属が含まれており、湿式製錬または乾式製錬によって貴金属が分離され回収されている。従来、乾式製錬ではスライム中に含まれる不純物成分である鉛やバリウムを酸化物にし、これをシリケート系のスラグにして分離除去していた。 Anode mud (slime) generated by electrolytic refining of copper contains noble metals such as silver, and the noble metals are separated and recovered by wet smelting or dry smelting. Conventionally, in dry smelting, lead and barium, which are impurity components contained in slime, are converted into oxides, which are separated and removed as silicate slag.

例えば、銅電解スライムを硫酸浴に浸漬して銅電解スライム中の銅を溶出させて残渣と分離し、該残渣を焙焼してSe等を揮発分離し、この焙焼澱物を各種の貴金属含有繰返し物と混合し、さらに硅石と鉄屑とコ−クスとを加え、電気炉にて加熱熔融して、還元反応により貴金属を含む貴鉛とFeO−SiO2系のスラグとを生成させる乾式処理方法が知られている〔特開2004−76142号公報、特開2004−91898号公報〕。 For example, copper electrolytic slime is immersed in a sulfuric acid bath to elute the copper in the copper electrolytic slime and separate from the residue. The residue is roasted to separate Se and the like by volatilization, and the roasted starch is converted into various precious metals. A dry type that mixes with the containing repeating product, further adds meteorite, iron scrap and coke, heats and melts in an electric furnace, and generates noble lead containing noble metal and FeO-SiO 2 slag by reduction reaction Processing methods are known [Japanese Patent Laid-Open Nos. 2004-76142 and 2004-91898].

特開2004−76142号公報JP 2004-76142 A 特開2004−91898号公報JP 2004-91898 A

貴金属が含まれる陽極泥には鉛やバリウムが硫酸塩の形で含まれている。これらを乾式処理法において分離除去するには、硫酸塩を酸化物に還元した後に、硅砂等の溶剤を添加してシリケート系のスラグを生成させ、このスラグに酸化鉛や酸化バリウムを含有させる。このスラグは比重差によって貴金属相の上側に浮くので、スラグを掻き出して貴金属相と分離される。 Anode mud containing precious metals contains lead and barium in the form of sulfate. In order to separate and remove these in a dry processing method, after reducing the sulfate to an oxide, a solvent such as cinnabar is added to produce a silicate-based slag, and the slag contains lead oxide or barium oxide. Since this slag floats above the noble metal phase due to the specific gravity difference, the slag is scraped out and separated from the noble metal phase.

従来の上記乾式処理において、陽極スライムに含まれる鉛やバリウムなどの硫酸塩を酸化物にするためには、還元剤としてコークスやメタル鉄等を加えて加熱する。このため、熱源はもちろんのこと、還元剤や溶剤が必要であり、反応も長時間かかる。また、陽極スライムに含まれる硫酸バリウムは、銅アノードを鋳造する際に使用される離型剤に由来しており、スライム中の含有量が多い。さらに、硫酸バリウムは非常に安定であるため酸化物にするのは容易ではない。この硫酸バリウムを還元せずに、そのまま固体の硫酸塩の形態で排出しようとすると、スラグ中に懸垂し、極めて高粘性で流動性の劣るスラグになり、スラグ中への銀の懸垂ロスを招き操業にも支障をきたすことになる。 In the conventional dry treatment, in order to convert sulfates such as lead and barium contained in the anode slime into oxides, coke and metal iron are added as a reducing agent and heated. For this reason, not only a heat source but also a reducing agent and a solvent are required, and the reaction takes a long time. Moreover, the barium sulfate contained in the anode slime is derived from the release agent used when casting the copper anode, and the content in the slime is large. Furthermore, since barium sulfate is very stable, it is not easy to make it an oxide. If this barium sulfate is not reduced and is discharged in the form of solid sulfate as it is, it will be suspended in the slag, resulting in a slag with extremely high viscosity and poor fluidity, leading to silver suspension loss in the slag. This will also hinder operations.

本発明は、従来の上記乾式処理における上記問題を解決したものであり、陽極スライムなどに含まれる貴金属を、硫酸鉛や硫酸バリウム等の不純物から乾式処理によって分離する際に、従来の方法よりも低い加熱温度で処理することができ、スラグ化の時間も短く、作業効率が大幅に改善された処理方法を提供する。 The present invention solves the above-mentioned problems in the conventional dry processing, and when separating the noble metal contained in the anode slime from impurities such as lead sulfate and barium sulfate by dry processing, than the conventional method. Provided is a processing method which can be processed at a low heating temperature, has a short slag time, and has greatly improved work efficiency.

本発明は、以下に示す構成によって上記問題を解決した分離方法に関する。
〔1〕貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料に、硫酸ナトリウムまたは硫酸カリウムを加えて加熱することによって、800℃において液相の硫酸鉛と硫酸バリウムと硫酸ナトリウムまたは硫酸カリウムの三元系硫酸塩を生成させ、この三元系硫酸塩と貴金属とを比重差によって分離することを特徴とする貴金属と硫酸塩不純物の分離方法。
〔2〕上記[1] に記載する分離方法において、硫酸鉛50質量%〜85質量%、硫酸バリウム30質量%、および硫酸ナトリウム10質量%〜45質量%からなる800℃において液相の三元系硫酸塩を生成させる貴金属と硫酸塩不純物の分離方法。
上記[1]に記載する貴金属と硫酸塩不純物の分離方法。
〔3〕上記[1]または上記[2]に記載する分離方法において、坩堝内で、800℃において液相の硫酸鉛と硫酸バリウムと硫酸ナトリウムまたは硫酸カリウムの三元系硫酸塩を生成させ、坩堝を傾けて上記液相の三元系硫酸塩を流れ出させる貴金属と硫酸塩不純物の分離方法。
The present invention relates to a separation method that solves the above problem by the following configuration.
[1] A ternary of lead sulfate, barium sulfate, sodium sulfate or potassium sulfate in liquid phase at 800 ° C. by adding sodium sulfate or potassium sulfate to a noble metal-containing raw material containing lead sulfate and barium sulfate together with the noble metal and heating. A method for separating a noble metal and a sulfate impurity, characterized in that a sulfate is produced and the ternary sulfate and the noble metal are separated by a difference in specific gravity.
[2] In the separation method described in [1 ] above, a liquid phase ternary is formed at 800 ° C., comprising 50% by mass to 85% by mass of lead sulfate, 30% by mass of barium sulfate, and 10% by mass to 45% by mass of sodium sulfate. For separating precious metals and sulfate impurities to form sulfates.
The method for separating a noble metal and a sulfate impurity as described in [1] above.
[3] In the separation method described in [1] or [2] above, in a crucible, liquid phase lead sulfate, barium sulfate, sodium sulfate or potassium sulfate ternary sulfate is produced at 800 ° C., A method for separating noble metal and sulfate impurities by tilting the crucible and allowing the liquid phase ternary sulfate to flow out.

〔具体的な説明〕
本発明の処理方法は、貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料に、硫酸ナトリウムまたは硫酸カリウムを加えて加熱することによって、800℃において液相の硫酸鉛と硫酸バリウムと硫酸ナトリウムまたは硫酸カリウムの三元系硫酸塩を生成させ、この三元系硫酸塩と貴金属とを比重差によって分離することを特徴とする貴金属と硫酸塩不純物の分離方法である。
[Specific description]
In the treatment method of the present invention, sodium sulfate or potassium sulfate is added to a noble metal-containing raw material containing lead sulfate and barium sulfate together with a noble metal, and heated, thereby liquid lead sulfate, barium sulfate, sodium sulfate or sulfuric acid at 800 ° C. This is a method for separating a noble metal and a sulfate impurity, characterized in that a ternary sulfate of potassium is produced and the ternary sulfate and the noble metal are separated by a difference in specific gravity.

本発明の分離方法において、貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料とは、例えば、銅の電解精製によって生じる陽極スライム、工程内で発生する煙灰や澱物などである。該原料に含まれている貴金属とは銀等である。また、該原料に含まれている硫酸鉛および硫酸バリウムは融点が1100℃以上の硫酸塩であり、具体的には、例えば、硫酸鉛の融点は1175℃、硫酸バリウムの融点は1580℃であり、何れも融点1100℃以上の高融点物質である。
In the separation method of the present invention, the noble metal-containing raw material containing lead sulfate and barium sulfate together with the noble metal is, for example, anode slime generated by electrolytic refining of copper, smoke ash and starch generated in the process, and the like. The noble metal contained in the raw material is silver or the like. In addition, lead sulfate and barium sulfate contained in the raw material are sulfates having a melting point of 1100 ° C. or higher. Specifically, for example, lead sulfate has a melting point of 1175 ° C. and barium sulfate has a melting point of 1580 ° C. These are high-melting-point substances having a melting point of 1100 ° C. or higher.

本発明の分離方法は、硫酸鉛や硫酸バリウムと共に三元系溶融硫酸塩を形成する硫酸ナトリウムまたは硫酸カリウムを上記貴金属含有原料に加えて加熱し、800℃において液相の低融点の三元系溶融硫酸塩を生成させる。
In the separation method of the present invention, sodium sulfate or potassium sulfate that forms a ternary molten sulfate together with lead sulfate or barium sulfate is added to the above-mentioned noble metal-containing raw material and heated, and at 800 ° C., a liquid phase low melting point ternary system A molten sulfate is formed.

本発明の分離方法は、例えば、貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料に硫酸ナトリウムを添加して加熱することにっよって、硫酸鉛50質量%〜85質量%、硫酸バリウム30質量%、および硫酸ナトリウム10質量%〜45質量%からなる800℃において液相の三元系硫酸塩を生成させ、この三元系硫酸塩と貴金属とを比重差によって分離する方法である。In the separation method of the present invention, for example, sodium sulfate is added to a noble metal-containing raw material containing lead sulfate and barium sulfate together with the noble metal and heated, so that lead sulfate is 50 mass% to 85 mass%, barium sulfate is 30 mass%. In addition, a ternary sulfate in a liquid phase is produced at 800 ° C. composed of 10% by mass to 45% by mass of sodium sulfate, and the ternary sulfate and noble metal are separated by a difference in specific gravity.

硫酸鉛、硫酸バリウム、および硫酸ナトリウムを加えて加熱溶融して形成した三元系硫酸塩の状態図を図1に示す。図示するように、硫酸鉛30質量%〜90質量%、硫酸ナトリウム10質量%〜60質量%、および残余が硫酸バリウムの領域は概ね1000℃において液相の三元系硫酸塩であり、硫酸鉛50質量%〜85質量%、硫酸ナトリウム10質量%〜45質量%、および残余が硫酸バリウムの領域は概ね800℃において液相の三元系硫酸塩である。 FIG. 1 shows a phase diagram of a ternary sulfate formed by adding lead sulfate, barium sulfate, and sodium sulfate and heating and melting them. As shown in the figure, lead sulfate 30% by mass to 90% by mass, sodium sulfate 10% by mass to 60% by mass, and the remainder of the barium sulfate region are liquid phase ternary sulfates at approximately 1000 ° C. The region of 50 mass% to 85 mass%, sodium sulfate 10 mass% to 45 mass%, and the remaining barium sulfate is a liquid phase ternary sulfate at approximately 800 ° C.

本発明は、例えば、貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料について、硫酸鉛50質量%〜85質量%、硫酸ナトリウム10質量%〜45質量%、および硫酸バリウムが30質量%未満の組成になるように硫酸ナトリウムを加えて加熱し、800℃において液相の三元系溶融硫酸塩を形成する。
In the present invention, for example, a noble metal-containing raw material containing lead sulfate and barium sulfate together with a noble metal, lead sulfate 50 mass% to 85 mass%, sodium sulfate 10 mass% to 45 mass%, and barium sulfate is less than 30 mass%. Sodium sulfate is added and heated to form a liquid phase ternary molten sulfate salt at 800 ° C.

なお、図1の状態図に示すように、硫酸バリウムの含有量が50質量%以上になると、三元系硫酸塩の融点が1000℃を上回るので、原料に加える硫酸ナトリウムの量は、生成される三元系硫酸塩において硫酸バリウムが50質量未満、好ましくは30質量%未満になる量を用いる。 As shown in the phase diagram of FIG. 1, when the barium sulfate content is 50% by mass or more, the melting point of the ternary sulfate exceeds 1000 ° C., so the amount of sodium sulfate added to the raw material is generated. In such a ternary sulfate, an amount that makes barium sulfate less than 50 mass%, preferably less than 30 mass%, is used.

一般に銀等の貴金属の比重よりも上記三元系硫酸塩の比重は小さいので、上記三元系硫酸塩を生成させることによって硫酸塩のままスラグ化し、比重差によって貴金属と硫酸塩を分離することができる。本発明の分離方法は、貴金属と共に原料に含まれる高融点の硫酸鉛および硫酸バリウム800℃において液相の三元系溶融硫酸塩に変えて溶融状態にし、比重差によって貴金属と分離するので、原料に含まれる貴金属は金属の状態でもよく、化合物の状態でもよい。
In general, the specific gravity of the ternary sulfate is smaller than the specific gravity of noble metals such as silver. Therefore, by producing the ternary sulfate, it is converted into slag as sulfate, and the noble metal and sulfate are separated by the specific gravity difference. Can do. In the separation method of the present invention, the high melting point lead sulfate and barium sulfate contained in the raw material together with the noble metal are changed to a liquid phase ternary molten sulfate salt at 800 ° C., and separated from the noble metal due to the difference in specific gravity. The noble metal contained in the raw material may be in a metal state or a compound state.

本発明の分離方法は、原料の陽極スライム等に含まれる不純物成分の鉛やバリウムを硫酸塩の形態のまま、硫酸ナトリウム及び/または硫酸カリウム等の硫酸塩を添加して加熱し、800℃において液相の三元系溶融硫酸塩にするので、貴金属を含む相と不純物成分の鉛やバリウムを比重差によって容易に分離することができる。
In the separation method of the present invention, lead or barium, which is an impurity component contained in the anode slime as a raw material, is heated in the form of a sulfate while adding a sulfate such as sodium sulfate and / or potassium sulfate at 800 ° C. Since the liquid phase ternary molten sulfate is used, the phase containing noble metal and the impurity components lead and barium can be easily separated by the difference in specific gravity.

また、本発明の分離方法では、スラグの組成を、シリケートスラグから溶融硫酸塩に変えることにより、溶融温度を、例えば従来の1100℃から低下させることができ、重油等の燃料を削減でき、しかもスラグ化に要する時間が短時間になり、また、上記液相の三元系溶融硫酸塩は坩堝を傾けると流れ出すので分離が容易であり、作業効率も大幅に改善される。
In the separation method of the present invention, the melting temperature can be lowered from , for example, the conventional 1100 ° C. by changing the slag composition from silicate slag to molten sulfate, and fuel such as heavy oil can be reduced. The time required for slag formation is shortened, and the ternary molten sulfate in the liquid phase flows out when the crucible is tilted, so that the separation is easy and the working efficiency is greatly improved.

三元系硫酸塩(PbSO4−BaSO4−Na2SO4)の状態図Phase diagram of ternary sulfate (PbSO 4 -BaSO 4 -Na 2 SO 4 )

以下に本発明の実施例を示す。なお、融点は熱分析装置TG-DTAを用い、混合溶融塩のDTAの吸熱ピークから溶融点を測定した。 Examples of the present invention are shown below. The melting point was measured from the endothermic peak of DTA of the mixed molten salt using a thermal analyzer TG-DTA.

〔実施例1〕
貴金属として銀を含み、不純物として硫酸鉛、硫酸バリウムを含む原料として、Agを6g(32.4質量%)、PbSO4を10.2g(55.1質量%)、BaSO4を2.3g(12.5質量%)をよく混合して原料を調製した。この原料に添加剤としてNa2SO4を2.6g加え、さらに混合した。その後、この混合した材料をマグネシア坩堝に入れ、空気中、温度1000℃に加熱して溶融し、1時間保持した。その後、坩堝を常温に取り出し、水噴霧により急冷した。この坩堝を切断し断面を観察したところ、銀(比重10.5)と溶融塩(比重3.5)は比重差により完全に分離しており、銀が回収された。
[Example 1]
As a raw material containing silver as a noble metal, lead sulfate and barium sulfate as impurities, 6 g (32.4 mass%) of Ag, 10.2 g (55.1 mass%) of PbSO 4 , and 2.3 g of BaSO 4 ( 12.5% by mass) was mixed well to prepare a raw material. To this raw material, 2.6 g of Na 2 SO 4 was added as an additive and further mixed. Thereafter, the mixed material was put in a magnesia crucible, heated and melted in air at a temperature of 1000 ° C. and held for 1 hour. Thereafter, the crucible was taken out to room temperature and quenched with water spray. When this crucible was cut and the cross section was observed, silver (specific gravity 10.5) and molten salt (specific gravity 3.5) were completely separated due to the difference in specific gravity, and silver was recovered.

〔実施例2〕
PbSO4:10.2g(68wt%)、BaSO4:2.3g(15wt%)、Na2SO4:2.6g(17wt%)を坩堝に入れて混合し、1000℃に加熱して溶融し、1時間保持し、実施例1の溶融硫酸塩と同組成の三元系硫酸塩を調製した。この溶融状態の硫酸塩は坩堝を傾けると流れ出し、低粘性であり良好な流動性を有するものであった。
[Example 2]
PbSO 4 : 10.2 g (68 wt%), BaSO 4 : 2.3 g (15 wt%), Na 2 SO 4 : 2.6 g (17 wt%) are mixed in a crucible, heated to 1000 ° C. and melted. Holding for 1 hour, a ternary sulfate having the same composition as the molten sulfate of Example 1 was prepared. This molten sulfate flowed out when the crucible was tilted, and had a low viscosity and good fluidity.

Claims (3)

貴金属と共に硫酸鉛および硫酸バリウムを含む貴金属含有原料に、硫酸ナトリウムまたは硫酸カリウムを加えて加熱することによって、800℃において液相の硫酸鉛と硫酸バリウムと硫酸ナトリウムまたは硫酸カリウムの三元系硫酸塩を生成させ、この三元系硫酸塩と貴金属とを比重差によって分離することを特徴とする貴金属と硫酸塩不純物の分離方法。 A ternary sulfate of lead sulfate, barium sulfate, sodium sulfate or potassium sulfate in liquid phase at 800 ° C by adding sodium sulfate or potassium sulfate to a noble metal-containing raw material containing lead sulfate and barium sulfate together with the noble metal and heating. And separating the ternary sulfate and the noble metal by a specific gravity difference. 請求項1に記載する分離方法において、硫酸鉛50質量%〜85質量%、硫酸バリウム30質量%、および硫酸ナトリウム10質量%〜45質量%からなる800℃において液相の三元系硫酸塩を生成させる貴金属と硫酸塩不純物の分離方法。 The separation method according to claim 1, wherein a ternary sulfate in a liquid phase is formed at 800 ° C consisting of 50% by mass to 85% by mass of lead sulfate, 30% by mass of barium sulfate, and 10% by mass to 45% by mass of sodium sulfate. Separation method of precious metal and sulfate impurities to be generated . 請求項1または2に記載する分離方法において、坩堝内で、800℃において液相の硫酸鉛と硫酸バリウムと硫酸ナトリウムまたは硫酸カリウムの三元系硫酸塩を生成させ、坩堝を傾けて上記液相の三元系硫酸塩を流れ出させる貴金属と硫酸塩不純物の分離方法。3. The separation method according to claim 1, wherein a liquid phase lead sulfate, barium sulfate, sodium sulfate or potassium sulfate ternary sulfate is produced in a crucible at 800 ° C., and the crucible is tilted to form the liquid phase. Of separation of precious metals and sulfate impurities to allow ternary sulfates to flow out.
JP2012147408A 2012-06-29 2012-06-29 Separation of precious metals and sulfate impurities Expired - Fee Related JP5950103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147408A JP5950103B2 (en) 2012-06-29 2012-06-29 Separation of precious metals and sulfate impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147408A JP5950103B2 (en) 2012-06-29 2012-06-29 Separation of precious metals and sulfate impurities

Publications (2)

Publication Number Publication Date
JP2014009383A JP2014009383A (en) 2014-01-20
JP5950103B2 true JP5950103B2 (en) 2016-07-13

Family

ID=50106349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147408A Expired - Fee Related JP5950103B2 (en) 2012-06-29 2012-06-29 Separation of precious metals and sulfate impurities

Country Status (1)

Country Link
JP (1) JP5950103B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941322B (en) * 2021-01-26 2022-10-25 西安建筑科技大学 BaSO removal of decoppered anode slime during smelting in Kaldo furnace 4 Method (2)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293049A (en) * 2002-04-08 2003-10-15 Mitsubishi Materials Corp Method for recovering silver from slag containing silver and lead

Also Published As

Publication number Publication date
JP2014009383A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
CN101886174B (en) Process for refining high-purity bismuth from bismuth-containing material generated from anode mud recovery
JP2019502826A (en) Lithium-rich metallurgical slag
JP4219947B2 (en) How to recover lead
EP2446065B1 (en) USE OF A BINARY SALT FLUX OF NaCl AND MgCI2 FOR THE PURIFICATION OF ALUMINUM OR ALUMINUM ALLOYS, AND METHOD THEREOF
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN105063369A (en) Copper-removal composition used for secondary lead refining and application thereof
CN100441710C (en) Dry type refining method for copper
CN106222421A (en) Gold mud treatment method
CN101906643B (en) High lead bismuth silver alloy electrolysis deleading process
JP5507310B2 (en) Method for producing valuable metals
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP5950103B2 (en) Separation of precious metals and sulfate impurities
US20120017726A1 (en) Use of a tertiary salt flux of nacl, kci and mgcl2 for the purification of aluminium or aluminium alloys, and method thereof
CN103526232A (en) Method for removing impurities contained in high-impurity crude silver
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP2009074128A (en) Method for recovering tin
JP5922456B2 (en) Method for producing metal thallium
US7988763B2 (en) Use of a binary salt flux of NaCl and MgCl2 for the purification of aluminium or aluminium alloys, and method thereof
KR101486668B1 (en) Recovery of metalic tin from waste materials by aqueous extraction
RU2386711C1 (en) Method refining silver-gold alloys
RU2563612C1 (en) Method of silver extraction from scrap of silver-zinc batteries containing lead
JP7515880B2 (en) Electrochemical separation of tramp elements from steel scrap
JP6457039B2 (en) Silver recovery method
US2097560A (en) Lead and lead alloys
WO2013013321A1 (en) Use of a tertiary salt flux of nac1, kcl, and mgc12 for the purification of aluminum or aluminum alloys, and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5950103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees