JP5948003B2 - Eddy current testing method and eddy current testing equipment - Google Patents
Eddy current testing method and eddy current testing equipment Download PDFInfo
- Publication number
- JP5948003B2 JP5948003B2 JP2012104249A JP2012104249A JP5948003B2 JP 5948003 B2 JP5948003 B2 JP 5948003B2 JP 2012104249 A JP2012104249 A JP 2012104249A JP 2012104249 A JP2012104249 A JP 2012104249A JP 5948003 B2 JP5948003 B2 JP 5948003B2
- Authority
- JP
- Japan
- Prior art keywords
- eddy current
- signal
- reference signal
- flaw detection
- current flaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims description 23
- 238000001514 detection method Methods 0.000 claims description 96
- 239000000523 sample Substances 0.000 claims description 24
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
本発明は、渦流探傷方法と渦流探傷装置に関し、特に密集したキズを個別に評価する渦流探傷方法と渦流探傷装置に関する。 The present invention relates to an eddy current flaw detection method and an eddy current flaw detection apparatus, and more particularly to an eddy current flaw detection method and an eddy current flaw detection apparatus for individually evaluating dense flaws.
従来被検査体のキズの深さを評価する方法として、被検査体に沿って渦流探傷プローブを走査し、検出された渦流探傷信号の振幅によりキズの深さを評価する方法がとられている(特許文献1)。
図6により従来の渦流探傷方法を説明する。
図6(a)は、1個のキズf0、3個のf1,f2,f3のある被検査体Tを探傷する例である。
渦流探傷プローブPが被検査体Tに沿って矢印方向へ移動すると、キズf0を通過したとき渦流探傷信号S0が検出される。またキズf1,f2,f3が短い間隔で連続して存在するときは、キズf1,f2,f3により発生する渦流探傷信号を個別に検出することは難しく、渦流探傷信号Scのように、3個のキズの渦流探傷信号により合成された渦流探傷信号(「合成渦流探傷信号」と呼ぶ)として検出される。
鉄道のレールゲージコーナーに発生するきしみ割れは、比較的狭い間隔で多数のキズが連続して発生するが、キズの間隔は、渦流探傷プローブの分解能に比べて狭いため、検出される渦流探傷信号は、合成渦流探傷信号Scとなる。きしみ割れは、深いキズ、浅いキズが混在するため、キズ毎にその深さを評価する必要があるが、従来の渦流探傷方法は、キズ毎の深さを評価することは困難であった。
Conventionally, as a method for evaluating the depth of a flaw in an object to be inspected, a method is used in which the eddy current flaw detection probe is scanned along the object to be inspected and the flaw depth is evaluated by the amplitude of the detected eddy current flaw detection signal. (Patent Document 1).
A conventional eddy current flaw detection method will be described with reference to FIG.
FIG. 6A shows an example in which an inspection target T having one flaw f0, three f1, f2, and f3 is detected.
When the eddy current flaw detection probe P moves in the direction of the arrow along the inspection object T, the eddy current flaw detection signal S0 is detected when it passes through the flaw f0. When the flaws f1, f2, and f3 are continuously present at short intervals, it is difficult to individually detect the eddy current flaw detection signals generated by the flaws f1, f2, and f3. Detected as an eddy current flaw detection signal (referred to as a “combined eddy current flaw detection signal”).
Scratch cracks that occur at rail gauge corners in railways occur in large numbers at a relatively narrow interval, but since the scratch interval is narrower than the resolution of the eddy current flaw detection probe, the detected eddy current flaw detection signal Becomes the synthetic eddy current flaw detection signal Sc. Scratch cracks contain both deep and shallow flaws, and therefore the depth of each flaw needs to be evaluated. However, it has been difficult to evaluate the depth of each flaw in conventional eddy current flaw detection methods.
本発明は、レールのきしみ割れのように比較的狭い間隔で多数連続して発生するキズの深さを、キズ毎に評価できる渦流探傷方法と渦流探傷装置を提供することを目的とする。 An object of the present invention is to provide an eddy current flaw detection method and an eddy current flaw detection device that can evaluate the depth of flaws that are continuously generated at a relatively narrow interval, such as a crack in a rail, for each flaw.
本発明は、その目的を達成するため、請求項1に記載の渦流探傷方法は、同じ基準信号を連続するキズの最短間隔よりも小さい一定の間隔で複数個並べて、各基準信号の振幅を調整して合成した基準信号の合成信号が連続するキズによる渦流探傷信号と一致するように各基準信号の振幅を調整し、基準信号の合成信号と連続するキズによる渦流探傷信号がもっとも一致するときの各基準信号の振幅調整値を求めることを特徴とする。
請求項2に記載の渦流探傷方法は、請求項1に記載の渦流探傷方法において、前記各基準信号の振幅調整値により連続するキズの深さを評価することを特徴とする。
請求項3に記載の渦流探傷方法は、請求項1又は請求項2に記載の渦流探傷方法において、前記連続するキズの間隔は、渦流探傷プローブの分解能以下であることを特徴とする。
請求項4に記載の渦流探傷装置は、渦流探傷プローブを用いて渦流探傷信号を取り出しキズの深さを評価する渦流探傷装置において、基準信号を記憶する基準信号記憶部と渦流探傷信号分解部を備え、渦流探傷信号分解部は、基準信号記憶部の基準信号を用いて、同じ基準信号を連続するキズの最短間隔よりも小さい一定の間隔で複数個並べ、各基準信号の振幅を調整して合成した基準信号の合成信号が連続するキズによる渦流探傷信号と一致するように各基準信号の振幅を調整し、基準信号の合成信号と連続するキズによる渦流探傷信号がもっとも一致するときの各基準信号の振幅調整値を求めることを特徴とする。
In order to achieve the object of the present invention, the eddy current flaw detection method according to
The eddy current flaw detection method described in
The eddy current flaw detection method according to
The eddy-current flaw detection device according to
本発明は、レールのきしみ割れのように短い間隔で連続して発生し、その間隔が渦流探傷プローブの分解能以下のキズであっても、各キズの深さを評価することができる。 The present invention can evaluate the depth of each flaw even if it occurs continuously at a short interval such as a crack in the rail and the interval is a flaw less than the resolution of the eddy current flaw detection probe.
レールのきしみ割れにより検出される渦流探傷信号は、複数のキズにより発生する渦流探傷信号の合成渦流探傷信号となるが、きしみ割れの各キズの形状は概ね相似し、間隔や深さが異なっているから、合成渦流探傷信号を生成する各キズの渦流探傷信号は、周波数(周波数成分)が概ね同じで大きさ(振幅)の異なる信号とみなすことができる。したがってきしみ割れの合成渦流探傷信号は、周波数が概ね同じで大きさの異なる複数の渦流探傷信号により合成された信号とみなすことができる。なお各キズの渦流探傷信号の大きさは、キズの深さに対応している。
またキズの間隔は、種々異なるが、従来の調査結果等から最小の間隔は、2mm程度であることが分かっている。
The eddy current flaw detection signal detected by cracks in the rail is a combined eddy current flaw detection signal generated by multiple flaws, but the flaws of the flaw cracks are generally similar, with different spacing and depth. Therefore, the eddy current flaw detection signal of each flaw that generates the combined eddy current flaw detection signal can be regarded as a signal having substantially the same frequency (frequency component) but different magnitude (amplitude). Therefore, the combined eddy current flaw detection signal of the crack can be regarded as a signal synthesized by a plurality of eddy current flaw detection signals having substantially the same frequency but different sizes. The magnitude of the eddy current flaw detection signal of each scratch corresponds to the depth of the scratch.
In addition, although there are various scratch intervals, it has been found that the minimum interval is about 2 mm from the conventional investigation results.
そこで本発明は、きしみ割れは同じ形状のキズが一定の間隔で並んでいると仮定し、1個のキズにより発生する渦流探傷信号(「基準信号」と呼ぶ)を一定間隔(「基準間隔」と呼ぶ)で複数個並べて(一定間隔の基準信号を用いて)、各基準信号の大きさ(振幅)を調整して合成した基準信号の合成信号が実キズの合成渦流探傷信号と一致するように各基準信号の大きさを調整している。そのとき基準信号の大きさを調整した値(「基準信号の振幅調整値」と呼ぶ)は、実キズの大きさを表しているから、基準信号の合成信号と実キズの合成渦流探傷信号が一致したときの各基準信号の振幅調整値を求めれば、実キズの深さを評価することができる。
基準間隔は、実際のキズの発生位置とのずれを最小にするため、レールのきしみ割れの場合、最小の間隔2mmより小さい間隔、例えば1mm、0.5mm等に設定すればよい。
Therefore, the present invention assumes that flaws of the same shape are arranged at regular intervals, and the eddy current flaw detection signal (referred to as “reference signal”) generated by one flaw is constant intervals (“reference interval”). So that the combined signal of the reference signals synthesized by adjusting the size (amplitude) of each reference signal matches the actual flawed eddy current flaw detection signal. The size of each reference signal is adjusted. At this time, the value obtained by adjusting the magnitude of the reference signal (referred to as “reference signal amplitude adjustment value”) represents the magnitude of the actual scratch. Therefore, the synthesized signal of the reference signal and the synthesized eddy current flaw detection signal of the actual scratch are If the amplitude adjustment values of the respective reference signals when they coincide with each other are obtained, the depth of the actual scratch can be evaluated.
The reference interval may be set to a minimum interval smaller than 2 mm, for example, 1 mm, 0.5 mm, or the like in the case of a rail crack, in order to minimize the deviation from the actual scratch generation position.
基準信号を基準間隔で並べた場合、1個の基準信号の波形は、基準間隔離れた隣接する位置にも広がるから、基準間隔毎に各基準信号の振幅を調整し、その振幅を調整した基準信号を位置毎に足し(加算し)、その加算した信号の振幅(大きさ)が実キズの合成渦流探傷信号と一致するように、基準信号を調整することになる。したがって基準信号を並べた位置(基準間隔毎の位置)の振幅調整値は、その位置において重なる基準信号の夫々の振幅調整値を加算した値になる。
本実施の形態においては、レールのきしみ割れを例に説明したが、本発明は、きしみ割れに限らず連続しているキズの間隔が渦流探傷プローブの分解能以下のキズの探傷に有効である。
When the reference signals are arranged at the reference interval, the waveform of one reference signal spreads to adjacent positions that are separated by the reference interval. Therefore, the amplitude of each reference signal is adjusted at each reference interval, and the reference is adjusted. The signal is added (added) for each position, and the reference signal is adjusted so that the amplitude (magnitude) of the added signal matches the actual flawed combined eddy current flaw detection signal. Therefore, the amplitude adjustment value at the position where the reference signals are arranged (position at each reference interval) is a value obtained by adding the amplitude adjustment values of the reference signals that overlap at that position.
In the present embodiment, the crack cracking of the rail has been described as an example. However, the present invention is not limited to the crack cracking, but is effective for flaw detection where the interval between continuous flaws is less than the resolution of the eddy current flaw detection probe.
図1により本発明の渦流探傷信号の合成について説明する。
図1(a)は、基準信号の波形を示し、図1(b)は、図1(a)の基準信号を用いて合成した基準信号の合成信号の波形を示す。
図1(a)は、同じ基準信号Ss1, Ss2を基準間隔ずらして並べた状態を示す。基準信号Ss1の波形は、渦流探傷プローブと基準信号を発生するキズにより決まるから、実際の渦流探傷に用いる渦流探傷プローブを用いて、事前に基準信号(基準信号の波形)を生成して保存しておく。
図1(b)は、基準信号Ss1,Ss2を用いて合成した基準信号の合成信号Sscと、合成信号Sscを生成する2個の信号Ssa,Ssbを示す。信号Ssaは、基準信号Ss1の大きさを1倍した信号に相当し、信号Ssbは、基準信号Ss2の大きさを0.5倍した信号に相当することを示す。
合成信号Sscは、2個の信号Ssa,Ssbに分解することができ、逆に合成信号Sscは、信号Ssa,Ssbにより合成することができる。したがって実キズを探傷して検出した合成渦流探傷信号が基準信号の合成信号Sscに一致するときは、実キズの合成渦流探傷信号は、基準信号Ss1を1倍した信号と基準信号Ss2を0.5倍した信号とを足した(加算した)信号になる。このときの1倍、0.5倍は、基準信号の振幅調整値になる。
なお並べる基準信号の波形を正規化して最大値が1になるようにすれば、振幅調整値は、信号Ssa,Ssbの振幅となる。
The synthesis of the eddy current flaw detection signal of the present invention will be described with reference to FIG.
FIG. 1A shows the waveform of the reference signal, and FIG. 1B shows the waveform of the synthesized signal of the reference signal synthesized using the reference signal of FIG.
FIG. 1A shows a state in which the same reference signals Ss1 and Ss2 are arranged with a reference interval shifted. Since the waveform of the reference signal Ss1 is determined by the eddy current flaw detection probe and the scratch that generates the reference signal, the reference signal (reference signal waveform) is generated and stored in advance using the eddy current flaw detection probe used for actual eddy current flaw detection. Keep it.
FIG. 1B shows a synthesized signal Ssc of a reference signal synthesized using the reference signals Ss1 and Ss2 and two signals Ssa and Ssb that generate the synthesized signal Ssc. The signal Ssa corresponds to a signal obtained by multiplying the size of the reference signal Ss1 by 1, and the signal Ssb represents a signal obtained by multiplying the size of the reference signal Ss2 by 0.5.
The synthesized signal Ssc can be decomposed into two signals Ssa and Ssb, and conversely, the synthesized signal Ssc can be synthesized by the signals Ssa and Ssb. Therefore, when the combined eddy current flaw detection signal detected by flaw detection is coincident with the reference signal composite signal Ssc, the actual flaw eddy current flaw detection signal is obtained by multiplying the reference signal Ss1 by 1 and the reference signal Ss2. The signal is obtained by adding (adding) the signal multiplied by 5. In this case, 1 times and 0.5 times are the amplitude adjustment values of the reference signal.
If the waveforms of the reference signals to be arranged are normalized so that the maximum value is 1, the amplitude adjustment value becomes the amplitude of the signals S sa and S s b.
図1(b)の信号Ssa,Ssbは、基準信号Ss1、Ss2を1倍、0.5倍した信号であることが分かっている例であるが、未知の実キズを探傷する場合、信号Ssa,Ssbは、基準信号Ss1,Ss2を何倍した信号に相当するか、その倍数は、未知数であるから、その倍数は後述する連立方程式により求める。 The signals Ssa and Ssb in FIG. 1B are examples that are known to be signals obtained by multiplying the reference signals Ss1 and Ss2 by 1 and 0.5, but when detecting an unknown actual scratch, the signal Ssa , Ssb corresponds to a signal obtained by multiplying the reference signals Ss1, Ss2 by multiple, and the multiple is an unknown number, and the multiple is obtained by simultaneous equations described later.
図2により本発明の渦流探傷方法の実施例を説明する。
なお図2は、本発明の渦流探傷方法を分かり易く説明するための概念図である。
図2(a)は、基準信号の波形を示し、図2(b)は、被検査体Tの位置n(n=0,1・・4)にキズがある例を示し、図2(c)は、基準信号を位置n(n=0,1・・4)に並べた例を示す。
まず図2(a)の基準信号について説明する。図2(a)の基準信号は、分かり易くするため三角波で表してある。
図2(a)の基準信号の振幅は、位置n=2において最大の1、n=1,3において0.5、n=0,4において0になる。基準信号の振幅は位置nにより異なるから、各位置における振幅の大きさ(1,0.5)を「基準信号の振幅変化値」と呼ぶ。その振幅変化値は、最大になる位置を0として正規化し、am(m=−1,0,1)で表す。
振幅変化値は、図2(a)の場合、n=1,3において0.5、n=0,4において0になるが、使用する渦流探傷プローブや基準信号を発生するキズによりn=1,3において0.5以外の値にあることもあるし、同様にn=0,4において0にならないこともある。基準信号の波形は、使用する渦流探傷プローブにより異なるから、事前に実際の探傷に使用する渦流探傷プローブにより基準信号の波形と振幅変化値を調べて保存しておく。なお振幅変化値は、基準信号の波形により決まる。
An embodiment of the eddy current flaw detection method of the present invention will be described with reference to FIG.
FIG. 2 is a conceptual diagram for easily explaining the eddy current flaw detection method of the present invention.
2A shows the waveform of the reference signal, FIG. 2B shows an example in which the position n (n = 0, 1,... 4) of the object T is scratched, and FIG. ) Shows an example in which the reference signals are arranged at the position n (n = 0, 1,... 4).
First, the reference signal in FIG. The reference signal in FIG. 2A is represented by a triangular wave for easy understanding.
The amplitude of the reference signal in FIG. 2A is 1 at the maximum at position n = 2, 0.5 at n = 1, 3, and 0 at n = 0, 4. Since the amplitude of the reference signal differs depending on the position n, the magnitude (1, 0.5) of the amplitude at each position is referred to as “amplitude change value of the reference signal”. The amplitude change value is normalized by assuming the maximum position as 0 and expressed by am (m = -1, 0, 1).
In the case of FIG. 2A, the amplitude change value is 0.5 when n = 1, 3, and 0 when n = 0, 4. However, n = 1 due to the eddy current flaw probe used and a scratch that generates a reference signal. , 3 may be a value other than 0.5, and may not be 0 at n = 0,4. Since the waveform of the reference signal varies depending on the eddy current flaw detection probe to be used, the reference signal waveform and the amplitude change value are examined and stored in advance by the eddy current flaw detection probe used for actual flaw detection. The amplitude change value is determined by the waveform of the reference signal.
次に図2(c)について説明する。
図2(c)は、位置n=0,1・・4に図2(a)の基準信号を並べてあり、n=0の基準信号をSn0、n=1の基準信号をSn1、n=2の基準信号をSn2、n=3の基準信号をSn3、n=4の基準信号をSn4で表してある。図2(c)の場合、キズのない位置n=3にも基準信号を配置してある。即ちキズの有無に関係なく一定間隔で配置してある。
位置nにおいて重なる基準信号の振幅についてみると、例えば位置がn=2の場合、Sn2の振幅変化値は1、Sn1,3の振幅変化値は0.5、Sn0,4の振幅変化値は0であるから、位置n=2の振幅変化値は、各基準信号の振幅変化値を加算した値になる。しかし図2(c)は、同じ大きさの基準信号を並べてあるから、位置n=2における基準信号の合成信号は、各位置における実キズの合成渦流探傷信号の大きさを反映していない。したがって各位置nにおける基準信号の合成信号は、各位置の基準信号の振幅調整値により調整する必要がある。
ここで位置nにおけるその振幅調整値をxn(n=0,1・・4)、振幅をyn(n=0,1・・4)で表すと、位置n=2における振幅y2は、y2=0.5×x1+1×x2+0.5×x3となる。
振幅y2は、位置n=2における実キズの合成渦流探傷信号の振幅に相当するから、既知の値である。
Next, FIG. 2C will be described.
In FIG. 2 (c), the reference signals of FIG. 2 (a) are arranged at positions n = 0, 1,... 4, the reference signal of n = 0 is Sn0, the reference signal of n = 1 is Sn1, and n = 2. The reference signal is represented by Sn2, the reference signal of n = 3 is represented by Sn3, and the reference signal of n = 4 is represented by Sn4. In the case of FIG. 2C, the reference signal is also arranged at the position n = 3 where there is no scratch. That is, they are arranged at regular intervals regardless of the presence or absence of scratches.
For example, when the position is n = 2, the amplitude change value of Sn2 is 1, the amplitude change value of Sn1, 3 is 0.5, and the amplitude change value of Sn0, 4 is 0 when the position is n = 2. Therefore, the amplitude change value at the position n = 2 is a value obtained by adding the amplitude change values of the respective reference signals. However, since the reference signals of the same magnitude are arranged in FIG. 2C, the reference signal composite signal at the position n = 2 does not reflect the magnitude of the actual flawed composite eddy current flaw detection signal at each position. Therefore, the synthesized signal of the reference signal at each position n needs to be adjusted by the amplitude adjustment value of the reference signal at each position.
Here, when the amplitude adjustment value at the position n is represented by xn (n = 0, 1,... 4) and the amplitude is represented by yn (n = 0, 1,... 4), the amplitude y2 at the position n = 2 is y2 = 0.5 × x1 + 1 × x2 + 0.5 × x3.
The amplitude y2 is a known value because it corresponds to the amplitude of the combined flaw detection signal of the actual flaw at the position n = 2.
図2(c)において、振幅yn(n=0,1・・4)を、振幅調整値xn(n=0,1・・4)、振幅変化値am(m=−1,0,1)で表すと次式になる。
式(1)を行列式で表すと次式になる。
When Expression (1) is expressed as a determinant, the following expression is obtained.
式(2)において、振幅ynは、実キズの合成渦流探傷信号によって決まる既知の値であり、振幅変化値amは、使用する渦流探傷プローブにより決まる既知の値であるから、キズの深さを表す基準信号の振幅調整値xnは、式(2)をxnについて解くことにより求めることができる。
なお図2(b)の被検査体Tのキズの位置は、基準信号を並べる位置と一致しているが、実際にはこのように一致させることはできずにずれが生じる。このずれの影響を小さくするために,基準信号を並べる間隔は,実際のキズ発生間隔よりも狭くとるのがよい。また図2(c)は、基準信号を5個並べた(用いた)例であるが、5個に限らない。基準信号の個数は、渦流探傷プローブの分解能を考慮し、合成渦流探傷信号を生成するキズの個数(渦流探傷プローブが一度に感応するキズの個数)を考慮して決める。
In the equation (2), the amplitude yn is a known value determined by the composite flaw detection signal of the actual flaw, and the amplitude change value am is a known value determined by the eddy current flaw detection probe to be used. The reference signal amplitude adjustment value xn to be expressed can be obtained by solving Equation (2) for xn.
Note that the position of the scratch on the inspection object T in FIG. 2B coincides with the position where the reference signals are arranged, but in reality, it cannot be matched in this way, and a deviation occurs. In order to reduce the influence of this deviation, the interval at which the reference signals are arranged should be narrower than the actual flaw occurrence interval. FIG. 2C shows an example in which five reference signals are arranged (used), but the number is not limited to five. The number of reference signals is determined in consideration of the resolution of the eddy current flaw detection probe and the number of flaws that generate a combined eddy current flaw detection signal (the number of flaws that the eddy current flaw detection probe is sensitive to at one time).
次に図3により、本発明の実施例に係る渦流探傷装置を説明する。
渦流探傷プローブPは、キズFのある被検査体T上を走査し、検出した信号を同期検波器12で同期検波し、ローパスフィルタ13で合成渦流探傷信号を取り出し、位相調整部14で位相調整して時間位置変換部15へ供給する。時間位置変換部15は、エンコーダ11の出力により、渦流探傷プローブPの走査時間との関係で表されている合成渦流探傷信号を、渦流探傷プローブPの走査位置との関係で表される合成渦流探傷信号に変換する。
渦流探傷信号分解部16は、基準信号記憶部17に記憶されている基準信号(基準信号の波形、基準信号の振幅変化値)と渦流探傷プローブPにより検出された合成渦流探傷信号を用いて被検査体Tの各キズの深さを表す基準信号の振幅調整値を算出する。
なおエンコーダ11は、合成渦流探傷信号を渦流探傷プローブPの走査位置との関係で表す必要があるときに使用するから、必要に応じて設ける。
Next, an eddy current flaw detector according to an embodiment of the present invention will be described with reference to FIG.
The eddy current flaw detection probe P scans the inspection target T with the scratch F, synchronously detects the detected signal with the
Eddy current
Since the
次に図4と図5により本発明の渦流探傷方法と渦流探傷装置により、人工キズを形成した試験片について行ったキズの探傷結果を説明する。
試験片は、キズの間隔が2mmで、深さが1mmの試験片(図4(a1))、キズの間隔が6mmで、深さが3mmの試験片(図4(a2))、キズの間隔が2mmで、深さが1mmと3mmのキズが混在する試験片(図4(a3))を用いた。渦流探傷プローブは、相互誘導自己比較方式のものを用い、試験周波数は、800kHzに設定した。また基準信号の間隔(基準間隔)は、0.5mmに設定した。
各試験片を渦流探傷プローブで走査して検出した合成渦流探傷信号は、図4(b)の通りである。
図4(b)において、a1は、図4(a1)の試験片の合成渦流探傷信号を、a2は、図4(a2)の試験片の合成渦流探傷信号を、a3は、図4(a3)の試験片の合成渦流探傷信号を示す。
Next, with reference to FIG. 4 and FIG. 5, the result of flaw detection performed on a test piece in which an artificial flaw is formed by the eddy current flaw detection method and eddy current flaw detection apparatus of the present invention will be described.
The test piece has a scratch interval of 2 mm and a depth of 1 mm (Fig. 4 (a1)), a scratch interval of 6 mm and a depth of 3 mm (Fig. 4 (a2)), A test piece (FIG. 4 (a3)) in which scratches having a distance of 2 mm and a depth of 1 mm and 3 mm were mixed was used. The eddy current flaw detection probe was of the mutual induction self-comparison type, and the test frequency was set to 800 kHz. The reference signal interval (reference interval) was set to 0.5 mm.
A composite eddy current flaw detection signal detected by scanning each test piece with the eddy current flaw detection probe is as shown in FIG.
4B, a1 is a composite eddy current flaw detection signal of the test piece of FIG. 4A1, a2 is a composite eddy current flaw detection signal of the test piece of FIG. 4A2, and a3 is FIG. 4A3. ) Shows the composite eddy current flaw detection signal.
図5は、試験に用いた基準信号と合成渦流探傷信号を分解して算出した渦流探傷信号の波形を示す。
図5において、図5(a)は、基準信号の波形を、図5(b1)は、図4(a1)の試験片の基準信号の振幅調整値(図は電圧で表示してある)を、図5(b2)は、図4(a2)の試験片の基準信号の振幅調整値を、図5(b3)は、図4(a3)の試験片の基準信号の振幅調整値を示す。
図5(b1)〜(b3)の振幅調整値は、図4(a1)〜(a3)の試験片のキズの深さを反映していることが分かる。またキズの深さ3mmの試験片(図4(a2))と深さ1mmと3mmのキズが混在する試験片(図4(a3))の振幅調整値(図5(b2)と(b3))の最大値は、0.19と0.18となるのに対して、深さ1mmのキズのみの試験片(図4(a1))の振幅調整値(図5(b1)の最大値は、0.12であるから、本発明は、密集するキズを適切に評価できることが分かる。
FIG. 5 shows the waveform of the eddy current flaw detection signal calculated by decomposing the reference signal and the synthetic eddy current flaw detection signal used in the test.
5, FIG. 5 (a) shows the waveform of the reference signal, and FIG. 5 (b1) shows the amplitude adjustment value of the reference signal of the test piece of FIG. 5 (b2) shows the amplitude adjustment value of the reference signal of the test piece of FIG. 4 (a2), and FIG. 5 (b3) shows the amplitude adjustment value of the reference signal of the test piece of FIG. 4 (a3).
It can be seen that the amplitude adjustment values in FIGS. 5 (b1) to (b3) reflect the depth of scratches on the test pieces in FIGS. 4 (a1) to (a3). Also, the amplitude adjustment values (FIGS. 5 (b2) and (b3) of the test piece (FIG. 4 (a2)) having a scratch depth of 3 mm and the test piece (FIG. 4 (a3)) having scratches having a depth of 1 mm and 3 mm are mixed. ) Are 0.19 and 0.18, whereas the maximum value of the amplitude adjustment value (FIG. 5 (b1)) of the scratch-only test piece (FIG. 4 (a1)) having a depth of 1 mm is Therefore, it can be seen that the present invention can appropriately evaluate flaws that are densely packed.
11 エンコーダ
12 同期検波器
13 ローパスフィルタ
14 位相調整部
15 時間位置変換部
16 渦流探傷信号分解部
17 基準信号記憶部
11
Claims (4)
渦流探傷信号分解部は、基準信号記憶部の基準信号を用いて、同じ基準信号を連続するキズの最短間隔よりも小さい一定の間隔で複数個並べ、各基準信号の振幅を調整して合成した基準信号の合成信号が連続するキズによる渦流探傷信号と一致するように各基準信号の振幅を調整し、基準信号の合成信号と連続するキズによる渦流探傷信号がもっとも一致するときの各基準信号の振幅調整値を求めることを特徴とする渦流探傷装置。 In the eddy current flaw detector to evaluate the depth of the scratches removed eddy current testing signal by using an eddy-current flaw detection probe, comprising a reference signal storage unit for storing a reference signal and the eddy-current flaw detection signal decomposition unit,
Eddy current signal decomposition unit, by using the reference signal of the reference signal storage unit, arranged plurality in small regular intervals than the shortest distance between the flaw consecutive identical reference signals were synthesized by adjusting the amplitude of each reference signal of each reference signal when the combined signal of the reference signal adjusts the amplitude of each reference signal so as to coincide with the eddy current signal by flaws successive eddy current signal by flaws continuous synthetic signal of the reference signal is most consistent An eddy current flaw detector characterized by obtaining an amplitude adjustment value.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012104249A JP5948003B2 (en) | 2012-04-28 | 2012-04-28 | Eddy current testing method and eddy current testing equipment |
CN201310156099.XA CN103376290B (en) | 2012-04-28 | 2013-04-28 | Eddy-current flaw detecting method and eddy-current crack detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012104249A JP5948003B2 (en) | 2012-04-28 | 2012-04-28 | Eddy current testing method and eddy current testing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013231675A JP2013231675A (en) | 2013-11-14 |
JP5948003B2 true JP5948003B2 (en) | 2016-07-06 |
Family
ID=49461728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012104249A Active JP5948003B2 (en) | 2012-04-28 | 2012-04-28 | Eddy current testing method and eddy current testing equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5948003B2 (en) |
CN (1) | CN103376290B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7200697B2 (en) * | 2019-01-25 | 2023-01-10 | 株式会社島津製作所 | WIRE ROPE INSPECTION DEVICE AND WIRE ROPE INSPECTION METHOD |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0750074B2 (en) * | 1987-02-13 | 1995-05-31 | 株式会社日立製作所 | Eddy current flaw detector capable of thinning inspection |
JPH0815230A (en) * | 1994-06-28 | 1996-01-19 | Mitsubishi Heavy Ind Ltd | Eddy current flaw detecting signal processor |
JPH08220073A (en) * | 1995-02-10 | 1996-08-30 | Mitsubishi Heavy Ind Ltd | Device for evaluating defect-dimension of eddy current flaw-detecting device |
JPH10232486A (en) * | 1997-02-21 | 1998-09-02 | Nikon Corp | Method and device for discriminating pattern kind |
CN1074546C (en) * | 1997-06-26 | 2001-11-07 | 宝山钢铁(集团)公司 | Roller vortex detecting device and its checkout method |
JP2003240761A (en) * | 2002-02-15 | 2003-08-27 | Jfe Steel Kk | Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen |
JP4804006B2 (en) * | 2005-01-06 | 2011-10-26 | 龍夫 廣島 | Flaw detection probe and flaw detection apparatus |
EP2124044B1 (en) * | 2008-05-20 | 2011-09-07 | Siemens Aktiengesellschaft | Method for calculating and evaluating eddy current displays, in particular cracks, in a test object made from a conductive material |
JP5213692B2 (en) * | 2008-12-24 | 2013-06-19 | マークテック株式会社 | Eddy current flaw detection method and eddy current flaw detector |
-
2012
- 2012-04-28 JP JP2012104249A patent/JP5948003B2/en active Active
-
2013
- 2013-04-28 CN CN201310156099.XA patent/CN103376290B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013231675A (en) | 2013-11-14 |
CN103376290A (en) | 2013-10-30 |
CN103376290B (en) | 2017-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5562629B2 (en) | Flaw detection apparatus and flaw detection method | |
JP4863127B2 (en) | Magnetic flaw detection method and magnetic flaw detection apparatus | |
US7389206B2 (en) | Inspection systems and methods of operation | |
JP5462576B2 (en) | Eddy current flaw detector and signal processing method thereof | |
US20140055130A1 (en) | Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method | |
JP5948003B2 (en) | Eddy current testing method and eddy current testing equipment | |
EP2818856B1 (en) | Eddy-current inspection method and device | |
WO2015072365A1 (en) | Eddy current flaw detection device | |
JP4835212B2 (en) | Eddy current flaw detection method and eddy current flaw detection apparatus | |
RU2598777C1 (en) | Method for correction of position of the defect | |
JP4826950B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP5539437B2 (en) | Pure tone inspection apparatus and control method thereof | |
JP7055712B2 (en) | Eddy current flaw detection signal processing equipment, methods and programs | |
JP5611863B2 (en) | Eddy current flaw detector, method, and program | |
JP5615631B2 (en) | Eddy current flaw detection method and eddy current flaw detector | |
JP5948004B2 (en) | Eddy current testing method and eddy current testing equipment | |
KR101123880B1 (en) | A method and system for analyzing noise | |
JP6715570B2 (en) | Pipe flaw detector and pipe flaw detection method | |
JP6299485B2 (en) | Inspection apparatus and inspection method | |
JP2015194419A (en) | Eddy current flaw detection method and eddy current flaw detection device | |
Tse et al. | Corrosion identification of gas pipe risers in buildings using advanced ultrasonic guided waves | |
JP2005114421A (en) | Image processor and surface inspecting method in surface inspection system, and computer program therefor | |
JP6228792B2 (en) | Eddy current flaw detection method and eddy current flaw detector | |
RU113364U1 (en) | DEVICE OF THE VORTEX CONTROL OF THE WORKING SURFACE OF THE RAIL HEAD | |
JP2016090338A (en) | Signal processing device, signal processing program and signal processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5948003 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |