JP5947476B1 - Method for counting Bacillus bacteria - Google Patents

Method for counting Bacillus bacteria Download PDF

Info

Publication number
JP5947476B1
JP5947476B1 JP2016049474A JP2016049474A JP5947476B1 JP 5947476 B1 JP5947476 B1 JP 5947476B1 JP 2016049474 A JP2016049474 A JP 2016049474A JP 2016049474 A JP2016049474 A JP 2016049474A JP 5947476 B1 JP5947476 B1 JP 5947476B1
Authority
JP
Japan
Prior art keywords
bacillus
lattice
bacteria
sample
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016049474A
Other languages
Japanese (ja)
Other versions
JP2016192955A (en
Inventor
青木 正治
正治 青木
修央 牛尼
修央 牛尼
明彦 小林
明彦 小林
昌樹 堀内
昌樹 堀内
Original Assignee
第一公害プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一公害プラント株式会社 filed Critical 第一公害プラント株式会社
Application granted granted Critical
Publication of JP5947476B1 publication Critical patent/JP5947476B1/en
Publication of JP2016192955A publication Critical patent/JP2016192955A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】疎水格子フィルターを利用し、下水に含まれる活性汚泥や、市販のバチルス製剤に含まれるバチルス属細菌の計数を安価でかつ容易に把握することができるバチルス属細菌の計数方法を提供する。【解決手段】バチルス属細菌を含む試料を保持させた疎水格子フィルターを寒天培地に載せて所定時間所定温度で培養させると発色変化したコロニーを形成し、疎水格子フィルターの格子区画内に形成されたコロニーの形態から、バチルス属細菌に基づく陽性区画数を計数する。【選択図】図15Provided is a method for counting Bacillus bacteria, which uses a hydrophobic grid filter and can easily and easily grasp the count of activated sludge contained in sewage and Bacillus bacteria contained in commercially available Bacillus preparations. . When a hydrophobic lattice filter holding a sample containing a Bacillus bacterium is placed on an agar medium and cultured at a predetermined temperature for a predetermined time, a color-changed colony is formed and formed in the lattice compartment of the hydrophobic lattice filter. From the colony morphology, the number of positive compartments based on Bacillus bacteria is counted. [Selection] Figure 15

Description

本発明は、バチルス属細菌の計数方法に関する。   The present invention relates to a method for counting Bacillus bacteria.

し尿処理場では、し尿の高負荷処理が行われるとともに、し尿臭がない運転状況(所謂し尿の高負荷・無臭処理)を実現している。この処理場の活性汚泥を調査したところ、活性汚泥中にバチルス(Bacillus)属細菌の優先化が顕微鏡観察で認められ、バチルス優先化にはケイ酸やマグネシウム等のミネラル成分の関与が必要なことが知られている。   In the human waste treatment plant, high-load processing of human waste is performed, and an operation state (so-called high-load / odorless processing of human waste) that does not have a human waste odor is realized. When the activated sludge of this treatment plant was investigated, the priority of Bacillus bacteria was recognized in the activated sludge by microscopic observation, and the involvement of mineral components such as silicic acid and magnesium was necessary for the priority of Bacillus. It has been known.

このような研究背景をもとに、汚水処理におけるバチルス属細菌の利用、すなわち、バチルス属細菌を活性汚泥中で優先化させて汚水処理を行う「バチルス優先化運動」が提案されている。例えば、新活性汚泥技術研究会(A society for study of New Activated Sludge Technology, NAST、事務局:大阪工業大学(株)エコソリューションネット内)などの
研究会では、バチルス属細菌利用による活性汚泥法の機能改善等に含むシンポジウムが毎年実施されている。この「バチルス優先化運動」のために、バチルス属細菌の分離株から作製した「バチルス製剤」やバチルス属細菌の発育促進剤である「ケイ酸やマグネシウムなどのミネラル剤などが販売されている。例えば、活性汚泥にバチルス製剤を添加した後、継続的にバチルス属細菌の発育促進剤を添加する。このようなバチルス優先化の活性汚泥法により、効率的な活性化汚泥発生量の低減ができるとしている。これはバチルス分離株を用いて実施したin vitro の分解試験によって、効率的にでんぷんやクックドミートが分解された結果から類推していると考えられる。しかし、有機物やたんぱく質を効率的に分解したというin vitro 試験結果だけでは、実際の活性汚泥中で有機物除去機構や汚泥計量化機構にバチルス属細菌がどのように関与しているかは不明である。
Based on such research background, utilization of Bacillus bacteria in sewage treatment, that is, “Bacillus prioritization movement” in which Bacillus bacteria are prioritized in activated sludge to perform sewage treatment has been proposed. For example, in a study group such as A society for study of New Activated Sludge Technology (NAST, secretariat: Osaka Institute of Technology Co., Ltd., Eco Solution Net), an activated sludge method using Bacillus bacteria is used. A symposium is held every year, including functional improvements. For this “Bacillus priority movement”, “Bacillus preparations” prepared from isolates of Bacillus bacteria and “Mineral agents such as silicic acid and magnesium” which are growth promoters of Bacillus bacteria are sold. For example, after adding a Bacillus preparation to activated sludge, a growth promoter for Bacillus bacteria is continuously added.By such activated sludge method with priority to Bacillus, the amount of activated sludge generated can be reduced efficiently. This is thought to be inferred from the results of efficient degradation of starch and cooked meat by in vitro degradation tests performed using Bacillus isolates, but efficiently decomposes organic matter and proteins. The results of the in vitro tests only show how Bacillus bacteria are involved in the organic matter removal mechanism and sludge measurement mechanism in actual activated sludge. It is unknown.

バチルス属細菌は平板寒天培地などで培養すると、バチルス固有の周囲に広がったコロニーを形成してコロニーカウントは困難であるし、バチルスコロニー内に他の細菌のコロニーが隠れて存在する可能性がある。そもそも、バチルス属細菌に共通の分離培地は存在しない、したがって、バチルス属細菌の「優先化」といった場合、(1)活性汚泥を顕微鏡観察してバチルス属細菌様の微生物が大量に存在することや、(2)活性汚泥を寒天培地で培養してバチルス固有コロニーが優先化している状況等を「優先化」と称しているのが現状である。
このように、バチルス属細菌の数量化データである正確な計数値が把握されていないにも関わらず、バチルス製剤の利用によってバチルス優先化運動が行われていることは、「し尿の高負荷・無臭処理施設においてバチルスが優先化している活性汚泥」という現象論やin vitro での分解試験結果等に基づいている。
When Bacillus bacteria are cultured on a plate agar medium etc., colonies spreading around the Bacillus are formed and colony counting is difficult, and colonies of other bacteria may be hidden in the Bacillus colonies . In the first place, there is no separation medium common to Bacillus bacteria. Therefore, in the case of “prioritization” of Bacillus bacteria, (1) Microbial observation of activated sludge and the presence of a large amount of microorganisms like Bacillus bacteria (2) The current situation is that the activated sludge is cultivated on an agar medium and the Bacillus-specific colonies are prioritized and so on are referred to as “priority”.
Thus, despite the fact that accurate counts, which are quantification data of the genus Bacillus, have not been grasped, the fact that Bacillus preferential movement is being carried out by the use of Bacillus preparations means that `` high load of human waste ・This is based on the phenomenology of “activated sludge prioritized by Bacillus in odorless treatment facilities” and in vitro degradation test results.

尚、濁水の処理方法として、均一な孔を有する複数の平板状の濾過体がハウジング内に間隔をおいて互いに対向して配置、収容された濾過モジュールにより、水頭差を利用して、濾過体の間に中和されたセメントを含有する濁水を流して上水試験法による濁度減少率が所定値以上になるように濾過し、逆圧洗浄操作と共に沈殿物を含む濃縮液をハウジングの下部より引き抜くようにした処理方法が提案されている(特許文献1参照)。
また、標準寒天培地で培養される大腸菌群のような暗色コロニーを計数する方法として白色光散乱板を着脱してコントラストを強調することでコロニー数を計測する方法(特許文献2参照)や、培地に予め色素化合物(染色剤)を加えて培養し、蛍光顕微鏡で染色された菌数を数える方法(特許文献3参照)が提案されている。
In addition, as a method for treating muddy water, a plurality of flat filter bodies having uniform holes are disposed in the housing so as to be opposed to each other with a space therebetween, and the filter body utilizes a water head difference to store the filter bodies. The turbid water containing the neutralized cement is poured in between and filtered so that the turbidity reduction rate by the water test method is not less than a predetermined value. A processing method has been proposed in which the paper is further extracted (see Patent Document 1).
In addition, as a method for counting dark colonies such as coliforms cultured on a standard agar medium, a method of measuring the number of colonies by attaching and removing a white light scattering plate and enhancing contrast (see Patent Document 2), a medium A method has been proposed in which a dye compound (staining agent) is added in advance and cultured, and the number of bacteria stained with a fluorescence microscope is counted (see Patent Document 3).

特開2003−144816号公報JP 2003-144816 A 特開2000−270840号公報JP 2000-270840 A 特開平10−201496号公報Japanese Patent Laid-Open No. 10-201496

バチルス属細菌の汚水処理での評価や汚水処理機構に関するバチルスの関与を明らかにするため、すなわち、汚水処理におけるバチルス属細菌の適正な評価のためには、バチルス属細菌を用いた活性汚泥の動力学特性(BOD(Biochemical Oxygen Demand)除去速度、収率係数、自己分解係数)を把握する必要があり、収率係数や自己分解係数の把握とともに、活性汚泥中のバチルス属細菌を正確に定量して評価する必要がある。少なくとも、バチルス属製剤やミネラルを添加した活性汚泥においては、無添加系列に比べてバチルス属細菌が増加し、BOD除去速度が高く、収率係数が低下し、自己分解係数が高くなるような状況でないと、活性汚泥処理においてバチルス属細菌やバチルス製剤が有効であるとは主張できない。   In order to clarify the involvement of Bacillus in the evaluation of sewage treatment of Bacillus bacteria and the mechanism of sewage treatment, that is, for the proper evaluation of Bacillus bacteria in sewage treatment, the power of activated sludge using Bacillus bacteria It is necessary to grasp the chemical characteristics (BOD (Biochemical Oxygen Demand) removal rate, yield coefficient, self-degradation coefficient). In addition to grasping the yield coefficient and self-degradation coefficient, the Bacillus bacteria in the activated sludge are accurately quantified. Need to be evaluated. At least in the activated sludge with the addition of Bacillus and minerals, the situation is that the number of Bacillus bacteria increases, the BOD removal rate is high, the yield factor decreases, and the self-degradation factor increases compared to the additive-free series Otherwise, it cannot be claimed that Bacillus bacteria or Bacillus preparations are effective in activated sludge treatment.

バチルス属細菌の動力学的解析や活性汚泥中でのバチルス属細菌の定量については、ベンチスケールモデルでの動力学的定数算出試験とリアルタイムPCR(Polymerase Chain Reaction)によるバチルス属細菌の定量に関する研究があげられる。この研究は、合成下水を用いた室内実験によって動力学的定数を求めたもので、将来的には実際の処理場における動力学的解析も必要となる。また、バチルス定量に使用したリアルタイムPCRは、測定に熟練を要するとともに高価な機器や多額の分析費用も必要である。費用対効果の点から考えても、活性汚泥処理施設の日常的な維持管理業務での測定項目としては、実施は極めて困難である。   Regarding the kinetic analysis of Bacillus bacteria and the quantification of Bacillus bacteria in activated sludge, there are studies on the kinetic constant calculation using a bench scale model and the quantification of Bacillus bacteria by real-time PCR (Polymerase Chain Reaction). can give. In this study, dynamic constants were obtained by laboratory experiments using synthetic sewage, and in the future, dynamic analysis in actual treatment plants will also be required. In addition, real-time PCR used for Bacillus quantification requires measurement skill, expensive equipment, and large analysis costs. Even from the viewpoint of cost effectiveness, it is extremely difficult to implement as a measurement item in daily maintenance work of activated sludge treatment facilities.

また、下水に含まれる活性汚泥中でのバチルス属細菌の計数については未だに有効な方法が発見されておらず、混釈法により滅菌シャーレに希釈化されたバチルス製剤を添加して平板状に成形した寒天培地を用いて培養した場合、培地に面状に広がってしまい、バチルス属細菌の計数が不可能な状態に陥る。   In addition, no effective method has yet been found for counting Bacillus bacteria in activated sludge contained in sewage, and a Bacillus preparation diluted in a sterile petri dish by the pour method is added to form a flat plate. When culturing using the agar medium, the medium spreads in a planar shape and falls into a state where it is impossible to count Bacillus bacteria.

そこで、本願発明の目的は、高価な機器や分析試薬を使わずに、活性汚泥中のバチルス属細菌の優先度を定量するため、疎水格子フィルターを利用し、下水に含まれる活性汚泥や、市販のバチルス製剤に含まれるバチルス属細菌の計数を安価でかつ容易に把握することができるバチルス属細菌の計数方法を提供することにある。   Therefore, the purpose of the present invention is to use a hydrophobic grid filter to quantify the priority of Bacillus bacteria in activated sludge without using expensive equipment and analytical reagents, It is an object of the present invention to provide a method for counting Bacillus bacteria that can be easily and inexpensively counted for Bacillus bacteria contained in the Bacillus preparation.

本発明は上記目的を達成するため、次の構成を備える。
所定希釈倍率で希釈化されたバチルス属細菌を含む試料を、所定温度で加温して減菌処理する前処理工程と、前記前処理した試料を疎水格子フィルターで濾過して試料中の微生物を疎水格子の区画内に保持させる工程と、所定濃度の酸化還元指示薬を添加して混合することにより平板状に固めた平板状の寒天培地を用意する工程と、前記微生物を保持させた疎水格子フィルターを前記寒天培地に載せて所定時間所定温度で微生物を増殖させて発色変化したコロニーを形成させる培養工程と、前記疎水格子フィルターの格子区画内に形成されたコロニーの形態からバチルス属細菌に基づく陽性区画数を計数する工程と、前記陽性区画数から試料中に含まれるバチルス属細菌の推定含有量を算出する工程と、を含むことを特徴とする。
In order to achieve the above object, the present invention comprises the following arrangement.
A pretreatment step in which a sample containing Bacillus bacteria diluted at a predetermined dilution rate is heated at a predetermined temperature for sterilization, and the pretreated sample is filtered through a hydrophobic lattice filter to remove microorganisms in the sample. A step of holding the cells in the compartment of the hydrophobic lattice, a step of preparing a plate-shaped agar medium hardened in a flat plate shape by adding and mixing a redox indicator having a predetermined concentration, and a hydrophobic lattice filter retaining the microorganisms A culture process in which microorganisms are grown at a predetermined temperature for a predetermined period of time on the agar medium to form color-changed colonies, and from the form of colonies formed in the lattice compartments of the hydrophobic lattice filter, positive based on Bacillus bacteria A step of counting the number of compartments, and a step of calculating an estimated content of Bacillus bacteria contained in the sample from the number of positive compartments.

バチルス属細菌を含む試料を保持させた疎水格子フィルターを寒天培地に載せて所定時間所定温度で培養させると発色変化したコロニーを形成し、疎水格子フィルターの格子区画内に形成されたコロニーの形態から、バチルス属細菌に基づく陽性区画数を容易に計数することができる。   When a hydrophobic lattice filter holding a sample containing a Bacillus bacterium is placed on an agar medium and cultured at a predetermined temperature for a predetermined time, a color-changed colony is formed, and from the form of the colony formed in the lattice compartment of the hydrophobic lattice filter The number of positive compartments based on Bacillus bacteria can be easily counted.

前記試料中に含まれるバチルス属細菌の推定含有量は、総区画数と陽性区画数を用いて試料1mL当たりの最確数MPN(Most Probable Number)法により算出することが好ましい。
これにより、試料中に含まれるバチルス属細菌の推定含有量が定量的に明らかにすることができる。
The estimated content of Bacillus bacteria contained in the sample is preferably calculated by the most probable number MPN (Most Probable Number) method per 1 mL of the sample using the total number of compartments and the number of positive compartments.
Thereby, the estimated content of the Bacillus genus bacteria contained in a sample can be clarified quantitatively.

前記前処理工程では、試料を75℃以上95℃未満の範囲内で所定時間加温処理することにより減菌処理が行われることが望ましい。
これにより、試料中にバチルス属細菌とそれ以外の細菌とを分離してバチルス属細菌のみを生存させて計数し易くなる。
In the pretreatment step, it is desirable that the sterilization treatment is performed by heating the sample within a range of 75 ° C. or more and less than 95 ° C. for a predetermined time.
Thereby, Bacillus bacteria and other bacteria are separated in the sample, and only the Bacillus bacteria are allowed to survive and be counted easily.

前記酸化還元指示薬はトリフェニルテトラゾリウムクロライド(Triphenyl Tetrasolium Chloride : TTC)であって、添加濃度が1.25mg/100ml以上5.00mg/100ml以下で添加されることが望ましい。
これにより、試料中のバチルス属細菌の培養の度合いを適度に遅らせつつ、バチルス属細菌をTTC指示薬により疎水格子の区画内において面状若しくは点状に発色させることで、存在確認がし易くなる。
The redox indicator is triphenyl tetrazolium chloride (TTC), and it is desirable that the addition concentration is 1.25 mg / 100 ml or more and 5.00 mg / 100 ml or less.
Thus, the presence of the Bacillus bacterium in the sample can be easily confirmed by causing the Bacillus bacterium to develop a surface or a point in the hydrophobic lattice compartment with the TTC indicator while appropriately delaying the degree of cultivation of the Bacillus bacterium in the sample.

前記疎水格子フィルターの格子区画内を満たす面状コロニーと格子区画内に点在する点状コロニーのうち、面状コロニーの数を陽性区画数として計数することにより、格子区画内で面状に増殖したものがバチルス属細菌に起因するもので、点状コロニーはそれ以外の細菌(例えばセレウス菌等)であると判定することができ、バチルス属細菌の計数が容易かつ正確に行える。   By counting the number of planar colonies as the number of positive colonies among the planar colonies that fill the grid sections of the hydrophobic grid filter and the dot colonies scattered in the grid sections, it grows in plane in the grid sections This is caused by a Bacillus bacterium, and the punctate colony can be determined to be other bacteria (for example, Bacillus cereus), and the Bacillus bacterium can be easily and accurately counted.

上述したバチルス属細菌の計数方法を用いれば、疎水格子フィルターを利用し、試料である下水に含まれる活性汚泥や、市販のバチルス製剤に含まれるバチルス属細菌の計数を安価でかつ容易に実行することができる。   By using the method for counting Bacillus bacteria described above, a hydrophobic lattice filter is used, and the activated sludge contained in the sewage sample and the Bacillus bacteria contained in a commercially available Bacillus preparation are inexpensively and easily executed. be able to.

疎水格子フィルターの一例を示す写真図である。It is a photograph figure which shows an example of a hydrophobic lattice filter. 図1の疎水格子フィルターを細菌検査装置のホルダーに装着する工程を示す写真図である。It is a photograph figure which shows the process of mounting | wearing the holder of a bacteria test | inspection apparatus with the hydrophobic lattice filter of FIG. 平板培地上のバチルス属細菌コロニーの広がりを示す写真図である。It is a photograph figure which shows the spread of the Bacillus genus bacteria colony on a flat plate culture medium. 指示薬を使用しないで区画内に増殖したコロニーを示す写真図である。It is a photograph figure which shows the colony which grew in the division without using an indicator. TTC(酸化還元指示薬)の赤変原理図である。It is a red-colored principle diagram of TTC (redox indicator). 各種寒天培地へのTTC添加量を示す図表である。It is a chart which shows the amount of TTC addition to various agar media. バチルス製剤の計数値に及ぼすTTC濃度、培地種類、培養法の対比図である。It is a contrast diagram of the TTC density | concentration which affects the count value of a Bacillus formulation, a medium kind, and a culture method. 格子培養法と混釈培養法の比較結果を示す図表である。It is a chart which shows the comparison result of a lattice culture method and a pour culture method. バチルス製剤の希釈倍率の相違によるコロニー形成状況を示す写真図である。It is a photograph figure which shows the colony formation condition by the difference in the dilution rate of a Bacillus formulation. グリセロールストックから調整したセレウス菌の計数結果を示す図表である。It is a graph which shows the count result of the Bacillus cereus adjusted from the glycerol stock. バチルス製剤につきTTC無添加で混釈培養した標準寒天培地の写真図である。It is a photograph figure of the standard agar medium which carried out the pour culture without adding TTC about a Bacillus formulation. バチルス製剤につきTTC無添加で格子F法培養したBHI寒天培地の写真図である。It is a photograph figure of the BHI agar medium culture | cultivated by the lattice F method without TTC addition about a Bacillus formulation. 前処理条件の影響を確認する格子F法培養をBHI寒天培地の写真図である。It is a photograph figure of the BHI agar medium for the lattice F method culture | cultivation which confirms the influence of pretreatment conditions. 培地にTTCを添加した格子F法培養及び混釈培養におけるバチルス属細菌の計数結果を示す図表である。It is a graph which shows the count result of the Bacillus genus bacteria in the lattice F method culture | cultivation which added TTC to the culture medium, and pour culture. 疎水格子区画内における微生物増殖状況の判定基準を示す写真説明図である。It is a photograph explanatory drawing which shows the criteria of the microorganisms growth condition in a hydrophobic lattice division. TTC添加系における格子培養法と混釈培養の計数値の相違を示す図表である。It is a graph which shows the difference in the count value of a lattice culture method and a pour culture in a TTC addition system. 格子F法から求めたMPNに対する前処理温度の影響を示すグラフ図である。It is a graph which shows the influence of the pre-processing temperature with respect to MPN calculated | required from the lattice F method. 格子F法における前処理温度と培地の種類に関する分散分析結果を示す図表である。It is a graph which shows the analysis result regarding the pretreatment temperature and the kind of culture medium in the lattice F method. Kruskal-Wallisによる前処理温度の影響の評価を示すグラフ図である。It is a graph which shows evaluation of the influence of the pretreatment temperature by Kruskal-Wallis. 混釈法における前処理温度と培地の種類に関する分散分析結果を示す図表である。It is a graph which shows the ANOVA result regarding the kind of pretreatment temperature and culture medium in the pour method. 格子F法の面状陽性区画数の割合に対する培地の種類の影響を示す図表である。It is a graph which shows the influence of the kind of culture medium with respect to the ratio of the number of planar positive divisions of the lattice F method. PCR法によるバチルス製剤中のセレウス菌の確認結果を示す写真図である。It is a photograph figure which shows the confirmation result of Bacillus cereus in the Bacillus formulation by PCR method. 活性汚泥に含まれるバチルス属細菌の検出結果を示す写真図である。It is a photograph figure which shows the detection result of the Bacillus genus bacteria contained in activated sludge. 図23に続く活性汚泥に含まれるバチルス属細菌の検出結果を示す写真図である。It is a photograph figure which shows the detection result of the Bacillus genus bacteria contained in the activated sludge following FIG. バチルス属細菌の簡易定量法の流れを示す説明図である。It is explanatory drawing which shows the flow of the simple determination method of a Bacillus genus bacteria.

以下、本発明の一実施形態に係るバチルス属細菌の計数方法について説明する。
先ず、上記計数方法に用いる設備について説明する
Hereinafter, a method for counting Bacillus bacteria according to an embodiment of the present invention will be described.
First, the equipment used for the counting method will be described.

疎水格子フィルターは、例えば疎水格子枠1,600(40×40)区画を備えた孔径0.45μmのアイソグリッドメンブランフィルター(NEOGEN社製ISO-GRID)が用いられ、1枚ずつ無菌状に封印されている(図1参照)。吸引ポンプに連結されたマニホールドに設けられた専用のフィルターホルダーに、疎水格子フィルターをはさんでクランプした後に汚水等の水試料をフィルター上に供給して吸引ろ過すると、水試料中の微生物は疎水格子の囲まれた区画内に保持される。この疎水格子フィルターを平板寒天培地に載せて培養を行うと、微生物は区画内で増殖してコロニーを形成する(図2参照)。   As the hydrophobic lattice filter, for example, an isogrid membrane filter (ISO-GRID manufactured by NEOGEN) having a pore size of 1,600 (40 × 40) sections and having a pore size of 1,600 (40 × 40) is used and sealed one by one aseptically ( (See FIG. 1). When a water sample such as sewage is supplied to the filter after being clamped with a hydrophobic grid filter in a dedicated filter holder provided on the manifold connected to the suction pump, the microorganisms in the water sample are hydrophobic. It is held in a section enclosed by a lattice. When this hydrophobic lattice filter is placed on a plate agar medium and cultured, the microorganisms grow in the compartments to form colonies (see FIG. 2).

なお、水試料中の微生物数が多くなると、一つの区画に二つ以上の細菌などが入る可能性が高くなるため、疎水格子フィルターを用いた計数法とは、コロニーが形成した陽性格子区画枠の区画数を数えて、下式からMPN(Most Probable Number)を算出する。
C(MPN/mL)=N・loge(N/(N-X)・1/V
C;試料1mL当たりの最確数(MPN/mL)
N;フィルターの総区画数(1,600)
X;コロニーが発育している区画数(陽性区画数)
V;検水量(ml)
したがって、疎水格子フィルターを用いた計数法の単位は、Colony Forming Unit (CFU ;コロニー形成単位)ではなく最確数(MPN ; Most Probable Number)となる。
本実施形態では、疎水格子フィルターを利用することによって、バチルス属細菌の増殖時の広がり(スウォーモング)(図3参照)を疎水格子によって防ぎ、混釈培養時のようなコロニーの広がりを防ぐ効果を期待した。
As the number of microorganisms in the water sample increases, there is a high possibility that two or more bacteria will enter one compartment, so the counting method using a hydrophobic lattice filter is a positive lattice compartment frame formed by colonies. MPN (Most Probable Number) is calculated from the following formula.
C (MPN / mL) = N ・ log e (N / (NX) ・ 1 / V
C: The most probable number per mL of sample (MPN / mL)
N: Total number of filter sections (1,600)
X: Number of plots where colonies are growing (number of positive plots)
V: Sample volume (ml)
Therefore, the unit of the counting method using the hydrophobic lattice filter is not the Colony Forming Unit (CFU), but the most probable number (MPN).
In the present embodiment, by using a hydrophobic lattice filter, the effect of preventing the spread of Bacillus bacteria during growth (swarming) (see FIG. 3) by the hydrophobic lattice and preventing the spread of colonies during pour culture. I expected.

次にバチルス属細菌分離のための前処理について説明する。
バチルス属細菌やクロストリジウム属細菌は菌体内に芽胞を形成する。この芽胞は物理化学的処理に対する抵抗性が極めて強く、100℃の加熱にもかなりの時間耐えられる。このため、食品中の芽胞形成菌の検出法として、前処理条件として一定時間の加熱を行って芽胞形成菌以外の細菌を消滅させたのち、生残した芽胞形成菌を培養後検出する。芽胞形成菌であるバチルス属細菌やクロストリジウム属細菌の芽胞を死滅させる加温条件の事例をまとめると、以下のとおりとなる。
Bacillus属芽胞 70℃で30分間
75℃で15分間
80℃で10または30分間
沸騰水中(100℃)で5,10または20〜30分間
Clostridium属芽胞 62.5℃で30分間
75℃で5,10または15分間
70℃で20分間、80℃で5〜10分間
そこで、バチルスのような芽胞形成菌の芽胞は、適切な温度・加熱時間の前処理を行うことで、バチルスを含む芽胞形成菌を計数できると推察した。
Next, pretreatment for separating Bacillus bacteria will be described.
Bacillus and Clostridium bacteria form spores in the cells. These spores are extremely resistant to physicochemical treatment and can withstand heating at 100 ° C. for a considerable amount of time. For this reason, as a method for detecting spore-forming bacteria in food, after heating for a certain period of time as pretreatment conditions to eliminate bacteria other than spore-forming bacteria, surviving spore-forming bacteria are detected after culturing. Examples of heating conditions that kill spores of Bacillus and Clostridium bacteria, which are spore-forming bacteria, are summarized as follows.
Bacillus spores for 30 minutes at 70 ° C
15 minutes at 75 ° C
10 or 30 minutes at 80 ° C
5,10 or 20-30 minutes in boiling water (100 ° C)
Clostridium spore for 30 minutes at 62.5 ℃
5, 10 or 15 minutes at 75 ° C
Therefore, spore-forming bacteria such as Bacillus can be counted for 20 minutes at 70 ° C and by pre-treatment with appropriate temperature and heating time, so that spore-forming bacteria containing Bacillus can be counted. I guessed.

次に疎水格子フィルターの区画内でのコロニー判別について説明する。
コロニーの色調が淡い場合、1,600区画を有するフィルターでの区画数の計数が困難な場合がある。実験当初にバチルス製剤を用いて試験的に疎水格子フィルターでの培養・計数を試みた際、淡い色調のコロニーが得られた(図4参照)。
Next, colony discrimination within the compartment of the hydrophobic lattice filter will be described.
If the color of the colony is light, it may be difficult to count the number of compartments with a filter having 1,600 compartments. At the beginning of the experiment, when trying to culture and count with a hydrophobic grid filter using a Bacillus preparation, colonies with a light color were obtained (see FIG. 4).

活性汚泥の脱水素酵素活性の測定方法では、トリフェニルテトラゾリウムクロライド(Triphenyl Tetrasolium Chloride : TTC)という酸化還元指示薬として用い、これが水素受容体と結合すると無色のTTCが還元される赤色のTF(Triphenyl Formazone)が生じる反応を利用している(図5参照)。そこで、疎水格子フィルターの区画内における微生物発育の有無を明瞭に判定するため、培地に添加するTTCの最適量やその効果についても検討した。   In the method for measuring the dehydrogenase activity of activated sludge, red TF (Triphenyl Formazone), which is used as a redox indicator called Triphenyl Tetrasolium Chloride (TTC), which reduces colorless TTC when bound to the hydrogen acceptor. ) Is used (see FIG. 5). Therefore, in order to clearly determine the presence or absence of microbial growth in the compartment of the hydrophobic lattice filter, the optimum amount of TTC added to the medium and its effect were also examined.

次に培地の選定について説明する。環境系の微生物を測定する際には、高栄養の培地では生育しない場合がある。このため、上水試験法では、低栄養化で増殖をする環境系の水中微生物として、従属栄養細菌数(Heterotrophic Plate Counts;HPC)をR2A培地で測定している。また、高栄養を要求する微生物のための培地としては、Brain Heart Infusion(BHI)寒天培地も利用されている。   Next, selection of a culture medium will be described. When measuring environmental microorganisms, they may not grow on highly nutrient media. For this reason, in the water supply test method, the number of heterotrophic bacteria (Heterotrophic Plate Counts; HPC) is measured in an R2A medium as an environmental aquatic microorganism that proliferates under malnutrition. As a medium for microorganisms that require high nutrition, a Brain Heart Infusion (BHI) agar medium is also used.

本実施形態では、培地の高栄養や低栄養などに関する栄養要求性が不明のため、高栄養の培地としてBHI培地(栄研化学)低栄養の培地としてR2A培地(栄研化学(株)製)、その中間の培地として標準寒天培地(栄研化学(株)製)を使用した。以上述べたとおり、疎水格子フィルターを用いたバチルス属細菌の基礎検討に関わる検討項目は以下のとおりとなる。
(1)疎水格子フィルター使用の効果
対照として、混釈培養との比較検討
(2)芽胞を形成した細菌測定のための加熱条件
対照として、室温温度条件との比較検討
(3)コロニーを赤変させるTTCの効果
対照として、TTC無添加条件との比較検討
(4)培地の栄養状態(高栄養、標準、低栄養)によるコロニー形成比較
In this embodiment, since nutritional requirements regarding high nutrition and low nutrition of the medium are unknown, BHI medium (Eiken Chemical) is used as a high nutrition medium, and R2A medium (Eiken Chemical Co., Ltd.) is used as a low nutrition medium. A standard agar medium (manufactured by Eiken Chemical Co., Ltd.) was used as an intermediate medium. As described above, the examination items related to the basic examination of Bacillus bacteria using a hydrophobic lattice filter are as follows.
(1) Effect of using hydrophobic lattice filter As a control, comparison with pour culture (2) Heating conditions for measurement of bacteria that formed spores As a control, comparative study with room temperature conditions (3) Reddening colonies Effect of TTC to be compared As a control, comparison with TTC-free condition (4) Comparison of colony formation according to nutrient condition (high nutrition, standard, low nutrition) of medium

以下、実験材料及び実験方法について説明する。
(A)供試微生物
(1)バチルス製剤
市販のバチルス製剤を使用した。このバチルス製剤を使用する際、以下の検討を行って適切な希釈倍率を把握した。尚、バチルス製剤に代えて下水処理場の活性汚泥を含む汚水であってもよい。
1)クリーンベンチ内でバチルス剤1mlを採取し、9mlの減菌希釈水に加え10倍希釈水を作成した(10倍希釈法)、このような10倍希釈段階操作を必要回数繰り返して106倍までの希釈バチルス製剤試料を作成した。
2)102倍〜106倍に希釈した希釈バチルス製剤試料各1mlを減菌シャーレに添加し、標準寒天培地を用いた混釈培養を行った。なお、この操作は、一つの希釈段階について3回実施した。
3)混釈培養を行った培地は、35℃で24時間培養し、各希釈段階のコロニー数を把握し、計数可能なバチルスコロニー(過度な広がりを持たないコロニー形成をしたもの)が得られた希釈倍率を求めた。
(2)バチルス標準株
し尿処理、下水処理、生活排水処理で検出されるバチルス属細菌は、主に以下の種であると報告されている)。
1) Bacillus cereus
2) Bacillus licheniformis
3) Bacillus megaterium
4) Bacillus pumilus
5) Bacillus subtilis
6) Bacillus thuringiensis
Hereinafter, experimental materials and experimental methods will be described.
(A) Test microorganism (1) Bacillus preparation A commercially available Bacillus preparation was used. When using this Bacillus preparation, the following examination was conducted to grasp an appropriate dilution factor. In addition, it may replace with a Bacillus formulation and the sewage containing the activated sludge of a sewage treatment plant may be sufficient.
1) 1 ml of a Bacillus agent was collected in a clean bench, and 10-fold diluted water was prepared in addition to 9 ml of sterilized diluted water (10-fold dilution method). Such a 10-fold dilution step operation was repeated 10 6 times. Up to double dilution Bacillus formulation samples were made.
2) 1 ml of each diluted Bacillus preparation sample diluted 10 2 times to 10 6 times was added to a sterilized petri dish and subjected to pour culture using a standard agar medium. This operation was performed three times for one dilution stage.
3) The culture medium subjected to pour culture was cultured at 35 ° C for 24 hours, and the number of colonies at each dilution stage was determined to obtain a Bacillus colony that could be counted (one that formed colonies that did not spread excessively). The dilution ratio was determined.
(2) Bacillus standard strain Bacillus bacteria detected in human waste treatment, sewage treatment and domestic wastewater treatment are reported to be mainly the following species).
1) Bacillus cereus
2) Bacillus licheniformis
3) Bacillus megaterium
4) Bacillus pumilus
5) Bacillus subtilis
6) Bacillus thuringiensis

本実施形態では、Bacillus cereus(以下、セレウス菌と称す)IFO3466株を用いて、以下の手順でグリセロールストックを作り、必要に応じて使用した。
1)酵母エキス0.25g、カゼイン製ペプトン0.5g、ブドウ糖0.1gを含む液体培地100mlを作製し、中試験管に10mlずつ分注した後、121℃、20分のオートクレーブ減菌を行った。この液体培地は、標準寒天培地から寒天成分を除いた液体培地である。
2)セレウス菌IFO3466保存株を標準寒天培地に塗抹培養(35℃、24時間)して得られた単一コロニーを白金耳で採取し、これを液体培地に植種した後、再度35℃、24時間の培養を行った。
3)セレウス菌IFO3466が増殖した液体培地をボルテックス撹拌した後、減菌済み80%グリセリンと液体培養液を等量混合して、40%のグリセロールストック液を調整した。このグリセロールストック液は−80℃のディープフリーザーに保存した。
なお、セレウス菌溶液使用時の最適な希釈倍率は、バチルス製剤のときの手法に準じて行った。このときの菌液は、セレウス菌のコロニー3個を10mlの減菌希釈水に分散させて調整した。
In this embodiment, a glycerol stock was prepared according to the following procedure using Bacillus cereus (hereinafter referred to as Bacillus cereus) IFO3466 strain and used as necessary.
1) 100 ml of a liquid medium containing 0.25 g of yeast extract, 0.5 g of casein peptone, and 0.1 g of glucose was prepared, and 10 ml each was dispensed into a medium test tube, and then autoclaved at 121 ° C. for 20 minutes. This liquid medium is a liquid medium obtained by removing agar components from a standard agar medium.
2) A single colony obtained by smear culture (35 ° C., 24 hours) of a stock strain of Bacillus cereus IFO3466 on a standard agar medium was collected with a platinum loop and inoculated into a liquid medium. The culture was performed for 24 hours.
3) After vortexing the liquid medium in which Bacillus cereus IFO3466 was grown, an equal amount of sterilized 80% glycerin and liquid culture solution were mixed to prepare a 40% glycerol stock solution. This glycerol stock solution was stored in a deep freezer at -80 ° C.
In addition, the optimal dilution rate at the time of using a Bacillus cereus solution was performed according to the method at the time of a Bacillus formulation. The bacterial solution at this time was prepared by dispersing three colonies of Bacillus cereus in 10 ml of sterilized diluted water.

(3)無芽胞形成菌
芽胞を形成しない細菌としては、ヒトから分離した大腸菌を使用した。大腸菌のグリセロールストックは、セレウス菌と同様な方法で作製した。また、グリセロールストックを用いて得られたコロニー3個を10mlの減菌希釈水に分解させて菌液を作製した。大腸菌の確認には、酵素基質培地であるコンパクトドライEC(大腸菌は青、大腸菌群は赤のコロニー、ニッスイ製)を使用した。
(3) Non-spore-forming bacteria As bacteria that do not form spores, E. coli isolated from humans was used. A glycerol stock of E. coli was prepared in the same manner as for Bacillus cereus. In addition, three colonies obtained using glycerol stock were decomposed into 10 ml of sterilized diluted water to prepare a bacterial solution. For confirmation of E. coli, a compact dry EC (E. coli is blue, E. coli group is red colony, manufactured by Nissui), which is an enzyme substrate medium, was used.

(B)培地について
高栄養培地としてはBHI寒天培地(パールコア(登録商標)ブレインハートインフュジョン寒天培地‘栄研’)を、標準栄養培地としては、標準寒天培地(パールコア(登録商標)標準寒天培地‘栄研’[E-MB65])を、低栄養培地としては、R2A寒天培地(R2A寒天培地‘栄研’[E-MB68])を使用した。それぞれの培地の調整方法は、メーカーの処方にしたがった。
(B) Medium The BHI agar medium (Pearl Core (registered trademark) Brain Heart Infusion Agar 'Eiken') is used as the high nutrient medium, and the standard agar medium (Pearl Core (registered trademark) standard agar medium) is used as the standard nutrient medium. “Eiken” [E-MB65]) was used as the low nutrient medium, and R2A agar medium (R2A agar medium “Eiken” [E-MB68]) was used. Each medium was prepared according to the manufacturer's prescription.

(C)TTC溶液量の検討(予備試験)
培地に添加するTTCの量は、以下の予備試験を行って決定した。
(1)TTC溶液の作製
1)TTC(2.3.5Triphenyltetazolium Chloride)0.25gを電子天秤で量りとって試験管に入れ、精製水を10ml加えた後よく混合した。
2)クリーンベンチ内でTTCをビーカーに移し、それをシリンジで吸い取った後、ろ過減菌(0.22μm)を行い、15mlの減菌チューブに保存した。
(2)各種寒天培地へのTTC溶液の添加
平板に固めていないBHI寒天培地、標準寒天培地、R2A寒天培地について、下表の添加濃度(培地100mlあたりのTTC添加量(mg))となるように、前述のTTC溶液を各寒天培地(凝固前)に添加して静かに混合した。TTC添加量を図6の図表に示す。
(C) Examination of TTC solution amount (preliminary test)
The amount of TTC added to the medium was determined by conducting the following preliminary test.
(1) Preparation of TTC solution 1) 0.25 g of TTC (2.3.5 Triphenyltetazolium Chloride) was weighed with an electronic balance and put into a test tube, and 10 ml of purified water was added and mixed well.
2) The TTC was transferred to a beaker in a clean bench, sucked with a syringe, sterilized by filtration (0.22 μm), and stored in a 15 ml sterilized tube.
(2) Addition of TTC solution to various agar media For BHI agar medium, standard agar medium, and R2A agar medium not solidified on the plate, the addition concentrations shown in the table below (addition amount of TTC (mg) per 100 ml of medium) The above TTC solution was added to each agar medium (before coagulation) and gently mixed. The amount of TTC added is shown in the chart of FIG.

(3)予備試験方法
1)疎水格子フィルターを用いた計数方法と混釈法による計数方法の違い2)TTC添加量の違い3)使用する培地の違い、を各々検討した。また、供試微生物と培養条件は、適度に希釈したバチルス製剤1mlとし、35℃で24時間培養した。疎水格子フィルターを用いたろ過培養(以下、「格子F法」という)と混釈法による具体的な培養方法は、以下のとおりとした。
(3) Preliminary test method 1) Difference between counting method using hydrophobic lattice filter and counting method by pour method 2) Difference in TTC addition amount 3) Difference in medium used. The test microorganism and culture conditions were 1 ml of a suitably diluted Bacillus preparation and cultured at 35 ° C. for 24 hours. Specific culture methods by filtration culture using a hydrophobic lattice filter (hereinafter referred to as “lattice F method”) and the pour method were as follows.

[格子F法]
1)TTC添加条件を変えたBHI寒天培地、標準寒天培地、R2A寒天培地をあらかじめ作製した。
2)適度に希釈した希釈バチルス製剤を作製した。
3)フィルタレーションマニホールドに減菌済みのフィルタレーションユニットを取り付け、ピンセットで疎水格子フィルターをフィルタレーションユニットにセットした後、ユニット・クランプで固定した。
4)希釈バチルス製剤(105倍希釈)1mlを90mlの減菌希釈水に加えよく混合した後、フィルタレーションユニットに注ぎ、吸引ろ過を行った。これは、疎水格子フィルターの一部に微生物が固まるのを防ぐためである。
5)ピンセットで疎水フィルターを取り出し、あらかじめ作製した平板寒天培地上に密着させるように載せ、所定の温度と時間の培養を行った。
[Lattice F method]
1) BHI agar medium, standard agar medium, and R2A agar medium with different TTC addition conditions were prepared in advance.
2) A diluted diluted Bacillus preparation was prepared.
3) A sterilized filtration unit was attached to the filtration manifold, a hydrophobic lattice filter was set on the filtration unit with tweezers, and then fixed with a unit clamp.
4) 1 ml of diluted Bacillus preparation (10 5 fold dilution) was added to 90 ml of sterilized diluted water, mixed well, then poured into a filtration unit and subjected to suction filtration. This is to prevent microorganisms from solidifying in a part of the hydrophobic lattice filter.
5) The hydrophobic filter was taken out with tweezers and placed in close contact with a previously prepared flat plate agar medium and cultured at a predetermined temperature and time.

[混釈法]
必要事項を記入した減菌シャーレに、希釈バチルス製剤(105倍希釈)1ml添加したのち、適温まで冷めた寒天培地を20ml〜25mml程度加え、静かにかつ十分に混釈して平板状に固め、[格子F法]と同様な条件で培養した。
[Pounding method]
Add 1 ml of diluted Bacillus preparation (diluted 10 5 times) to a sterilized petri dish filled with the necessary information, add about 20 ml to 25 mml of agar medium cooled to the appropriate temperature, and gently and thoroughly mix and harden into a flat plate The cells were cultured under the same conditions as in [Lattice F method].

(D)バチルス製剤の計数試験(本試験:[格子F法]の検討)
適度に希釈したバチルス製剤を使用し、以下の条件の組み合わせによる本試験を実施した。この検討実験では、組み合わせ条件(前処理加温4条件×培地3条件×TTC有無2条件×培養方法2条件の組み合わせ)一つについて、3回の繰り返しを行い、計数が可能な場合には3回の幾何平均を求めた。なお、比較・対象試験として、セレウス菌(標準株)や大腸菌(無芽胞細菌)の計数試験を、バチルス製剤と同様な実験条件の組み合わせでおこなった。
1)前処理加温条件
室温条件をコントロールとし、75℃、85℃、95℃の加温条件を設定した。いずれの加温条件でも、加温時間は15分に統一した。尚、加温時間は、15分より長くても短くてもよい。
2)培地
BHI寒天培地、標準寒天培地、R2A寒天培地の3種類の培地を使用した。
3)TTCの有無
予備試験で設定した添加濃度のTTCを上記の各培地に加えた「添加系列」と、TTCを添加しない「無添加系列」の2条件を設定した。
4)培養方法
[格子F法]もしくは[混釈法]を用いて、35℃で24時間培養した。
なお、[格子F法]における小区画でのコロニー、の形成状況(小さなコロニー、区画内に面上に広がったコロニー、疎水格子を乗り越えたコロニー)や平板でのコロニー形成状況も観察した。
[格子F法]で得られた陽性区画数からはMPNを算出し、[混釈法]でのコロニーからはCFUを算出し、これらの値を必要に応じて常用対数に変換した後、統計処理を行った。
(D) Counting test of Bacillus preparations (this test: examination of [Lattice F method])
Using a moderately diluted Bacillus preparation, this test was performed under a combination of the following conditions. In this examination experiment, one combination condition (combination of pretreatment warming 4 conditions × medium 3 conditions × TTC presence / absence 2 conditions × culture method 2 conditions) was repeated 3 times, and if counting was possible, 3 The geometric mean of the times was obtained. In addition, as a comparison / target test, a count test of Bacillus cereus (standard strain) and Escherichia coli (non-spore bacterium) was performed under a combination of experimental conditions similar to those of the Bacillus preparation.
1) Pretreatment heating conditions The room temperature conditions were set as controls, and heating conditions of 75 ° C, 85 ° C, and 95 ° C were set. Regardless of the heating conditions, the heating time was unified to 15 minutes. The heating time may be longer or shorter than 15 minutes.
2) Medium
Three types of media were used: BHI agar, standard agar, and R2A agar.
3) Presence / absence of TTC Two conditions were set: an “addition series” in which TTC having an addition concentration set in the preliminary test was added to each medium, and an “no addition series” in which TTC was not added.
4) Culture method The cells were cultured at 35 ° C. for 24 hours using the [Lattice F method] or [Pour method].
In addition, the formation status of colonies in small compartments in [Lattice F method] (small colonies, colonies spread on the surface in the compartments, colonies that crossed the hydrophobic lattice) and colony formation status on the flat plate were also observed.
MPN is calculated from the number of positive compartments obtained by [Lattice F method], CFU is calculated from colonies by [Pour method], and these values are converted to common logarithms as necessary. Processed.

(E)統計処理
IBM(株)製の統計解析ソフトであるSPSS STATISTICS ver.22を使用した。
(E) Statistical processing
SPSS STATISTICS ver.22 which is statistical analysis software made by IBM Corporation was used.

[実験結果及び考察]
(A)TTC添加濃度の決定
実験開始時には、活性汚泥の脱水素酵素活性測定(下水試験方法)では、活性汚泥の脱水素酵素活性を測定する際、TTCを以下のとおり添加するよう、定められている。
活性汚泥10mlあたりTTC(5mg/ml)を1ml添加
→活性汚泥10mlあたりTTC 5mg添加
上記の濃度を活性汚泥100mlあたりに換算するとTTC 50mgとなるため、実験開始当初は、この濃度に準拠してTTCの添加濃度設定をした。
[Experimental results and discussion]
(A) Determination of TTC addition concentration At the start of the experiment, the measurement of activated sludge dehydrogenase activity (sewage test method) specifies that TTC should be added as follows when measuring the dehydrogenase activity of activated sludge. ing.
Add 1ml of TTC (5mg / ml) per 10ml of activated sludge
→ Addition of 5 mg of TTC per 10 ml of activated sludge As the above concentration is converted to 100 mg of activated sludge, the concentration of TTC was set based on this concentration at the beginning of the experiment.

しかし、このTTC添加濃度で、バチルス製剤の培養を行うと、コロニーが全く生育しない結果となったため、TTC濃度、培地の種類、培養法(混釈法もしくは格子F法)を変動要因として予備試験を行った。
この予備試験結果は、図7に示す表1に示すとおりであるが、バチルス製剤の希釈倍率:10の5乗倍、検水量:1ml、培養温度:35℃、培養時間:24時間とし、[格子F法]では、陽性の格子区画数をMPNに変換している。
However, when the Bacillus preparation was cultured at this TTC addition concentration, colonies did not grow at all, so the TTC concentration, the type of medium, and the culture method (pour method or lattice F method) were used as preliminary factors. Went.
The results of this preliminary test are as shown in Table 1 shown in FIG. 7, but the dilution ratio of the Bacillus preparation is 10 to the fifth power, the sample volume is 1 ml, the culture temperature is 35 ° C., the culture time is 24 hours, In the lattice F method], the number of positive lattice sections is converted to MPN.

TTCの添加濃度は、25mg/100mlを超えると、バチルス製剤中の微生物の成長を大きく阻害することがわかる。また、12.5mg/100mlでは、培養法や培地の種類によって、計数値(CFUやMPN)に影響を与える場合もあった。TTCを添加しない条件や、0.5mg/100mlの条件では、R2A培地において微生物数が計測できない状況となった。したがって、1.25mg/100ml〜5.00mg/100mlの3条件が数値に影響を与えない範囲と考えられた。本実験では、この範囲の数値の中間値である2.5mg/100mlを、今後の実験で使用するTTC添加条件とした。 It can be seen that when the added concentration of TTC exceeds 25 mg / 100 ml, the growth of microorganisms in the Bacillus preparation is greatly inhibited. In addition, at 12.5 mg / 100 ml, the count value (CFU and MPN) might be affected depending on the culture method and the type of medium. Under conditions where TTC was not added or 0.5 mg / 100 ml, the number of microorganisms could not be measured in the R2A medium. Therefore, it was considered that three conditions of 1.25 mg / 100 ml to 5.00 mg / 100 ml do not affect the numerical value. In this experiment, 2.5 mg / 100 ml, which is an intermediate value in this range, was used as the TTC addition condition to be used in future experiments.

格子F法と混釈培養における計数値の違いを、ノンパラメトリックス検定のFreidmanの分布比較で行ったところ、有意差が認められた(P=0.000)(図8参照)。したがって、格子F法と混釈培養での計数値には違いが生じる傾向が見られたが、これは、コロニー数を計数する混釈法と陽性格子の区画数からMPN換算を行って計数値を求めていること、すなわち、CFUとMPNという単位の違いに起因する可能性も否めない。   When the difference between the count values in the lattice F method and the pour culture was performed by Freidman's distribution comparison of the nonparametric test, a significant difference was observed (P = 0.000) (see FIG. 8). Therefore, there was a tendency for the count values to differ between the lattice F method and the pour culture. This is because the MPN conversion is based on the pour method that counts the number of colonies and the number of sections of the positive lattice. There is a possibility that it is caused by the difference in the unit of CFU and MPN.

一方、計数値(CFU若しくはMPN)に及ぼす培地の種類の影響については、ノンパラメトリックス検定であるKruskal-Wallisの比較を行ったが、有意差は認められなかった(MPN:P値=0.958、CFU:P値=0.890)。したがって、バチルス製剤中の微生物数は(主にバチルス属細菌と推察される)を計数する場合、培地の栄養状態(高栄養、標準、低栄養)の違いによって計数値は変わらないと考えられた。ただし、本試験においても、培地の種類の要因については引き続き検討を行った。   On the other hand, the effect of the type of medium on the count value (CFU or MPN) was compared with Kruskal-Wallis, which is a nonparametric test, but no significant difference was found (MPN: P value = 0.958, CFU : P value = 0.890). Therefore, when counting the number of microorganisms in the Bacillus preparation (presumably Bacillus genus bacteria), it was considered that the count value did not change due to the difference in nutrient state (high nutrition, standard, low nutrition) of the medium . In this study, however, the factors of the type of medium were continuously examined.

(B)供試菌液の適切な希釈倍率の決定
(1)バチルス製剤
バチルス製剤は、周囲に広がるコロニーを形成するため、コロニーカウントが困難であることは既に述べたとおりである。しかし、コロニーカウントが困難ながらも、混釈時におおよそのコロニーカウントが可能な希釈倍率を検討したところ、以下の結果を得た(別紙写真図9参照)。
したがって、バチルス製剤を使用した本試験では、10の5乗倍の希釈を行って、実験に使用した。この数値は、予備試験のときと同じ値であるため、バチルス製剤中の微生物数は比較的安定して保持されているものと推察された。
(B) Determination of Appropriate Dilution Ratio of Test Bacterial Solution (1) Bacillus Preparation As the Bacillus preparation forms colonies spreading around, it is difficult to count colonies as described above. However, the following results were obtained when examining the dilution ratio at which an approximate colony count was possible at the time of pouring, although the colony count was difficult (see the attached photograph Fig. 9).
Therefore, in this test using a Bacillus preparation, a dilution of 10 to the fifth power was performed and used for the experiment. Since this value is the same value as in the preliminary test, it was assumed that the number of microorganisms in the Bacillus preparation was maintained relatively stably.

(2)セレウス菌
グリセロールストックから培養したセレウス菌のコロニー3個を10mlの減菌希釈水に分解させたところ、以下の計数値となった(図10;表2参照)
したがって、セレウス菌の希釈倍率は10の5乗倍希釈を目安として100CFU前後の計数値が得られるように調整したセレウス菌液を目標とした。
(2) Bacillus cereus When 3 colonies of Bacillus cereus cultured from glycerol stock were decomposed into 10 ml of sterilized diluted water, the following count values were obtained (see FIG. 10; Table 2).
Therefore, the dilution rate of Bacillus cereus was targeted to the Bacillus cereus solution adjusted so that a count value of around 100 CFU was obtained with 10 5 times dilution as a guide.

(3)大腸菌(無芽胞細菌)
グリセロールストックから培養した大腸菌のコロニー3個を10mlの減菌希釈水に分解させコンパクトドライECでコロニー数を確認したところ、105倍希釈1mlの菌液で79CFU及び80CFUの計数値が得られた。したがって、この希釈倍率を本試験での希釈倍率とした。
(3) Escherichia coli (non-spore bacterium)
When checking the number of colonies in a compact dry EC to decompose the three colonies of E. coli cultured from glycerol stocks into sterile dilution water 10 ml, the count value of 79CFU and 80CFU were obtained in bacterial solution of 10 5 fold dilutions 1ml . Therefore, this dilution rate was used as the dilution rate in this test.

(C)格子F法の計数値に及ぼす各種要因の検討
(1)バチルス製剤
1)TTCを培地に添加しない場合、混釈法ではバチルス様細菌が平板寒天培地全体に広がって、計数が不可能な状態となった。(図11参照)。
また、格子F法においても、TTCを添加しないと疎水格子を乗り越えてバチルス様細菌が増殖するため、計数が不可能となった(図12参照)
(C) Examination of various factors affecting the count value of the lattice F method (1) Bacillus preparation 1) When TTC is not added to the medium, Bacillus-like bacteria spread throughout the plate agar medium and counting is impossible with the pour method. It became a state. (See FIG. 11).
In addition, even in the lattice F method, if TTC is not added, the Bacillus-like bacteria grow over the hydrophobic lattice, making counting impossible (see FIG. 12).

格子F法培養において前処理温度条件を変えて培養した事例について図13に示す。図13に示すように各温度条件において、コロニー数が10程度の計数値と類推されるが、このような現象が数百程度の計数状態で発生すると、1,600の区画数を持つ格子フィルター法の測定が、意味がないものとなることは容易に想像できる。また、図11及び図12のようなキャリーオーバ現象は、いずれの培地(BHI培地、標準寒天培地、R2A培地)でも観察された。
なお、このように計数は不可能であったが、前処理条件である75℃・15分、85℃・15分、95℃・15分のいずれの場合も、対象試験である室温条件と同様なバチルス様細菌の増殖が認められた。したがって、75℃〜95℃で15分の加熱条件に耐性があるバチルスの芽胞が、バチルス製剤には含有されていることが確認された。
FIG. 13 shows an example in which the pretreatment temperature condition is changed in the lattice F method culture. As shown in FIG. 13, in each temperature condition, the number of colonies is estimated to be a count value of about 10, but when such a phenomenon occurs in a count state of about several hundreds, the lattice filter method having a partition number of 1,600 is used. It can be easily imagined that the measurement is meaningless. Further, the carry-over phenomenon as shown in FIGS. 11 and 12 was observed in any medium (BHI medium, standard agar medium, R2A medium).
Although counting was not possible in this way, the pretreatment conditions of 75 ° C / 15 minutes, 85 ° C / 15 minutes, and 95 ° C / 15 minutes were the same as the room temperature conditions of the target test. The growth of new Bacillus-like bacteria was observed. Therefore, it was confirmed that the Bacillus preparation contains bacillus spores that are resistant to heating conditions at 75 ° C to 95 ° C for 15 minutes.

2)TTC添加系列
一方、TTCを添加した場合、図14の表3に示すように、格子F法及び混釈培養法のいずれの場合でも、バチルス製剤中のバチルス属細菌の計数が可能となることがわかる。表3に、前処理温度条件、培養方法(混釈法・格子F法)培地の種類の組み合わせ条件下におけるバチルス属細菌の計数結果を対比して示す。ただし、本表においては、格子区画枠内にて平面状に増殖したものを面状コロニー(記号:面)、格子区画枠内にて点状に増殖したものを点状コロニー(記号:点)と称している。「面」もしくは「点」の区別を行う判定は、例えば図15の写真図に示す格子区画内で発色したコロニーの形態に準拠している。
2) TTC addition series On the other hand, when TTC is added, as shown in Table 3 of FIG. 14, it is possible to count Bacillus genus bacteria in the Bacillus preparation in both cases of the lattice F method and the pour culture method. I understand that. Table 3 shows a comparison of the count results of Bacillus bacteria under the combined conditions of pretreatment temperature conditions and culture methods (pour method / lattice F method) medium types. However, in this table, a planar colony (symbol: plane) is a planar colony (symbol: plane), and a dot colony (symbol: dot) is a point colony within the grid partition frame. It is called. The determination for distinguishing “surface” or “point” is based on, for example, the form of colonies that develop color in the lattice section shown in the photograph of FIG.

また、図14の表3に示すデータから、格子F法と混釈培養における計数値の違いをノンパラメトリックス検定のFreidmanの分布比較で行ったところ、有意差が認められた(P=0.000)(図16参照)。
したがって、[格子F法]と[混釈法]とでは、培養での計数値には違いが生じる傾向があり、予備試験結果と同様な傾向が認められた。これは、[混釈法]と[格子F法]の違い以外にCFUとMPNという単位の違いに起因する可能性もあり、さらに検討を要する。
Further, from the data shown in Table 3 of FIG. 14, when the difference between the count values in the lattice F method and the pour culture was performed by Freidman's distribution comparison of the nonparametric test, a significant difference was observed (P = 0.000) ( (See FIG. 16).
Therefore, the [Lattice F method] and the [Powder method] tend to have a difference in the count value in the culture, and the same tendency as the preliminary test result was recognized. This may be due to the difference in units of CFU and MPN in addition to the difference between the [Powder Method] and [Lattice F Method], and further examination is required.

次に、[格子F法]で求めた全ての(点状+面状)陽性区画数から算出したMPN数の常用対数値について、繰り返しのない二元配置分散分析を行ったところ、以下の散布図(図17参照)と検定結果(図18;表4参照)が得られた。
これらの結果から、前処理温度95℃としたとき、格子F法から算出したMPN値は、室温、75℃、85℃の各条件よりも低下することがわかった。多重比較から、85℃と95℃の温度条件間の有意差のP値は0.041であった。
また、図19に示すKruskal-Wallisの検定による比較でも、95℃の前処理温度において、格子F法から算出したMPN値が低下することが確認された。(P=0.017)。
したがって、バチルス製剤中の微生物数(主にバチルス属細菌と推察される)を計数する場合、95℃の前処理条件は、他の前処理条件と異なることを十分に認識する必要がある。
Next, when the two-way analysis of variance without repetition was performed on the common logarithm values of the MPN number calculated from the number of all (spot + plane) positive sections obtained by [Lattice F method], the following dispersion was performed. A figure (see FIG. 17) and a test result (see FIG. 18; Table 4) were obtained.
From these results, it was found that when the pretreatment temperature was 95 ° C., the MPN value calculated from the lattice F method was lower than the room temperature, 75 ° C., and 85 ° C. conditions. From the multiple comparison, the P value of the significant difference between the temperature conditions of 85 ° C and 95 ° C was 0.041.
Further, it was confirmed that the MPN value calculated from the lattice F method was lowered at the pretreatment temperature of 95 ° C. also by comparison with the Kruskal-Wallis test shown in FIG. (P = 0.017).
Therefore, when counting the number of microorganisms in a Bacillus preparation (presumably mainly Bacillus bacteria), it is necessary to fully recognize that the pretreatment conditions at 95 ° C. are different from other pretreatment conditions.

しかし、図20の表5に示すように、混釈法におけるコロニー数の常用対数値について、前処理温度と培地の種類を要因とした二元配置分散分析を行ったところ、前処理温度と培地の種類のいずれについても有意差は認められなかった。
格子F法における面状陽性区画の割合を、図21に示すKruskal-Wallisで比較したところ、R2A培地において、その割合が低下する、すなわち、点状陽性区画数が増えることが分かった。(P=0.049)。
点状の陽性区画も培養時間を延長すれば、やがて面状陽性区画となる(データ示さず)。したがって、低栄養の培地であるR2A培地を用いると、バチルス製剤中のバチルス様細菌の成長が遅くなることがわかった。すなわち、面状陽性区画内での微生物の増殖速度を増加させて、読み取り易くするためには、標準寒天培地やBHI寒天を用いる必要がある。ただし、今回の実験では、バチルス製剤中のバチルス属細菌の正確な個数を測定していないため、正確度はわからない。読みやすいからといって正確であるという理屈はなりたたないため、今後はこの正確度の他、精密度を含めて検討を行い、より適切な培地を選択する必要がある。
However, as shown in Table 5 of FIG. 20, the common logarithm of the number of colonies in the pour method was subjected to a two-way analysis of variance based on the pretreatment temperature and the type of medium. There was no significant difference in any of the types.
When the ratio of planar positive compartments in the lattice F method was compared with Kruskal-Wallis shown in FIG. 21, it was found that the ratio decreased in R2A medium, that is, the number of dotted positive compartments increased. (P = 0.049).
If the culture time is extended for the punctate positive compartment, it will eventually become a planar positive compartment (data not shown). Therefore, it was found that the growth of Bacillus-like bacteria in the Bacillus preparation is slowed when the R2A medium, which is a low nutrient medium, is used. That is, it is necessary to use a standard agar medium or BHI agar in order to increase the growth rate of microorganisms in the planar positive section and make it easy to read. However, in this experiment, the exact number of Bacillus bacteria in the Bacillus preparation was not measured, so the accuracy is unknown. Because it is easy to read, there is no reason to be accurate, so in the future, it will be necessary to examine not only this accuracy but also precision and select a more appropriate medium.

(2)セレウス菌
75℃15分、85℃15分、95℃15分の前処理を行ったところ、加温によって、セレウス菌が死滅し、格子F法及び混釈法のいずれも、計数値が得られなかった。したがって、芽胞形成菌といえども平板培養によって栄養体となったものは、その後の熱処理によって死滅する。
検出対象と考えている環境試料には、芽胞の状態と栄養体の状態の両社のバチルス属細菌が存在するため、栄養体のバチルス属細菌の芽胞を形成させる前処理条件(例えば50℃程度で一定時間加熱する)を格子F法の前処理条件に加える(芽胞形成のための加温→無芽胞細菌の殺菌するための加温→測定)必要がある。
(2) Bacillus cereus
When pretreatment was performed at 75 ° C. for 15 minutes, 85 ° C. for 15 minutes, and 95 ° C. for 15 minutes, the Bacillus cereus was killed by heating, and neither the lattice F method nor the pour method could obtain count values. . Therefore, even though spore-forming bacteria, those that have become nutrients by plate culture are killed by subsequent heat treatment.
The environmental samples that are considered to be detected include Bacillus bacteria from both companies in the spore state and the nutritional state. Therefore, pretreatment conditions (for example, at about 50 ° C) are used to form spores of the Bacillus genus trophozoites. It is necessary to add (heat for a certain period of time) to the pretreatment conditions of the lattice F method (heating for spore formation → heating for sterilization of non-spore bacteria → measurement).

(3)大腸菌(無芽胞細菌)
無芽胞細菌が、75℃15分、85℃15分、95℃15分の前処理で殺減可能か否かを、大腸菌を用いて検討した。格子F法では、TTC添加系列及びTTC無添加系列のいずれでも、加温を行うことによって、3種の培地の上面に置いた疎水格子フィルターにおいて、試料に含まれる微生物の発育を阻害することができた。
1)格子F法
TTC添加系列 :3種類の培地とも加温条件下でコロニー不検出
無添加系列 :3種類の培地とも加温条件下でコロニー不検出
ただし、混釈培養の場合は、加温後でも、以下の事例数が極めて少数(1例あたり10個以下)の微小なコロニーが生残することがあった
2)混釈法
TTC添加系列
75℃ BHI寒天培地 3例中1例
標準寒天培地 不検出
R2A寒天培地 3例中1例
85℃ 3種類の培地とも不検出
95℃ BHI寒天培地 3例中2例
標準寒天培地 3例中3例
R2A寒天培地 3例中1例
無添加系列
75℃ 3種類の培地とも不検出
85℃ BHI寒天培地 3例中1例
標準寒天培地 不検出
R2A寒天培地 不検出
95℃ BHI寒天培地 3例中2例
標準寒天培地 3例中2例
R2A寒天培地 3例中1例
ただし、これらのコロニーが大腸菌ではなかったことを、コンパクトドライECを使って確認した。格子F法では、混釈法のような微小なコロニーが形成されることはないが、混釈法で95℃の前処理条件下で、TTC添加・無添加にかかわらず、微小なコロニーが形成されることを考えると、95℃の条件は使用しない方が、無芽胞細菌の検出確率を、より一層低下させることができると推察された。
(3) Escherichia coli (non-spore bacterium)
Whether Escherichia coli can be killed by pretreatment at 75 ° C. for 15 minutes, 85 ° C. for 15 minutes, and 95 ° C. for 15 minutes was examined using E. coli. In the lattice F method, it is possible to inhibit the growth of microorganisms contained in the sample in the hydrophobic lattice filter placed on the upper surface of the three types of media by heating in both the TTC addition series and the TTC non-addition series. did it.
1) Lattice F method
TTC addition series: No colonies detected under warming conditions for all 3 types of media No addition series: No colonies detected under heating conditions for all 3 types of media However, in the case of pour culture, the following A very small number of cases (less than 10 per case) could survive. 2) Pour method
TTC addition series
75 ℃ BHI agar medium 1 of 3 cases Standard agar medium Not detected
R2A agar medium 1 of 3 cases
Not detected in 3 types of medium at 85 ℃
95 ° C BHI agar medium 2 cases in 3 cases Standard agar medium 3 cases in 3 cases
R2A agar medium 1 out of 3 cases
75 ° C Not detected in all three media
85 ℃ BHI agar medium 1 of 3 cases Standard agar medium Not detected
R2A agar medium Not detected
95 ° C BHI agar medium 2 cases in 3 cases Standard agar medium 2 cases in 3 cases
R2A agar medium 1 of 3 cases However, it was confirmed using compact dry EC that these colonies were not E. coli. In the lattice F method, microcolonies are not formed as in the pour method, but in the pretreatment conditions of 95 ° C in the pour method, microcolonies are formed regardless of whether TTC is added or not. In view of this, it was speculated that the detection probability of non-spore bacteria could be further reduced by not using the 95 ° C. condition.

(D)バチルス製剤中のセレウス菌の確認
本実験では、バチルス属細菌を構成するバチルス菌の一つの種としてセレウス菌の標準株(IFO3466)を用いた。実験方法では特に述べていないが、バチルス製剤中にセレウス菌が存在することをTaKaRa Bacillus cereus(CRSgene)PCR Detectionキットを用いて検出したところ、以下の結果が得られた(図22参照)。なお、PCR反応条件等はキットで述べられた条件とした。
図22からわかるとおり、バチルス製剤のバンドは、ネガティブコントロールと同じく、内部コントロールの起因するバンドのみであり、ポジティブコントロールと同じバンドは検出されなかった。したがって、バチルス製剤中には、セレウス菌は存在しないことが分かった。今後の検討では、バチルス製剤中に存在するバチルス属細菌について種までの特定が必要と考えられる。
(D) Confirmation of Bacillus cereus in Bacillus preparation In this experiment, a Bacillus bacterium standard strain (IFO3466) was used as one species of Bacillus bacteria constituting Bacillus bacteria. Although not specifically stated in the experimental method, the presence of Bacillus cereus in the Bacillus preparation was detected using the TaKaRa Bacillus cereus (CRSgene) PCR Detection Kit, and the following results were obtained (see FIG. 22). The PCR reaction conditions were the same as described in the kit.
As can be seen from FIG. 22, the band of the Bacillus preparation was only the band resulting from the internal control, as in the negative control, and the same band as the positive control was not detected. Accordingly, it was found that Bacillus cereus was not present in the Bacillus preparation. In future studies, it is considered necessary to identify the species of Bacillus genus bacteria present in the Bacillus preparation.

(E)活性汚泥におけるバチルス属細菌の推定
疎水格子フィルターを用いた検出法はまだ確立されていないが、バチルス優先化運動を行っている活性汚泥処理施設(長野県長野市の知久平地区にある農業集落排水処理施設の第1系列・第2系列、以下、「知久平1系列処理」、「知久平2系列処理」と称す)の活性汚泥中のバチルス様細菌の検出を、バチルス優先化運動を行っていない活性汚泥処理施設(長野県長野市の細新地区にあたる農業集落は排水処理施設、以下、細新処理と略す)を対照として試みた(図23,図24参照)。
(E) Estimation of bacteria belonging to the genus Bacillus in activated sludge A detection method using a hydrophobic lattice filter has not been established yet, but an activated sludge treatment facility that conducts the Bacillus priority movement (agriculture in the Chikudaira district of Nagano City, Nagano Prefecture) Detecting Bacillus-like bacteria in activated sludge of the first and second series of village wastewater treatment facilities (hereinafter referred to as “Chikuhei 1 series treatment” and “Chikuhira 2 series treatment”) There was no activated sludge treatment facility (agricultural settlements in the Shinno area of Nagano City, Nagano Prefecture, a wastewater treatment facility, hereinafter abbreviated as “new treatment”) as a control (see FIGS. 23 and 24).

バチルス様細菌を検出するための前処理温度条件は85℃・15分とし、対象温度条件は室温とした。また、培地はBHI寒天培地を用い、活性汚泥中の微生物量をMLVSS(mg/L)で推定した。本来であれば、活性汚泥の粒子を分散させるため超音波破砕を行うが、超音波破砕の影響を検討していないため、活性汚泥試料を十分に混合し、それを104倍に希釈したものを1ml使用した。
1)バチルス優先化運転処理施設
知久平1系列処理(MLVSS : 4,660ml/L)
加温処理での陽性区画数:4→4MPN
対照処理での陽性区画数:16→16MPN
バチルス存在率=4/16=25%
バチルス量=4MPN×104/ml / 4.66mg/ml=8,600MPN/mg
知久平2系列処理(MLVSS:4500mg/L)
加温処理での陽性区画数:1→1MPN
対照処理での陽性区画数:27→27MPN
バチルス存在率=1/27=4%
バチルス量=1MPN×104/ml / 4.5mg/ml=2,200MPN/mg
2)通常の活性汚泥処理
細新処理(MLVSS : 5600mg/L)
加温処理での陽性区画数:2→2MPN
対照処理での陽性区画数:19→19MPN
バチルス存在率=2/19=11%
バチルス量=2MPN×104/ml / 5.6mg/ml=3,600MPN/mg
したがって、知久平1系列にて、通常の活性汚泥処理よりもバチルス属細菌が存在する可能性が示唆されたが、活性汚泥中のバチルス属細菌の量の適正な把握には、さらに検討が必要となる。
The pretreatment temperature condition for detecting Bacillus-like bacteria was 85 ° C for 15 minutes, and the target temperature condition was room temperature. Moreover, the BHI agar medium was used as the medium, and the amount of microorganisms in the activated sludge was estimated by MLVSS (mg / L). Originally, ultrasonic crushing is performed to disperse particles of activated sludge, but since the influence of ultrasonic crushing has not been studied, the activated sludge sample is thoroughly mixed and diluted 10 4 times. 1 ml was used.
1) Bacillus priority operation processing facility Chikyudaira 1 series processing (MLVSS: 4,660ml / L)
Number of positive compartments with heating treatment: 4 → 4MPN
Number of positive compartments in control treatment: 16 → 16MPN
Bacillus presence rate = 4/16 = 25%
Bacillus amount = 4MPN × 10 4 / ml / 4.66mg / ml = 8,600MPN / mg
Chikuhei 2 series processing (MLVSS: 4500mg / L)
Number of positive compartments with heating treatment: 1 → 1MPN
Number of positive compartments in control treatment: 27 → 27MPN
Bacillus presence rate = 1/27 = 4%
Bacillus amount = 1MPN x 10 4 / ml / 4.5mg / ml = 2,200MPN / mg
2) Normal activated sludge treatment Renewed treatment (MLVSS: 5600mg / L)
Number of positive compartments with heating treatment: 2 → 2MPN
Number of positive compartments in control treatment: 19 → 19MPN
Bacillus presence rate = 2/19 = 11%
Bacillus amount = 2MPN x 10 4 / ml / 5.6mg / ml = 3,600MPN / mg
Therefore, in the Chikuhei 1 series, it was suggested that there was a possibility that Bacillus spp. Existed more than normal activated sludge treatment. Become.

[まとめ]
疎水格子フィルターを用いて、市販のバチルス製剤中のバチルス属細菌の存在量を推定する基礎研究を行ったところ、バチルス属細菌の簡易定量の可能性が示された。この研究で得られた知見を要約すると、以下のとおりとなる。
(1)TTCを適量添加すると、疎水格子区画の赤色変化とともに、バチルス属細菌固有のコロニーの広がりを抑制する効果もあった。
(2)疎水格子フィルターを用いた計数法と混釈による計数法の間には、有意差が認められた。ただし、MPNとCFUの表示法の違いの可能性もある。
(3)95℃・15分の前処理温度条件は、他の温度条件よりも低い計数値を示す傾向があった。したがって、75℃・15分や85℃・15分の条件と95℃・15分の条件は分けて考える必要がある。
(4)R2A培地を用いた場合、疎水格子フィルターの区画内での細菌の増殖速度が普通の寒天培地やBHI寒天培地よりも遅くなる傾向であった。
(5)無芽胞細菌は、75℃・15分以上の前処理条件で殺滅することができると考えられる。しかし、混釈培養の95℃・15分の条件で、微小コロニーが形成したことから、加温条件は75℃〜85℃が適切と推察された。
(6)活性汚泥のバチルス属細菌を検出する際、活性汚泥の破砕分散条件を検討し、栄養体のバチルス属細菌の芽胞形成条件も検討する必要がある。
(7)芽胞形成菌を対象とした加温条件では、バチルス属細菌の他、クロストリジウムなども生残する。今後は、疎水格子フィルターの陽性区画内に存在する細菌がバチルスか否かの分離・同定に関わる研究が必要である。
[Summary]
A basic study for estimating the abundance of Bacillus bacteria in a commercially available Bacillus preparation using a hydrophobic lattice filter showed the possibility of simple quantification of Bacillus bacteria. The following is a summary of the findings from this study.
(1) When an appropriate amount of TTC was added, there was an effect of suppressing the spread of colonies unique to the genus Bacillus together with the red color change of the hydrophobic lattice section.
(2) A significant difference was observed between the counting method using a hydrophobic lattice filter and the counting method using pour. However, there may be a difference in the display method of MPN and CFU.
(3) The pretreatment temperature condition at 95 ° C. for 15 minutes tended to show a lower count value than the other temperature conditions. Therefore, it is necessary to consider the conditions of 75 ° C for 15 minutes and 85 ° C for 15 minutes separately from those for 95 ° C for 15 minutes.
(4) When R2A medium was used, the growth rate of bacteria in the compartment of the hydrophobic lattice filter tended to be slower than that of ordinary agar medium or BHI agar medium.
(5) It is thought that the sporeless bacteria can be killed under pretreatment conditions of 75 ° C. and 15 minutes or more. However, since microcolonies were formed under the conditions of 95 ° C for 15 minutes in pour culture, it was assumed that the heating condition was 75 ° C to 85 ° C.
(6) When detecting Bacillus bacteria in activated sludge, it is necessary to examine the conditions for crushing and dispersing activated sludge, and to examine the conditions for spore formation of Bacillus bacteria in the nutrients.
(7) Under heating conditions for spore-forming bacteria, clostridium and the like survive in addition to Bacillus bacteria. In the future, research on separation and identification of whether or not the bacteria present in the positive compartment of the hydrophobic lattice filter are Bacillus is necessary.

ここで、図25を参照して、汚泥試料に含まれる全細胞数に対する芽胞細胞の割合を検出するバチルス属細菌の簡易定量法の一例について説明する。
まず、試料として氷冷した汚泥試料を二つ用意する。前処理工程として第1の試料は、氷冷したままとし、第2の試料は、85℃で15分間加温する(これにより無芽胞細胞(栄養細胞)が殺滅する)。前処理工程を経た第1,第2の試料を氷冷したまま各々段階希釈(例えば10の5乗倍希釈)し、疎水格子フィルターによる濾過を行って、試料中の微生物を疎水格子の区画内に保持させる。TTC試薬を添加した標準寒天培地を用意し、上述した第1,第2の試料を保持した疎水格子フィルターを載せて、例えば37℃で24時間培養して各々コロニーを形成させる。
Here, with reference to FIG. 25, an example of a simple method for quantifying Bacillus bacteria that detects the ratio of spore cells to the total number of cells contained in the sludge sample will be described.
First, two ice-cooled sludge samples are prepared as samples. As a pretreatment step, the first sample is kept ice-cooled, and the second sample is heated at 85 ° C. for 15 minutes (this kills non-spore cells (vegetative cells)). The first and second samples that have undergone the pretreatment process are each diluted in stages (for example, diluted to the fifth power of 10) while being ice-cooled, and filtered through a hydrophobic lattice filter to remove microorganisms in the sample within the compartment of the hydrophobic lattice. To hold. A standard agar medium to which a TTC reagent has been added is prepared, and the above-described hydrophobic lattice filter holding the first and second samples is placed thereon and cultured, for example, at 37 ° C. for 24 hours to form colonies.

上述した第1,第2の試料の疎水格子フィルターの格子区画内に形成されたコロニーの形態から陽性格子数を計数する。陽性格子数の計数は、最確数MPN(Most Probable Number)法による。前処理工程の相違(加温するか否か)から、第1の試料(加温せず)には、栄養細胞と芽胞細胞の双方を含む格子数(全細胞格子数)が検出される。また第2の試料(加温処理)には、芽胞細胞のみの格子数(芽胞細胞格子数)が検出される。この結果、芽胞細胞格子数を全細胞格子数で除算することで、全細胞に含まれる芽胞細胞の割合を簡易な定量法で算出することができる。
尚、汚泥に含まれるバチルス属細菌の強熱減量(VSS)を定量的に求める場合には、予め試料を有機性ろ過膜であるメンブレンフィルター(MF)でろ過し、メンブレンフィルター(MF)に捕捉された物質を所定温度で乾燥させ、質量を測定して浮遊物質量(SS)を求める。この浮遊物質量(SS)を求めた後、例えば600±25℃で30分間強熱し、残渣の質量を測定して強熱減量(VSS)を求めるという工程が必要になる。
The number of positive lattices is counted from the form of colonies formed in the lattice sections of the hydrophobic lattice filters of the first and second samples described above. The number of positive lattices is counted by the most probable number MPN (Most Probable Number) method. From the difference in the pretreatment process (whether heating is performed), the number of lattices (total cell lattice number) including both vegetative cells and spore cells is detected in the first sample (not heated). Further, in the second sample (heating treatment), the number of lattices (spore cell lattice number) of only spore cells is detected. As a result, the ratio of spore cells contained in all cells can be calculated by a simple quantitative method by dividing the number of spore cell lattices by the number of all cell lattices.
When quantitatively determining the loss on ignition (VSS) of bacteria belonging to the genus Bacillus contained in sludge, the sample is filtered in advance with a membrane filter (MF), which is an organic filtration membrane, and captured by the membrane filter (MF). The dried material is dried at a predetermined temperature, and the mass is measured to determine the amount of suspended solids (SS). After obtaining the amount of suspended solids (SS), for example, a step of igniting at 600 ± 25 ° C. for 30 minutes and measuring the mass of the residue to obtain the loss on ignition (VSS) is required.

以上説明したように、バチルス属細菌の計数方法を用いれば、疎水格子フィルターを利用し、下水に含まれる活性汚泥や、市販のバチルス製剤に含まれるバチルス属細菌の計数を安価でかつ容易に把握することができる。   As explained above, using the method for counting Bacillus bacteria, using a hydrophobic grid filter, it is possible to easily and inexpensively grasp the count of activated sludge contained in sewage and Bacillus bacteria contained in commercially available Bacillus preparations. can do.

Claims (5)

所定希釈倍率で希釈化されたバチルス属細菌を含む試料を、所定温度で加温して減菌処理する前処理工程と、
前記前処理した試料を疎水格子フィルターで濾過して試料中の微生物を疎水格子の区画内に保持させる工程と、
所定濃度の酸化還元指示薬を添加して混合することにより平板状に固めた平板状の寒天培地を用意する工程と、
前記微生物を保持させた疎水格子フィルターを前記寒天培地に載せて所定時間所定温度で微生物を増殖させて発色変化したコロニーを形成させる培養工程と、
前記疎水格子フィルターの格子区画内に形成されたコロニーの形態からバチルス属細菌に基づく陽性区画数を計数する工程と、
前記陽性区画数から試料中に含まれるバチルス属細菌の推定含有量を算出する工程と、を含むことを特徴とするバチルス属細菌の計数方法。
A pretreatment step in which a sample containing Bacillus bacteria diluted at a predetermined dilution rate is heated at a predetermined temperature and sterilized;
Filtering the pretreated sample with a hydrophobic lattice filter to retain microorganisms in the sample within the compartment of the hydrophobic lattice;
Preparing a plate-shaped agar medium solidified by adding a redox indicator of a predetermined concentration and mixing, and
A culture step of placing the hydrophobic lattice filter holding the microorganism on the agar medium and growing the microorganism at a predetermined temperature for a predetermined time to form a color-changed colony;
Counting the number of positive compartments based on Bacillus bacteria from the form of colonies formed in the lattice compartments of the hydrophobic lattice filter;
Calculating the estimated content of Bacillus bacteria contained in the sample from the number of positive compartments, and a method for counting Bacillus bacteria.
前記試料中に含まれるバチルス属細菌の推定含有量は、総区画数と陽性区画数を用いて試料1mL当たりの最確数MPN(Most Probable Number)法により算出する請求項1記載のバチルス属細菌の計数方法。   The estimated content of Bacillus bacteria contained in the sample is calculated by the most probable number MPN (Most Probable Number) method per 1 mL of the sample using the total number of compartments and the number of positive compartments. Counting method. 前記前処理工程では、試料を75℃以上95℃未満の範囲内で所定時間加温処理することにより減菌処理が行われる請求項1記載のバチルス属細菌の計数方法。   The method for counting Bacillus bacteria according to claim 1, wherein in the pretreatment step, the sterilization treatment is performed by heating the sample within a range of 75 ° C or more and less than 95 ° C for a predetermined time. 前記酸化還元指示薬はトリフェニルテトラゾリウムクロライド(Triphenyl Tetrasolium Chloride : TTC)であって、添加濃度が1.25mg/100ml以上5.00mg/100ml以下で添加される請求項1記載のバチルス属細菌の計数方法。   The method for counting Bacillus bacteria according to claim 1, wherein the oxidation-reduction indicator is triphenyl tetrazolium chloride (TTC) and is added at a concentration of 1.25 mg / 100 ml to 5.00 mg / 100 ml. 前記疎水格子フィルターの格子区画内を満たす面状コロニーと格子区画内に点在する点状コロニーのうち、面状コロニーの数を陽性区画数として計数する請求項1記載のバチルス属細菌の計数方法。   The counting method of the Bacillus genus bacteria of Claim 1 which counts the number of planar colonies as the number of positive divisions among the planar colonies which fill in the lattice division of the said hydrophobic lattice filter, and the dotted | punctate colony scattered in a lattice division. .
JP2016049474A 2015-03-31 2016-03-14 Method for counting Bacillus bacteria Active JP5947476B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070635 2015-03-31
JP2015070635 2015-03-31

Publications (2)

Publication Number Publication Date
JP5947476B1 true JP5947476B1 (en) 2016-07-06
JP2016192955A JP2016192955A (en) 2016-11-17

Family

ID=56329476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049474A Active JP5947476B1 (en) 2015-03-31 2016-03-14 Method for counting Bacillus bacteria

Country Status (1)

Country Link
JP (1) JP5947476B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775126B (en) 2020-08-05 2022-08-21 生展生物科技股份有限公司 Method for detecting the number of spore lactic acid bacteria in a sample containing complex microorganisms and its use
CN115753313B (en) * 2022-11-15 2023-06-30 河南农业大学 Integrated suction filtration device and method suitable for separating and enriching spores in meat products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
JPH09508802A (en) * 1994-02-15 1997-09-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Quick readout biological indicator
JPH11346759A (en) * 1998-06-09 1999-12-21 Nippon Millipore Kk Counting of lactobacillus heterohiochii
JP2003180395A (en) * 2001-10-11 2003-07-02 Kikkoman Corp Method for detecting microorganism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
JPH09508802A (en) * 1994-02-15 1997-09-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Quick readout biological indicator
JPH11346759A (en) * 1998-06-09 1999-12-21 Nippon Millipore Kk Counting of lactobacillus heterohiochii
JP2003180395A (en) * 2001-10-11 2003-07-02 Kikkoman Corp Method for detecting microorganism

Also Published As

Publication number Publication date
JP2016192955A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
Ren et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments
Bartscht et al. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community
Wang et al. Isolation and characterization of low nucleic acid (LNA)-content bacteria
Bussmann et al. Factors influencing the cultivability of lake water bacteria
Zhu et al. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems
EP2789692B1 (en) Method for measuring cells, and reagent for cell measurement
CN110129406A (en) A kind of pseudomonas aeruginosa chromogenic culture medium and the method quickly detected using it
EP2262907B1 (en) Detection and enumeration of microorganisms
CN100507525C (en) Rapid microbiological detection and reagent for environmental water body
Shahamat et al. Evaluation of liquid media for growth of Helicobacter pylori
Yu et al. Diversity and annual variation of phytoplankton community in Yesso scallop (Patinopecten yessoensis) farming waters of North Yellow Sea of China
Zacharias et al. Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu
JP5947476B1 (en) Method for counting Bacillus bacteria
Wang et al. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system
JP2010082590A (en) Simple measuring method for bacillus bacteria
Nybroe Assessment of metabolic activity of single bacterial cells—new developments in microcolony and dehydrogenase assays
Abulreesh et al. Recovery of thermophilic campylobacters from pond water and sediment and the problem of interference by background bacteria in enrichment culture
CN102517231A (en) Manganese oxidizing microbe separating and screening method
Liu et al. Pork juice promotes biofilm formation in Listeria monocytogenes
Janssen New cultivation strategies for terrestrial microorganisms
Jimenez Microorganisms in the environment and their relevance to pharmaceutical processes
Arjes et al. Biosurfactant production maintains viability in anoxic conditions by depolarizing the membrane in Bacillus subtilis
CN113929221B (en) Microorganism composite flora for treating aquaculture tail water
Mezule et al. Effect of labile organic carbon on growth of indigenous Escherichia coli in drinking water biofilm
Konagai et al. A search for effective microorganisms in garbage treatment

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R150 Certificate of patent or registration of utility model

Ref document number: 5947476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250