JP5946699B2 - Evaluation method of moisture permeation barrier function - Google Patents

Evaluation method of moisture permeation barrier function Download PDF

Info

Publication number
JP5946699B2
JP5946699B2 JP2012125649A JP2012125649A JP5946699B2 JP 5946699 B2 JP5946699 B2 JP 5946699B2 JP 2012125649 A JP2012125649 A JP 2012125649A JP 2012125649 A JP2012125649 A JP 2012125649A JP 5946699 B2 JP5946699 B2 JP 5946699B2
Authority
JP
Japan
Prior art keywords
skin
barrier function
spectrum
raman
tewl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012125649A
Other languages
Japanese (ja)
Other versions
JP2013250174A (en
Inventor
教男 清水
教男 清水
中川 典昭
典昭 中川
酒井 進吾
進吾 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012125649A priority Critical patent/JP5946699B2/en
Publication of JP2013250174A publication Critical patent/JP2013250174A/en
Application granted granted Critical
Publication of JP5946699B2 publication Critical patent/JP5946699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、皮膚の水分透過バリア機能の評価方法に関する。   The present invention relates to a method for evaluating the moisture permeation barrier function of skin.

皮膚は、体内からの水分や生体成分の損失、及び外部からの異物の進入を防ぐ機能を有しており、これらは皮膚のバリア機能と呼ばれている。特に水分の損失に係わる皮膚の水分透過バリア機能が低下すると、乾燥や肌荒れなどの皮膚トラブルを生じることから、化粧料を塗布して皮膚をケアすることは、美容分野において非常に重要である。皮膚の水分透過バリア機能を評価する方法として、経表皮水分蒸散量(Transepidermal water loss:TEWL)の測定が広く用いられている。TEWLを測定して皮膚の水分透過バリア機能を正しく把握することは、化粧品の研究や化粧品による美容方法の研究等、美容分野において有用である。 The skin has a function of preventing the loss of moisture and biological components from the inside of the body and the entry of foreign substances from the outside, and these are called skin barrier functions. In particular, since skin troubles such as dryness and rough skin are caused when the moisture permeation barrier function of the skin related to the loss of moisture is lowered, it is very important in the beauty field to apply skin care to the skin. As a method for evaluating the water permeability barrier function of the skin, the transepidermal water loss (T rans e pidermal w ater l oss: TEWL) is measured widely used. It is useful in the field of beauty, such as research on cosmetics and research on beauty methods using cosmetics, by measuring TEWL and correctly grasping the moisture permeable barrier function of the skin.

従来のTEWL測定としては、両端が開口した円筒式プローブの一方に皮膚を接触させ、プローブ内部に設置された温湿度センサを利用し、皮膚表面から蒸散する水分量を測定する方法が存在する。この方法を採用した測定装置として、Courage+Khazaka社のTewameter(登録商標) TM300がある。しかし、この方法は、外気の影響を受け易く、安定性が低いため、測定に時間を要するという特徴があった。そこで、片側のみが開口した円筒型プローブの開口部に皮膚を接触させて、短時間で皮膚から蒸散する水分蒸散量を測定する方法が報告されている(特許文献1)。   As a conventional TEWL measurement, there is a method in which the skin is brought into contact with one of the cylindrical probes whose both ends are opened, and the amount of water evaporated from the skin surface is measured using a temperature / humidity sensor installed inside the probe. As a measuring apparatus adopting this method, there is a Tewmeter (registered trademark) TM300 manufactured by Course + Khakaka. However, this method has a feature that it takes time for measurement because it is easily influenced by outside air and has low stability. Thus, a method has been reported in which the skin is brought into contact with the opening of a cylindrical probe having only one side opened, and the amount of water transpiration from the skin is measured in a short time (Patent Document 1).

皮膚の水分透過バリア機能の主体は、皮膚の最外層をなす角層であると考えられ、特にセラミド、コレステロール、脂肪酸等から構成される角層細胞間脂質の状態は、バリア機能の発揮に重要であると考えられている。角層細胞間脂質の状態を解析する方法としては、X線回折法(例えば、非特許文献1)、電子線回折法(例えば、非特許文献2)、赤外分光法(例えば、非特許文献3)、電子スピン共鳴(ESR)法(例えば、特許文献2)等が知られており、これらの方法を利用することで、角層細胞間脂質の状態を解析することができる。   It is thought that the main component of the skin moisture permeability barrier function is the stratum corneum that forms the outermost layer of the skin. In particular, the state of stratum corneum intercellular lipids composed of ceramide, cholesterol, fatty acids, etc. is important for exerting the barrier function. It is considered to be. Methods for analyzing the state of stratum corneum intercellular lipid include X-ray diffraction (for example, Non-Patent Document 1), electron beam diffraction (for example, Non-Patent Document 2), and infrared spectroscopy (for example, Non-Patent Document). 3) The electron spin resonance (ESR) method (for example, Patent Document 2) is known, and by using these methods, the state of stratum corneum lipids can be analyzed.

米国特許第6966877号明細書US Pat. No. 6,966,877 特開2008−039761号公報JP 2008-039761 A

Journal of Investigative Dermatology, 114, 654-660, 2000Journal of Investigative Dermatology, 114, 654-660, 2000 Journal of Investigative Dermatology, 111, 403-409, 1999Journal of Investigative Dermatology, 111, 403-409, 1999 Biochimica et Biophysica Acta, 1808, 1529-1537, 2011Biochimica et Biophysica Acta, 1808, 1529-1537, 2011

従来の皮膚の水分透過バリア機能の評価方法は、TEWLという皮膚からの水分蒸散量を基に評価されるため、皮膚からの水分蒸散量に影響する精神的刺激、体温上昇、運動に伴う発汗等の皮膚機能以外の生理現象によって、評価結果が左右されるおそれがあった。また、エタノールやプロピレングリコールなどの有機溶剤は温湿度センサによる測定を妨げることが知られており、これらの物質が配合されている化粧料を使用したときの水分透過バリア機能については、正確に評価できない可能性があった。   Since the conventional method for evaluating the moisture permeable barrier function of skin is evaluated based on the amount of moisture transpiration from the skin called TEWL, mental stimulation that affects the amount of moisture transpiration from the skin, rise in body temperature, sweating associated with exercise, etc. The evaluation results may be affected by physiological phenomena other than skin function. In addition, organic solvents such as ethanol and propylene glycol are known to interfere with measurement by temperature and humidity sensors, and the moisture permeation barrier function when using cosmetics containing these substances is accurately evaluated. There was a possibility that it could not be done.

皮膚の水分透過バリア機能の発揮に重要であるとされる角層細胞間脂質の状態は、X線回折法、電子線回折法、赤外分光法、電子スピン共鳴(ESR)法により解析可能であるが、測定のために皮膚の切除や角層の剥離が必要であり、被験者に負担となる場合があった。そこで、被験者の負担の少ない非侵襲的な評価方法が望まれていた。   The state of stratum corneum intercellular lipids, which are considered to be important for the skin's moisture permeation barrier function, can be analyzed by X-ray diffraction, electron diffraction, infrared spectroscopy, and electron spin resonance (ESR). However, for the measurement, it is necessary to remove the skin or peel off the stratum corneum, which may be a burden on the subject. Therefore, a non-invasive evaluation method with less burden on the subject has been desired.

従って、本発明の課題は、皮膚機能以外の生理現象や有機溶媒の存在に影響されることなく、非侵襲的な皮膚の水分透過バリア機能の評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a non-invasive method for evaluating the moisture permeation barrier function of skin without being affected by physiological phenomena other than skin function or the presence of organic solvents.

本発明者等は、非侵襲的に皮膚の内部を構成する物質の定性的、定量的な評価が可能である共焦点ラマン分光測定に着目し、そのスペクトルを測定し、スペクトルの解析を行った。その結果、ラマン分光スペクトル中の脂質分子に由来するピークがTEWLと相関することを見出し、その信号強度を指標とすることで皮膚機能以外の要因に影響されず、非侵襲的に皮膚の水分透過バリア機能を評価できることを見出し、本発明を完成させた。   The inventors of the present invention focused on confocal Raman spectroscopic measurement capable of qualitative and quantitative evaluation of substances constituting the inside of the skin non-invasively, measured the spectrum, and analyzed the spectrum. . As a result, we found that the peak derived from lipid molecules in the Raman spectroscopic spectrum correlates with TEWL, and using the signal intensity as an index, it is not affected by factors other than skin function and non-invasively permeates the skin. The present inventors have found that the barrier function can be evaluated and completed the present invention.

すなわち本発明は、皮膚表面から皮膚内部のラマン分光スペクトルを測定し、該スペクトル中の脂質分子に由来するピークの強度を指標とする、皮膚の水分透過バリア機能の評価方法を提供するものである。   That is, the present invention provides a method for evaluating the moisture permeation barrier function of the skin by measuring a Raman spectrum inside the skin from the skin surface and using the intensity of a peak derived from a lipid molecule in the spectrum as an index. .

本発明により、皮膚機能以外の要因に影響されず、また、非侵襲的に皮膚の水分透過バリア機能を評価することが可能となる。   According to the present invention, it is possible to evaluate the moisture permeable barrier function of the skin non-invasively without being influenced by factors other than the skin function.

皮膚表面から8μmの深さにおけるラマン分光スペクトルを示す図である。It is a figure which shows the Raman spectrum in the depth of 8 micrometers from the skin surface. 皮膚表面から8μmの深さにおけるラマン分光スペクトルの2880±10[cm-1]のピーク強度と経表皮水分蒸散量(TEWL)の逆数との相関関係を示す図である。It is a figure which shows the correlation with the reciprocal number of the peak intensity | strength of 2880 +/- 10 [cm < -1 >] of a Raman spectrum in the depth of 8 micrometers from the skin surface, and transepidermal water transpiration (TEWL). ラマン分光スペクトルを測定した皮膚表面からの深さと、各深さにおけるラマン分光スペクトルの2880±10[cm-1]のピーク強度と経表皮水分蒸散量(TEWL)の逆数の相関係数との関係を示す図である。Relationship between the depth from the skin surface where the Raman spectrum was measured and the correlation coefficient between the peak intensity of 2880 ± 10 [cm −1 ] and the reciprocal of transepidermal water transpiration (TEWL) at each depth FIG. 脱脂処理前後でのTEWLの変化を示す図である。It is a figure which shows the change of TEWL before and behind a degreasing process. 脱脂処理前後での皮膚表面から深度4μmにおけるラマン分光スペクトルの2880±10[cm-1]のピーク強度の変化を示す図である。It is a figure which shows the change of the peak intensity | strength of 2880 +/- 10 [cm < -1 >] of the Raman spectrum in the depth of 4 micrometers from the skin surface before and after a degreasing process.

本発明の評価方法に使用されるラマン分光スペクトルは、ラマン分光装置により測定される。ラマン分光装置としては、例えば、J.Raman Spectrosc.,vol.31,p813−818(2000)に開示されているような共焦点ラマン分光装置が挙げられるが、皮膚内部のラマン分光スペクトルを非侵襲的に測定できるラマン分光装置であれば、共焦点ラマンに限らずコヒーレントアンチストークスラマン、誘導ラマン等いずれでも用いることができ、特に限定されない。   The Raman spectrum used in the evaluation method of the present invention is measured by a Raman spectrometer. As a Raman spectroscopic apparatus, for example, J. Org. Raman Spectrosc. , Vol. 31, p813-818 (2000), a confocal Raman spectroscopic device is mentioned. However, any Raman spectroscopic device capable of non-invasively measuring the Raman spectroscopic spectrum inside the skin is limited to the confocal Raman. Any of coherent anti-Stokes Raman, induction Raman, etc. can be used, and is not particularly limited.

ラマン分光スペクトルは共焦点装置により、皮膚表面から300μm程度の深さまでの任意の深さのスペクトルを測定することが可能である。皮膚の水分透過バリア機能の主体は皮膚の最外層をなす角層であると考えられることから、本発明の評価方法では、角層の一般的な厚さが20μm前後であることを考慮し、皮膚表面からの深さ1〜20μmの範囲内で測定されたラマン分光スペクトルを用いるのが好ましい。特にこの範囲のうち、ラマン分光スペクトル中の脂質分子に由来するピークの強度と水分透過バリア機能の指標であるTEWLとの間で、より高い相関関係が得られる深さにおいて測定されたラマン分光スペクトルを用いるのが好ましい。より高い相関関係が得られる深さは、皮膚の状態や施した処理等により変化する場合があるので一概に規定することはできないが、一般的には、皮膚の表面から2μm以上、好ましくは4μm以上であり、その上限は18μm以下が好ましく、15μm以下がより好ましく、14μm以下がさらに好ましく、12μm以下がさらに好ましい。具体的な深さは、皮膚表面から2〜18μmの深さが好ましく、より好ましくは2〜15μmであり、さらに好ましくは4〜14μmであり、さらに好ましくは4〜12μmである。これらの範囲内で測定されたラマン分光スペクトルを用いることにより、より正確に皮膚の水分透過バリア機能を評価することが可能である。   A Raman spectroscopic spectrum can be measured with a confocal device at an arbitrary depth from the skin surface to a depth of about 300 μm. Since the main component of the skin moisture permeable barrier function is considered to be the stratum corneum that forms the outermost layer of the skin, the evaluation method of the present invention considers that the general thickness of the stratum corneum is around 20 μm, It is preferable to use a Raman spectroscopic spectrum measured within a depth range of 1 to 20 μm from the skin surface. In particular, in this range, the Raman spectrum measured at a depth where a higher correlation is obtained between the intensity of the peak derived from the lipid molecule in the Raman spectrum and TEWL, which is an indicator of the moisture permeation barrier function. Is preferably used. The depth at which a higher correlation can be obtained may vary depending on the condition of the skin, the treatment applied, etc., and thus cannot be defined unconditionally, but in general, it is 2 μm or more from the skin surface, preferably 4 μm. The upper limit is preferably 18 μm or less, more preferably 15 μm or less, further preferably 14 μm or less, and further preferably 12 μm or less. The specific depth is preferably 2 to 18 μm from the skin surface, more preferably 2 to 15 μm, further preferably 4 to 14 μm, and further preferably 4 to 12 μm. By using the Raman spectrum measured within these ranges, it is possible to more accurately evaluate the moisture permeation barrier function of the skin.

図1に、皮膚表面からの深さ8μmで測定したラマン分光スペクトルを示す。スペクトル中、2850±10[cm-1]、2880±10[cm-1]、2930±10[cm-1]に比較的大きなピークが検出されている(図1矢印)。2850±10[cm-1]と2880±10[cm-1]のピークは、それぞれCH2対称伸縮振動モードとCH2逆対称伸縮振動モードに由来することが知られており、皮膚の場合、脂質分子の炭化水素鎖の配列構造性を反映していると考えられる。特にこれら2つのピークは、角層において特異的に検出されることから、角層における水分透過バリア機能の本体を考えら得る角層細胞間脂質のラメラ構造を反映しているものと推察される。一方、2930±10[cm-1]に検出されるピークはCH3対称伸縮振動モードに由来するピークであり、このピークは、角層に限らず、角層を含めた皮膚全層において検出される。 FIG. 1 shows a Raman spectrum measured at a depth of 8 μm from the skin surface. In the spectrum, relatively large peaks are detected at 2850 ± 10 [cm −1 ], 2880 ± 10 [cm −1 ], and 2930 ± 10 [cm −1 ] (arrows in FIG. 1). It is known that the peaks of 2850 ± 10 [cm −1 ] and 2880 ± 10 [cm −1 ] are derived from the CH 2 symmetric stretching vibration mode and the CH 2 inversely symmetric stretching vibration mode, respectively. It is thought to reflect the structural structure of the hydrocarbon chain of the lipid molecule. In particular, since these two peaks are specifically detected in the stratum corneum, it is presumed to reflect the lamellar structure of stratum corneum intercellular lipids, which can be considered as the main body of the moisture permeation barrier function in the stratum corneum. . On the other hand, the peak detected at 2930 ± 10 [cm −1 ] is a peak derived from the CH 3 symmetric stretching vibration mode, and this peak is detected not only in the stratum corneum but also in all skin layers including the stratum corneum. The

後述するように、皮膚内部のラマン分光スペクトルのうち、脂質分子に由来するピークの強度は、皮膚の水分透過バリア機能の指標であるTEWLと相関関係を有しており、本発明の評価方法は、皮膚内部のラマン分光スペクトル中の脂質分子に由来するピークの強度を指標として、皮膚の水分透過バリア機能を評価するものである。より詳細には、皮膚内部のラマン分光スペクトルの脂質分子に由来するピークの強度は、TEWLの逆数と正の相関関係にあることから、当該ピーク強度と皮膚の水分透過バリア機能とは正の相関関係を有する。本発明の評価方法で指標として用いるラマン分光スペクトル中の脂質分子に由来するピークは、特に限定されないが、上述したように、角層の水分透過バリア機能の本体と考えられる角層細胞間脂質分子に密接に関係する2850±10[cm-1]に検出されるピーク(CH2対称伸縮振動モード由来)又は2880±10[cm-1]に検出されるピーク(CH2逆対称伸縮振動モード由来)を指標とするのが好ましい。さらに比較的ピーク強度が大きくより安定的に検出可能であることから、スペクトル中2880±10[cm-1]に検出されるピークを指標とするのが特に好ましい。また、ラマン分光スペクトルは、蛍光等の影響により強度に差異が生じることがあるため、ピーク強度として測定値をそのまま用いるのではなく、スペクトル中で安定的に検出されるピークの強度を基準とした相対値を用いたほうが、より評価の精度が上がるため好ましい。本発明の評価方法では、CH3対称伸縮振動モードに由来し、皮膚全層に渡って検出される2930±10[cm-1]のピークを基準ピークとして用いるのが好ましい。 As will be described later, in the Raman spectrum inside the skin, the intensity of the peak derived from lipid molecules has a correlation with TEWL, which is an index of the moisture permeation barrier function of the skin, and the evaluation method of the present invention is The water permeability barrier function of the skin is evaluated using the intensity of the peak derived from the lipid molecule in the Raman spectral spectrum inside the skin as an index. More specifically, since the intensity of the peak derived from the lipid molecule in the Raman spectrum inside the skin has a positive correlation with the inverse of TEWL, the peak intensity and the moisture permeation barrier function of the skin have a positive correlation. Have a relationship. The peak derived from the lipid molecule in the Raman spectrum used as an index in the evaluation method of the present invention is not particularly limited, but as described above, the stratum corneum intercellular lipid molecule considered as the main body of the water permeability barrier function of the stratum corneum The peak detected at 2850 ± 10 [cm −1 ] closely related to CH 2 (derived from CH 2 symmetric stretching vibration mode) or the peak detected at 2880 ± 10 [cm −1 ] (derived from CH 2 inversely symmetric stretching vibration mode) ) As an index. Furthermore, since the peak intensity is relatively large and can be detected more stably, it is particularly preferable to use the peak detected at 2880 ± 10 [cm −1 ] in the spectrum as an index. In addition, the Raman spectrum may have a difference in intensity due to the influence of fluorescence or the like. Therefore, the measured value is not used as the peak intensity, but the intensity of the peak that is stably detected in the spectrum is used as a reference. It is preferable to use a relative value because the accuracy of evaluation is further improved. In the evaluation method of the present invention, it is preferable to use a peak of 2930 ± 10 [cm −1 ] derived from the CH 3 symmetric stretching vibration mode and detected over the entire skin as a reference peak.

本発明の評価方法は、美容面からの皮膚の水分透過バリア機能の研究、バリア機能強化のための化粧品や美容方法の研究等、美容目的において利用することができる。   The evaluation method of the present invention can be used for cosmetic purposes, such as a study on the moisture permeation barrier function of the skin from the cosmetic aspect, and a study on cosmetics and a cosmetic method for enhancing the barrier function.

次に本発明の実施態様及び好ましい実施例を示す。   Next, embodiments of the present invention and preferred examples will be described.

<1>皮膚表面から皮膚内部のラマン分光スペクトルを測定し、該スペクトル中の脂質分子に由来するピークの強度を指標とする、皮膚の水分透過バリア機能の評価方法。 <1> A method for evaluating the moisture permeation barrier function of skin, wherein a Raman spectral spectrum inside the skin is measured from the skin surface, and the intensity of a peak derived from a lipid molecule in the spectrum is used as an index.

<2>皮膚表面から皮膚内部のラマン分光スペクトルを、皮膚内部のラマン分光スペクトルを非侵襲的に測定できるラマン分光装置で測定する<1>の評価方法。
<3>ラマン分光装置が、共焦点ラマン分光装置、コヒーレントアンチストークスラマン分光装置又は誘導ラマン分光装置である<2>の評価方法。
<4>ラマン分光スペクトルが、皮膚表面からの深さ1〜20μm、好ましくは2μm以上、より好ましくは4μm以上であり、18μm以下、好ましくは15μm以下、より好ましくは14μm以下、さらに好ましくは12μm以下で測定するものである<1>〜<3>のいずれかの評価方法。
<5>ラマン分光スペクトルが、皮膚表面からの深さ2〜18μm、好ましくは2〜15μm、より好ましくは4〜14μm、さらに好ましくは4〜12μmの範囲において測定するものである<1>〜<4>のいずれかの評価方法。
<6>脂質分子に由来するピークが、スペクトル中2850±10[cm-1]に検出されるピーク、又はスペクトル中2880±10[cm-1]に検出されるピークであり、好ましくは2880±10[cm-1]に検出されるピークである<1>〜<5>のいずれかの評価方法。
<7>脂質分子に由来するピークの強度が大きい場合に、皮膚の水分透過バリア機能が高いと判断する<1>〜<6>のいずれかの評価方法。
<8>
水分透過バリア機能の評価が、美容目的である<1>〜<6>のいずれかの評価方法。
<2> The evaluation method according to <1>, wherein the Raman spectral spectrum in the skin is measured from the skin surface with a Raman spectroscopic device capable of non-invasively measuring the Raman spectral spectrum in the skin.
<3> The evaluation method according to <2>, wherein the Raman spectroscopic device is a confocal Raman spectroscopic device, a coherent anti-Stokes Raman spectroscopic device, or a stimulated Raman spectroscopic device.
<4> Raman spectral spectrum has a depth of 1 to 20 μm from the skin surface, preferably 2 μm or more, more preferably 4 μm or more, 18 μm or less, preferably 15 μm or less, more preferably 14 μm or less, and even more preferably 12 μm or less. The evaluation method according to any one of <1> to <3>.
<5> The Raman spectrum is measured in a depth range of 2 to 18 μm, preferably 2 to 15 μm, more preferably 4 to 14 μm, and even more preferably 4 to 12 μm from the skin surface <1> to <4> Any of the evaluation methods.
<6> The peak derived from the lipid molecule is a peak detected at 2850 ± 10 [cm −1 ] in the spectrum or a peak detected at 2880 ± 10 [cm −1 ] in the spectrum, preferably 2880 ±. The evaluation method according to any one of <1> to <5>, which is a peak detected at 10 [cm −1 ].
<7> The evaluation method according to any one of <1> to <6>, wherein when the intensity of a peak derived from a lipid molecule is high, the moisture permeation barrier function of the skin is determined to be high.
<8>
The evaluation method according to any one of <1> to <6>, wherein the evaluation of the moisture permeation barrier function is a cosmetic purpose.

以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

試験例1(ラマン分光スペクトルとTEWLの相関)
健常男性37名を被験者とし、前腕屈側部におけるラマン分光スペクトルとTEWLを測定し、両者を比較した。測定は恒温恒湿環境(22℃、湿度50%)に15分間馴化させた後に行った。
ラマン分光スペクトルは、共焦点ラマン分光装置(Model3510;River Diagnostics BV社)により測定した。測定は、皮膚表面から20μmの深さまで2μm毎に行った。2700〜3100[cm-1]の範囲についての測定を3回繰り返して平均した値を使用した。得られたラマン分光スペクトル中、2880±10[cm-1]に検出されるピーク強度を解析に供した。尚、ピーク強度は、2930±10[cm-1]に検出されるピークの強度を1とし、これに対する相対強度に変換した。
TEWLは、水分蒸散量測定装置(Tewameter(登録商標) TM300;Courage+Khazaka社)により測定した。測定は、約150sec行い、数値的に安定している連続した60secの値を平均した値を解析に供した。
Test example 1 (correlation between Raman spectrum and TEWL)
Using 37 healthy men as subjects, the Raman spectroscopic spectrum and TEWL in the forearm flexion side were measured and compared. The measurement was performed after acclimatization to a constant temperature and humidity environment (22 ° C., humidity 50%) for 15 minutes.
The Raman spectrum was measured with a confocal Raman spectrometer (Model 3510; River Diagnostics BV). The measurement was performed every 2 μm from the skin surface to a depth of 20 μm. The average value obtained by repeating the measurement in the range of 2700 to 3100 [cm −1 ] three times was used. In the obtained Raman spectrum, the peak intensity detected at 2880 ± 10 [cm −1 ] was subjected to analysis. The peak intensity was converted to a relative intensity with respect to the peak intensity detected at 2930 ± 10 [cm −1 ] as 1.
TEWL was measured with a moisture transpiration measuring device (Tewometer (registered trademark) TM300; Curage + Khazaka). The measurement was performed for about 150 seconds, and a value obtained by averaging the continuous 60-second values that were numerically stable was used for the analysis.

皮膚表面からの深度毎に得られた被験者37名分のピーク強度をTEWLの値を元に、各深度における両データの相関関係の解析を行った。図2に示すのは、皮膚表面から8μmにおけるピーク強度とTEWLの相関関係であり、縦軸はTEWLの逆数(1/TEWL)、横軸は相対値で表した2880±10[cm-1]のピーク強度である。1/TEWLとピーク強度の間の相関係数は0.4696で、両者の間に有意な正の相関があることが示された。このことは、皮膚表面から8μmの深さで測定されたラマン分光スペクトル中の2880±10[cm-1]のピーク強度が強いとTEWLが低いことを示しており、このピークの強度は皮膚の水分透過バリア機能と相関することが示された。 Based on TEWL values, the peak intensities for 37 subjects obtained for each depth from the skin surface were analyzed for the correlation between the two data at each depth. FIG. 2 shows the correlation between the peak intensity at 8 μm from the skin surface and TEWL, where the vertical axis is the reciprocal of TEWL (1 / TEWL), and the horizontal axis is 2880 ± 10 [cm −1 ] expressed as a relative value. The peak intensity. The correlation coefficient between 1 / TEWL and peak intensity was 0.4696, indicating a significant positive correlation between the two. This indicates that the TEWL is low when the peak intensity of 2880 ± 10 [cm −1 ] in the Raman spectrum measured at a depth of 8 μm from the skin surface is strong. It was shown to correlate with moisture permeation barrier function.

図3に示すのは、ラマン分光スペクトルを測定した皮膚からの深さと、その深さにおける2880±10[cm-1]のピーク強度と1/TEWLとの間の相関係数の関係である。図3からは、ラマン分光スペクトルを測定した皮膚表面からの深さで相関係数が変化することが示されている。図3からは、深度2〜15μm、特に4〜12μmの範囲で測定したラマン分光スペクトルが、比較的高いTEWLとの相関関係を有することが分かる。 FIG. 3 shows the relationship between the depth from the skin where the Raman spectrum was measured, the correlation coefficient between the peak intensity of 2880 ± 10 [cm −1 ] and 1 / TEWL at that depth. FIG. 3 shows that the correlation coefficient changes with the depth from the skin surface where the Raman spectrum was measured. FIG. 3 shows that the Raman spectrum measured in the depth range of 2 to 15 μm, particularly 4 to 12 μm, has a relatively high correlation with TEWL.

試験例2(脱脂処理した皮膚における評価)
皮膚の脱脂処理は、人工的に荒れ肌を惹起させるために用いられる処理のひとつで、この処理により皮膚の水分透過バリア機能が損なわれ、TEWLが上昇することが知られている。脱脂処理による水分透過バリア機能への影響を本発明の評価方法を用いて評価した。
健常男性3名を被験者とし、恒温恒湿環境(22℃、湿度50%)に15分間馴化させた後に、前腕屈側部におけるラマン分光スペクトルとTEWLを測定した。測定は、試験例1と同様の装置と方法で行った。脱脂処理は皮膚表面近くに及ぼす影響が大きいことから、評価には皮膚から4μmの深さで測定したラマン分光スペクトルを用いた。測定終了後、直径約2cmのガラス製カップを、前腕屈側部の脱脂処理部にカップを伏せた状態でゴムバンドで固定した。ガラス製カップには溶媒の出し入れ口が設けてあり、ここから脱脂用溶媒(アセトン/ジエチルエーテル等量混合液)10mLを注入した。20分間静置した後、新たな脱脂用溶媒に交換し、更に10分間静置して脱脂処理を行った。脱脂処理から60分経過後、再度ラマン分光スペクトルとTEWLを測定し、脱脂処理前後でのラマンスペクトル中の2880±10[cm-1]のピーク強度とTEWLの変化について調べた。
Test Example 2 (Evaluation on degreased skin)
Skin degreasing is one of the processes used to artificially cause rough skin, and it is known that this process impairs the moisture permeable barrier function of the skin and raises TEWL. The influence of the degreasing treatment on the moisture permeation barrier function was evaluated using the evaluation method of the present invention.
Three healthy men were used as subjects, and after acclimatization to a constant temperature and humidity environment (22 ° C., humidity 50%) for 15 minutes, the Raman spectroscopic spectrum and TEWL in the forearm flexion side were measured. The measurement was performed using the same apparatus and method as in Test Example 1. Since the degreasing treatment has a great influence on the vicinity of the skin surface, the Raman spectrum measured at a depth of 4 μm from the skin was used for the evaluation. After completion of the measurement, a glass cup having a diameter of about 2 cm was fixed with a rubber band in a state where the cup was faced down on the degreasing portion on the forearm flexion side. A glass cup was provided with a solvent inlet / outlet, from which 10 mL of a degreasing solvent (a mixture of equal amounts of acetone / diethyl ether) was injected. After leaving still for 20 minutes, it changed to the new solvent for degreasing, and also left still for 10 minutes, and performed the degreasing process. After 60 minutes from the degreasing treatment, the Raman spectrum and TEWL were measured again, and the peak intensity of 2880 ± 10 [cm −1 ] and the change in TEWL in the Raman spectrum before and after the degreasing treatment were examined.

図4は、脱脂処理前後でのTEWLの変化を示したもので、脱脂処理により皮膚の水分透過バリア機能が損なわれ、TEWLが上昇、すなわち皮膚からの水分の損失量が増えたことが分かる。一方、図5は、脱脂処理前後での皮膚表面から深度4μmにおけるラマン分光スペクトルの2880±10[cm-1]のピーク強度の変化を示したもので、脱脂処理によりピーク強度が低下したことが分かる。
以上から、脱脂処理によりTEWLが上昇するという、皮膚の水分透過バリア機能の低下という現象が、本発明の評価方法によりピーク強度の低下として捉えられていることが示された。
FIG. 4 shows changes in TEWL before and after the degreasing treatment, and it can be seen that the moisture permeation barrier function of the skin was impaired by the degreasing treatment, and the TEWL increased, that is, the amount of water loss from the skin increased. On the other hand, FIG. 5 shows the change in peak intensity of 2880 ± 10 [cm −1 ] of the Raman spectrum at a depth of 4 μm from the skin surface before and after the degreasing treatment, and the peak strength was reduced by the degreasing treatment. I understand.
From the above, it was shown that the phenomenon that the TEWL increases due to the degreasing treatment, that is, the decrease in the moisture permeation barrier function of the skin, is regarded as the decrease in the peak intensity by the evaluation method of the present invention.

本発明により、皮膚機能以外の要因に影響されず、より正確に皮膚の水分透過バリア機能を非侵襲的に計測することが可能となり、紫外線照射等の外的要因、加齢等の内的要因で低下する水分透過バリア機能に基く皮膚の乾燥に対処するための化粧品や美容方法の開発等において有用である。   According to the present invention, it becomes possible to more accurately measure the moisture permeation barrier function of the skin non-invasively without being influenced by factors other than the skin function, external factors such as ultraviolet irradiation, internal factors such as aging It is useful in the development of cosmetics and cosmetic methods for dealing with skin dryness based on the moisture permeation barrier function that is reduced by the above.

Claims (2)

皮膚表面から皮膚内部のラマン分光スペクトルを測定し、該スペクトル中の脂質分子に由来するピークの強度を指標とする、皮膚の水分透過バリア機能の評価方法であって、該ラマン分光スペクトルが、皮膚表面からの深さ4〜12μmの範囲において測定するものであり、該脂質分子に由来するピークが、スペクトル中2880±10[cm -1 ]に検出されるピークである評価方法。 A method for evaluating a moisture permeation barrier function of a skin by measuring a Raman spectral spectrum inside the skin from the surface of the skin and using the intensity of a peak derived from a lipid molecule in the spectrum as an index. An evaluation method which is measured in a depth range of 4 to 12 μm from the surface, and the peak derived from the lipid molecule is a peak detected at 2880 ± 10 [cm −1 ] in the spectrum . 水分透過バリア機能の評価が、美容目的である、請求項記載の評価方法。 Evaluation of moisture permeability barrier function, a cosmetic purpose, the evaluation method of claim 1, wherein.
JP2012125649A 2012-06-01 2012-06-01 Evaluation method of moisture permeation barrier function Active JP5946699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125649A JP5946699B2 (en) 2012-06-01 2012-06-01 Evaluation method of moisture permeation barrier function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125649A JP5946699B2 (en) 2012-06-01 2012-06-01 Evaluation method of moisture permeation barrier function

Publications (2)

Publication Number Publication Date
JP2013250174A JP2013250174A (en) 2013-12-12
JP5946699B2 true JP5946699B2 (en) 2016-07-06

Family

ID=49848995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125649A Active JP5946699B2 (en) 2012-06-01 2012-06-01 Evaluation method of moisture permeation barrier function

Country Status (1)

Country Link
JP (1) JP5946699B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849030B2 (en) 2014-04-17 2020-11-24 Nec Corporation Method and base station for cell splitting in a wireless communication network
CN111566754A (en) * 2018-01-05 2020-08-21 强生消费者公司 Preparation of mild surfactant and method thereof
JP2020193915A (en) * 2019-05-29 2020-12-03 花王株式会社 Method of evaluating skin condition of infants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039761A (en) * 2006-06-15 2008-02-21 Shiseido Co Ltd Evaluating method of square layer
JP5323600B2 (en) * 2009-07-17 2013-10-23 花王株式会社 Measuring method of stratum corneum thickness
JP5399228B2 (en) * 2009-12-18 2014-01-29 花王株式会社 Judgment method of skin function

Also Published As

Publication number Publication date
JP2013250174A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
Pudney et al. An in vivo confocal Raman study of the delivery of trans retinol to the skin
Boireau‐Adamezyk et al. Age‐dependent changes in stratum corneum barrier function
Olsztyńska-Janus et al. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect
Borchman et al. Spectroscopic evaluation of human tear lipids
Qassem et al. Review of modern techniques for the assessment of skin hydration
US20070050202A1 (en) Business method for generating advertising claims
Byrne Bioengineering and subjective approaches to the clinical evaluation of dry skin
Choe et al. Gaussian-function-based deconvolution method to determine the penetration ability of petrolatum oil into in vivo human skin using confocal Raman microscopy
JP5946699B2 (en) Evaluation method of moisture permeation barrier function
Eklouh-Molinier et al. In vivo confocal Raman microspectroscopy of the human skin: highlighting of spectral markers associated to aging via a research of correlation between Raman and biometric mechanical measurements
JP5068555B2 (en) Beauty method evaluation method
Cluff et al. Surface‐enhanced Raman spectral biomarkers correlate with ankle brachial index and characterize leg muscle biochemical composition of patients with peripheral arterial disease
Zhang et al. A portable ultrawideband confocal raman spectroscopy system with a handheld probe for skin studies
Jackson et al. Cancer diagnosis by infrared spectroscopy: methodological aspects
Eikje et al. Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema
JP5323600B2 (en) Measuring method of stratum corneum thickness
Eldarrat et al. Age-related changes in ac-impedance spectroscopy studies of normal human dentine: further investigations
JP5798847B2 (en) Evaluation method of molecular association structure of intercellular lipid
Tuchin et al. Recent progress in tissue enhanced spectroscopy for cancer detection
Gourzi et al. Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig
Lee et al. Bioengineering analysis of water hydration: an overview
Ollmar et al. Facts and artefacts regarding correlation between skin electrical impedance spectroscopy (EIS) and blood glucose
US20110257492A1 (en) Method for determining the state of a skin disorder using near infrared (nir) spectroscopy
Dhar et al. DC impedance of human blood using EIS: An appraoch to non-invasive blood glucose measurement
Sanchez et al. A pilot spectroscopy study on time-varying bioimpedance during electrically-induced muscle contraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R151 Written notification of patent or utility model registration

Ref document number: 5946699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250