JP5942874B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP5942874B2
JP5942874B2 JP2013020684A JP2013020684A JP5942874B2 JP 5942874 B2 JP5942874 B2 JP 5942874B2 JP 2013020684 A JP2013020684 A JP 2013020684A JP 2013020684 A JP2013020684 A JP 2013020684A JP 5942874 B2 JP5942874 B2 JP 5942874B2
Authority
JP
Japan
Prior art keywords
battery
edge
spacer
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013020684A
Other languages
Japanese (ja)
Other versions
JP2014154254A (en
Inventor
博昭 池田
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013020684A priority Critical patent/JP5942874B2/en
Publication of JP2014154254A publication Critical patent/JP2014154254A/en
Application granted granted Critical
Publication of JP5942874B2 publication Critical patent/JP5942874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、帯状の正極板と帯状の負極板とを帯状のセパレータを介して互いに重ね軸線周りに扁平状に捲回した電極体と、この電極体を収容する電池ケースとを備える電池に関する。   The present invention relates to a battery including an electrode body in which a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are overlapped with each other via a strip-shaped separator and wound in a flat shape around an axis, and a battery case housing the electrode body.

従来より、帯状の正極板と帯状の負極板とを帯状のセパレータを介して互いに重ね軸線周りに扁平状に捲回した電極体と、この電極体を収容する電池ケースとを備える電池が知られている。更に、このような電池において、電池ケースと電極体との間に、電極体の平板部(正極板、負極板及びセパレータが平板状に重なる部位)に重なる平板状のスペーサ(特許文献1における間隙充填部)を配置することがある(特許文献1の図3等を参照)。   2. Description of the Related Art Conventionally, a battery including an electrode body in which a strip-like positive electrode plate and a strip-like negative electrode plate are overlapped with each other via a strip-shaped separator and wound flatly around an axis, and a battery case that accommodates the electrode body is known. ing. Further, in such a battery, a flat spacer (a gap in Patent Document 1) that overlaps a flat portion of the electrode body (a portion where the positive electrode plate, the negative electrode plate, and the separator overlap in a flat plate shape) between the battery case and the electrode body. (Refer to FIG. 3 etc. of patent document 1).

特開2009−048966号公報JP 2009-048966 A

ところで、正極板をその長手方向に沿って切断すると、その際に生じる正極切断端縁(切断面)には、その切断によるバリが残り易い。同様に、負極板をその長手方向に沿って切断すると、その際に生じる負極切断端縁(切断面)にも、その切断によるバリが残り易い。このため、電池ケースと電極体との間に介在させたスペーサで電極体の平板部を押圧すると、短絡が生じる場合があることが判ってきた。即ち、スペーサで正極切断端縁(または負極切断端縁)を押圧すると、正極切断端縁(または負極切断端縁)に存在するバリがセパレータを貫通して隣在する負極板(または正極板)に接触して短絡を生じるためと考えられた。   By the way, when the positive electrode plate is cut along its longitudinal direction, burrs due to the cutting are likely to remain on the positive electrode cutting edge (cut surface) generated at that time. Similarly, when the negative electrode plate is cut along its longitudinal direction, burrs due to the cutting are likely to remain on the negative electrode cutting edge (cut surface) generated at that time. For this reason, it has been found that when the flat plate portion of the electrode body is pressed with a spacer interposed between the battery case and the electrode body, a short circuit may occur. That is, when the positive electrode cutting edge (or negative electrode cutting edge) is pressed with a spacer, the burr existing on the positive electrode cutting edge (or negative electrode cutting edge) penetrates the separator and is adjacent to the negative electrode plate (or positive electrode plate). This is thought to be caused by a short circuit caused by contact.

本発明は、かかる現状に鑑みてなされたものであって、電池ケースと電極体との間にスペーサを介在させた電池において、スペーサによる電極体の押圧に起因して短絡が生じるのを適切に抑制できる電池を提供することを目的とする。   The present invention has been made in view of the current situation, and in a battery in which a spacer is interposed between a battery case and an electrode body, it is appropriate that a short circuit occurs due to the pressing of the electrode body by the spacer. It aims at providing the battery which can be suppressed.

上記課題を解決するための本発明の一態様は、帯状の正極板と帯状の負極板とを帯状のセパレータを介して互いに重ね軸線周りに扁平状に捲回してなり、前記正極板のうち前記軸線に沿う軸線方向の一方側の端縁部を前記セパレータから前記一方側に向けて扁平渦巻き状に突出させると共に、前記負極板のうち前記軸線方向の他方側の端縁部を前記セパレータから前記他方側に向けて扁平渦巻き状に突出させた電極体と、前記電極体を収容する電池ケースと、前記電池ケースと前記電極体との間に配置され、前記電極体のうち、少なくとも、前記正極板、前記負極板及び前記セパレータが平板状に重なる平板部に重なる板状のスペーサと、を備える電池であって、前記正極板は、前記他方側に、この正極板をその長手方向に切断して形成した際に生じた正極切断端縁を有し、前記負極板は、前記一方側に、この負極板をその長手方向に切断して形成した際に生じた負極切断端縁を有し、前記スペーサは、樹脂製であり、そのスペーサ端縁のうち、前記一方側に位置する一方側スペーサ端縁が、前記負極切断端縁よりも4.0〜8.0mm前記他方側に位置すると共に、前記他方側に位置する他方側スペーサ端縁が、前記正極切断端縁よりも4.0〜8.0mm前記一方側に位置する形態に配置されてなる電池である。 One aspect of the present invention for solving the above problem is that a belt-like positive electrode plate and a belt-like negative electrode plate are wound around each other through a belt-like separator in a flat shape around the axis, An edge portion on one side in the axial direction along the axis is projected in a flat spiral shape from the separator toward the one side, and an edge portion on the other side in the axial direction of the negative electrode plate from the separator. An electrode body projecting in a flat spiral shape toward the other side, a battery case containing the electrode body, and disposed between the battery case and the electrode body, and at least the positive electrode of the electrode bodies And a plate-like spacer that overlaps a flat plate portion in which the negative electrode plate and the separator overlap in a flat plate shape, and the positive electrode plate cuts the positive electrode plate in the longitudinal direction on the other side. Formed Has a positive cutting edge that occurred, the negative electrode plate, to the one side, has a negative cutting edge produced when formed by cutting the negative electrode plate in a longitudinal direction, said spacer, It is made of resin, and among the spacer edges, one side spacer edge located on the one side is 4.0 to 8.0 mm from the negative electrode cutting edge and located on the other side, and the other side The other side spacer edge located in the battery is 4.0 to 8.0 mm from the positive electrode cutting edge, and is arranged in a form located on the one side.

この電池では、スペーサを電極体の平板部に重ねて配置しながらも、その一方側スペーサ端縁が負極切断端縁よりも軸線方向の他方側に位置すると共に、他方側スペーサ端縁が正極切断端縁よりも軸線方向の一方側に位置する形態に配置している。このため、正極切断端縁及び負極切断端縁は、スペーサによって押圧され難くなる。従って、正極切断端縁や負極切断端縁にバリが生じていたとしても、スペーサの押圧によってバリがセパレータを貫通して隣在する正極板または負極板に接触する短絡が生じるのを適切に抑制できる。
更に、この電池では、スペーサの一方側スペーサ端縁を、電極体の平板部の負極切断端縁よりも4.0mm以上軸線方向の他方側に配置している。また、他方側スペーサ端縁を、正極切断端縁よりも4.0mm以上軸線方向の一方側に配置している。なお、以下では、これらの距離を「引き下げ距離」とも言う。これにより、正極切断端縁及び負極切断端縁は、スペーサによって殆ど押圧されなくなるので、スペーサの押圧に起因した短絡をより確実に防止できる。
一方、一方側スペーサ端縁の負極切断端縁からの引き下げ距離、及び、他方側スペーサ端縁の正極切断端縁からの引き下げ距離が大き過ぎると、電極体の平板部に荷重ムラが生じて、電池の使用(充放電)に伴う容量劣化(容量維持率の低下)が大きくなることが判ってきた。これに対し、この電池では、一方側スペーサ端縁の負極切断端縁からの引き下げ距離を8.0mm以内とすると共に、他方側スペーサ端縁の正極切断端縁からの引き下げ距離を8.0mm以内としている。これにより、電池の使用に伴う容量劣化を適切に抑制できる。
なお、「スペーサ」は、絶縁性の樹脂からなるものでも、導電性の樹脂からなるものでもよい。また、「スペーサ」は、単数からなるものでも、複数層からなるものでもよい。また、「スペーサ」は、電極体の厚み方向の片側のみに配置してもよいし、電極体の厚み方向の両側にそれぞれ配置してもよい。また、「スペーサ」の厚みは、電極体の厚みバラツキを考慮して、電池毎に変更してもよい。
In this battery, while the spacer is arranged so as to overlap the flat plate portion of the electrode body, the one side spacer edge is located on the other side in the axial direction from the negative electrode cutting edge, and the other side spacer edge is positive electrode cut. It arrange | positions in the form located in the one side of an axial direction rather than an edge. For this reason, the positive electrode cutting edge and the negative electrode cutting edge are hardly pressed by the spacer. Therefore, even if burrs are generated at the positive electrode cutting edge or the negative electrode cutting edge, it is possible to appropriately suppress the occurrence of a short circuit in which the burr penetrates the separator and contacts the adjacent positive electrode plate or negative electrode plate by pressing the spacer. it can.
Furthermore, in this battery, the spacer edge on one side of the spacer is arranged on the other side in the axial direction by 4.0 mm or more from the negative electrode cutting edge of the flat plate portion of the electrode body. Further, the other-side spacer edge is arranged on the one side in the axial direction by 4.0 mm or more from the positive electrode cutting edge. In the following, these distances are also referred to as “down distances”. Thereby, since the positive electrode cutting edge and the negative electrode cutting edge are hardly pressed by the spacer, it is possible to more reliably prevent a short circuit due to the pressing of the spacer.
On the other hand, if the pulling distance from the negative electrode cutting edge of the one side spacer edge and the pulling distance from the positive electrode cutting edge of the other side spacer edge are too large, load unevenness occurs in the flat plate portion of the electrode body, It has been found that the capacity deterioration (decrease in capacity retention rate) accompanying the use (charging / discharging) of the battery becomes large. On the other hand, in this battery, the distance of the one side spacer edge from the negative electrode cutting edge is within 8.0 mm, and the distance of the other side spacer edge from the positive electrode cutting edge is within 8.0 mm. It is said. Thereby, capacity degradation accompanying use of a battery can be controlled appropriately.
The “spacer” may be made of an insulating resin or a conductive resin . The “spacer” may be composed of a single layer or a plurality of layers. Further, the “spacer” may be disposed only on one side in the thickness direction of the electrode body, or may be disposed on both sides in the thickness direction of the electrode body. Further, the thickness of the “spacer” may be changed for each battery in consideration of the thickness variation of the electrode body.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の電池横方向及び電池縦方向に沿う断面図である。It is sectional drawing which follows the battery horizontal direction and battery vertical direction of the battery which concerns on embodiment. 実施形態に係る電池の電池厚み方向及び電池縦方向に沿う断面図である。It is sectional drawing which follows the battery thickness direction and battery vertical direction of the battery which concerns on embodiment. 実施形態に係り、蓋部材、正極端子部材及び負極端子部材等の分解斜視図である。It is an exploded perspective view of a cover member, a positive electrode terminal member, a negative electrode terminal member, etc. concerning an embodiment. 実施形態に係り、電極体の斜視図である。1 is a perspective view of an electrode body according to an embodiment. 実施形態に係り、電極体の展開した状態、及び、スペーサとの位置関係を示す説明図である。It is explanatory drawing which concerns on embodiment and shows the state which the electrode body expand | deployed and the positional relationship with a spacer. 一方側スペーサ端縁及び他方側スペーサ端縁の引き下げ距離と、短絡試験で短絡を生じた電池の個数及び充放電サイクル試験後の容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the pulling-down distance of the one side spacer edge and the other side spacer edge, the number of batteries that have short-circuited in the short-circuit test, and the capacity retention rate after the charge / discharge cycle test.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1〜図3に、本実施形態に係る電池10を示す。また、図4に、電池ケース20の蓋部材23、正極端子部材60及び負極端子部材70等を示す。また、図5及び図6に、電極体30を示す。なお、以下では、電池10の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1〜図3に示す方向と定めて説明する。また、電極体30の軸線方向EH、電極体厚み方向FH及び電極体幅方向GHを、図2、図3,図5及び図6に示す方向と定めて説明する。なお、図3においては、正極端子部材60等の記載を省略してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 3 show a battery 10 according to the present embodiment. FIG. 4 shows the lid member 23, the positive terminal member 60, the negative terminal member 70, and the like of the battery case 20. Moreover, the electrode body 30 is shown in FIG.5 and FIG.6. Hereinafter, the battery thickness direction BH, the battery horizontal direction CH, and the battery vertical direction DH of the battery 10 will be described as the directions shown in FIGS. The axial direction EH, the electrode body thickness direction FH, and the electrode body width direction GH of the electrode body 30 will be described as the directions shown in FIGS. 2, 3, 5, and 6. In FIG. 3, the description of the positive electrode terminal member 60 and the like is omitted.

この電池10は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型の密閉型のリチウムイオン二次電池である。この電池10は、複数の電池10を電池厚み方向BH(電極体厚み方向FH)に列置し、これを拘束部材で電池厚み方向BHに押圧しつつ拘束した組電池として利用される。
この電池10は、直方体状の電池ケース20と、この電池ケース20内に収容された扁平状捲回型の電極体30と、電池ケース20に支持された正極端子部材60及び負極端子部材70等から構成されている。電池ケース20内には、非水系の電解液27が保持されている。また、この電池10では、電池ケース20と電極体30との間に板状のスペーサ80が複数枚配置されている。
The battery 10 is a rectangular sealed lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle. The battery 10 is used as an assembled battery in which a plurality of batteries 10 are arranged in the battery thickness direction BH (electrode body thickness direction FH) and restrained while being pressed in the battery thickness direction BH by a restraining member.
The battery 10 includes a rectangular battery case 20, a flat wound electrode body 30 accommodated in the battery case 20, a positive terminal member 60 and a negative terminal member 70 supported by the battery case 20, and the like. It is composed of A non-aqueous electrolyte solution 27 is held in the battery case 20. In the battery 10, a plurality of plate-like spacers 80 are disposed between the battery case 20 and the electrode body 30.

このうち電池ケース20は、金属(具体的にはアルミニウム)により形成されている。この電池ケース20は、上側のみに矩形状の開口部21hを有する有底角筒状のケース本体21と、このケース本体21の開口部21hを封口する矩形板状の蓋部材23とから構成されている(図1〜図3参照)。蓋部材23のうち、その長手方向(電池横方向CH)の中央付近には、非復帰型の安全弁23vが設けられている。また、この安全弁23vの近傍には、電解液27を電池ケース20内に注入する際に用いられる注液孔23hが設けられており、封止部材25で気密に封止されている。   Among these, the battery case 20 is made of metal (specifically, aluminum). The battery case 20 includes a bottomed rectangular tube-shaped case body 21 having a rectangular opening 21h only on the upper side, and a rectangular plate-shaped lid member 23 that seals the opening 21h of the case body 21. (See FIGS. 1 to 3). In the lid member 23, a non-returnable safety valve 23v is provided near the center in the longitudinal direction (battery lateral direction CH). In addition, a liquid injection hole 23 h that is used when injecting the electrolyte solution 27 into the battery case 20 is provided in the vicinity of the safety valve 23 v and is hermetically sealed by the sealing member 25.

また、蓋部材23のうち、その長手方向の両端近傍には、電池ケース20の内部から外部に延出する形態の正極端子部材60及び負極端子部材70がそれぞれ固設されている(図1、図2及び図4参照)。具体的には、正極端子部材60及び負極端子部材70は、それぞれ、電池ケース20内で電極体30に接続する一方、蓋部材23を貫通して電池ケース20の外部に延出する第1端子部材61,71と、蓋部材23上に配置されて第1端子部材61,71に加締め固定されたクランク状の第2端子部材62,72から構成されている。正極端子部材60及び負極端子部材70は、これらにバスバや圧着端子など電池外の接続端子を締結するための金属製の締結部材65,75と共に、蓋部材23の内側(ケース内側)に配置された樹脂製の第1絶縁部材67,77、及び、蓋部材23の外側(ケース外側)に配置された樹脂製の第2絶縁部材68,78を介して、蓋部材23に固定されている。   Further, in the lid member 23, a positive electrode terminal member 60 and a negative electrode terminal member 70 that are extended from the inside of the battery case 20 to the outside are fixed in the vicinity of both ends in the longitudinal direction (FIG. 1, FIG. 1). 2 and 4). Specifically, each of the positive electrode terminal member 60 and the negative electrode terminal member 70 is connected to the electrode body 30 in the battery case 20, and passes through the lid member 23 and extends to the outside of the battery case 20. It is comprised from the member 61,71 and the crank-shaped 2nd terminal member 62,72 which is arrange | positioned on the cover member 23, and was fixed by crimping to the 1st terminal member 61,71. The positive electrode terminal member 60 and the negative electrode terminal member 70 are disposed inside the lid member 23 (inside the case) together with metal fastening members 65 and 75 for fastening connection terminals outside the battery, such as bus bars and crimp terminals. The first insulating members 67 and 77 made of resin and the second insulating members 68 and 78 made of resin disposed outside the case 23 (outside the case) are fixed to the cover member 23.

次に、電極体30について説明する(図2、図3、図5及び図6参照)。この電極体30は、その軸線方向EHが電池横方向CHと一致するように横倒しにした状態で、電池ケース20内に収容されている(図2参照)。この電極体30は、帯状の正極板31と帯状の負極板41とを、帯状で多孔質樹脂からなる一対のセパレータ51,51を介して互いに積層し、軸線AX周りに捲回して、扁平状に圧縮したものである(図5及び図6参照)。   Next, the electrode body 30 will be described (see FIGS. 2, 3, 5, and 6). The electrode body 30 is housed in the battery case 20 in a state of being laid down so that the axial direction EH thereof coincides with the battery lateral direction CH (see FIG. 2). The electrode body 30 is formed by laminating a strip-like positive electrode plate 31 and a strip-like negative electrode plate 41 through a pair of separators 51, 51 made of a porous resin and wound around an axis AX to form a flat shape. (See FIGS. 5 and 6).

正極板31は、芯材として、アルミニウムからなる帯状の正極電極箔32を有する。この正極電極箔32の表裏面のうち幅方向(図6中、上下方向、電極体30を構成した状態において軸線AXに沿う軸線方向EH)の一部(図6中、下方の部位、軸線方向EHの他方側EDの部位)の上には、それぞれ長手方向MH(図6中、左右方向)に帯状に延びる多孔質の正極活物質層33,33が形成されている。この正極活物質層33は、正極活物質と導電材と結着剤から形成されている。本実施形態では、正極活物質としてリチウム・コバルト・ニッケル・マンガン複合酸化物を、導電材としてアセチレンブラック(AB)を、結着剤としてポリフッ化ビニリデン(PVDF)を用いている。   The positive electrode plate 31 has a strip-shaped positive electrode foil 32 made of aluminum as a core material. Of the front and back surfaces of the positive electrode foil 32, a part of the width direction (the vertical direction in FIG. 6, the axial direction EH along the axis AX in the state where the electrode body 30 is configured) (the lower portion in FIG. 6, the axial direction) On the other side ED portion of EH, porous positive electrode active material layers 33 and 33 extending in a strip shape in the longitudinal direction MH (left and right direction in FIG. 6) are formed. The positive electrode active material layer 33 is formed of a positive electrode active material, a conductive material, and a binder. In this embodiment, lithium-cobalt-nickel-manganese composite oxide is used as the positive electrode active material, acetylene black (AB) is used as the conductive material, and polyvinylidene fluoride (PVDF) is used as the binder.

この正極板31の正極端縁31fは、それぞれ長手方向MHに沿う一方側正極切断端縁31fc及び他方側正極切断端縁31fdを有する(図2、図5及び図6参照)。一方側正極切断端縁31fcは、電極体30を構成した状態において軸線方向EHの一方側ECに位置する端縁である。また、他方側正極切断端縁31fdは、電極体30を構成した状態において軸線方向EHの他方側EDに位置する端縁であり、正極電極箔32及び正極活物質層33を長手方向MHに沿ってスリッタで切断して正極板31を形成した際に生じた切断端縁である。この他方側正極切断端縁31fdには、その切断によるバリが残ることがある。   The positive electrode edge 31f of the positive electrode plate 31 has a first positive electrode cutting edge 31fc and a second positive electrode cutting edge 31fd along the longitudinal direction MH, respectively (see FIGS. 2, 5, and 6). The one-side positive electrode cutting edge 31fc is an edge located on the one-side EC in the axial direction EH in the state where the electrode body 30 is configured. Further, the other-side positive electrode cutting edge 31fd is an edge located on the other side ED in the axial direction EH in the state in which the electrode body 30 is configured, and the positive electrode foil 32 and the positive electrode active material layer 33 are arranged along the longitudinal direction MH. This is a cut edge generated when the positive electrode plate 31 is formed by cutting with a slitter. A burr due to the cutting may remain on the other positive electrode cutting edge 31fd.

負極板41は、芯材として、銅からなる帯状の負極電極箔42を有する。この負極電極箔42の表裏面のうち幅方向(図6中、上下方向、電極体30を構成した状態において軸線方向EH)の一部(図6中、上方の部位、軸線方向EHの一方側ECの部位)の上には、それぞれ長手方向NH(図6中、左右方向)に帯状に延びる多孔質の負極活物質層43,43が形成されている。この負極活物質層43は、負極活物質と結着剤と増粘剤から形成されている。本実施形態では、負極活物質として天然黒鉛を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。   The negative electrode plate 41 has a strip-shaped negative electrode foil 42 made of copper as a core material. A part (upper part in FIG. 6, one side of the axial direction EH) of the negative electrode foil 42 in the width direction (up and down direction in FIG. 6, the axial direction EH in the state in which the electrode body 30 is configured). On the EC portion, porous negative electrode active material layers 43, 43 extending in a strip shape in the longitudinal direction NH (left-right direction in FIG. 6) are formed. The negative electrode active material layer 43 is formed of a negative electrode active material, a binder, and a thickener. In this embodiment, natural graphite is used as the negative electrode active material, styrene butadiene rubber (SBR) is used as the binder, and carboxymethyl cellulose (CMC) is used as the thickener.

この負極板41の負極端縁41fは、それぞれ長手方向NHに沿う一方側負極切断端縁41fc及び他方側負極切断端縁41fdを有する(図2、図5及び図6参照)。一方側負極切断端縁41fcは、電極体30を構成した状態において軸線方向EHの一方側ECに位置する端縁であり、負極電極箔42及び負極活物質層43を長手方向NHに沿ってスリッタで切断して負極板41を形成した際に生じた切断端縁である。この一方側負極切断端縁41fcには、その切断によるバリが残ることがある。また、他方側負極切断端縁41fdは、電極体30を構成した状態において軸線方向EHの他方側EDに位置する端縁である。   The negative electrode edge 41f of the negative electrode plate 41 has a first negative electrode cutting edge 41fc and a second negative electrode cutting edge 41fd along the longitudinal direction NH, respectively (see FIGS. 2, 5, and 6). The one-side negative electrode cutting edge 41fc is an edge located on the one-side EC in the axial direction EH in the state in which the electrode body 30 is configured, and slitters the negative electrode foil 42 and the negative electrode active material layer 43 along the longitudinal direction NH. This is a cut edge generated when the negative electrode plate 41 is formed by cutting at. The one-side negative electrode cutting edge 41fc may leave burrs due to the cutting. The other-side negative electrode cutting edge 41fd is an edge located on the other-side ED in the axial direction EH in the state where the electrode body 30 is configured.

正極板31のうち、軸線AXに沿う軸線方向EHの一方側EC(図2中、左方、図5及び図6中、上方)の端縁部31cは、セパレータ51から一方側ECに向けて扁平渦巻き状をなして突出し、電極体30の正極突出捲回部30cを形成している。この正極突出捲回部30cには、正極端子部材60の第1端子部材61が接続(溶接)されている。
また、負極板41のうち、軸線方向EHの他方側ED(図2中、右方、図5及び図6中、下方)の端縁部41dは、セパレータ51から他方側EDに向けて扁平渦巻き状をなして突出し、電極体30の負極突出捲回部30dを形成している。この負極突出捲回部30dには、負極端子部材70の第1端子部材71が接続(溶接)されている。
Of the positive electrode plate 31, an end edge portion 31 c on one side EC (in FIG. 2, left side, in FIGS. 5 and 6, upward) in the axial direction EH along the axis AX is directed from the separator 51 toward the one side EC. It protrudes in a flat spiral shape to form a positive electrode protruding wound portion 30 c of the electrode body 30. The first terminal member 61 of the positive electrode terminal member 60 is connected (welded) to the positive electrode protruding winding portion 30c.
Further, in the negative electrode plate 41, an end edge portion 41d on the other side ED in the axial direction EH (right side in FIG. 2, lower side in FIGS. 5 and 6) is a flat spiral from the separator 51 toward the other side ED. The electrode body 30 protrudes in a shape to form a negative electrode protrusion wound portion 30d. The first terminal member 71 of the negative electrode terminal member 70 is connected (welded) to the negative electrode winding portion 30d.

電極体30のうち、これら正極突出捲回部30c及び負極突出捲回部30dよりも軸線方向EHの内側(中央)に位置し、正極板31、負極板41及びセパレータ51が互いに重なる部位を、中央捲回部30eとする(図2、図3、図5及び図6参照)。この中央捲回部30eを、電極体幅方向GHに見て、一方側湾曲端部30fと他方側湾曲端部30gと平板部30hに分ける。   Of the electrode body 30, a position where the positive electrode plate 31, the negative electrode plate 41, and the separator 51 overlap each other is located inside (center) in the axial direction EH than the positive electrode protruding winding portion 30 c and the negative electrode protruding winding portion 30 d, It is set as the center winding part 30e (refer FIG.2, FIG.3, FIG.5 and FIG. 6). The central winding portion 30e is divided into one curved end portion 30f, the other curved end portion 30g, and a flat plate portion 30h when viewed in the electrode body width direction GH.

このうち一方側湾曲端部30fは、電極体幅方向GHの一方側GA(図2及び図3中、上方)に位置し、正極板31、負極板41及びセパレータ51が半円筒状に曲げられて互いに重なる部位である。また、他方側湾曲端部30gは、電極体幅方向GHの他方側GB(図2及び図3中、上方)に位置し、正極板31、負極板41及びセパレータ51が半円筒状に曲げられて互いに重なる部位である。また、平板部30hは、一方側湾曲端部30fと他方側湾曲端部30gとの間に位置し、正極板31、負極板41及びセパレータ51が電極体厚み方向FHに平板状に互いに重なる部位である。   Among these, the one-side curved end 30f is located on one side GA (upward in FIGS. 2 and 3) in the electrode body width direction GH, and the positive electrode plate 31, the negative electrode plate 41, and the separator 51 are bent into a semi-cylindrical shape. It is a part that overlaps each other. The other side curved end 30g is located on the other side GB (upward in FIGS. 2 and 3) in the electrode body width direction GH, and the positive electrode plate 31, the negative electrode plate 41, and the separator 51 are bent into a semi-cylindrical shape. It is a part that overlaps each other. The flat plate portion 30h is located between the one-side curved end portion 30f and the other-side curved end portion 30g, and the positive electrode plate 31, the negative electrode plate 41, and the separator 51 overlap each other in a flat plate shape in the electrode body thickness direction FH. It is.

次に、スペーサ80について説明する(図2、図3及び図6参照)。このスペーサ80は、電極体30の平板部30hに重なる形態で、電池ケース20と電極体30との間に、具体的には、電極体30の電極体厚み方向FHの両側にそれぞれ3枚ずつ(合計6枚)配置されている。各々のスペーサ80は、厚み0.10mmのポリプロピレン(PP)からなる矩形板状であり、その長辺の寸法は平板部30hの軸線方向EHの寸法よりも小さく、短辺の寸法は電極体30の電極体幅方向GHの寸法よりも大きくされている。   Next, the spacer 80 will be described (see FIGS. 2, 3 and 6). The spacers 80 overlap with the flat plate portion 30h of the electrode body 30, and each three spacers 80 are provided between the battery case 20 and the electrode body 30, specifically on both sides of the electrode body 30 in the electrode body thickness direction FH. (6 sheets in total) are arranged. Each spacer 80 has a rectangular plate shape made of polypropylene (PP) having a thickness of 0.10 mm. The long side dimension is smaller than the dimension in the axial direction EH of the flat plate portion 30 h, and the short side dimension is the electrode body 30. It is made larger than the dimension of the electrode body width direction GH.

具体的には、このスペーサ80は、4つのスペーサ端縁80fを有する。このうち、電池10を構成した状態において、スペーサ80の一方側ECに位置し、電極体幅方向GHに沿って配置される端縁を、一方側スペーサ端縁80fcとする。この一方側スペーサ端縁80fcは、電極体30の平板部30hのうち負極板41の一方側負極切断端縁41fcよりも、4.0〜8.0mm軸線方向EHの他方側EDに配置されている(図2及び図6参照)。本実施形態では、この引き下げ距離Lcは、Lc=4.0mmである。   Specifically, the spacer 80 has four spacer edges 80f. Among these, in the state where the battery 10 is configured, an edge that is located on one side EC of the spacer 80 and is disposed along the electrode body width direction GH is referred to as a one-side spacer edge 80fc. The one-side spacer edge 80fc is disposed on the other side ED in the axial direction EH of 4.0 to 8.0 mm from the one-side negative electrode cutting edge 41fc of the negative electrode plate 41 in the flat plate portion 30h of the electrode body 30. (See FIGS. 2 and 6). In the present embodiment, the pull-down distance Lc is Lc = 4.0 mm.

また、スペーサ80の他方側EDに位置し、電極体幅方向GHに沿って配置される端縁を、他方側スペーサ端縁80fdとする。この他方側スペーサ端縁80fdは、電極体30の平板部30hのうち正極板31の他方側正極切断端縁31fdよりも、4.0〜8.0mm軸線方向EHの一方側ECに配置されている(図2及び図6参照)。本実施形態では、この引き下げ距離Ldは、Ld=4.0mmである。   In addition, an edge located on the other side ED of the spacer 80 and disposed along the electrode body width direction GH is referred to as an other-side spacer edge 80fd. The other-side spacer edge 80fd is arranged on the one-side EC in the axial direction EH of 4.0 to 8.0 mm from the other-side positive electrode cutting edge 31fd of the positive electrode plate 31 in the flat plate portion 30h of the electrode body 30. (See FIGS. 2 and 6). In the present embodiment, the pull-down distance Ld is Ld = 4.0 mm.

また、電極体幅方向GHの一方側GAに、電極体30の軸線方向EH沿って配置される端縁を、幅方向第1端縁80feとする。この幅方向第1端縁80feは、電極体30の一方側湾曲端部30fよりも更に電極体幅方向GHの一方側GAに配置されている(図2及び図3参照)。
また、電極体幅方向GHの他方側GBに、電極体30の軸線方向EH沿って配置される端縁を、幅方向第2端縁80ffとする。この幅方向第2端縁80ffは、電極体30の他方側湾曲端部30gよりも更に電極体幅方向GHの他方側GBに配置されている(図2及び図3参照)。
In addition, an edge disposed along the axial direction EH of the electrode body 30 on one side GA in the electrode body width direction GH is defined as a width direction first edge 80fe. The first edge 80fe in the width direction is further disposed on the one side GA in the electrode body width direction GH than the one side curved end 30f of the electrode body 30 (see FIGS. 2 and 3).
In addition, an edge disposed along the axial direction EH of the electrode body 30 on the other side GB in the electrode body width direction GH is defined as a second edge 80ff in the width direction. The second edge 80ff in the width direction is further disposed on the other side GB in the electrode body width direction GH than the other side curved end 30g of the electrode body 30 (see FIGS. 2 and 3).

次いで、上記電池10の製造方法について説明する。正極板31と負極板41とセパレータ51,51とをそれぞれ用意し、正極板31及び負極板41をセパレータ51,51を介して互いに重ね(図6参照)、巻き芯を用いて軸線AX周りに捲回する。更に、これを扁平状に圧縮して電極体30を形成する(図5参照)。
また別途、蓋部材23と、第1端子部材61,71と、第2端子部材62,72と、締結部材65,75と、第1絶縁部材67,77と、第2絶縁部材68,78とをそれぞれ用意する。そして、これらを用いて、蓋部材23に正極端子部材60及び負極端子部材70をそれぞれ固設する(図4参照)。その後、正極端子部材60及び負極端子部材70をそれぞれ電極体30に溶接する。
Next, a method for manufacturing the battery 10 will be described. A positive electrode plate 31, a negative electrode plate 41, and separators 51, 51 are prepared, and the positive electrode plate 31 and the negative electrode plate 41 are overlapped with each other via the separators 51, 51 (see FIG. 6), and around the axis AX using a winding core. Turn around. Further, this is compressed into a flat shape to form the electrode body 30 (see FIG. 5).
Separately, the lid member 23, the first terminal members 61 and 71, the second terminal members 62 and 72, the fastening members 65 and 75, the first insulating members 67 and 77, and the second insulating members 68 and 78, Prepare each. And using these, the positive electrode terminal member 60 and the negative electrode terminal member 70 are respectively fixed to the lid member 23 (see FIG. 4). Thereafter, the positive electrode terminal member 60 and the negative electrode terminal member 70 are welded to the electrode body 30.

次に、スペーサ80を6枚用意し、これらのスペーサ80を電極体30の平板部30hの両側に3枚ずつ重ねる。その際、各々の一方側スペーサ端縁80fcが平板部30hの一方側負極切断端縁41fcよりも、Lc=4.0mm軸線方向EHの他方側EDに位置すると共に、各々の他方側スペーサ端縁80fdが平板部30hの他方側正極切断端縁31fdよりも、Ld=4.0mm軸線方向EHの一方側ECに位置する形態に、スペーサ80を配置する。   Next, six spacers 80 are prepared, and three of these spacers 80 are stacked on both sides of the flat plate portion 30 h of the electrode body 30. At that time, each one-side spacer edge 80fc is located on the other side ED in the axial direction EH of Lc = 4.0 mm from the one-side negative electrode cutting edge 41fc of the flat plate portion 30h, and each other-side spacer edge The spacer 80 is arranged in a form in which 80 fd is located on one side EC in the axial direction EH of Ld = 4.0 mm from the other-side positive electrode cutting edge 31 fd of the flat plate portion 30 h.

次に、ケース本体21を用意し、このケース本体21内に電極体30及びスペーサ80を収容した後、ケース本体21と蓋部材23を溶接して電池ケース20を形成する(図1〜図3参照)。その後、電解液27を注液孔23hから電池ケース20内に注液し、封止部材25で注液孔23hを気密に封止する。その後は、この電池について、初充電や各種検査を行う。かくして、電池10が完成する。   Next, the case main body 21 is prepared, and after the electrode body 30 and the spacer 80 are accommodated in the case main body 21, the case main body 21 and the lid member 23 are welded to form the battery case 20 (FIGS. 1 to 3). reference). Thereafter, the electrolytic solution 27 is injected into the battery case 20 from the injection hole 23h, and the injection hole 23h is hermetically sealed with the sealing member 25. Thereafter, the battery is subjected to initial charging and various inspections. Thus, the battery 10 is completed.

(試験結果)
次いで、実施形態に係る電池10の効果を検証するために行った試験の結果について説明する。実施形態に係る電池10において、一方側スペーサ端縁80fc及び他方側スペーサ端縁80fdの一方側負極切断端縁41fcまたは他方側正極切断端縁31fdからの引き下げ距離Lc,Ldを、−2.0〜16.0mmに2.0mm間隔で変更して、10種類の電池を作製した。なお、これらの電池を作製するにあたり、ニッパを用いて、電極体の平板部における一方側負極切断端縁41fc及び他方側正極切断端縁31fdに、高さ60μmのバリを1箇所ずつ形成した。
(Test results)
Next, the results of tests performed to verify the effects of the battery 10 according to the embodiment will be described. In the battery 10 according to the embodiment, the reduction distances Lc and Ld of the one-side spacer edge 80fc and the other-side spacer edge 80fd from the one-side negative electrode cutting edge 41fc or the other-side positive electrode cutting edge 31fd are set to −2.0. Ten types of batteries were manufactured by changing the distance to ˜16.0 mm at intervals of 2.0 mm. In manufacturing these batteries, a burr having a height of 60 μm was formed on each of the one-side negative electrode cutting edge 41fc and the other-side positive electrode cutting edge 31fd in the flat plate portion of the electrode body using a nipper.

各電池をそれぞれ10個ずつ用意し、「短絡試験」を行った。具体的には、各電池を電池厚み方向BH(電極体厚み方向FH)の両側から一対の拘束板で挟み、5kN(2600kPa)で押圧しつつ拘束した。
その後、自己放電工程での電圧変化から、電極体30内で短絡が生じているか否かを検査した。具体的には、(1)20℃において電池電圧を測定する。(2)その5日後に再度電池電圧を測定する。(3)そして、10個の電池について5日間の電圧変化のメジアンを求め、このメジアンから−0.33mV/5日以上低下した電池を、短絡が生じた電池と判断した。その結果を図7に示す。
Ten batteries were prepared and a “short circuit test” was performed. Specifically, each battery was sandwiched between a pair of restraining plates from both sides in the battery thickness direction BH (electrode body thickness direction FH) and restrained while being pressed at 5 kN (2600 kPa).
Thereafter, it was inspected whether or not a short circuit occurred in the electrode body 30 from the voltage change in the self-discharge process. Specifically, (1) The battery voltage is measured at 20 ° C. (2) Five days later, the battery voltage is measured again. (3) Then, the median of the voltage change for 5 days was obtained for 10 batteries, and the battery that had decreased from this median by −0.33 mV / 5 days or more was judged as a battery in which a short circuit occurred. The result is shown in FIG.

図7のグラフから判るように、一方側スペーサ端縁及び他方側スペーサ端縁の引き下げ距離Lc,Ldを、Lc=Ld=−2.0mmとした電池では、10個中5個の電池で短絡が生じ、また、Lc=Ld=0.0mmとした電池では、10個中4個の電池で短絡が生じた。
これらに対し、Lc=Ld=2.0mmとした電池では、10個中3個の電池でしか短絡が生じず、Lc=Ld=−2.0mmとした電池、及び、Lc=Ld=0.0mmとした電池よりも、短絡が生じ難くなった。更に、Lc=Ld=4.0〜16.0mmとした各電池では、いずれも短絡しなかった。
As can be seen from the graph of FIG. 7, in the battery in which the pull-down distances Lc and Ld of the one side spacer edge and the other side spacer edge are Lc = Ld = −2.0 mm, 5 out of 10 batteries are short-circuited. In addition, in the battery with Lc = Ld = 0.0 mm, a short circuit occurred in four out of ten batteries.
On the other hand, in a battery with Lc = Ld = 2.0 mm, a short circuit occurs only in three of the ten batteries, a battery with Lc = Ld = −2.0 mm, and Lc = Ld = 0. Short-circuiting is less likely to occur than with a 0 mm battery. Furthermore, in each battery with Lc = Ld = 4.0 to 16.0 mm, none was short-circuited.

その理由は、以下であると考えられる。即ち、電池を拘束板で押圧しつつ拘束すると、電池ケース20と電極体30との間に介在するスペーサは、電極体30の平板部30hを押圧する。すると、Lc=Ld=−2.0mmとした電池、または、Lc=Ld=−0.0mmとした電池では、スペーサによって他方側正極切断端縁31fd及び一方側負極切断端縁41fcが特に強く押圧される。このため、多数の電池において、他方側正極切断端縁31fdまたは一方側負極切断端縁41fcに存在するバリがセパレータ51を貫通して隣在する負極板41または正極板31に接触し短絡を生じたと考えられる。   The reason is considered as follows. That is, when the battery is restrained while being pressed by the restraining plate, the spacer interposed between the battery case 20 and the electrode body 30 presses the flat plate portion 30 h of the electrode body 30. Then, in the battery with Lc = Ld = −2.0 mm, or the battery with Lc = Ld = −0.0 mm, the other-side positive electrode cutting edge 31 fd and the one-side negative electrode cutting edge 41 fc are particularly strongly pressed by the spacer. Is done. For this reason, in many batteries, the burrs present on the other-side positive electrode cut end edge 31fd or the one-side negative electrode cut end edge 41fc contact the adjacent negative electrode plate 41 or the positive electrode plate 31 through the separator 51 to cause a short circuit. It is thought.

これらに対し、Lc=Ld=2.0mmとした電池では、一方側スペーサ端縁及び他方側スペーサ端縁が他方側正極切断端縁31fd及び一方側負極切断端縁41fcよりもそれぞれ2.0mm内側に位置するので、Lc=Ld=−2.0mmとした電池、及び、Lc=Ld=−0.0mmとした電池ほどには、スペーサによって他方側正極切断端縁31fd及び一方側負極切断端縁41fcが強く押圧されない。このため、他方側正極切断端縁31fdまたは一方側負極切断端縁41fcのバリがセパレータ51を貫通して隣在する負極板41または正極板31に接触し短絡を生じることが抑制されたと考えられる。   On the other hand, in the battery with Lc = Ld = 2.0 mm, the one side spacer edge and the other side spacer edge are 2.0 mm inside than the other side positive electrode cutting edge 31 fd and the one side negative electrode cutting edge 41 fc, respectively. Therefore, as the battery with Lc = Ld = −2.0 mm and the battery with Lc = Ld = −0.0 mm, the other-side positive electrode cutting edge 31 fd and the one-side negative electrode cutting edge are separated by the spacer. 41fc is not pressed strongly. For this reason, it is considered that the burr of the other-side positive electrode cutting edge 31fd or the one-side negative electrode cutting edge 41fc penetrates the separator 51 and contacts the adjacent negative electrode plate 41 or positive electrode plate 31 to suppress a short circuit. .

更に、Lc=Ld=4.0〜16.0mmとした各電池では、一方側スペーサ端縁及び他方側スペーサ端縁が他方側正極切断端縁31fd及び一方側負極切断端縁41fcよりもそれぞれ大きく(4.0mm以上)内側に位置するので、スペーサによって他方側正極切断端縁31fd及び一方側負極切断端縁41fcが殆ど押圧されない。このため、他方側正極切断端縁31fdまたは一方側負極切断端縁41fcのバリがセパレータ51を貫通して隣在する負極板41または正極板31に接触し短絡を生じることが防止されたと考えられる。   Furthermore, in each battery with Lc = Ld = 4.0 to 16.0 mm, the one side spacer edge and the other side spacer edge are larger than the other side positive electrode cutting edge 31fd and the one side negative electrode cutting edge 41fc, respectively. Since it is located inside (4.0 mm or more), the other-side positive electrode cutting edge 31fd and the one-side negative electrode cutting edge 41fc are hardly pressed by the spacer. For this reason, it is considered that the burr of the other-side positive electrode cutting edge 31fd or the one-side negative electrode cutting edge 41fc is prevented from coming into contact with the adjacent negative electrode plate 41 or positive electrode plate 31 through the separator 51 and causing a short circuit. .

次に、前述の10種類の各電池について、前述のように拘束板で拘束し、かつ短絡が生じなかった電池を用いて、「充放電サイクル試験」を行い、容量維持率を求めた。具体的には、60℃の環境温度下において、各電池について、2Cの定電流で3.57V(SOC30%)から3.88V(SOC80%)まで充電した後、2Cの定電流で3.88V(SOC80%)から3.57V(SOC30%)まで放電させる充放電を1サイクルとして、これを1000サイクル行った。そして、各電池ついて、充放電サイクル試験前の電池容量に対する充放電試験後の電池容量の割合を求めて、これを容量維持率とした。その結果を図7に示す。   Next, for each of the 10 types of batteries described above, a “charge / discharge cycle test” was performed using the batteries that were restrained by the restraint plate as described above and did not cause a short circuit, and the capacity retention rate was determined. Specifically, each battery was charged from 3.57V (SOC 30%) to 3.88V (SOC 80%) at a constant current of 2C and then 3.88V at a constant current of 2C at an environmental temperature of 60 ° C. Charging / discharging to discharge from (SOC 80%) to 3.57 V (SOC 30%) was taken as one cycle, and this was performed 1000 cycles. And about each battery, the ratio of the battery capacity after the charging / discharging test with respect to the battery capacity before the charging / discharging cycle test was calculated | required, and this was made into the capacity | capacitance maintenance factor. The result is shown in FIG.

図7のグラフから判るように、Lc=Ld=14.0mmとした電池では、充放電サイクル試験後の容量維持率が低く(約86%)、Lc=Ld=16.0mmとした電池では、容量維持率が更に低かった(約78%)。
これらに対し、一方側スペーサ端縁及び他方側スペーサ端縁の引き下げ距離Lc,Ldを、Lc=Ld=−2.0〜12.0mmとした各電池では、いずれも、充放電サイクル試験後の容量維持率が高かった(92%以上)。
As can be seen from the graph of FIG. 7, in the battery with Lc = Ld = 14.0 mm, the capacity retention rate after the charge / discharge cycle test is low (about 86%), and in the battery with Lc = Ld = 16.0 mm, The capacity retention rate was even lower (about 78%).
On the other hand, in each battery in which the pull-down distances Lc, Ld of the one side spacer edge and the other side spacer edge are Lc = Ld = −2.0 to 12.0 mm, The capacity maintenance rate was high (over 92%).

その理由は、以下であると考えられる。即ち、Lc=Ld=14.0mmとした電池、及び、Lc=Ld=16.0mmとした電池では、引き下げ距離Lc,Ldが大き過ぎるため、電極体30の平板部30hのうちスペーサで押圧されない部分が多くなって、電極体30の平板部30hに荷重ムラが生じた。その結果、容量維持率が低下したと考えられる。
これらに対し、Lc=Ld=−2.0〜12.0mmとした各電池では、電極体30の平板部30hのうちスペーサで押圧されない部分が少なく、電極体30の平板部30hに荷重ムラが生じ難い。このため、容量維持率が高くなったと考えられる。
The reason is considered as follows. That is, in the battery in which Lc = Ld = 14.0 mm and the battery in which Lc = Ld = 16.0 mm, the pull-down distances Lc and Ld are too large, so that the spacer is not pressed by the spacer in the flat plate portion 30h of the electrode body 30. The number of portions increased, and load unevenness occurred in the flat plate portion 30 h of the electrode body 30. As a result, it is considered that the capacity maintenance rate has decreased.
On the other hand, in each battery with Lc = Ld = −2.0 to 12.0 mm, there are few portions of the flat plate portion 30h of the electrode body 30 that are not pressed by the spacer, and the flat plate portion 30h of the electrode body 30 has load unevenness. Not likely to occur. For this reason, it is considered that the capacity maintenance rate has increased.

以上で説明したように、電池10では、スペーサ80を電極体30の平板部30hに重ねて配置しながらも、その一方側スペーサ端縁80fcが負極板41の一方側負極切断端縁41fcよりも軸線方向EHの他方側EDに位置すると共に、他方側スペーサ端縁80fdが正極板31の他方側正極切断端縁31fdよりも軸線方向EHの一方側ECに位置する形態に配置している。このため、他方側正極切断端縁31fd及び一方側負極切断端縁41fcは、スペーサ80によって押圧され難くなる。従って、他方側正極切断端縁31fdや一方側負極切断端縁41fcにバリが生じていたとしても、スペーサ80の押圧によってバリがセパレータ51を貫通して隣在する正極板31または負極板41に接触する短絡が生じるのを適切に抑制できる。   As described above, in the battery 10, the spacer 80 is arranged so as to overlap the flat plate portion 30 h of the electrode body 30, but the one side spacer edge 80 fc is more than the one side negative electrode cut edge 41 fc of the negative electrode plate 41. The second spacer end edge 80fd is positioned on the other side ED in the axial direction EH, and is positioned on the first side EC in the axial direction EH with respect to the other positive electrode cutting end edge 31fd of the positive electrode plate 31. For this reason, the other side positive electrode cutting end edge 31 fd and the one side negative electrode cutting end edge 41 fc are hardly pressed by the spacer 80. Therefore, even if burrs are generated in the other-side positive electrode cutting edge 31fd and the one-side negative electrode cutting edge 41fc, the burrs penetrate the separator 51 by the pressing of the spacer 80 and are adjacent to the adjacent positive electrode plate 31 or negative electrode plate 41. It can suppress appropriately that the short circuit which contacts is produced.

更に、本実施形態では、スペーサ80の一方側スペーサ端縁80fcを、電極体30の平板部30hの一方側負極切断端縁41fcよりも4.0mm以上軸線方向EHの他方側EDに配置している。また、他方側スペーサ端縁80fdを、他方側正極切断端縁31fdよりも4mm以上軸線方向EHの一方側ECに配置している。これにより、他方側正極切断端縁31fd及び一方側負極切断端縁41fcは、スペーサ80によって殆ど押圧されなくなるので、スペーサ80の押圧に起因した短絡をより確実に防止できる。   Furthermore, in the present embodiment, one side spacer edge 80fc of the spacer 80 is disposed on the other side ED in the axial direction EH by 4.0 mm or more than the one side negative electrode cutting edge 41fc of the flat plate portion 30h of the electrode body 30. Yes. Further, the other-side spacer end edge 80fd is arranged on the one-side EC in the axial direction EH by 4 mm or more than the other-side positive electrode cutting end edge 31fd. Thereby, the other-side positive electrode cutting end edge 31fd and the one-side negative electrode cutting end edge 41fc are hardly pressed by the spacer 80, so that a short circuit due to the pressing of the spacer 80 can be prevented more reliably.

一方、一方側スペーサ端縁80fcの一方側負極切断端縁41fcからの引き下げ距離Lc、及び、他方側スペーサ端縁80fdの他方側正極切断端縁31fdからの引き下げ距離Ldが大き過ぎると、電極体30の平板部30hに荷重ムラが生じて、電池10の使用(充放電)に伴う容量劣化(容量維持率の低下)が大きくなる。これに対し、この電池10では、一方側スペーサ端縁80fcの一方側負極切断端縁41fcからの引き下げ距離Lcを8.0mm以内とすると共に、他方側スペーサ端縁80fdの他方側正極切断端縁31fdからの引き下げ距離Ldを8.0mm以内としている。これにより、電池10の使用に伴う容量劣化を適切に抑制できる。   On the other hand, if the lowering distance Lc from the one-side negative electrode cutting edge 41fc of the one-side spacer edge 80fc and the lowering distance Ld from the other-side positive electrode cutting edge 31fd of the other-side spacer edge 80fd are too large, the electrode body Load unevenness occurs in the 30 flat plate portions 30h, and the capacity deterioration (decrease in capacity maintenance rate) accompanying use (charging / discharging) of the battery 10 increases. On the other hand, in the battery 10, the pull-down distance Lc from the one-side negative electrode cutting edge 41 fc of the one-side spacer edge 80 fc is within 8.0 mm, and the other-side positive electrode cutting edge of the other-side spacer edge 80 fd is The pulling distance Ld from 31 fd is within 8.0 mm. Thereby, the capacity | capacitance degradation accompanying use of the battery 10 can be suppressed appropriately.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、複数枚の(3枚ずつ)スペーサ80を重ねた例を示したが、スペーサを1枚(片側1枚ずつ)とすることもできる。
また、実施形態では、スペーサ80を電極体30の電極体厚み方向FHの両側にそれぞれ配置した電池10を例示したが、これに限られない。スペーサを電極体の電極体厚み方向FHの片側のみに配置してもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the implementation form, a plurality of sheets (three pieces) has shown an example of extensive spacer 80 may be a single spacer (one by one side).
Further, in the embodiment, the battery 10 in which the spacer 80 is disposed on both sides of the electrode body 30 in the electrode body thickness direction FH is illustrated, but the present invention is not limited thereto. The spacer may be disposed only on one side of the electrode body in the electrode body thickness direction FH.

10 電池
20 電池ケース
30 電極体
30c 正極突出捲回部
30d 負極突出捲回部
30e 中央捲回部
30f 一方側湾曲端部
30g 他方側湾曲端部
30h 平板部
31 正極板
31c (正極板の軸線方向の一方側の)端縁部
31f 正極端縁
31fc 一方側正極切断端縁
31fd 他方側正極切断端縁(正極切断端縁)
41 負極板
41d (負極板の軸線方向の他方側の)端縁部
41f 負極端縁
41fc 一方側負極切断端縁(負極切断端縁)
41fd 他方側負極切断端縁
51 セパレータ
80 スペーサ
80f スペーサ端縁
80fc 一方側スペーサ端縁
80fd 他方側スペーサ端縁
80fe 幅方向第1端縁
80ff 幅方向第2端縁
AX 軸線(捲回軸)
EH 軸線方向
EC (軸線方向の)一方側
ED (軸線方向の)他方側
MH (正極板の)長手方向
NH (負極板の)長手方向
Lc,Ld 引き下げ距離
DESCRIPTION OF SYMBOLS 10 Battery 20 Battery case 30 Electrode body 30c Positive electrode protruding winding part 30d Negative electrode protruding winding part 30e Central winding part 30f One side curved end part 30g The other side curved end part 30h Flat plate part 31 Positive electrode plate 31c (Axial direction of positive electrode plate Edge side 31f of positive electrode edge 31fc one side positive electrode cutting edge 31fd other side positive electrode cutting edge (positive electrode cutting edge)
41 Negative electrode plate 41d (on the other side in the axial direction of the negative electrode plate) edge portion 41f Negative electrode edge 41fc One-side negative electrode cutting edge (negative electrode cutting edge)
41fd Other side negative electrode cutting edge 51 Separator 80 Spacer 80f Spacer edge 80fc One side spacer edge 80fd Other side spacer edge 80fe Width direction first edge 80ff Width direction second edge AX Axis (winding axis)
EH Axial direction EC (Axial direction) One side ED (Axial direction) Other side MH (Positive plate) Longitudinal direction NH (Negative plate) Longitudinal direction Lc, Ld Pulling distance

Claims (1)

帯状の正極板と帯状の負極板とを帯状のセパレータを介して互いに重ね軸線周りに扁平状に捲回してなり、前記正極板のうち前記軸線に沿う軸線方向の一方側の端縁部を前記セパレータから前記一方側に向けて扁平渦巻き状に突出させると共に、前記負極板のうち前記軸線方向の他方側の端縁部を前記セパレータから前記他方側に向けて扁平渦巻き状に突出させた電極体と、
前記電極体を収容する電池ケースと、
前記電池ケースと前記電極体との間に配置され、前記電極体のうち、少なくとも、前記正極板、前記負極板及び前記セパレータが平板状に重なる平板部に重なる板状のスペーサと、を備える
電池であって、
前記正極板は、
前記他方側に、この正極板をその長手方向に切断して形成した際に生じた正極切断端縁を有し、
前記負極板は、
前記一方側に、この負極板をその長手方向に切断して形成した際に生じた負極切断端縁を有し、
前記スペーサは、
樹脂製であり、そのスペーサ端縁のうち、前記一方側に位置する一方側スペーサ端縁が、前記負極切断端縁よりも4.0〜8.0mm前記他方側に位置すると共に、前記他方側に位置する他方側スペーサ端縁が、前記正極切断端縁よりも4.0〜8.0mm前記一方側に位置する形態に配置されてなる
電池。
A belt-like positive electrode plate and a belt-like negative electrode plate are overlapped with each other via a belt-like separator and wound around in a flat shape around the axis, and the edge on one side in the axial direction along the axis of the positive electrode plate is An electrode body projecting in a flat spiral shape from the separator toward the one side, and having an end edge on the other side in the axial direction of the negative electrode plate projecting in a flat spiral shape from the separator toward the other side When,
A battery case that houses the electrode body;
A battery that is disposed between the battery case and the electrode body, and includes a plate-shaped spacer that overlaps at least a plate portion in which the positive electrode plate, the negative electrode plate, and the separator overlap in a flat plate shape. Because
The positive electrode plate is
On the other side, it has a positive electrode cutting edge generated when the positive electrode plate is formed by cutting in the longitudinal direction,
The negative electrode plate is
On the one side, having a negative electrode cutting edge generated when the negative electrode plate is formed by cutting in the longitudinal direction,
The spacer is
It is made of resin, and among the spacer edges, one side spacer edge located on the one side is 4.0 to 8.0 mm from the negative electrode cutting edge and located on the other side, and the other side The battery is formed by arranging the other-side spacer edge located on the one side of 4.0 to 8.0 mm from the positive electrode cutting edge.
JP2013020684A 2013-02-05 2013-02-05 battery Active JP5942874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020684A JP5942874B2 (en) 2013-02-05 2013-02-05 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020684A JP5942874B2 (en) 2013-02-05 2013-02-05 battery

Publications (2)

Publication Number Publication Date
JP2014154254A JP2014154254A (en) 2014-08-25
JP5942874B2 true JP5942874B2 (en) 2016-06-29

Family

ID=51575955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020684A Active JP5942874B2 (en) 2013-02-05 2013-02-05 battery

Country Status (1)

Country Link
JP (1) JP5942874B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055307B2 (en) * 1999-11-15 2008-03-05 新神戸電機株式会社 Cylindrical lithium-ion battery
JP4374829B2 (en) * 2002-05-24 2009-12-02 株式会社ジーエス・ユアサコーポレーション Battery manufacturing method
JP2006278245A (en) * 2005-03-30 2006-10-12 Toyota Motor Corp Battery and its manufacturing method
JP5049603B2 (en) * 2006-02-07 2012-10-17 パナソニック株式会社 Battery electrode plate and method for forming the same, and battery electrode plate forming apparatus
JP4296522B2 (en) * 2007-08-23 2009-07-15 トヨタ自動車株式会社 Battery and manufacturing method thereof
JP5779879B2 (en) * 2010-12-24 2015-09-16 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2014154254A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
US10249867B2 (en) Prismatic secondary battery and assembled battery using the same
JP5274026B2 (en) Square battery
US6379840B2 (en) Lithium secondary battery
CN109326813B (en) Power storage device and insulating holder
JP5762676B2 (en) Electrode and non-aqueous electrolyte battery
CN103227311A (en) Sealed secondary battery
JP2015011919A (en) Power unit
KR20090124933A (en) Rectangular cell
JP2014137889A (en) Lithium ion secondary battery and battery pack
JP2019204799A (en) Square secondary battery and battery pack using the same
JP2018129133A (en) Sealed battery and battery pack
JP2019179654A (en) Rectangular nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101748508B1 (en) Battery
WO2018062231A1 (en) Square-shaped secondary battery
US20150162645A1 (en) Method of manufacturing flat-type non-aqueous secondary battery
KR102002511B1 (en) Battery
JP6454423B2 (en) Battery cell and battery system
JP5501270B2 (en) Battery using coated electrode group
JP5942874B2 (en) battery
JP6454424B2 (en) Battery cell and battery system
JP7225287B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP6382336B2 (en) Prismatic secondary battery
JP2015002043A (en) Lithium ion secondary battery
US20220094020A1 (en) Stacked secondary battery
JP2010086775A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5942874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151