JP5941862B2 - Overflow evaluation device, overflow evaluation method, program - Google Patents

Overflow evaluation device, overflow evaluation method, program Download PDF

Info

Publication number
JP5941862B2
JP5941862B2 JP2013066966A JP2013066966A JP5941862B2 JP 5941862 B2 JP5941862 B2 JP 5941862B2 JP 2013066966 A JP2013066966 A JP 2013066966A JP 2013066966 A JP2013066966 A JP 2013066966A JP 5941862 B2 JP5941862 B2 JP 5941862B2
Authority
JP
Japan
Prior art keywords
amount
water
drainage
region
overflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013066966A
Other languages
Japanese (ja)
Other versions
JP2014190064A (en
Inventor
修 布川
修 布川
幹嗣 西田
幹嗣 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013066966A priority Critical patent/JP5941862B2/en
Publication of JP2014190064A publication Critical patent/JP2014190064A/en
Application granted granted Critical
Publication of JP5941862B2 publication Critical patent/JP5941862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明は、降雨時の排水溝の溢水評価を行う溢水評価装置等に関する。   TECHNICAL FIELD The present invention relates to an overflow evaluation apparatus and the like for evaluating overflow of a drainage ditch during rainfall.

山間部などでは、鉄道を敷設する際、自然斜面の上に盛土を設け、その上にレールを敷設することが多い。このような盛土は、降雨により崩壊等の危険があるので、鉄道の安全、安定輸送確保のため、雨量を指標とした運転規制が行われている。運転規制値は過去に発生した盛土崩壊時の雨量を参考に経験的に定められる。   In mountainous areas, when laying railroads, embankments are often placed on natural slopes and rails are laid on top of it. Since such embankments have a risk of collapse due to rainfall, operation regulations using rainfall as an index are performed to ensure safe and stable transportation of railways. The operation regulation value is determined empirically with reference to the rainfall at the time of embankment collapse that occurred in the past.

しかしながら、このような運転規制値は、個々の盛土の現在状況に沿わないこともあり、近年、定量的かつ合理的な運転規制値の設定方法が求められている。その一つとして、地形をメッシュ化して個々のメッシュ条件から浸透流解析や安全解析を行って降雨に対する安全性を求める方法がある(例えば、特許文献1など)。   However, such operation regulation values may not be in line with the current situation of each embankment, and in recent years, a quantitative and rational operation regulation value setting method is required. As one of them, there is a method for obtaining safety against rainfall by meshing the topography and performing osmotic flow analysis and safety analysis from individual mesh conditions (for example, Patent Document 1).

特開2008−121185号公報JP 2008-121185 A

盛土の崩壊には、降雨時に自然斜面の表層を流れて盛土に流入する水量が影響する。そこで、自然斜面と盛土の境界部に排水溝を設け、自然斜面からの水を排水して盛土に流入することを防ぐ。しかしながら、自然斜面の表層から流れこむ水量が多いと排水溝で処理しきれず盛土に流入し、盛土崩壊の恐れが生じる。   The collapse of the embankment is affected by the amount of water flowing into the embankment through the surface of the natural slope during rainfall. Therefore, a drainage groove is provided at the boundary between the natural slope and the embankment to prevent the water from the natural slope from being drained and flowing into the embankment. However, if there is a large amount of water flowing from the surface layer of the natural slope, it cannot be treated in the drainage ditch and flows into the embankment, which may cause collapse of the embankment.

従って、降雨時の盛土の安全性の評価としては、排水溝による溢水の有無を検討することが望ましい。しかしながら、従来はこのような溢水評価を行うシステムが存在しなかった。   Therefore, as an evaluation of the safety of embankments during rainfall, it is desirable to examine the presence or absence of overflow due to drains. Conventionally, however, there has been no system for evaluating such overflow.

本発明は、このような問題に鑑みてなされたもので、その目的は、降雨時の排水溝の溢水評価を行うことが可能な溢水評価装置等を提供することである。   The present invention has been made in view of such problems, and an object thereof is to provide an overflow evaluation apparatus and the like that can perform overflow evaluation of drainage grooves during rainfall.

前述した目的を達成するための第1の発明は、降雨による排水溝の溢水の有無を評価する溢水評価装置であって、排水溝を排水方向に沿って複数の領域に分割する領域分割手段と、評価対象の領域の上流側にある領域の水量を用いて、前記評価対象の領域を通過する通水量を算出する通水量算出手段と、前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定手段と、を具備し、前記排水溝は、斜面上の盛土の境界部分に設けたものであり、前記通水量は、排水溝の流下中、計算時点において前記領域に存在している水量を含み、当該水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であり、前記領域より排水溝の上流側に位置する領域に以前あった水量が、当該領域の通水限界量を超えていた場合、盛土の形状に応じて、前記排水溝の流下中、計算時点において前記領域に存在している水量として、前記通水限界量を用いるか、前記領域より排水溝の上流側に位置する領域に以前あった水量を用いるか、が定められることを特徴とする溢水評価装置である。
第2の発明は、降雨による排水溝の溢水の有無を評価する溢水評価装置であって、排水溝を排水方向に沿って複数の領域に分割する領域分割手段と、評価対象の領域の上流側にある領域の水量を用いて、前記評価対象の領域を通過する通水量を算出する通水量算出手段と、前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定手段と、を具備し、評価対象の領域は、前記排水溝と横断排水工との接続箇所に対応し、前記通水限界量は、横断排水工について定めたものであることを特徴とする溢水評価装置である。
A first invention for achieving the above-mentioned object is an overflow evaluation device for evaluating the presence or absence of overflow in a drainage ditch caused by rainfall, and an area dividing means for dividing the drainage groove into a plurality of areas along the direction of drainage. , Using the amount of water in the region upstream of the region to be evaluated, using a water amount calculating means for calculating the amount of water passing through the region to be evaluated, and using the amount of water and the amount of water flow limit, Overflow determining means for determining presence / absence , wherein the drainage groove is provided at a boundary portion of the embankment on the slope, and the amount of water flow is in the area at the time of calculation during the flow of the drainage groove. The amount of water that is present is the amount of water that was previously in the region located upstream of the drainage channel from the region, and the amount of water that was previously in the region located upstream of the drainage channel from the region. If the water flow limit of the area is exceeded, Depending on the shape, during the flow of the drainage ditch, the water flow limit amount is used as the amount of water present in the area at the time of calculation, or it was previously in the area located upstream of the drainage ditch from the area It is an overflow evaluation apparatus characterized by whether the amount of water is used .
A second aspect of the invention is an overflow evaluation apparatus for evaluating the presence or absence of overflow in a drainage ditch caused by rainfall, an area dividing means for dividing the drainage groove into a plurality of areas along the drainage direction, and an upstream side of the evaluation target area A water flow amount calculating means for calculating a water flow amount that passes through the region to be evaluated using the water amount in the area, and an overflow determination means for determining the presence or absence of overflow using the water flow amount and the water flow limit amount. And the evaluation target area corresponds to the connection location of the drainage ditch and the cross drainage, and the water flow limit is defined for the cross drainage. Device.

前記排水溝は、斜面に設けたものであり、少なくともいずれかの領域の水量は、排水溝の流下中計算時点において前記領域に存在している水量と、斜面の表層から前記領域に流入する水量と、降雨により前記領域に流入する水量との総和であることが望ましい。   The drainage groove is provided on a slope, and the amount of water in at least one of the areas is the amount of water existing in the area at the time of calculation during the drainage of the drainage groove and the amount of water flowing into the area from the surface layer of the slope. And the total amount of water flowing into the area due to rainfall.

排水溝の流下中計算時点において前記領域に存在している水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であることが望ましい。   It is desirable that the amount of water existing in the region at the time of calculation during the drainage of the drainage channel is the amount of water that was previously in the region located upstream of the drainage channel from the region.

さらに、前記溢水判定手段は、前記通水量と、前記評価対象の領域に貯留されている貯留水量との和を前記通水限界量と比較することにより、排水が横断排水工で処理しきれないと判定される場合、前記和と前記通水限界量の差を、前記評価対象の領域の貯留限界量とさらに比較し、溢水の有無の判定を行うことが望ましい。   Furthermore, the overflow determination means compares the sum of the amount of water flow and the amount of water stored in the area to be evaluated with the water flow limit amount, so that the drainage cannot be treated by a cross drainage work. When it is determined, it is desirable to further compare the difference between the sum and the water flow limit amount with the storage limit amount of the area to be evaluated to determine the presence or absence of overflow.

また、前記貯留限界量は、前記接続箇所に設けた溜桝の貯留限界量を含むことが望ましい。   In addition, it is desirable that the storage limit amount includes a storage limit amount of a reservoir provided at the connection location.

の発明は、降雨による排水溝の溢水の有無を評価する溢水評価装置が、排水溝を排水方向に沿って複数の領域に分割する領域分割ステップと、評価対象の領域の上流側にある領域の水量を用いて、所定の時間のあいだに前記評価対象の領域を通過する通水量を算出する通水量算出ステップと、前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定ステップと、を実行し、前記排水溝は、斜面上の盛土の境界部分に設けたものであり、前記通水量は、排水溝の流下中、計算時点において前記領域に存在している水量を含み、当該水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であり、前記領域より排水溝の上流側に位置する領域に以前あった水量が、当該領域の通水限界量を超えていた場合、盛土の形状に応じて、前記排水溝の流下中、計算時点において前記領域に存在している水量として、前記通水限界量を用いるか、前記領域より排水溝の上流側に位置する領域に以前あった水量を用いるか、が定められることを特徴とする溢水評価方法である。
第4の発明は、降雨による排水溝の溢水の有無を評価する溢水評価装置が、排水溝を排水方向に沿って複数の領域に分割する領域分割ステップと、評価対象の領域の上流側にある領域の水量を用いて、所定の時間のあいだに前記評価対象の領域を通過する通水量を算出する通水量算出ステップと、前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定ステップと、を実行し、評価対象の領域は、前記排水溝と横断排水工との接続箇所に対応し、前記通水限界量は、横断排水工について定めたものであることを特徴とする溢水評価方法である。
According to a third aspect of the present invention, there is provided an overflow evaluation device for evaluating the presence or absence of overflow in a drainage ditch caused by rainfall, an area dividing step for dividing the drainage groove into a plurality of areas along the drainage direction, and an upstream side of the evaluation target area Using the amount of water in the region, a water flow amount calculating step for calculating the amount of water flowing through the region to be evaluated for a predetermined time, and determining whether there is overflow using the water flow amount and the water flow limit amount. The overflow determination step is performed, and the drainage groove is provided at a boundary portion of the embankment on the slope, and the amount of water flow is present in the region at the time of calculation during the flow of the drainage groove. Including the amount of water, the amount of water that was previously in the region located upstream of the drainage channel from the region, and the amount of water that was previously in the region located upstream of the drainage channel from the region is If the water flow limit is exceeded, Depending on the state, during the flow of the drainage ditch, the water flow limit amount is used as the amount of water present in the area at the time of calculation, or it was previously in the area located upstream of the drainage ditch from the area It is an overflow evaluation method characterized in that it is determined whether to use the amount of water .
According to a fourth aspect of the present invention, there is provided an overflow evaluation device for evaluating the presence or absence of overflow in a drainage ditch caused by rainfall, and an area dividing step for dividing the drainage groove into a plurality of areas along the drainage direction, and upstream of the evaluation target area Using the amount of water in the region, a water flow amount calculating step for calculating the amount of water flowing through the region to be evaluated for a predetermined time, and determining whether there is overflow using the water flow amount and the water flow limit amount. The overflow determination step is performed, the area to be evaluated corresponds to the connection point between the drainage ditch and the transverse drainage, and the water flow limit is determined for the transverse drainage This is the overflow evaluation method.

の発明は、コンピュータを、第1または第2の発明の溢水評価装置として機能させるためのプログラムである。 A fifth invention is a computer, a program to function as a flooding evaluation apparatus of the first or second invention.

本発明では、排水溝を複数の領域に分割し、降雨による水の流入や、斜面の表層からの水の流入によって刻々と変化する各領域の水量を用いて、評価対象の領域を通過する通水量を算出できる。これと通水限界量とを用いて排水溝の溢水の有無を判定でき、降雨時の溢水評価が容易にできる。さらに、排水溝から溢れた排水の扱いを盛土の形状に応じて定め、盛土の形状の違いを水量計算に反映させることもできる。   In the present invention, the drainage groove is divided into a plurality of regions, and the amount of water in each region that changes every time due to the inflow of water due to rainfall or the inflow of water from the surface of the slope is used to pass through the region to be evaluated. The amount of water can be calculated. Using this and the water flow limit amount, it is possible to determine the presence or absence of overflow in the drainage channel, and it is easy to evaluate the overflow during rainfall. Furthermore, the treatment of drainage overflowing from the drainage channel can be determined according to the shape of the embankment, and the difference in the shape of the embankment can be reflected in the water amount calculation.

また、評価対象の領域を、排水溝と横断排水工を接続した接続箇所とし、通水限界量を横断排水工のものとすることで、排水溝に、排水を行うための横断排水工を設けた場合の溢水評価ができるようになる。このとき、溢水の有無は、横断排水工で通水量と貯留水量の和を処理しきれず、かつ通水限界量に対する超過量が接続箇所の貯留限界量を超えるかどうかで判定できる。貯留限界量は横断排水工に付帯する設備を考慮して定めることができ、例えば溜桝を設ける場合、溜桝の貯留限界量を含むものとできる。   In addition, by setting the area to be evaluated as the connection point where the drainage ditch and the transverse drainage are connected, and setting the water flow limit to that of the transverse drainage, the drainage ditch is provided with a transverse drainage for draining. It will be possible to evaluate the overflow in case of At this time, the presence or absence of overflow can be determined by whether or not the sum of the amount of water flow and the amount of stored water cannot be processed by the cross drainage and whether or not the amount exceeding the water flow limit exceeds the storage limit at the connection location. The storage limit amount can be determined in consideration of the facilities attached to the cross drainage. For example, when a reservoir is provided, the storage limit amount of the reservoir can be included.

本発明によれば、降雨時の排水溝の溢水評価を行うことが可能な溢水評価装置等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the overflow evaluation apparatus etc. which can perform the overflow evaluation of the drain ditch at the time of rainfall can be provided.

溢水評価装置1のハードウエア構成を示す図The figure which shows the hardware constitutions of the overflow evaluation apparatus 1 溢水評価方法を示すフローチャートFlow chart showing overflow evaluation method 計算モデルを示す図Diagram showing calculation model 計算モデルを示す図Diagram showing calculation model 溢水評価方法について説明する図Diagram explaining overflow evaluation method 計算モデルを示す図Diagram showing calculation model 溢水評価方法を示すフローチャートFlow chart showing overflow evaluation method 計算モデルを示す図Diagram showing calculation model 計算モデルを示す図Diagram showing calculation model 溢水評価方法について説明する図Diagram explaining overflow evaluation method

以下図面に基づいて、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.溢水評価装置1)
図1に本発明の実施形態に係る溢水評価装置1のハードウエア構成について示す。図1に示すように、溢水評価装置1は、制御部11、記憶部12、入力部13、表示部14、通信部15等が、バス16を介して接続された一般的なコンピュータで実現できる。
[First Embodiment]
(1. Overflow evaluation device 1)
FIG. 1 shows a hardware configuration of an overflow evaluation device 1 according to an embodiment of the present invention. As shown in FIG. 1, the overflow evaluation apparatus 1 can be realized by a general computer in which a control unit 11, a storage unit 12, an input unit 13, a display unit 14, a communication unit 15, and the like are connected via a bus 16. .

制御部11は、CPU、ROM、RAM等で構成される。CPUは、記憶部12、ROM、記録媒体等に格納されるプログラムをRAM上のワークメモリ領域に呼び出して実行し、バス16を介して接続された各部を駆動制御し、後述する処理を実現する。ROMは、不揮発性メモリであり、プログラムやデータ等を恒久的に保持している。RAMは、揮発性メモリであり、記憶部12、ROM、記録媒体等からロードしたプログラム、データ等を一時的に保持するとともに、制御部11が各種処理を行うために使用するワークエリアを備える。   The control unit 11 includes a CPU, a ROM, a RAM, and the like. The CPU calls a program stored in the storage unit 12, ROM, recording medium, etc. to a work memory area on the RAM and executes it, and drives and controls each unit connected via the bus 16 to realize processing described later. . The ROM is a non-volatile memory and permanently stores programs, data, and the like. The RAM is a volatile memory, and temporarily stores a program, data, and the like loaded from the storage unit 12, ROM, recording medium, and the like, and includes a work area used by the control unit 11 to perform various processes.

記憶部12は、ハードディスク等であり、制御部11が実行するプログラム、プログラム実行に必要なデータ等が格納される。プログラムは、制御部11のCPUにより必要に応じて読み出されてRAMに移され、後述する各種の処理を行う手段として実行される。   The storage unit 12 is a hard disk or the like, and stores a program executed by the control unit 11, data necessary for program execution, and the like. The program is read by the CPU of the control unit 11 as necessary, transferred to the RAM, and executed as means for performing various processes described later.

入力部13は、データの入力を行い、例えば、タッチパネル、キーボード等の入力装置を有する。入力部13を介して、操作指示、動作指示、データ入力等を行うことができる。
表示部14は、液晶パネル等のディスプレイ装置、およびディスプレイ装置と連携してコンピュータのビデオ機能を実現するための論理回路等を有する。
The input unit 13 inputs data and includes an input device such as a touch panel and a keyboard. An operation instruction, an operation instruction, data input, and the like can be performed via the input unit 13.
The display unit 14 includes a display device such as a liquid crystal panel, and a logic circuit for realizing a video function of the computer in cooperation with the display device.

通信部15は、ネットワークを用いた通信を媒介する通信インタフェースであり、ネットワークを介して他の装置と通信を行う。ネットワークは、有線、無線を問わない。
バス16は、各部間の制御信号、データ信号等の授受を媒介する経路である。
The communication unit 15 is a communication interface that mediates communication using a network, and communicates with other devices via the network. The network may be wired or wireless.
The bus 16 is a path that mediates transmission / reception of control signals, data signals, and the like between the units.

(2.溢水評価装置1による溢水評価方法)
次に、溢水評価装置1による排水溝の溢水評価方法について説明する。図2は、溢水評価方法の手順を示すフローチャートであり、各ステップは溢水評価装置1の制御部11が実行する処理である。
(2. Overflow evaluation method by overflow evaluation device 1)
Next, a method for evaluating the overflow of drainage by the overflow evaluation device 1 will be described. FIG. 2 is a flowchart showing the procedure of the overflow evaluation method, and each step is a process executed by the control unit 11 of the overflow evaluation apparatus 1.

(S101:パラメータの入力受付)
まず、溢水評価装置1は、計算に必要なパラメータのユーザによる入力を受け付ける(S101)。パラメータは、排水溝条件、降雨、表層流、盛土の種類に関するものなどがある。排水溝条件は、排水溝の形状などである。降雨に関するものとしては、単位時間・単位面積当たりの降雨量の時間変化などがある。また、表層流に関するものとしては、自然斜面の表面を流れて排水溝に流入する水量の時間変化などがある。
(S101: Acceptance of parameter input)
First, the overflow evaluation apparatus 1 accepts input by a user of parameters necessary for calculation (S101). Parameters include drainage channel conditions, rainfall, surface flow, and type of embankment. The drainage groove conditions include the shape of the drainage groove. As for rainfall, there are changes over time in rainfall per unit time and unit area. As for the surface layer flow, there is a temporal change in the amount of water flowing on the surface of the natural slope and flowing into the drainage channel.

S101によって、降雨時の排水溝の溢水評価モデルが設定される。このモデルの例について示したものが図3である。図3(a)はモデルを示す斜視図である。図3(b)は排水溝70の排水方向(長さ方向)に沿った断面図であり、図3(c)は排水溝70の幅方向に沿った断面図である。   By S101, the overflow evaluation model of the drain ditch at the time of rainfall is set. FIG. 3 shows an example of this model. FIG. 3A is a perspective view showing a model. FIG. 3B is a cross-sectional view along the drain direction (length direction) of the drain groove 70, and FIG. 3C is a cross-sectional view along the width direction of the drain groove 70.

図3(a)に示すように、モデルでは、自然斜面61の上に盛土60が形成され、自然斜面61上の盛土60との境界部分に沿って排水溝70が配置される。ここで、盛土とは、鉄道または道路の土構造物の一種であって、土を地盤面より高く盛り上げて造った土構造物をいうものとする。   As shown in FIG. 3A, in the model, the embankment 60 is formed on the natural slope 61, and the drainage groove 70 is disposed along the boundary portion with the embankment 60 on the natural slope 61. Here, the embankment is a kind of soil structure of a railroad or a road, and means a soil structure made by raising the soil higher than the ground surface.

排水溝70に流入する水量としては、降雨により流入する水量qrain、自然斜面61の表層から流入する水量qsurfaceがある。これらの水は排水溝70によって排水されるが、排水溝70によって処理しきれない場合、排水溝70を溢れて盛土60に流入し盛土崩壊の原因となる。 The amount of water flowing into the drainage groove 70 includes the amount of water q rain flowing in due to rainfall and the amount of water q surface flowing in from the surface layer of the natural slope 61. These waters are drained by the drainage grooves 70, but if they cannot be treated by the drainage grooves 70, they overflow the drainage grooves 70 and flow into the embankment 60, causing collapse of the embankment.

自然斜面61の表層から流入する水量qsurfaceは、例えば前記した特許文献1に記載の方法を用いて自然斜面61の表層を流れる水量を算出し入力とできる。また、降雨により流入する水量qrainはS101で入力した降雨量から算出できる。 The amount of water q surface flowing from the surface of the natural slope 61 can be input by calculating the amount of water flowing through the surface of the natural slope 61 using, for example, the method described in Patent Document 1 described above. Further, the amount of water q rain flowing in due to rain can be calculated from the amount of rainfall input in S101.

図3(b)、(c)に示すように、排水溝条件としては、全長P(m)、排水方向の勾配I、水の時間Δt(分)当たりの流下距離L(m)、排水溝70の断面積A(m2)、径深R(m)、余裕率a、幅W(m)などがある。なお、Δtは時刻歴計算における計算間隔である。 As shown in FIGS. 3B and 3C, the drainage groove conditions are as follows: total length P (m), gradient I in the drainage direction, flow-down distance L (m) per hour of water Δt (minutes), drainage groove There are 70 cross-sectional areas A (m 2 ), diameter depth R (m), margin a, width W (m), and the like. Note that Δt is a calculation interval in time history calculation.

図4は、盛土の種類について示す図である。図4(a)は自然斜面61上に1方向の斜面を有する盛土60が形成された例(以下、片切片盛という)であり、図4(b)は自然斜面61上に前後2方向の斜面を有する盛土60が形成された例(以下、傾斜地盤という)である。S101ではこのような盛土の種類についても入力する。上記のように、種類によって盛土の形状は異なる。   FIG. 4 is a diagram showing the types of embankment. FIG. 4A is an example in which a bank 60 having a slope in one direction is formed on the natural slope 61 (hereinafter referred to as a single piece bank), and FIG. This is an example in which the embankment 60 having a slope is formed (hereinafter referred to as an inclined ground). In S101, the type of embankment is also input. As described above, the shape of the embankment varies depending on the type.

(S102:排水溝70の領域分割)
溢水評価装置1は、図5(a)に示すように、排水溝70を排水方向に沿って複数の領域jに分割し(S102)、これらを溢水評価対象の領域とする。jの値は下流側から順に1、2、3…とする。ここでは、La(m)ごとに領域分割するものとし、排水溝70の領域数Nを以下の式(1)で算出する。
N=P/La…(1)
なお、Laの値は様々に設定することが可能であり、例えば10mとできる。この値は予め定めておいてもよいし、S101で入力するようにしてもよい。
(S102: Area division of drainage groove 70)
As shown in FIG. 5A, the overflow evaluation apparatus 1 divides the drainage groove 70 into a plurality of regions j along the drainage direction (S102), and sets these as regions for overflow evaluation. The values of j are 1, 2, 3,... in order from the downstream side. Here, the region is divided for each La (m), and the number N of regions of the drainage groove 70 is calculated by the following equation (1).
N = P / La (1)
Note that the value of La can be set variously, for example, 10 m. This value may be determined in advance or may be input in S101.

(S103:Δt分間で排水溝70の一領域が処理できる通水限界量Qlimitの算出)
次いで、溢水評価装置1は、Δt分間で排水溝70の一領域が処理できる通水限界量Qlimit(m3/Δt)を算出する(S103)。
(S103: Calculation of the water flow limit amount Q limit that can be processed by one region of the drainage groove 70 in Δt minutes)
Next, the overflow evaluation apparatus 1 calculates a water flow limit amount Q limit (m 3 / Δt) that can be treated by one region of the drainage groove 70 in Δt minutes (S103).

S103では、まず下記のマニング式(2)を用いて、排水溝70の補正前の通水限界量q(m3/s)を算出する。
q=A・(1/n)・R2/3・I1/2…(2)
nは排水溝70の材料や形式などにより定まるマニングの粗度係数であり、S101で入力される。
In S103, first, the water passage limit q (m 3 / s) before correction of the drainage groove 70 is calculated using the following Manning equation (2).
q = A · (1 / n) · R 2/3 · I 1/2 (2)
n is a Manning roughness coefficient determined by the material and type of the drainage groove 70, and is input in S101.

次に、本実施形態では排水溝70における土砂等の堆積を考慮するため、下記の式(3)を用いて余裕率aによる通水限界量qの補正を行い、補正後の通水限界量q’(m3/s)を算出する。
q’=q/a…(3)
Next, in this embodiment, in order to consider the accumulation of earth and sand in the drainage groove 70, the water flow limit amount q is corrected by the margin rate a using the following equation (3), and the water flow limit amount after correction is corrected. q ′ (m 3 / s) is calculated.
q ′ = q / a (3)

次いで、時間Δtの間に排水溝70を流れる通水限界量Qを以下の式(4)で算出する。
Q=Δt・60・q’…(4)
Next, the water flow limit amount Q flowing through the drainage groove 70 during the time Δt is calculated by the following equation (4).
Q = Δt · 60 · q ′ (4)

そして、下式(5)により、Δt分間で排水溝70の一領域が処理できる通水限界量Qlimitを算出する。
limit=La・Q/L…(5)
And the water flow limit amount Q limit which can process one area | region of the drain ditch 70 in (DELTA) t minutes is calculated by the following Formula (5).
Q limit = La · Q / L (5)

(S104:自然斜面61の表層から領域jに流入する水量qsurface、jの算出)
図2の説明に戻る。溢水評価装置1は、一方、時間tにおいて自然斜面61の表層から排水溝70の領域jに流入する水量qsurface、j(t)を算出する(S104)。
(S104: Calculation of the amount of water qsurface, j flowing into the region j from the surface layer of the natural slope 61)
Returning to the description of FIG. On the other hand, the overflow evaluation device 1 calculates the amount of water q surface, j (t) flowing from the surface layer of the natural slope 61 into the region j of the drain groove 70 at time t (S104).

水量qsurface、j(t)については、前記したように、特許文献1の記載の方法を用いて、図5(a)に示すように自然斜面61をメッシュ分割して各メッシュの浸透流解析を行い、自然斜面61の表層から排水溝70に流入する水量qsurface、j(t)を算出できる。この際、各メッシュの幅は領域jの長さLaに合わせておき、排水溝70の領域jの上にあるメッシュから領域jに流入する水量qsurface、j(t)を算出する。ただし、水量qsurface、j(t)は、特許文献1以外の方法で定めることも可能である。 As described above, with respect to the water amount q surface, j (t), the natural slope 61 is divided into meshes as shown in FIG. The amount of water q surface, j (t) flowing into the drainage groove 70 from the surface layer of the natural slope 61 can be calculated. At this time, the width of each mesh is adjusted to the length La of the region j, and the amount of water q surface, j (t) flowing into the region j from the mesh above the region j of the drain groove 70 is calculated. However, the water amount q surface, j (t) can be determined by a method other than Patent Document 1.

(S105:降雨により領域jに流入する水量qrain、jの算出)
図2の説明に戻る。溢水評価装置1は、時間tにおいて降雨により排水溝70の領域jに流入する水量qrain、j(t)を計算する(S105)。
(S105: Calculation of water quantity q rain, j flowing into region j due to rain )
Returning to the description of FIG. The overflow evaluation device 1 calculates the amount of water q rain, j (t) flowing into the region j of the drainage ditch 70 due to rain at time t (S105).

S105では、以下の式(6)を用いて水量qrain、j(t)を算出することができる。
rain,j(t)=La・W・(U(t)/1000)・(Δt/60)…(6)
U(t)(mm/h)は時間tにおける降雨量であり、S101での入力より定まる。
In S105, the water quantity q rain, j (t) can be calculated using the following equation (6).
q rain, j (t) = La · W · (U (t) / 1000) · (Δt / 60) (6)
U (t) (mm / h) is the rainfall amount at time t, and is determined from the input in S101.

(S106:領域jの通水量の算出)
次に、溢水評価装置1は、通水量として、時間tにおける領域jの総水量qin,jを算出する(S106)。
(S106: Calculation of water flow rate in area j)
Next, the overflow evaluation device 1 calculates the total water amount q in, j of the region j at time t as the water flow amount (S106).

S106では、まず、排水溝70の流下中、時間tにおいて領域jに存在している排水の水量qstock,j(t)を算出する。 In S106, first, the amount of drainage water q stock, j (t) existing in the region j at the time t during the flow of the drainage groove 70 is calculated.

ここでは、以下の式(7−1)または式(7−2)を用いて、水量qstock,j(t)を算出することができる。
stock,j(t)=Qstock,j+L/La(t−Δt)…(7−1)
ただし、j+L/La>Nの時、qstock,j(t)=0…(7−2)
Here, the water quantity q stock, j (t) can be calculated using the following formula (7-1) or formula (7-2).
q stock, j (t) = Q stock, j + L / La (t−Δt) (7-1)
However, when j + L / La> N, q stock, j (t) = 0 (7-2)

式(7−1)は、図5(b)に示すように、以前の時間t−Δtにおいて、領域jから距離Lだけ上流側の領域j+L/Laにあった水量である貯留水量Qstock,j+L/La(t−Δt)が、時間Δtのあいだに領域jに到達し、上記の水量qstock,j(t)となることを示している。貯留水量Qstock,j+L/La(t−Δt)については後述する。 As shown in FIG. 5B, the equation (7-1) is a stored water amount Q stock, which is the amount of water in the region j + L / La upstream from the region j by a distance L at the previous time t−Δt . This shows that j + L / La (t−Δt) reaches the region j during the time Δt and becomes the above-mentioned water amount q stock, j (t). The stored water amount Q stock, j + L / La (t−Δt) will be described later.

また、式(7−2)は、領域jが排水溝70の上流側の端部近傍にあり、時間t−Δtにおいて領域jより上流側にある領域の排水が、時間tにおいて領域jより下流側に全て流れてしまっていることを示す。   Further, Expression (7-2) indicates that the region j is in the vicinity of the upstream end of the drain groove 70, and the drainage of the region upstream from the region j at time t-Δt is downstream from the region j at time t. Indicates that everything has flowed to the side.

貯留水量Qstock,j+L/La(t−Δt)は、盛土の種類を考慮して定められる。すなわち、
i)盛土の種類が片切片盛のケースでは、
stock,j+L/La(t−Δt)=qin,j+L/La(t−Δt)…(8−1)
ただし、qin,j+L/La(t−Δt)>Qlimitの時、
stock,j+L/La(t−Δt)=Qlimit…(8−2)
とする。また、
ii)盛土の種類が傾斜地盤のケースでは、
stock,j+L/La(t−Δt)=qin,j+L/La(t−Δt)…(9)
とする。
The amount of stored water Q stock, j + L / La (t−Δt) is determined in consideration of the type of embankment. That is,
i) In the case where the type of embankment is single-section embankment,
Q stock, j + L / La (t−Δt) = q in, j + L / La (t−Δt) (8-1)
However, when q in, j + L / La (t−Δt)> Q limit ,
Q stock, j + L / La (t−Δt) = Q limit (8-2)
And Also,
ii) When the type of embankment is sloped ground,
Q stock, j + L / La (t−Δt) = q in, j + L / La (t−Δt) (9)
And

i)盛土の種類が片切片盛のケースにおける式(8−1)は、前記の貯留水量Qstock,j+L/La(t−Δt)が時間t−Δtにおける領域j+L/Laの総水量qin,j+L/La(t−Δt)と同じであることを示す。 i) Formula (8-1) in the case where the type of embankment is a single-section embankment, the above-mentioned stored water amount Q stock, j + L / La (t−Δt) is the total water amount in the region j + L / La at time t−Δt. It is the same as q in, j + L / La (t−Δt).

また、式(8−2)は、上記の総水量qin,j+L/La(t−Δt)が通水限界量Qlimitを超えている場合、貯留水量Qstock,j+L/La(t−Δt)を通水限界量Qlimitとすることを示す。従って、前記の式(7−1)では、排水溝70の流下中、時間tにおいて領域jに存在している排水の水量qstock,j(t)として、この通水限界量Qlimitが用いられることになる。 Further, when the total water amount q in, j + L / La (t−Δt) exceeds the water flow limit amount Q limit , the stored water amount Q stock, j + L / La (T−Δt) indicates that the water flow limit amount Q limit is set. Therefore, in the above equation (7-1), the water flow limit amount Q limit is used as the water amount q stock, j (t) of the waste water existing in the region j at the time t during the flow of the drain groove 70. Will be.

これは、図6(a)に示すように、盛土60の種類が片切片盛の場合、通水限界量Qlimitを超えた排水71は盛土60側に流下し、排水溝70を流れる排水71の水量が通水限界量Qlimitとなることを表している。 As shown in FIG. 6A, when the type of the embankment 60 is a one-piece embankment, the drainage 71 that exceeds the water flow limit amount Q limit flows down to the embankment 60 side, and the drainage 71 flows through the drainage groove 70. This means that the amount of water becomes the water flow limit amount Q limit .

一方、ii)盛土の種類が傾斜地盤のケースにおける式(9)は、通水限界量Qlimitを超えるかどうかに関わらず、前記の貯留水量Qstock,j+L/La(t−Δt)を、時間t−Δtにおける領域j+L/Laの総水量qin,j+L/La(t−Δt)とすることを示す。従って、前記の式(7−1)では、排水溝70の流下中、時間tにおいて領域jに存在している排水の水量qstock,j(t)として、時間t−Δtにおける領域j+L/Laの総水量qin,j+L/La(t−Δt)がそのまま用いられる。 On the other hand, ii) Equation (9) in the case where the type of embankment is inclined ground is the above-mentioned stored water amount Q stock, j + L / La (t−Δt) regardless of whether or not the water flow limit amount Q limit is exceeded. Is the total amount of water q in, j + L / La (t−Δt) in region j + L / La at time t−Δt. Therefore, in the above equation (7-1), the amount of drainage water q stock, j (t) existing in the region j at the time t during the flow of the drainage groove 70 is the region j + L / La at the time t−Δt. The total amount of water q in, j + L / La (t−Δt) is used as it is.

これは、盛土60の種類が傾斜地盤の場合、図6(b)に示すように、通水限界量Qlimitを超えた排水71は盛土60の斜面と自然斜面61の間で排水溝70の上方にダムアップし、全ての排水71が排水溝70に沿って流下するとみなすためである。 When the type of the embankment 60 is sloped ground, as shown in FIG. 6B, the drainage 71 that exceeds the water flow limit Q limit is formed between the slope 60 of the embankment 60 and the natural slope 61. This is because it is assumed that all the drainage 71 flows down along the drainage groove 70 by raising the dam upward.

最後に、溢水評価装置1は、時間tにおける領域jの通水量として、総水量qin,j(t)を、下式(10)により算出する。
in,j(t)=qrain,j(t)+qsurface、j(t)+qstock,j(t)…(10)
Finally, the overflow evaluation apparatus 1 calculates the total water amount q in, j (t) as the water flow amount in the region j at time t by the following equation (10).
q in, j (t) = q rain, j (t) + q surface, j (t) + q stock, j (t) (10)

式(10)は、時間tにおける領域jの総水量qin,jが、前記の水量qstock,jに、S104、S105で求めた水量qsurface、j、水量qrain,jを加えた総和であることを示している。 Equation (10) is the sum of the total amount of water q in, j in the region j at time t plus the amount of water q surface, j and the amount of water q rain, j obtained in S104 and S105 to the amount of water q stock, j. It is shown that.

(S107:溢水の有無の判定、S108:警告表示)
図2の説明に戻る。次いで、溢水評価装置1は、S106で算出した通水量である総水量qin,j(t)を、S103で算出した通水限界量Qlimitと比較し、領域jにおける溢水の有無を判定する(S107)。
(S107: Determination of the presence or absence of overflow, S108: Warning display)
Returning to the description of FIG. Next, the overflow evaluation device 1 compares the total water amount q in, j (t) , which is the water flow amount calculated in S106, with the water flow limit amount Q limit calculated in S103, and determines whether there is overflow in the region j. (S107).

S107では、qin,j(t)がQlimit以下の場合、溢水が無い(S107:N)としてS109の処理に移る。 In S107, when q in, j (t) is equal to or less than Q limit , there is no overflow (S107: N), and the process proceeds to S109.

一方、qin,j(t)がQlimitを超える場合、領域jにおいて排水溝70から溢水する(S107:Y)と判定し、これにより盛土崩壊の恐れがある旨を表示部14に警告表示するなどし(S108)、S109の処理に移る。なお、領域jから溢水する水量Qoverflow,j(t)は以下の式(11)で計算できる。
overflow,j(t)=qin,j(t)−Qlimit…(11)
On the other hand, when q in, j (t) exceeds Q limit , it is determined that the drainage in the region j overflows from the drain groove 70 (S107: Y). (S108), the process proceeds to S109. The amount Q overflow, j (t) of water overflowing from the region j can be calculated by the following equation (11).
Q overflow, j (t) = q in, j (t) −Q limit (11)

(S109:時刻歴計算)
溢水評価装置1は、所定の計算終了時間となるまで(S109:N)、時間をt→t+ΔtとしてS104〜S108の処理を繰り返す。こうして時刻歴計算を行い、計算終了時間となると(S109:Y)、処理を終了する。
(S109: Time history calculation)
The overflow evaluation device 1 repeats the processes of S104 to S108 with the time t → t + Δt until the predetermined calculation end time is reached (S109: N). Thus, the time history calculation is performed, and when the calculation end time is reached (S109: Y), the process ends.

以上説明したように、本実施形態では、排水溝70を複数の領域jに分割し、降雨による水の流入や、自然斜面61の表層からの水の流入によって刻々と変化する各領域jの総水量qinを用いて、評価対象の領域jを通過する通水量Qinを算出できる。これと通水限界量Qとを用いて排水溝70の溢水の有無を判定でき、降雨時の溢水評価が容易にできる。また、排水溝70から溢れた排水の扱いを盛土の形状に応じて定め、盛土の形状の違いを水量計算に反映できる利点がある。 As described above, in the present embodiment, the drainage groove 70 is divided into a plurality of regions j, and the total of each region j that changes every moment due to the inflow of water due to rainfall or the inflow of water from the surface layer of the natural slope 61. The water flow amount Q in passing through the evaluation target region j can be calculated using the water amount q in . By using this and the water flow limit amount Q, it is possible to determine the presence or absence of overflow in the drainage groove 70, and it is possible to easily evaluate the overflow during rainfall. In addition, there is an advantage that the treatment of drainage overflowing from the drainage groove 70 is determined according to the shape of the embankment, and the difference in the shape of the embankment can be reflected in the water amount calculation.

しかしながら、本発明がこれに限ることはない。例えば本発明は別の溢水評価モデルに対しても適用可能である。以下、本発明の第2の実施形態として、第1の実施形態と異なるモデルを用いて溢水評価を行う例を説明する。なお、第2の実施形態において、第1の実施形態と同様の点については、図等で同じ符号を付すなどして説明を省略する。   However, the present invention is not limited to this. For example, the present invention can be applied to another overflow evaluation model. Hereinafter, as a second embodiment of the present invention, an example in which overflow evaluation is performed using a model different from the first embodiment will be described. Note that in the second embodiment, the same points as in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

[第2の実施形態]
図7を参照して第2の実施形態の溢水評価方法について説明する。図7は溢水評価方法の手順を示すフローチャートであり、図の各ステップは溢水評価装置1の制御部11が実行する処理である。
[Second Embodiment]
The overflow evaluation method of 2nd Embodiment is demonstrated with reference to FIG. FIG. 7 is a flowchart showing the procedure of the overflow evaluation method, and each step in the figure is a process executed by the control unit 11 of the overflow evaluation apparatus 1.

(S201:パラメータの入力受付)
第2の実施形態においても、第1の実施形態と同様、溢水評価装置1は、まず計算に必要なパラメータのユーザによる入力を受け付ける(S201)。パラメータは、排水溝条件、降雨、表層流に関するものの他、後述する横断排水工条件などがある。
(S201: Acceptance of parameter input)
Also in the second embodiment, as in the first embodiment, the overflow evaluation apparatus 1 first receives input by the user of parameters necessary for the calculation (S201). Parameters include drainage conditions, rainfall and surface flow, as well as transverse drainage conditions described later.

前記したように、本実施形態は、溢水評価を行うモデルにおいて第1の実施形態と異なる。このモデルを図8、図9に示す。図8(a)はモデルを示す斜視図である。図8(b)は排水溝70の排水方向(長さ方向)に沿った断面図であり、図8(c)は排水溝70の幅方向に沿った断面図である。図9(a)は横断排水工71の排水方向(長さ方向)に沿った断面図であり、図9(b)は横断排水工71の幅方向に沿った断面図である。   As described above, the present embodiment is different from the first embodiment in a model for evaluating overflow. This model is shown in FIGS. FIG. 8A is a perspective view showing a model. FIG. 8B is a cross-sectional view along the drain direction (length direction) of the drain groove 70, and FIG. 8C is a cross-sectional view along the width direction of the drain groove 70. 9A is a cross-sectional view along the drainage direction (length direction) of the cross drainage 71, and FIG. 9B is a cross-sectional view along the width direction of the cross drainage 71.

図8(a)に示すように、第2の実施形態では、排水溝70の途中に横断排水工71が設けられる。また、排水溝70において、横断排水工71との接続箇所70aには溜桝72が設けられている。降雨により排水溝70に流入する水量qrain、自然斜面61の表層から排水溝70に流入する水量qsurfaceについては第1の実施形態と同様であるが、これらの水は、排水溝70に流入した後、上記の接続箇所70aに向かって流れ、横断排水工71によって排水される。本実施形態では、この接続箇所70aにおいて溢水の有無を評価する。 As shown in FIG. 8A, in the second embodiment, a cross drainage 71 is provided in the middle of the drainage groove 70. Further, in the drainage groove 70, a basin 72 is provided at a connection location 70 a with the transverse drainage work 71. Water q rain flowing down the drain 70 by rain, is similar to the first embodiment for water q Surface flowing into the drain grooves 70 from the surface of the natural slope 61, these water flows into the drain groove 70 After that, it flows toward the connection point 70 a and is drained by the cross drainage 71. In this embodiment, the presence / absence of overflow is evaluated at this connection location 70a.

図8(b)、(c)に示すように、排水溝条件としては、第1の実施形態と同様、全長P(m)、排水方向の勾配I、水の時間Δt(分)当たりの流下距離L(m)、排水溝70の断面積A(m2)、径深R(m)、余裕率a、幅W(m)などがある。これらの値のうち、必要なものは接続箇所70aの両側で値を定める。例えば図の例では、全長P、流下距離L、勾配Iについては、接続箇所70aの両側にてそれぞれ定められる。接続箇所70aの両側における各値を添え字1、2で表す。 As shown in FIGS. 8B and 8C, the drainage groove conditions are the same as in the first embodiment, the total length P (m), the gradient I in the drainage direction, and the water flow per time Δt (min). There are a distance L (m), a sectional area A (m 2 ) of the drainage groove 70, a diameter depth R (m), a margin a, a width W (m), and the like. Among these values, the necessary ones are determined on both sides of the connection point 70a. For example, in the example of the figure, the total length P, the flow-down distance L, and the gradient I are determined on both sides of the connection location 70a. Each value on both sides of the connection location 70a is represented by subscripts 1 and 2.

また、図9(a)、(b)に示すように、横断排水工条件としては、排水方向の勾配I横断、横断排水工71の断面積A横断(m2)、径深R横断(m)、余裕率a横断などがある。 Moreover, as shown in FIGS. 9A and 9B, the transverse drainage conditions include the gradient I crossing in the drainage direction, the cross-sectional area A crossing (m 2 ) of the crossing drainage 71, and the radial depth R crossing (m ), Margin rate a crossing .

さらに、本実施形態では、横断排水工71との接続箇所70aにおける排水溝70および溜桝72について、それぞれ貯留限界量Q排水溝、Q溜桝が定められる(図9(a)参照)。貯留限界量Q排水溝、Q溜桝は、それぞれ接続箇所70aにおける排水溝70、溜桝72の体積である。 Furthermore, in the present embodiment, a storage limit amount Q drainage groove and a Q reservoir are determined for the drainage groove 70 and the reservoir 72 at the connection point 70a with the cross drainage 71 (see FIG. 9A). The storage limit amount Q drainage groove and Q reservoir are the volumes of the drainage groove 70 and reservoir 72 at the connection location 70a, respectively.

(S202:横断排水工71の通水限界量Q横断の算出)
図7の説明に戻る。S201においてパラメータが入力されると、溢水評価装置1は、横断排水工71の時間Δtあたりの通水限界量Q横断(m3/Δt)を算出する(S202)。
(S202: Calculation of water flow limit amount Q crossing of cross drainage 71)
Returning to the description of FIG. When the parameters are input in S201, the overflow evaluation apparatus 1 calculates the water flow limit amount Q crossing (m 3 / Δt) per time Δt of the cross drainage 71 (S202).

S202では、まず下記のマニング式(12)を用いて、横断排水工71の補正前の通水限界量q横断(m3/s)を算出する。
横断=A横断・(1/n横断)・R横断 2/3・I横断 1/2…(12)
横断は横断排水工71の材料や形式などにより定まるマニングの粗度係数であり、S201で入力される。
In S202, first, the water passage limit q crossing (m 3 / s) before correction of the cross drainage 71 is calculated using the following Manning equation (12).
q crossing = A crossing , (1 / n crossing ), R crossing 2/3 , I crossing 1/2 (12)
The n crossing is a Manning roughness coefficient determined by the material and type of the cross drainage 71 and is input in S201.

次に、横断排水工71の土砂等の堆積を考慮するため、下記の式(13)を用いて余裕率a横断による通水限界量q横断の補正を行い、補正後の通水限界量q横断’(m3/s)を算出する。
横断’=q横断/a横断…(13)
Next, in order to take into account sedimentation of sediment and the like of the cross drainage 71, the water flow limit q crossing is corrected by crossing the margin rate a using the following equation (13), and the corrected water flow limit q Calculate the crossing '(m 3 / s).
q crossing '= q crossing / a crossing ... (13)

そして、時間Δtの間に横断排水工71を流れる通水限界量Q横断を以下の式(14)で算出する。
横断=Δt・60・q横断’…(14)
And the water flow limit amount Q crossing which flows through the cross drainage 71 during time (DELTA) t is calculated by the following formula | equation (14).
Q crossing = Δt · 60 · q crossing '(14)

(S203:排水溝70の領域分割)
一方、溢水評価装置1は、図10(a)に示すように、排水溝70を排水方向に沿って複数の領域k、k、jに分割する(S203)。この時、横断排水工71との接続箇所70aを領域j(評価対象の領域)とし、領域jの両側の領域をk、kとして下流側(領域j側)から順にk=1、2、3…、k=1、2、3…と定める。本実施形態でも、領域k、k、jはLa(m)ごとに分割し、接続箇所70aの両側における領域数N、Nを以下の式(15)で算出する。
=P/La、N=P/La…(15)
(S203: Area division of drainage groove 70)
On the other hand, as shown in FIG. 10A, the overflow evaluation device 1 divides the drain groove 70 into a plurality of regions k 1 , k 2 , and j along the drain direction (S203). At this time, the connection point 70a with the cross drainage 71 is defined as a region j (evaluation target region), and the regions on both sides of the region j are defined as k 1 and k 2 in order from the downstream side (region j side), k 1 = 1, 2, 3..., K 2 = 1, 2, 3. Also in the present embodiment, the regions k 1 , k 2 , and j are divided for each La (m), and the numbers of regions N 1 and N 2 on both sides of the connection location 70a are calculated by the following equation (15).
N 1 = P 1 / La, N 2 = P 2 / La (15)

(S204:自然斜面61の表層から領域k、k、jに流入する水量qsurface、k1、qsurface、k2、qsurface、jの算出)
図7の説明に戻る。次に、溢水評価装置1は、前記のS104と同様にして、時間tにおいて自然斜面61の表層から領域k、k、jに流入する水量qsurface、k1(t)、qsurface、k2(t)、qsurface、j(t)を算出する(S204)。
(S204: area k 1 from the surface layer of natural slopes 61, k 2, water flows into the j q surface, k1, q surface , k2, q surface, calculation of j)
Returning to the description of FIG. Next, the overflow evaluation apparatus 1 performs the same as S104 described above, and the amount of water q surface, k1 (t), q surface, k2 flowing into the regions k 1 , k 2 , j from the surface layer of the natural slope 61 at time t. (T), q surface, j (t) are calculated (S204).

(S205:降雨により領域k、k、jに流入する水量qrain、k1、qrain、k2、qrain, jの算出)
また、溢水評価装置1は、前記のS105と同様にして、時間tにおいて降雨により領域k、k、jに流入する水量qrain、k1(t)、qrain、k2(t)、qrain, j(t)を算出する(S205)。
(S205: Calculation of the amount of water q rain, k1 , q rain, k2 , q rain, j flowing into the areas k 1 , k 2 , j due to rain )
In addition, the overflow evaluation device 1 performs the same as S105 described above, and the amount of water q rain, k1 (t), q rain, k2 (t), q flowing into the areas k 1 , k 2 , j due to rain at time t. rain, j (t) is calculated (S205).

(S206:領域jの通水量Qin,jの算出)
次に、溢水評価装置1は、時間Δtのあいだに領域jを通過し横断排水工71によって排水される通水量Qin,jを算出する(S206)。
(S206: Calculation of water flow rate Q in, j in region j)
Next, the overflow evaluation device 1 calculates a water flow amount Q in, j that passes through the region j and is drained by the cross drainage 71 during the time Δt (S206).

S206では、まず、下式(16−1)〜(16−3)を用いて、排水溝70の流下中、時間tにおいて領域k、kに存在している排水の水量qstock,k1(t)、qstock,k2(t)を算出する。
stock,k1(t)=qin,k1+L/La(t−Δt)、qstock,k2(t)=qin,k2+L/La(t−Δt)…(16−1)
ただし、
+L/La>N1の時、qstock,k1(t)=0…(16−2)
+L/La>N2の時、qstock,k2(t)=0…(16−3)
In S206, first, using the following equations (16-1) to (16-3), the amount of drainage water q stock, k1 existing in the areas k 1 and k 2 at the time t during the flow of the drainage groove 70. (T), q stock, k2 (t) is calculated.
q stock, k1 (t) = q in, k1 + L / La (t−Δt), q stock, k2 (t) = q in, k2 + L / La (t−Δt) (16-1)
However,
When k 1 + L / La> N 1 , q stock, k1 (t) = 0 (16-2)
When k 2 + L / La> N 2 , q stock, k2 (t) = 0 (16-3)

式(16−1)は、以前の時間t−Δtにおいて、領域k、kから距離Lだけ上流側の領域k+L/La、k+L/Laにあった総水量が、時間Δtのあいだに領域k、kに到達することを示している。 The equation (16-1) indicates that the total amount of water in the regions k 1 + L / La and k 2 + L / La upstream from the regions k 1 and k 2 by the distance L at the previous time t−Δt is expressed as time Δt. It is shown that the regions k 1 and k 2 are reached during

式(16−2)、(16−3)は、それぞれ、領域k、kが排水溝70の上流側の端部近傍にあり、時間t−Δtにおいて領域k、kより上流側にある領域の排水が、時間tにおいて領域k、kより下流側に全て流れてしまっていることを示す。 Expressions (16-2) and (16-3) indicate that the regions k 1 and k 2 are in the vicinity of the upstream end of the drainage groove 70 and are upstream of the regions k 1 and k 2 at time t−Δt. It can be seen that the drainage of the area in FIG. 5 has all flowed downstream from the areas k 1 and k 2 at time t.

また、排水溝70の流下中、時間tにおいて領域jに存在している排水の水量qstock,j(t)については、領域jに両側から排水が流れることから、これらの排水のそれぞれについて水量を算出し、この和をqstock,j(t)としておく。これを下式(17−1)〜(17−4)で示す。
stock,j(t)=qin,L1/La(t−Δt)+qin,L2/La(t−Δt)…(17−1)
ただし、
/La>N、L/La>Nの時、
stock,j(t)=0…(17−2)
/La≦N、L/La>Nの時、
stock,j(t)=qin,L1/La(t−Δt)…(17−3)
/La>N、L/La≦Nの時、
stock,j(t)=qin,L2/La(t−Δt)…(17−4)
In addition, the amount of drainage water q stock, j (t) existing in the region j at the time t during the flow of the drainage groove 70 flows from both sides into the region j. And this sum is set as q stock, j (t). This is shown by the following formulas (17-1) to (17-4).
q stock, j (t) = q in, L1 / La (t−Δt) + q in, L2 / La (t−Δt) (17-1)
However,
When L 1 / La> N 1 and L 2 / La> N 2 ,
q stock, j (t) = 0 ... (17-2)
When L 1 / La ≦ N 1 and L 2 / La> N 2 ,
q stock, j (t) = q in, L1 / La (t−Δt) (17-3)
When L 1 / La> N 1 and L 2 / La ≦ N 2 ,
q stock, j (t) = q in, L2 / La (t−Δt) (17-4)

続いて、時間tにおける領域k、k、jの総水量qin,k1(t)、qin,k2(t)、qin,j(t)を、以下の式(18)、(19)、(20)を用いて算出する。
in,k1(t)=qsurface、k1(t)+qrain, k1(t)+qstock, k1(t)…(18)
in,k2(t)=qsurface、k2(t)+qrain, k2(t)+qstock, k2(t)…(19)
in,j(t)=qsurface、j(t)+qrain, j(t)+qstock,j(t)…(20)
Subsequently, the total amount of water q in, k1 (t), q in, k2 (t), q in, j (t) in the regions k 1 , k 2 , j at time t is expressed by the following equations (18), ( 19) and (20).
q in, k1 (t) = q surface, k1 (t) + q rain, k1 (t) + q stock, k1 (t) (18)
q in, k2 (t) = q surface, k2 (t) + q rain, k2 (t) + q stock, k2 (t) (19)
q in, j (t) = q surface, j (t) + q rain, j (t) + q stock, j (t) (20)

そして、時間Δtのあいだに排水溝70の領域jを通過し横断排水工71によって排水される通水量Qin,j(t)を、以下の式(21)を用いて算出する。

Figure 0005941862
Then, a water flow amount Q in, j (t) that passes through the region j of the drainage groove 70 and is drained by the cross drainage 71 during the time Δt is calculated using the following equation (21).
Figure 0005941862

式(21)は、図10(b)に示すように、時間Δtのあいだに領域jを通過し横断排水工71で排水される通水量Qin,j(t)が、領域jの総水量qin,j(t)と、領域k=1から領域k=L/La−1までの各領域の総水量qin,k1の和と、領域k=1から領域k=L/La−1までの各領域の総水量qin,k2の和とを加えたものであることを示している。 As shown in FIG. 10 (b), the equation (21) indicates that the water flow amount Q in, j (t) passing through the region j and drained by the cross drainage 71 during the time Δt is the total water amount in the region j. q in, j (t) , the sum of the total water amounts q in, k1 of each region from region k 1 = 1 to region k 1 = L 1 / La-1, and region k 2 = 1 to region k 2 = It shows that the total water amount q in, k2 of each region up to L 2 / La-1 is added.

(S207:横断排水工71による排水処理の可否判定、S208:領域jの貯留水量Qstock,jの算出)
図7の説明に戻る。次に、溢水評価装置1は、S206で算出した通水量Qin,j(t)と時間t−Δtにおいて領域jに貯留されている貯留水量Qstock,j(t−Δt)の和を、S202で算出した横断排水工71の通水限界量Q横断と比較し、横断排水工71で排水を全て処理できるか否かの判定を行う(S207)。貯留水量Qstock,jについては後述する。
(S207: Judgment of drainage treatment by cross drainage 71, S208: Calculation of stored water amount Qstock, j in region j)
Returning to the description of FIG. Next, the overflow evaluation apparatus 1 calculates the sum of the water flow amount Q in, j (t) calculated in S206 and the stored water amount Q stock, j (t−Δt) stored in the region j at time t−Δt, Compared with the water flow limit amount Q crossing of the cross drainage 71 calculated in S202, it is determined whether or not all drainage can be treated by the cross drainage 71 (S207). The stored water amount Q stock, j will be described later.

通水量Qin,j(t)と貯留水量Qstock,j(t−Δt)の和が通水限界量Q横断以上である、すなわち下式(24−1)
in,j(t)+Qstock,j(t−Δt)≧Q横断…(24−1)
を満たす場合、排水が横断排水工71で処理しきれないと判定し(S207:N)、S209の処理に移る。
Passing water amount Q in, j (t) and the storage water Q stock, is j (t-Delta] t) the sum of water passing limit amount Q cross above, i.e. the formula (24-1)
Q in, j (t) + Q stock, j (t−Δt) ≧ Q crossing (24-1)
When satisfy | filling, it determines with drainage not being able to process in the cross drainage 71 (S207: N), and transfers to the process of S209.

一方、S207において、通水量Qin,j(t)と貯留水量Qstock,j(t−Δt)の和が通水限界量Q横断未満である、すなわち下式(24−2)
in,j(t)+Qstock,j(t−Δt)<Q横断…(24−2)
を満たす場合、排水が全て横断排水工71で処理されると判定し(S207:Y)、時間tにおける領域jの貯留水量Qstock,j(t)を0として(S208)、S212の処理に移る。
On the other hand, in S207, the sum of the water flow amount Q in, j (t) and the stored water amount Q stock, j (t−Δt) is less than the water flow limit amount Q crossing , that is, the following equation (24-2)
Q in, j (t) + Q stock, j (t−Δt) <Q crossing (24-2)
If the condition is satisfied, it is determined that all the drainage is processed by the cross drainage 71 (S207: Y), the amount of stored water Q stock, j (t) in the region j at time t is set to 0 (S208), and the process of S212 is performed. Move.

(S209:溢水の有無の判定、S210:領域jの貯留水量Qstock,jの算出、S211:警告表示)
S209において、溢水評価装置1は、通水限界超過量としてQin,j(t)+Qstock,j(t−Δt)−Q横断の値を算出し、これを排水溝70、溜桝72の貯留限界量Q排水溝、Q溜桝と比較することで、領域jにおける溢水の有無の判定を行う(S209)。
(S209: Determination of presence / absence of overflow, S210: Calculation of stored water amount Q stock, j in region j, S211: Warning display)
In S209, the overflow evaluation apparatus 1 calculates a value of Q in, j (t) + Q stock, j (t−Δt) −Q crossing as the excess amount of water passage limit, and uses this value for the drainage ditch 70 and the reservoir 72. The presence or absence of overflow in the region j is determined by comparing with the storage limit amount Q drainage groove and Q reservoir (S209).

in,j(t)+Qstock,j(t−Δt)−Q横断の値が排水溝70、溜桝72の貯留限界量Q排水溝、Q溜桝の和未満である場合、すなわち下式(25−1)
in,j(t)+Qstock,j(t−Δt)−Q横断<Q排水溝+Q溜桝…(25−1)
を満たす場合、領域jにおける溢水は無い(S209:N)と判定する。
Q in, j (t) + Q stock, j (t-Δt) -Q value of transverse drainage ditch 70, the storage limit amount Q drains Tamari桝72, is less than the sum of Q Tamari桝, i.e. the formula (25-1)
Q in, j (t) + Q stock, j (t−Δt) −Q crossing <Q drainage groove + Q reservoir (25-1)
When satisfy | filling, it determines with there being no overflow in the area | region j (S209: N).

そして、横断排水工71で処理しきれなかった水量は横断排水工71に付帯する排水溝70、溜桝72に貯留されるとして、下式(23)にて、時間tにおいて領域jに貯留される貯留水量Qstock,j(t)を算出し(S210)、S212の処理に移る。
stock,j(t)=Qin,j(t)+Qstock,j(t−Δt)−Q横断…(26)
Then, the amount of water that could not be treated by the cross drainage 71 is stored in the drain groove 70 and the reservoir 72 attached to the cross drainage 71, and is stored in the region j at time t in the following equation (23). The stored water amount Q stock, j (t) is calculated (S210), and the process proceeds to S212.
Q stock, j (t) = Q in, j (t) + Q stock, j (t−Δt) −Q crossing (26)

一方、通水限界超過量Qin,j(t)+Qstock,j(t−Δt)−Q横断の値が排水溝70、溜桝72の貯留限界量Q排水溝、Q溜桝の和以上の場合、すなわち、下式(25−2)
in,j(t)+Qstock,j(t−Δt)−Q横断≧Q排水溝+Q溜桝…(25−2)
を満たす場合、横断排水工71で処理しきれなかった排水が横断排水工71に付帯する排水溝70、溜桝72から溢水すると判定し(S209:Y)、これにより盛土崩壊の恐れがある旨を表示部14に警告表示するなどし(S211)、S212の処理に移る。なお、以降の時刻歴計算を行う場合は、Qstock,j(t)の値を、例えば、下式(27)で更新しておくことができる。
stock,j(t)=Q排水溝+Q溜桝…(27)
On the other hand, excess water flow limit Q in, j (t) + Q stock, j (t−Δt) −Q crossing value is equal to or greater than sum of drainage groove 70, reservoir limit storage drainage Q drainage groove , Q reservoir In other words, the following formula (25-2)
Q in, j (t) + Q stock, j (t−Δt) −Q crossing ≧ Q drainage groove + Q reservoir (25-2)
When satisfying the condition, it is determined that the drainage that could not be treated by the cross drainage 71 overflows from the drainage groove 70 and the reservoir 72 attached to the cross drainage 71 (S209: Y), and there is a risk of the collapse of the embankment. Is displayed on the display unit 14 as a warning (S211), and the process proceeds to S212. In addition, when performing subsequent time history calculation, the value of Q stock, j (t) can be updated by the following equation (27), for example.
Q stock, j (t) = Q drain + Q reservoir ... (27)

(S212:時刻歴計算)
溢水評価装置1は、所定の計算終了時間となるまで(S212:N)、時間をt→t+ΔtとしてS204〜S211の処理を繰り返す。こうして時刻歴計算を行い、計算終了時間となると(S212:Y)、処理を終了する。
(S212: Time history calculation)
The overflow evaluation device 1 repeats the processes of S204 to S211 with the time t → t + Δt until the predetermined calculation end time is reached (S212: N). Thus, the time history calculation is performed, and when the calculation end time is reached (S212: Y), the process ends.

このように、第2の実施形態では、評価対象の領域jを横断排水工71の接続箇所70aとし、横断排水工71の通水限界量Q横断を用いることで、排水溝70に、排水を行うための横断排水工71を設けた場合の溢水評価ができるようになり、第1の実施形態と同様の効果が得られる。このとき、溢水の有無は、横断排水工71で通水量Qinと貯留水量Qstockの和を処理しきれず、かつ通水限界量Q横断に対する超過量が接続箇所70aの貯留限界量を超えるかどうかで判定できる。貯留限界量は横断排水工71に付帯する設備を考慮して定めることができ、溜桝72を設ける場合、溜桝72の貯留限界量Q溜桝を含むものとできる。 In this way, in the second embodiment, the region j to be evaluated is the connection point 70a of the cross drainage 71, and the drainage drain 70 is drained into the drain groove 70 by using the water flow limit amount Q crossing of the cross drainage 71. The overflow evaluation can be performed when the cross drainage 71 for performing is provided, and the same effect as the first embodiment can be obtained. Is this case, the presence or absence of overflow is not completely process the sum of the passing water amount Q in the reservoir water Q stock in cross drainage engineering 71, and the excess amount with respect to water flow limit amount Q cross exceeds storage limit amount of connection points 70a It can be judged by how. Accumulation volume limits can be determined by considering the equipment incidental to transverse drainage Engineering 71, when providing a Tamari桝72, it is intended to include storage limit amount Q Tamari桝 of Tamari桝72.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1………溢水評価装置
60………盛土
61………自然斜面
70………排水溝
71………横断排水工
72………溜桝
1 .... Overflow evaluation device 60 ... ... Fill 61 ... ... Natural slope 70 ... ... Drain 71 ... ... Transverse drainage 72 ... ... Reservoir

Claims (9)

降雨による排水溝の溢水の有無を評価する溢水評価装置であって、
排水溝を排水方向に沿って複数の領域に分割する領域分割手段と、
評価対象の領域の上流側にある領域の水量を用いて、前記評価対象の領域を通過する通水量を算出する通水量算出手段と、
前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定手段と、
を具備し、
前記排水溝は、斜面上の盛土の境界部分に設けたものであり、
前記通水量は、排水溝の流下中、計算時点において前記領域に存在している水量を含み、
当該水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であり、
前記領域より排水溝の上流側に位置する領域に以前あった水量が、当該領域の通水限界量を超えていた場合、
盛土の形状に応じて、
前記排水溝の流下中、計算時点において前記領域に存在している水量として、前記通水限界量を用いるか、前記領域より排水溝の上流側に位置する領域に以前あった水量を用いるか、が定められることを特徴とする溢水評価装置。
An overflow evaluation device that evaluates the presence or absence of overflow in a drainage ditch due to rainfall,
Area dividing means for dividing the drainage groove into a plurality of areas along the drainage direction;
A water flow amount calculating means for calculating a water flow amount that passes through the evaluation target region using a water amount in a region upstream of the evaluation target region;
An overflow determination means for determining the presence or absence of overflow using the water flow amount and the water flow limit amount;
Equipped with,
The drainage groove is provided at the boundary portion of the embankment on the slope,
The amount of water flow includes the amount of water present in the region at the time of calculation during the flow of the drainage ditch,
The amount of water is the amount of water that was previously in the region located upstream of the drainage channel from the region,
If the amount of water that was previously in the region located upstream of the drainage channel from the region exceeds the water flow limit of the region,
Depending on the shape of the embankment,
As the amount of water present in the region at the time of calculation during the flow of the drainage channel, the water flow limit amount is used, or the amount of water that was previously in the region located upstream of the drainage channel from the region is used, An overflow evaluation device characterized in that
降雨による排水溝の溢水の有無を評価する溢水評価装置であって、
排水溝を排水方向に沿って複数の領域に分割する領域分割手段と、
評価対象の領域の上流側にある領域の水量を用いて、前記評価対象の領域を通過する通水量を算出する通水量算出手段と、
前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定手段と、
を具備し、
評価対象の領域は、前記排水溝と横断排水工との接続箇所に対応し、
前記通水限界量は、横断排水工について定めたものであることを特徴とする溢水評価装置。
An overflow evaluation device that evaluates the presence or absence of overflow in a drainage ditch due to rainfall,
Area dividing means for dividing the drainage groove into a plurality of areas along the drainage direction;
A water flow amount calculating means for calculating a water flow amount that passes through the evaluation target region using a water amount in a region upstream of the evaluation target region;
An overflow determination means for determining the presence or absence of overflow using the water flow amount and the water flow limit amount;
Equipped with,
The area to be evaluated corresponds to the connection point between the drainage ditch and the cross drainage,
The overflow evaluation apparatus characterized in that the water flow limit amount is determined for a transverse drainage work .
前記排水溝は、斜面に設けたものであり、
少なくともいずれかの領域の水量は、排水溝の流下中計算時点において前記領域に存在している水量と、斜面の表層から前記領域に流入する水量と、降雨により前記領域に流入する水量との総和であることを特徴とする請求項1または請求項2記載の溢水評価装置。
The drainage groove is provided on a slope,
The amount of water in at least one of the regions is the sum of the amount of water existing in the region at the time of calculation during the drainage ditch, the amount of water flowing into the region from the surface of the slope, and the amount of water flowing into the region due to rainfall. The overflow evaluation apparatus according to claim 1 or 2, wherein
排水溝の流下中、計算時点において前記領域に存在している水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であることを特徴とする請求項に記載の溢水評価装置。 4. The overflow according to claim 3 , wherein the amount of water existing in the region at the time of calculation during the flow of the drainage channel is the amount of water that was previously in the region located upstream of the drainage channel from the region. Evaluation device. 前記溢水判定手段は、
前記通水量と、前記評価対象の領域に貯留されている貯留水量との和を前記通水限界量と比較することにより、排水が横断排水工で処理しきれないと判定される場合、
前記和と前記通水限界量の差を、前記評価対象の領域の貯留限界量とさらに比較し、溢水の有無の判定を行うことを特徴とする請求項に記載の溢水評価装置。
The overflow judgment means
When it is determined that the drainage cannot be treated by a cross drainage by comparing the sum of the amount of water flow and the amount of stored water stored in the area to be evaluated with the water flow limit amount,
The overflow evaluation apparatus according to claim 2 , wherein the difference between the sum and the water flow limit amount is further compared with a storage limit amount of the region to be evaluated to determine whether or not there is overflow.
前記貯留限界量は、前記接続箇所に設けた溜桝の貯留限界量を含むことを特徴とする請求項に記載の溢水評価装置。 The overflow evaluation apparatus according to claim 5 , wherein the storage limit amount includes a storage limit amount of a reservoir provided at the connection location. 降雨による排水溝の溢水の有無を評価する溢水評価装置が、
排水溝を排水方向に沿って複数の領域に分割する領域分割ステップと、
評価対象の領域の上流側にある領域の水量を用いて、所定の時間のあいだに前記評価対象の領域を通過する通水量を算出する通水量算出ステップと、
前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定ステップと、
を実行し、
前記排水溝は、斜面上の盛土の境界部分に設けたものであり、
前記通水量は、排水溝の流下中、計算時点において前記領域に存在している水量を含み、
当該水量は、前記領域より排水溝の上流側に位置する領域に以前あった水量であり、
前記領域より排水溝の上流側に位置する領域に以前あった水量が、当該領域の通水限界量を超えていた場合、
盛土の形状に応じて、
前記排水溝の流下中、計算時点において前記領域に存在している水量として、前記通水限界量を用いるか、前記領域より排水溝の上流側に位置する領域に以前あった水量を用いるか、が定められることを特徴とする溢水評価方法。
An overflow evaluation device that evaluates the presence or absence of overflow in drains due to rainfall,
An area dividing step for dividing the drainage groove into a plurality of areas along the direction of drainage;
A water flow amount calculating step for calculating a water flow amount that passes through the evaluation target region during a predetermined time using a water amount in a region upstream of the evaluation target region;
An overflow determination step for determining the presence or absence of overflow using the water flow amount and the water flow limit amount;
The execution,
The drainage groove is provided at the boundary portion of the embankment on the slope,
The amount of water flow includes the amount of water present in the region at the time of calculation during the flow of the drainage ditch,
The amount of water is the amount of water that was previously in the region located upstream of the drainage channel from the region,
If the amount of water that was previously in the region located upstream of the drainage channel from the region exceeds the water flow limit of the region,
Depending on the shape of the embankment,
As the amount of water present in the region at the time of calculation during the flow of the drainage channel, the water flow limit amount is used, or the amount of water that was previously in the region located upstream of the drainage channel from the region is used, The overflow evaluation method characterized by that.
降雨による排水溝の溢水の有無を評価する溢水評価装置が、
排水溝を排水方向に沿って複数の領域に分割する領域分割ステップと、
評価対象の領域の上流側にある領域の水量を用いて、所定の時間のあいだに前記評価対象の領域を通過する通水量を算出する通水量算出ステップと、
前記通水量と通水限界量を用いて、溢水の有無の判定を行う溢水判定ステップと、
を実行し、
評価対象の領域は、前記排水溝と横断排水工との接続箇所に対応し、
前記通水限界量は、横断排水工について定めたものであることを特徴とする溢水評価方法。
An overflow evaluation device that evaluates the presence or absence of overflow in drains due to rainfall,
An area dividing step for dividing the drainage groove into a plurality of areas along the direction of drainage;
A water flow amount calculating step for calculating a water flow amount that passes through the evaluation target region during a predetermined time using a water amount in a region upstream of the evaluation target region;
An overflow determination step for determining the presence or absence of overflow using the water flow amount and the water flow limit amount;
The execution,
The area to be evaluated corresponds to the connection point between the drainage ditch and the cross drainage,
The overflow evaluation method, wherein the water flow limit amount is determined for a cross drainage .
コンピュータを、請求項1から請求項6のいずれかに記載の溢水評価装置として機能させるためのプログラム。 The computer program for functioning as a flooding evaluation device according to any one of claims 1 to 6.
JP2013066966A 2013-03-27 2013-03-27 Overflow evaluation device, overflow evaluation method, program Expired - Fee Related JP5941862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066966A JP5941862B2 (en) 2013-03-27 2013-03-27 Overflow evaluation device, overflow evaluation method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066966A JP5941862B2 (en) 2013-03-27 2013-03-27 Overflow evaluation device, overflow evaluation method, program

Publications (2)

Publication Number Publication Date
JP2014190064A JP2014190064A (en) 2014-10-06
JP5941862B2 true JP5941862B2 (en) 2016-06-29

Family

ID=51836605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066966A Expired - Fee Related JP5941862B2 (en) 2013-03-27 2013-03-27 Overflow evaluation device, overflow evaluation method, program

Country Status (1)

Country Link
JP (1) JP5941862B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286357A (en) * 1994-04-19 1995-10-31 Fujita Corp Vertical drainage ditch
JP4083625B2 (en) * 2003-05-14 2008-04-30 鹿島建設株式会社 Water damage analysis system
JP2007063849A (en) * 2005-08-31 2007-03-15 Toshiba Corp Method of creating river water level prediction model, device for predicting river water level, and program for creating river water level prediction model
JP2008050903A (en) * 2006-08-28 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Flood prediction method and flood prediction system
JP5774890B2 (en) * 2011-03-31 2015-09-09 西日本高速道路株式会社 Slope drainage

Also Published As

Publication number Publication date
JP2014190064A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP4887121B2 (en) Safety factor calculation device and safety factor calculation method
US8914266B2 (en) Systems and methods for modeling floods
CN115471078B (en) Flood risk point assessment method and device based on urban water affair system
Saad et al. Assessment of riverine dredging impact on flooding in low-gradient coastal rivers using a hybrid 1D/2D hydrodynamic model
JP2024086775A (en) Adjustment pond capacity determination method
Zech et al. State of the practice: Evaluation of sediment basin design, construction, maintenance, and inspection procedures
JP5941862B2 (en) Overflow evaluation device, overflow evaluation method, program
CN108842891A (en) A kind of the rain sewage collection system and construction method of high-pile beam Wharf Platform
WO2017193422A1 (en) Asymmetric debris flow drainage trough and design method and application thereof
Temple et al. Earth dam overtopping and breach outflow
Christine et al. Dynamic SlowDown: a flood mitigation strategy complying with the integrated management concept–implementation in a small mountainous catchment
US9799045B2 (en) Method and system for determining the vertical alignment of an infrastructure corridor
Namadi et al. The numerical investigation of the effect of subsequent check dams on flood peaks and the time of concentration using the MIKE 11 modeling system (Case study: golabdareh catchment, Iran)
JP5173783B2 (en) Groundwater flow conservation method
CN118087446B (en) Method for reducing risk of blocking river barrier lake by debris flow
Zhang et al. An advanced check‐dam sedimentation module: Laboratory validation and implementation in a distributed sediment yield model for field application
Shearin-Feimster Impacts of Tailwater on the Design of Several Stilling Basins in the USA
Lismanis Numerical modelling of dam breaching
Hodzinskaya Algorithm for calculation of channel deformation in soils of various graininess
Supriyono Structural and Non-Structural Assessment of Flood Control in Gunting River, Jombang Regency, East Java Province
Hawley A regionally-calibrated approach to ‘channel protection controls’—how meeting new stormwater regulations can improve stream stability and protect urban infrastructure
Olson et al. Best management practices—Rational estimation of actual likely costs of stormwater treatment
Chanson Embankment dam spillways and energy dissipators
Williman The need for adaptability in river control design to cope with climate change and other flood hazard uncertainties
CN116882076A (en) Road gully design method, device, electronic equipment and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5941862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees