JP5939513B2 - Waste liquid treatment method containing heavy metals - Google Patents

Waste liquid treatment method containing heavy metals Download PDF

Info

Publication number
JP5939513B2
JP5939513B2 JP2011106698A JP2011106698A JP5939513B2 JP 5939513 B2 JP5939513 B2 JP 5939513B2 JP 2011106698 A JP2011106698 A JP 2011106698A JP 2011106698 A JP2011106698 A JP 2011106698A JP 5939513 B2 JP5939513 B2 JP 5939513B2
Authority
JP
Japan
Prior art keywords
waste liquid
shell
seaweed
heavy metal
hexavalent chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106698A
Other languages
Japanese (ja)
Other versions
JP2012223749A (en
Inventor
敦政 佐藤
敦政 佐藤
章人 寺井
章人 寺井
治彦 豊原
治彦 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2011106698A priority Critical patent/JP5939513B2/en
Publication of JP2012223749A publication Critical patent/JP2012223749A/en
Application granted granted Critical
Publication of JP5939513B2 publication Critical patent/JP5939513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、重金属含有廃液処理方法に関し、更に詳しくは、低コストで廃棄物中の重金属を除去することができる優れた重金属含有廃液処理方法に関するものである。The present invention relates to heavy metal-containing waste liquid treatment how, more particularly, it relates to good heavy metal-containing wastewater treatment how it is possible to remove heavy metals in the waste at low cost.

従来、有害物質として排出される重金属として、主にカドミウム、鉛、水銀、六価クロム、ヒ素、セレンなどがあり、これらは水質汚染防止法において有害物質に指定されている。これらの他にも多くの種類の重金属による汚染が危惧され、その除去のための処理方法が種々研究されている。これらの中でも、特に六価クロムについて、その処理が困難とされている。  Conventionally, heavy metals discharged as harmful substances mainly include cadmium, lead, mercury, hexavalent chromium, arsenic, selenium, and the like, and these are designated as harmful substances in the Water Pollution Control Law. In addition to these, there are concerns about contamination with many types of heavy metals, and various treatment methods for their removal have been studied. Among these, especially hexavalent chromium is considered difficult to treat.

一方、六価クロムは、昨今、耐酸化性に富み、融点が高いため特殊鋼、非鉄合金、クロムめっき・クロムメートなどの表面処理、顔料、皮なめしなどに広く使用されている。この六価クロムは、クロム化合物中で強い毒性を示し、前述のごとく有害物質に指定されている。また六価クロムは、近年、セメントやセメント固化材中に含まれており、固化したコンクリートからも溶出する。したがって、現在の我々の生活環境には多くのコンクリート製品・構造物が存在するため、これらから溶出する六価クロムの環境や人体への悪影響が危惧されている。  On the other hand, hexavalent chromium is currently widely used for surface treatments such as special steel, non-ferrous alloys, chromium plating / chromate, pigments, and tanning because of its high oxidation resistance and high melting point. This hexavalent chromium is highly toxic in chromium compounds and is designated as a hazardous substance as described above. In recent years, hexavalent chromium is contained in cement and cement solidified material, and is also eluted from solidified concrete. Therefore, since there are many concrete products and structures in our current living environment, there are concerns about the adverse effects on the environment and human body of hexavalent chromium eluted from these.

このような中で、六価クロムの処理方法としては、従来、六価クロムを三価クロムに還元する、いわゆる還元法があり、アルカリ剤を添加して水酸化クロム(III)として沈殿分離する方法である(例えば、非特許文献1参照)。イオン交換法は、六価クロムを含むクロム酸が陰イオン交換樹脂に強く吸着される(例えば、非特許文献2参照)。吸着法は、従来、活性炭は取り扱いが簡単で高い除去効果を有するためにもっぱら使用されているが、この他、陸上植物、水生植物、海藻、カビなどの微生物などを利用した生物吸着剤を用いる研究も行われている(例えば、非特許文献3参照)。凝集沈殿剤としては、従来、ポリ塩化アルミニウム(PAC)、ポリアクリルアミドなどが土木浚渫工事や上・下水処理場の濁水の固液分離に用いられており、更に貝殻は、貝類の養殖の結果、大量の貝殻が廃棄処分されている。貝殻は、炭酸カルシウムの小結晶が集まった多結晶体であり、蜂の巣のような稜柱構造、薄い葉を何枚も重ねたような葉状構造、炭酸カルシウム結晶が交差し空隙の多いチョーク構造などのさまざまな構造を持っている。また水中に分散される微粒子は、マイナス電荷を帯びており、貝殻に含まれるカルシウムイオンは、水中に分散する粒子のもつマイナス電荷を相殺し、粒子の凝集を引き起こす。しかも貝殻は前述のような複雑な結晶構造のため、表面積が非常に大きいと考えられる。  Under such circumstances, as a method for treating hexavalent chromium, there is a so-called reduction method in which hexavalent chromium is reduced to trivalent chromium, and an alkali agent is added to precipitate and separate as chromium (III) hydroxide. It is a method (for example, refer nonpatent literature 1). In the ion exchange method, chromic acid containing hexavalent chromium is strongly adsorbed on the anion exchange resin (see, for example, Non-Patent Document 2). Conventionally, activated carbon has been used exclusively because activated carbon is easy to handle and has a high removal effect. In addition to this, biosorbents using microorganisms such as land plants, aquatic plants, seaweeds and molds are used. Research has also been conducted (for example, see Non-Patent Document 3). As coagulation precipitants, polyaluminum chloride (PAC), polyacrylamide, etc. have been used for civil engineering dredging work and turbid water solid-liquid separation in water treatment and sewage treatment plants. A large amount of shells are being disposed of. A shell is a polycrystal with small crystals of calcium carbonate, such as a ridge-pillar structure like a honeycomb, a leaf-like structure with many thin leaves stacked, a chalk structure with intersecting calcium carbonate crystals and many voids, etc. Has a variety of structures. The fine particles dispersed in water have a negative charge, and the calcium ions contained in the shell cancel the negative charge of the particles dispersed in the water and cause the particles to aggregate. Moreover, the shell is considered to have a very large surface area due to the complex crystal structure as described above.

加藤勇、クロム(VI)排水の処理「新・公害防止の技術と法規2009水質編II(公害防止の技術と法規編集委員会編)産業環境管理協会、東京、2009;212−217Isao Kato, Disposal of Chromium (VI) Drainage “New Pollution Prevention Technology and Regulations 2009 Water Quality II (Pollution Prevention Technology and Regulations Editorial Board) Industrial Environment Management Association, Tokyo, 2009; 212-217 東レリサーチセンター調査研究部門、クロム(VI)排水のリサイクル.「水リサイクル・廃棄物処理技術−技術分野別、排水・廃水種別の最新動向−」(井出哲夫編)技報堂出版株式会社、東京、1976;517−521Toray Research Center Research Division, recycling of chromium (VI) wastewater. "Water Recycling / Waste Treatment Technology-Latest Trends in Drainage / Wastewater by Technical Field" (Tetsuo Ide), Gihodo Publishing Co., Ltd., Tokyo, 1976; 517-521 Murphy V、Hughes H、McLoughlin P.Comparative study of chromium biosorption by red、green and brown seeweed biomass.Chemosphere 2008;70:1128−1134.Murphy V, Hughes H, McLoughlin P. et al. Comparative study of chromium biosorption by red, green and brown seeded biomass. Chemosphere 2008; 70: 1128-1134.

しかしながら、前述のごとき非特許文献1に記載の六価クロムの除去方法である還元法は、還元された三価クロムが一部六価クロムに戻る再生反応が生じるなどにより六価クロムの除去効果はあまり高くないという問題がある。また非特許文献2に記載のイオン交換法では、樹脂を再生する際に得られる濃厚なクロム酸を回収することができるので、これを防腐剤として再利用することができる利点があるものの、処理コストが高い点で大規模な廃液処理には適さないという問題がある。更に非特許文献3に記載の吸着法もまた、活性炭が高価であるため、大規模な廃液処理には適さない。また生物処理剤のうち、海藻を用いる方法が示されているが、研究段階であり高効率かつ低コストを達成するには今ひとつ十分ではないという問題がある。  However, the reduction method, which is the hexavalent chromium removal method described in Non-Patent Document 1 as described above, has the effect of removing hexavalent chromium due to, for example, a regeneration reaction in which the reduced trivalent chromium partially returns to hexavalent chromium. There is a problem that is not so high. Further, in the ion exchange method described in Non-Patent Document 2, since concentrated chromic acid obtained when the resin is regenerated can be recovered, there is an advantage that it can be reused as a preservative. There is a problem that it is not suitable for large-scale waste liquid treatment because of its high cost. Further, the adsorption method described in Non-Patent Document 3 is also not suitable for large-scale waste liquid treatment because activated carbon is expensive. Also, among the biotreating agents, a method using seaweed has been shown, but there is a problem that it is not sufficient to achieve high efficiency and low cost at the research stage.

そこで、本発明者等は、上記の問題点を種々検討する中、海藻を吸着剤として使用すると共に、貝の養殖の副産物として大量に廃棄されている貝殻を凝集沈殿剤として用いることに着目し、研究した結果、安価で高率的に重金属(特に六価クロム)を除去できる、海藻成分と貝殻成分とを用いた重金属含有廃液処理方法を見出し、ここに本発明をなすに至った。Accordingly, the present inventors have focused on the use of seaweed as an adsorbent and a large amount of shells discarded as a by-product of shellfish cultivation as a coagulant precipitant during various investigations of the above problems. research result, can be removed inexpensive and high rate to heavy metals (in particular hexavalent chromium), containing heavy metals with the seaweed component and shell component effluent treatment how heading and the present invention has been accomplished here .

したがって、本発明が解決しようとする第1の課題は、海藻成分と貝殻成分とを用いて重金属(特に六価クロム)を低コストで効率的に除去しうる優れた重金属含有廃液処理方法を提供することにある。本発明が解決しようとする第2の課題は、海藻を吸着剤として使用すると共に貝殻を凝集沈殿剤として同時に用いることにより安価で高効率で重金属を除去できる優れた重金属含有廃液処理方法を提供することにある。Therefore, the first problem to be solved by the present invention is to provide an excellent heavy metal-containing waste liquid treatment method capable of efficiently removing heavy metals (especially hexavalent chromium) at low cost using seaweed components and shell components. There is to do. The second problem to be solved by the present invention is to provide an excellent heavy metal-containing waste liquid treatment method capable of removing heavy metals at low cost and high efficiency by simultaneously using seaweed as an adsorbent and simultaneously using shells as a coagulating precipitant. There is.

本発明の上記課題は、下記の各発明によって達成される。
(1)重金属を含む処理用廃液に緑藻綱、紅藻綱又は褐藻綱から選ばれた少なくとも1種である海藻焼成物からなる吸着剤及び200℃〜350℃で焼成された焼成貝殻粉末を含む貝殻凝集沈殿剤を順次又は同時に添加し撹拌することを特徴とする重金属含有廃液処理方法。
(2)前記褐藻綱の海藻が、コンブ目チガイソ科又はコンブ目コンブ科であることを特徴とする前記第1項に記載の重金属含有廃液処理方法。
(3)前記コンブ目チガイソ科が、ワカメ、ヒロメ又はコンブ目コンブ科のカジメから選ばれた少なくとも1種であることを特徴とする前記第1項又は第2項に記載の重金属含有廃液処理方法。
(4)前記海藻焼成物は、200℃〜350℃で焼成されたものであることを特徴とする請求項1乃至請求項3のいずれかに記載の重金属含有廃液処理方法。
The above-described problems of the present invention are achieved by the following inventions.
(1) The waste liquid for treatment containing heavy metal includes an adsorbent composed of a seaweed calcined material selected from at least one of green algae, red algae or brown algae, and a calcined shell powder calcined at 200 ° C. to 350 ° C. A method for treating a heavy metal-containing waste liquid, comprising adding or stirring a shell aggregation coagulant sequentially or simultaneously.
(2) The heavy metal-containing waste liquid treatment method as described in (1) above, wherein the seaweed of the brown alga class is Coleoptera or Chamidae.
(3) The heavy metal-containing waste liquid treatment method according to (1) or (2) above, wherein the Chamidaceae is at least one selected from seaweed, Hirome, or Cubidae .
(4) The heavy metal-containing waste liquid treatment method according to any one of claims 1 to 3, wherein the seaweed fired product is fired at 200 ° C to 350 ° C.

本発明の重金属含有廃液処理方法は、重金属を含む処理用廃液に緑藻綱、紅藻綱又は褐藻綱から選ばれた少なくとも1種である海藻焼成物からなる吸着剤を添加し撹拌し、ついで得られた廃液に、貝殻凝集沈殿剤を添加し撹拌することにより、低コストで、より高効率で六価クロムの除去することができるという優れた効果を奏するものである(図3)。本発明の重金属含有廃液処理方法は、海藻焼成物からなる吸着剤と焼成貝殻を含む貝殻凝集沈殿剤とを同時に混合することもでき、これにより低コストで、効率よく六価クロムの除去することができるという優れた効果を奏するものである(図3)。前記海藻焼成物の海藻が緑藻綱、紅藻綱又は褐藻綱から選ばれた少なくとも1種であることにより、コントロール(貝殻凝集沈殿剤のみ)に比べ、いずれも六価クロムの除去率がよいという格別顕著な効果を奏するものである(図4)。本発明の廃液処理方法において、前記褐藻綱の海藻が、コンブ目チガイソ科であることにより、特に六価クロムの除去効果がよりいっそう優れている(図4)。本発明の廃液処理方法において、前記コンブ目チガイソ科が、ワカメ、ヒロメ又はカジメから選ばれた少なくとも1種であることにより、よりいっそう六価クロムの除去効果が優れている(図4)。本発明の廃液処理方法において、前記海藻焼成物は、200℃〜350℃で焼成されたものであることにより、いっそう六価クロムの除去効果が顕著であるという優れた効果を奏するものである。The heavy metal-containing waste liquid treatment method of the present invention is obtained by adding an adsorbent comprising a seaweed calcined product that is at least one selected from the group of green algae, red algae, or brown algae to a waste liquid for treatment containing heavy metals, and then stirring. By adding and stirring the shell aggregate aggregating agent to the waste liquid obtained, the hexavalent chromium can be removed at a lower cost and with higher efficiency (FIG. 3). The heavy metal-containing waste liquid treatment method of the present invention can simultaneously mix an adsorbent composed of a seaweed calcined product and a shell aggregation precipitant containing a calcined shell, thereby efficiently removing hexavalent chromium at low cost. This is an excellent effect that can be achieved (FIG. 3). The seaweed of the seaweed baked product is at least one selected from the group of green algae, red algae, or brown algae, so that the removal rate of hexavalent chromium is good compared to the control (shell aggregation coagulant only). There is a particularly remarkable effect (FIG. 4). In the waste liquid treatment method of the present invention, seaweed of the brown algae rope is by kelp eyes Chigaiso department has more excellent effect of removing particularly hexavalent chromium (Fig. 4). In the waste liquid treatment method of the present invention, the kelp eye Chigaiso family is, seaweed, by at least one selected from the spread or beforehand, and more excellent effect of removing hexavalent chromium (Fig. 4). In the waste liquid treatment method of the present invention, the seaweed baked product by those fired at 200 ° C. to 350 ° C., in which exhibits an excellent effect that the effect of removing more hexavalent chromium is remarkable .

重金属の種類と廃液処理用重金属除去剤の除去率との関係を示すグラフを示す。  The graph which shows the relationship between the kind of heavy metal and the removal rate of the heavy metal removal agent for waste liquid treatment is shown.

以下に、本発明の実施の形態を説明するが、これは一例であってこれに限定されるものではない。  Embodiments of the present invention will be described below, but this is an example and the present invention is not limited to this.

本願特許請求の範囲及び明細書の記載において、「重金属を含む処理用廃液に海藻焼成物からなる吸着剤及び貝殻凝集沈殿剤を順次又は同時に添加し撹拌する」とは、「重金属を含む処理用廃液に海藻焼成物からなる吸着剤を添加し撹拌し、ついで得られた廃液に、貝殻凝集沈殿剤を添加し撹拌する」又は「重金属を含む処理用廃液に海藻焼成物からなる吸着剤と貝殻凝集沈殿剤とを同時に添加し撹拌する」という両方の方法を意味するように使用している。本発明は、重金属を含む処理用廃液に海藻焼成物からなる吸着剤及び貝殻凝集沈殿剤を順次又は同時に添加し撹拌することを特徴とする重金属含有廃液処理方法であり、具体的には、重金属は、特に有害な重金属としては、主にカドミウム、鉛、水銀、六価クロム、ヒ素、セレン、鉄(III)、マンガン、ニッケル、亜鉛、鉛などであり、最近新たに六価クロムによる環境への影響が注目されている。しかしながら、これらに限定されるものではなく、この他の重金属にも本発明が適用されることはいうまでもない。本発明に用いられる吸着剤として用いられる海藻焼成物には、その原料として緑藻綱、紅藻綱、褐藻綱などの海藻が好ましく用いられる。しかし、これに限定されるものではない。    In the description of the claims and the specification of the present application, “adding an adsorbent composed of seaweed calcined product and a shell aggregation aggregating agent sequentially or simultaneously to a waste liquid for treatment containing heavy metal” and “stirring” means “for treatment containing heavy metal Add the adsorbent composed of seaweed calcined product to the waste liquid and stir, then add the shell aggregation precipitant to the waste liquid obtained and stir "or" Adsorbent composed of seaweed calcined material and shells to the waste liquid for treatment containing heavy metals It is used to mean both methods of adding and aggregating the coagulating precipitation agent simultaneously. The present invention is a heavy metal-containing waste liquid treatment method, characterized in that an adsorbent composed of a seaweed calcined product and a shell aggregate aggregating precipitant are sequentially or simultaneously added to a treatment waste liquid containing heavy metal and stirred. Are particularly harmful heavy metals such as cadmium, lead, mercury, hexavalent chromium, arsenic, selenium, iron (III), manganese, nickel, zinc, lead, etc. The influence of is attracting attention. However, it is not limited to these, and it goes without saying that the present invention is applied to other heavy metals. In the seaweed calcined product used as the adsorbent used in the present invention, seaweeds such as green algae, red algae and brown algae are preferably used as raw materials. However, it is not limited to this.

本発明に用いられる緑藻綱としては、アオモグサ、アナアオサ、ナガミルなどが挙げられる。また紅藻綱としては、スサビノリ、ミゾオゴノリ、ピリヒバ、サイダイバラ、オオバツノマタ、スギノリ、フクロフノリ、ヒトツマツ、フダラク、マクサ、フシツナギなどが挙げられる。褐藻綱としては、ウミウチワ、コモングサ、カゴメノリ、カヤモノリ、ハバノリ、イシゲ、ネバリモ、カジメ、マコンブ、ヒロメ、ワカメ、イソモク、ウミトラノオ、エゾノネジモク、オオバノコギリモク、オオバモク、ジュロモク、トゲモク、ヒジキ、ヤツマタモク、ヤナギモク、ヨレモクなどが挙げられる。本発明に用いられる緑藻綱、紅藻綱及び褐藻綱について、具体的に挙げたが、これらに限定されるものではない。これらの中で、好ましいものは、アオモグサ、アナアオサ、ナガミル、スサピノリ、ピリヒバ、オオバツノマタ、フクロフノリ、フダラク、マクサ、フシツナギ、ウミウチワ、コモングサ、カゴメノリ、カヤモノリ、ハバノリ、ネバリモ、カジメ、マコンブ、ヒロメ、ワカメ、イソモク、ウミトラノオ、エゾノネジモク、オオバノコギリモク、オオバモク、ジュロモク、トゲモク、ヒジキ、ヤツマタモク、ヤナギモク、ヨレモクであり、更に好ましいものは、アナアオサ、フクロフノリ、ウミウチワ、コモングサ、カゴメノリ、カヤモノリ、ハバノリ、ネバリモ、カジメ、マコンブ、ヒロメ、ワカメ、イソモク、ウミトラノオ、ヒジキ、ヤツマタモク、ヤナギモクであり、いっそう好ましいものは、ワカメ、ヒロメ又はカジメである。  Examples of the green alga class used in the present invention include Aomogusa, Anaanaosa and Nagamil. Examples of the red algae include Susabirinori, Mizoogonori, Pirihiba, Saidaibara, Obatsunomata, Suginori, Fukurofunori, Hitsumatsu, Fudarak, Maxa, Fusiunagi and the like. Examples of brown algae include sea urchins, common rushes, kagomenori, mosquitoes, havanori, shigege, nebarimo, kajime, macomb, hirome, wakame, isomoku, umitranoo, ezono-nejimok, obanokogirimok, oobamoku, momoke, mom Is mentioned. The green algae, red algae and brown algae used in the present invention are specifically mentioned, but are not limited thereto. Among these, preferred are Aomogusa, Anaaaosa, Nagamil, Susapinori, Pirihiba, Obatsunomata, Fukurofunori, Fudarak, Maca, Fusutunagi, Sea Urchina, Common Rabbit, Kagomenori, Kamonomono, Habari, Naverimo, Kajime, Kajime, Mabu, Isomok, Umitorano, Ezo no Nejimok, Obanokogiri Moku, Oba Moku, Juromoku, Togemoku, Hijiki, Yatsumata Moku, Yanagimoku, Yoremok, and more preferably Anaanaosa, Fukurofunori, Umichiwa Hirome, Wakame, Isomoku, Umitorano, Hijiki, Yatsutama Tamoku, Yanagimoku, and more preferably Wakame, Hirome or Kajime.

本発明に用いられる海藻焼成物は、前述のような海藻を焼成して海藻炭とし、更に粉砕して、粒状、粉末などにする。好ましくは粉末がよい。海藻の焼成時間は、150℃〜550℃であり、好ましくは180℃〜450℃であり、更に好ましくは、200℃〜350℃である。焼成温度が150℃未満であると、海藻炭中に含まれる増粘成分などにより貝殻凝集沈殿剤の凝集作用に悪影響を及ぼすので好ましくない。また焼成温度が550℃を超えると吸着効果が失われるばかりでなく製造効率が悪くなるので好ましくない。  The seaweed fired product used in the present invention is obtained by firing seaweed as described above into seaweed charcoal and further pulverizing it into granules, powders, and the like. Preferably powder is good. The firing time of the seaweed is 150 ° C to 550 ° C, preferably 180 ° C to 450 ° C, and more preferably 200 ° C to 350 ° C. If the firing temperature is less than 150 ° C., the thickening component contained in the seaweed charcoal will adversely affect the coagulation action of the shell coagulating precipitant, which is not preferable. Further, if the firing temperature exceeds 550 ° C., not only the adsorption effect is lost, but also the production efficiency is deteriorated, which is not preferable.

本発明に用いられる貝殻凝集沈殿剤は、貝類の貝殻であれば、特に問題ない。貝殻は、前述の如く炭酸カルシウムの小結晶が集まった多結晶体であり、蜂の巣のような稜柱構造、薄い葉を何枚も重ねたような葉状構造、炭酸カルシウム結晶が交差し空隙の多いチョーク構造などのさまざまな構造を持っている。また水中に分散される微粒子は、マイナス電荷を帯びており、貝殻に含まれるカルシウムイオンは、水中に分散する粒子のもつマイナス電荷を相殺し、粒子の凝集を引き起こす。しかも貝殻は前述のような複雑な結晶構造のため、表面積が非常に大きいといえる。本発明に用いられる貝殻は、安価で大量に得られる貝殻が好ましく、貝類の養殖等で得られる貝殻が大量に廃棄されていることからみて、このような貝殻、特に牡蠣の貝殻が、入手が容易であるので好ましい。  The shell aggregation precipitant used in the present invention is not particularly problematic as long as it is a shell of shellfish. The shell is a polycrystal with small crystals of calcium carbonate gathered as described above, a ridge-pillar structure like a beehive, a leaf-like structure in which many thin leaves are stacked, and a chalk with many voids intersecting with calcium carbonate crystals. It has various structures such as structures. The fine particles dispersed in water have a negative charge, and the calcium ions contained in the shell cancel the negative charge of the particles dispersed in the water and cause the particles to aggregate. Moreover, it can be said that the shell has a very large surface area due to the complex crystal structure as described above. The shells used in the present invention are preferably inexpensive and available in large quantities, and in view of the large amount of shells obtained by shellfish cultivation, such shells, especially oyster shells, are available. It is preferable because it is easy.

本発明に用いられる貝殻凝集沈殿剤は、貝殻を洗浄後、乾燥し、ついで粉砕して粒状又は粉末にしたものを焼成し、焼成貝殻粉末を製造する。更にこの焼成貝殻粉末にポリ塩化アルミニウムとアクリルアミドポリマーを混合して貝殻凝集沈殿剤を製造する。この焼成貝殻粉末は、焼成温度200℃〜350℃、焼成時間60分〜180分が好ましく、更には230℃〜280℃が好ましいが、これらに限定されるものではない。  The shell agglomeration precipitant used in the present invention is obtained by washing a shell, drying it, and then pulverizing it into a granule or powder to produce a fired shell powder. Furthermore, a shell agglomeration precipitant is produced by mixing polyaluminum chloride and an acrylamide polymer with the baked shell powder. The calcined shell powder preferably has a calcining temperature of 200 ° C. to 350 ° C. and a calcining time of 60 minutes to 180 minutes, and more preferably 230 ° C. to 280 ° C., but is not limited thereto.

本発明の重金属含有廃液処理方法に用いられる重金属を含む処理用廃液には、工場から排出される工場廃液、下水道処理廃液、埋め立て処分地からの溶出液などであり、更にコンクリート製品の製造時に発生する分離水、固化コンクリートから溶出する溶出液などである。このような重金属を含む処理用廃液に、前述のような海藻焼成物からなる吸着剤を添加し撹拌する。撹拌時間は、2分〜5分、好ましくは3分前後である5分以上撹拌しても、吸着効果には殆んど影響しない。ついで、前述のような貝殻凝集沈殿剤を添加し撹拌すると凝集物が形成される。その後、ろ過して凝集物を分離する。本発明の廃液処理方法において、使用される海藻焼成物からなる吸着剤及び貝殻凝集沈殿剤は、吸着剤を添加後、貝殻凝集沈殿剤を添加するが、海藻焼成物からなる吸着剤は、重金属を含む処理用廃液100質量部に対して、0.1質量部以上、好ましくは0.2質量部以上である。また貝殻凝集沈殿は、重金属を含む処理用廃液100質量部に対して、0.2質量部以上であり、好ましくは0.5質量部以上である。  The waste liquid for treatment containing heavy metals used in the method for treating heavy metal-containing waste liquid of the present invention includes factory waste liquid discharged from the factory, sewage treatment waste liquid, eluate from landfill disposal site, and also generated during the manufacture of concrete products. Such as separated water, eluate eluted from solidified concrete. The adsorbent made of the seaweed calcined product as described above is added to the waste liquid for treatment containing such heavy metals and stirred. The agitation time is 2 minutes to 5 minutes, preferably even around 5 minutes, which is about 3 minutes, and hardly affects the adsorption effect. Next, when a shell aggregation coagulant as described above is added and stirred, an aggregate is formed. Thereafter, the aggregate is separated by filtration. In the waste liquid treatment method of the present invention, the adsorbent composed of the seaweed calcined product and the shell agglomerated precipitant used are added with the adsorbent and then the shell agglomerate precipitant, but the adsorbent composed of the seaweed calcined product is a heavy metal. The amount is 0.1 parts by mass or more, preferably 0.2 parts by mass or more, with respect to 100 parts by mass of the processing waste liquid. The shell aggregation precipitation is 0.2 parts by mass or more, preferably 0.5 parts by mass or more with respect to 100 parts by mass of the processing waste liquid containing heavy metals.

また、本発明に用いられる海藻焼成物からなる吸着剤と焼成貝殻を含む貝殻凝集沈殿剤を、重金属を含む処理用廃液に添加する際、その割合、即ち海藻焼成物からなる吸着剤と焼成貝殻を含む貝殻凝集沈殿剤との割合は、1:1〜1:5であり、好ましくは1:1〜1:3である。Further, when adding the adsorbent composed of the seaweed calcined product and the shell agglomerate precipitant containing the calcined shell used in the present invention to the waste liquid for treatment containing heavy metals, the ratio, that is, the adsorbent composed of the seaweed calcined product and the calcined sea shell. The ratio with respect to the shell aggregation precipitating agent containing is 1: 1 to 1: 5, preferably 1: 1 to 1: 3.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は一例を説明するためのものであり、本発明はこれに限定されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is for demonstrating an example and this invention is not limited to this.

〔六価クロムのモデル廃液の製造〕
本発明の重金属含有廃液処理方法の廃液の代わりに使用される六価クロムのモデル廃液は、クロム酸カリウム(和光純薬製)を用いて濃度1mg/Lのクロム酸カリウム水溶液を作製した。
〔吸着剤〕
吸着剤としては、カリオン、合成ゼオライト、活性炭粉末、タマネギの表皮の焼成粉末(植物炭)、海藻炭の5種類を試験した。
[Manufacture of model waste liquid of hexavalent chromium]
As the hexavalent chromium model waste liquid used in place of the waste liquid treatment method for heavy metal-containing waste liquid of the present invention, potassium chromate aqueous solution having a concentration of 1 mg / L was prepared using potassium chromate (manufactured by Wako Pure Chemical Industries, Ltd.).
[Adsorbent]
As the adsorbent, five types of carion, synthetic zeolite, activated carbon powder, calcined onion skin powder (plant charcoal) and seaweed charcoal were tested.

〔植物炭の製造〕
タマネギの表皮の焼成した植物炭は、タマネギの表皮をオーブンを用いて250℃で90分間焼成し、ワンダーブレンダー(大阪ケミカル株式会社製、商品名WB−1)を用いて粉砕して製造した。平均粒径100μmであった。
〔海藻炭の製造〕
海藻炭は、種々の海藻をオーブンを用いて250℃で90分間焼成し、ワンダーブレンダーを用いて粉砕して製造した。
[Manufacture of plant charcoal]
The baked vegetable charcoal of the onion skin was produced by firing the onion skin for 90 minutes at 250 ° C. using an oven and pulverizing it using a wonder blender (trade name WB-1 manufactured by Osaka Chemical Co., Ltd.). The average particle size was 100 μm.
[Manufacture of seaweed charcoal]
Seaweed charcoal was produced by firing various seaweeds at 250 ° C. for 90 minutes using an oven and pulverizing them using a wonder blender.

〔貝殻凝集沈殿剤の製造〕
マガキの貝殻を洗浄した後、乾燥し、ついでこの乾燥物をワンダーブレンダーで粉砕し、その後、250μmの篩を通過した粉砕物をオーブンを用いて250℃で90分間焼成し、焼成貝殻粉末を製造した。更に、貝殻凝集沈殿剤は、この焼成貝殻粉末90質量%、ポリ塩化アルミニウム(PAC:大明化学工業製)7質量%、アクリルアミドポリマー(SNF社製)を混合して製造した。
(Manufacture of shell shell coagulating precipitant)
After washing the oyster shell, it is dried, and then the dried product is pulverized with a wonder blender, and then the pulverized product that has passed through a 250 μm sieve is baked at 250 ° C. for 90 minutes using an oven to produce a baked shell powder. did. Furthermore, the shell aggregation precipitant was produced by mixing 90% by mass of this calcined shell powder, 7% by mass of polyaluminum chloride (PAC: manufactured by Daimei Chemical Co., Ltd.), and acrylamide polymer (manufactured by SNF).

重金属含有廃液処理方法は、次の方法で行い、かつバッチ法により行った。6個の50mL容量のコニカルチューブのうち5個に、濃度1mg/Lのクロム酸カリウム水溶液40mLをそれぞれ注いだ。これらのそれぞれの中に吸着剤として、カリオン、合成ゼオライト、活性炭粉末、タマネギの表皮の焼成粉末(植物炭)、海藻炭をそれぞれ100mgを添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法〔菅正彦、クロム、「水の分析第5版」(日本分析化学会北海道支部編)化学同人、京都、2005;229−232〕により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。また残り1個のコニカルチューブは、貝殻凝集沈殿剤のみを添加し、コントロールとした。得られた結果を表1に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)={(未処理値−処理値)/未処理値}×100
なお、gは重力を表わし、4000×gは、重力の4000倍の重力加速度で遠心分離することを表わす。
The heavy metal-containing waste liquid treatment method was performed by the following method and by a batch method. 40 mL of an aqueous potassium chromate solution having a concentration of 1 mg / L was poured into 5 of 6 50 mL capacity conical tubes. 100 mg each of carion, synthetic zeolite, activated carbon powder, onion skin calcined powder (vegetable charcoal) and seaweed charcoal were added as adsorbents to each of these, and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation is performed at 4000 xg for 2 minutes, and the hexavalent chromium concentration in the supernatant is determined by the diphenylcarbazide method [Masahiko Tsuji, Chromium, "Analysis Fifth Edition of Water" (Hokkaido Branch, Analytical Society of Japan) Dojin, Kyoto, 2005; 229-232], using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). Further, the remaining one conical tube was used as a control by adding only a shell aggregation coagulant. The obtained results are shown in Table 1. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = {(unprocessed value−processed value) / unprocessed value} × 100
Note that g represents gravity, and 4000 × g represents that centrifugation is performed at a gravitational acceleration 4000 times the gravity.

Figure 0005939513
Figure 0005939513

表1から明らかなように、カリオン、合成ゼオライト及び植物炭の六価クロム除去率は、それぞれ30%、29%、28%と低いが、海藻炭の除去率は66%であり、活性炭の除去率75%に近い値を有していた。この結果からみて海藻炭は貝殻凝集沈殿剤と組み合わせることにより吸着剤として極めて優れていることがわかる。As is clear from Table 1, the removal rates of hexavalent chromium of carion, synthetic zeolite and plant charcoal are as low as 30%, 29% and 28%, respectively, but the removal rate of seaweed charcoal is 66% and the removal of activated carbon. The rate was close to 75%. From this result, it can be seen that seaweed charcoal is extremely excellent as an adsorbent when combined with a shell aggregation precipitant.

重金属含有廃液処理方法は、次の方法で行い、かつバッチ法により行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に吸着剤として、表2に示す海藻から製造された海藻炭を100mgを添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。海藻炭は、36種類を吸着剤の原料として用いた。また吸着剤は添加せず、貝殻凝集沈殿剤のみを添加し、コントロールとした。得られた結果を表2に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
The heavy metal-containing waste liquid treatment method was performed by the following method and by a batch method. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. In this, 100 mg of seaweed charcoal produced from seaweed shown in Table 2 was added as an adsorbent and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation was performed at 4000 × g for 2 minutes, and the hexavalent chromium concentration contained in the supernatant was measured by a diphenylcarbazide method using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). 36 kinds of seaweed charcoal were used as raw materials for the adsorbent. Also, no adsorbent was added, and only a shell aggregation coagulant was added to serve as a control. The obtained results are shown in Table 2. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

Figure 0005939513
Figure 0005939513

表2から明らかなように、海藻が六価クロムの除去に効果のあることがわかるが、これらの中でコンブ目チガイソ科又はコンブ目コンブ科が顕著であり、特に、ワカメ、ヒロメ、カジメは90%以上の除去率を有していることがわかる。  As is clear from Table 2, seaweeds are found to be effective in removing hexavalent chromium. Among these, the order of the family Chamidae or the family Cubidae is prominent. It can be seen that the removal rate is 90% or more.

〔ワカメ炭粉末の製造〕
コンブ目チガイソ科の海藻であるワカメを乾燥した物(未焼成)、またワカメをオーブンを用いて100℃、150℃、200℃、250℃の温度で90分間焼成した物、ワカメを電気炉(小糸工業製、KCA−10A)を用いて350℃、450℃、550℃で90分間焼成した物をワンダーブレンダーを用いて粉砕し、ワカメ炭粉末とした。
[Manufacture of Wakame Charcoal Powder]
Wakame seaweed, which is a seaweed belonging to the order of Coleoptera, is dried (unfired), and the wakame is fired at 100 ° C, 150 ° C, 200 ° C, 250 ° C for 90 minutes using an oven, A product baked at 350 ° C., 450 ° C., and 550 ° C. for 90 minutes using Koito Kogyo Co., Ltd., KCA-10A) was pulverized using a wonder blender to obtain Wakame charcoal powder.

〔重金属含有廃液処理方法〕
重金属含有廃液処理方法は、吸着剤としてワカメ炭粉末を用い、次の如きバッチ法により行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に吸着剤として、上記のワカメ炭粉末を100mgを添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。またワカメ炭粉末は添加せず、貝殻凝集沈殿剤のみを添加し、コントロールとした。得られた結果を表3に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
[Heavy metal containing waste liquid treatment method]
The heavy metal-containing waste liquid treatment method was performed by the following batch method using wakame charcoal powder as an adsorbent. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. 100 mg of the above Wakame charcoal powder was added as an adsorbent to this and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation was performed at 4000 × g for 2 minutes, and the hexavalent chromium concentration contained in the supernatant was measured by a diphenylcarbazide method using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). Further, wakame charcoal powder was not added, and only a shell aggregation coagulant was added as a control. The obtained results are shown in Table 3. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

Figure 0005939513
Figure 0005939513

表3から明らかなように、ワカメ炭粉末による六価クロムの除去率は、焼成温度200℃〜350℃において80%以上という優れた効果のあることがわかる。また未焼成から150℃の焼成のワカメ炭を添加した廃液には粘性が見られ、六価クロム除去率が低い。このことは貝殻凝集沈殿剤の凝集作用が阻害されていると考えられる。外観観察の結果、未焼成から150℃では緑色、350℃以上では褐色乃至黒色となり、温度により外観にも大きな差が見られた。450℃以上では六価クロム除去率が低くなる。  As can be seen from Table 3, the removal rate of hexavalent chromium by wakame charcoal powder has an excellent effect of 80% or more at a firing temperature of 200 ° C to 350 ° C. Moreover, viscosity is seen in the waste liquid which added the unbaked to 150 degreeC baked wakame charcoal, and the hexavalent chromium removal rate is low. This is considered that the coagulation action of the shell aggregation coagulant is inhibited. As a result of external appearance observation, green color was obtained at 150 ° C. from unfired, brown to black at 350 ° C. or higher, and a large difference in appearance was observed depending on temperature. Above 450 ° C, the hexavalent chromium removal rate becomes low.

〔重金属含有廃液処理方法〕
重金属含有廃液処理方法は、吸着剤としてワカメ炭粉末を用い、次の如きバッチ法により行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に吸着剤として、実施例3で製造した250℃ワカメ炭粉末をそれぞれ0mg(コントロール)、5mg、10mg、20mg、40mg、80mg、160mgを添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法〔菅正彦、クロム、「水の分析第5版」(日本分析化学会北海道支部編)化学同人、京都、2005;229−232〕により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。得られた結果を表4に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
[Heavy metal containing waste liquid treatment method]
The heavy metal-containing waste liquid treatment method was performed by the following batch method using wakame charcoal powder as an adsorbent. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. Into this, 0 mg (control), 5 mg, 10 mg, 20 mg, 40 mg, 80 mg and 160 mg of 250 ° C. wakame charcoal powder produced in Example 3 was added as an adsorbent and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation is performed at 4000 xg for 2 minutes, and the hexavalent chromium concentration in the supernatant is determined by the diphenylcarbazide method [Masahiko Tsuji, Chromium, "Analysis Fifth Edition of Water" (Hokkaido Branch, Analytical Society of Japan) Dojin, Kyoto, 2005; 229-232], using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). The results obtained are shown in Table 4. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

Figure 0005939513
Figure 0005939513

表4から明らかなように、ワカメ炭粉末の添加量は、1mg/Lの濃度の廃液に対して、40mg以上で十分な六価クロムの除去率が得られるが、ワカメ炭粉末80mg以上では、ほぼ100%の六価クロムを除去することができる。したがって、ワカメ炭粉末を100mgより多く添加することは、経済上からみて必要ない。  As is apparent from Table 4, the amount of wakame charcoal powder added can be a sufficient hexavalent chromium removal rate of 40 mg or more with respect to the waste liquid having a concentration of 1 mg / L. Almost 100% of hexavalent chromium can be removed. Therefore, it is not necessary from the economical viewpoint to add more than 100 mg of wakame charcoal powder.

〔重金属含有廃液処理方法〕
重金属含有廃液処理方法は、吸着剤としてワカメ炭粉末を用い、次の如きバッチ法により行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に吸着剤として、実施例3で製造した250℃ワカメ炭粉末をそれぞれ、10mg、100mgを添加し、撹拌時間をそれぞれ0.5分、1分、2分、3分、5分、10分、30分で撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。得られた結果を表5に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
[Heavy metal containing waste liquid treatment method]
The heavy metal-containing waste liquid treatment method was performed by the following batch method using wakame charcoal powder as an adsorbent. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. 10 mg and 100 mg of 250 ° C. wakame charcoal powder produced in Example 3 were added as adsorbents, respectively, and the stirring time was 0.5 minutes, 1 minute, 2 minutes, 3 minutes, 5 minutes, 10 minutes, respectively. Stir for 30 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation was performed at 4000 × g for 2 minutes, and the hexavalent chromium concentration contained in the supernatant was measured by a diphenylcarbazide method using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). The obtained results are shown in Table 5. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

Figure 0005939513
Figure 0005939513

表5から明らかなように、1mg/Lの濃度の廃液に対するワカメ炭粉末の添加量が10mg、100mg共に、反応時間の増加で六価クロム除去率も高くなり、反応時間が3分間で十分な効果が得られることがわかる。反応時間が3分を超えても効果は変われず、したがって、ワカメ炭粉末を添加してから3分経てば処理時間は十分であるといえる。  As is clear from Table 5, the addition amount of wakame charcoal powder to the waste liquid having a concentration of 1 mg / L is 10 mg and 100 mg, and the hexavalent chromium removal rate increases with the increase of the reaction time, and the reaction time is sufficient for 3 minutes. It turns out that an effect is acquired. Even if the reaction time exceeds 3 minutes, the effect is not changed. Therefore, it can be said that the treatment time is sufficient if 3 minutes have passed after the addition of the wakame charcoal powder.

〔重金属含有廃液処理方法〕
重金属含有廃液処理方法は、吸着剤としてワカメ炭粉末を用い、次の如きバッチ法により行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に1NのHCl及び1NのNaOHを用いてpHを約4、5,6,7,8,9、10に調整した。吸着剤として、実施例3で製造した250℃ワカメ炭粉末を10mg添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法により多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。得られた結果を表6に示した。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
[Heavy metal containing waste liquid treatment method]
The heavy metal-containing waste liquid treatment method was performed by the following batch method using wakame charcoal powder as an adsorbent. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. The pH was adjusted to about 4, 5, 6, 7, 8, 9, 10 using 1N HCl and 1N NaOH. As an adsorbent, 10 mg of 250 ° C. wakame charcoal powder produced in Example 3 was added and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation was performed at 4000 × g for 2 minutes, and the hexavalent chromium concentration contained in the supernatant was measured by a diphenylcarbazide method using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). The results obtained are shown in Table 6. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

Figure 0005939513
Figure 0005939513

表6から明らかなように、六価クロム除去効果は、酸性及びアルカリ性領域において高く、弱酸性から弱アルカリ性の領域では、六価クロム除去効果は低い。なお、処理後にpHの上昇が見られたが、これは貝殻凝集沈殿剤の貝殻の炭酸カルシウムによると推定される。  As apparent from Table 6, the hexavalent chromium removal effect is high in the acidic and alkaline regions, and the hexavalent chromium removal effect is low in the weakly acidic to weakly alkaline regions. In addition, although the raise of pH was seen after a process, it is estimated that this is based on the calcium carbonate of the shell of a shell aggregation coagulant.

〔重金属含有廃液処理方法〕
5mg/Lの鉄標準液(和光純薬工業製)、10mg/Lの過マンガン酸カリウム溶液(和光純薬工業製)、5mg/Lのニッケル標準液(和光純薬工業製)、5mg/Lの鉛標準液(和光純薬工業製)、1mg/Lの硫酸亜鉛六水和物(和光純薬工業製)の水溶液をそれぞれの重金属のモデル廃液とした。重金属含有廃液処理方法は、吸着剤としてワカメ炭粉末を用い、次の如きバッチ法により行った。それぞれの重金属のモデル廃液40mLに、実施例3で製造した250℃ワカメ炭粉末を100mg添加し、3分間撹拌した。その後、貝殻凝集沈殿剤を200mg添加し、撹拌すると凝集物が形成された。4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度を多項目水質計(共立理化学研究所製 ラムダ9000)を用いて測定した。それぞれの測定原理は、鉄はo−フェナントロリン法、マンガンは、過ヨウ素酸カリウム法、ニッケルは、ジメチルグリオキシム法、鉛は、PAR法、亜鉛は、ジンコン法を用いた。得られた結果を図1に示した。吸着剤を使用しなかったものをコントロールとした。なお、六価クロムの除去率は、次の式で計算した。
除去率(%)=〔(未処理値−処理値)/未処理値〕×100
[Heavy metal containing waste liquid treatment method]
5 mg / L iron standard solution (Wako Pure Chemical Industries), 10 mg / L potassium permanganate solution (Wako Pure Chemical Industries), 5 mg / L nickel standard solution (Wako Pure Chemical Industries), 5 mg / L Lead aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) and an aqueous solution of 1 mg / L zinc sulfate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were used as model waste liquids for the respective heavy metals. The heavy metal-containing waste liquid treatment method was performed by the following batch method using wakame charcoal powder as an adsorbent. 100 mg of 250 ° C. wakame charcoal powder produced in Example 3 was added to 40 mL of each heavy metal model waste solution and stirred for 3 minutes. Thereafter, 200 mg of a shell aggregation coagulant was added and stirred to form an aggregate. Centrifugation was performed at 4000 × g for 2 minutes, and the concentration of hexavalent chromium contained in the supernatant was measured using a multi-item water quality meter (Lambda 9000, manufactured by Kyoritsu Riken). The respective measurement principles used were the o-phenanthroline method for iron, the potassium periodate method for manganese, the dimethylglyoxime method for nickel, the PAR method for lead, and the zincone method for zinc. The obtained results are shown in FIG. A control that did not use an adsorbent was used as a control. The hexavalent chromium removal rate was calculated by the following formula.
Removal rate (%) = [(unprocessed value−processed value) / unprocessed value] × 100

図1から明らかなように、六価クロム除去効果は、鉄及び鉛は、コントロールと同じ値であるので、貝殻凝集沈殿剤のみで除去効果が得られる。ニッケルは、貝殻凝集沈殿剤より除去効果が大きく、更にマンガンと亜鉛は、ワカメ炭と貝殻凝集沈殿剤とを用いることにより優れた除去効果があることがわかる。  As is apparent from FIG. 1, the effect of removing hexavalent chromium is the same as that of the control for iron and lead, and therefore, the removal effect can be obtained only by the shell aggregation precipitant. It can be seen that nickel has a larger removal effect than the shell aggregation precipitant, and that manganese and zinc have an excellent removal effect by using wakame charcoal and shell aggregation precipitate.

〔廃液処理用重金属除去剤の製造〕
吸着剤としてワカメ炭粉末100mg及び貝殻凝集沈殿剤200mgを混合して廃液処理用重金属除去剤を製造した。
[Manufacture of heavy metal removal agent for waste liquid treatment]
As an adsorbent, 100 mg of Wakame charcoal powder and 200 mg of a shell aggregation coagulant were mixed to produce a heavy metal removal agent for waste liquid treatment.

〔重金属含有廃液処理方法〕
重金属含有廃液処理方法は、次の方法で行った。50mL容量のコニカルチューブに、濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだ。この中に上記の廃液処理用重金属除去剤を300mg添加し、3分間撹拌した。形成された凝集物を分離するために4000×gで2分間遠心分離を行い、上澄み液中に含まれる六価クロム濃度をジフェニルカルバジド法〔菅正彦、クロム、「水の分析第5版」(日本分析化学会北海道支部編)化学同人、京都、2005;229−232〕により多項目水質計(共立理化学研究所製ラムダ9000)を用いて測定した。また濃度1mg/Lのクロム酸カリウム水溶液40mLを注いだコニカルチューブに、貝殻凝集沈殿剤のみを200mg添加し、コントロールとした。得られた結果は、表7に示した。
[Heavy metal containing waste liquid treatment method]
The heavy metal containing waste liquid treatment method was performed by the following method. 40 mL of a potassium chromate aqueous solution having a concentration of 1 mg / L was poured into a 50 mL conical tube. 300 mg of the above-mentioned heavy metal removal agent for waste liquid treatment was added to this, and stirred for 3 minutes. Centrifugation is performed at 4000 × g for 2 minutes to separate the formed aggregates, and the concentration of hexavalent chromium contained in the supernatant is determined by the diphenylcarbazide method [Masahiko Tsuji, Chromium, “Analysis of Water, Fifth Edition” (Analytical Chemistry Society of Hokkaido, Hokkaido Chapter) Chemistry Dojin, Kyoto, 2005; 229-232], using a multi-item water quality meter (Lambda 9000 manufactured by Kyoritsu Riken). In addition, 200 mg of only a shell aggregation coagulant was added to a conical tube into which 40 mL of an aqueous potassium chromate solution having a concentration of 1 mg / L was poured to serve as a control. The results obtained are shown in Table 7.

Figure 0005939513
Figure 0005939513

表7から明らかなように、ワカメ炭粉末と貝殻凝集沈殿剤との混合物からなる廃液処理用重金属除去剤を用いた場合にも、98.0%の除去率で六価クロムを除去することができた。
同様にして、吸着剤として合成ゼオライト、活性炭粉末、タマネギの表皮の焼成粉末(植物炭)と貝殻凝集沈殿剤とを混合して廃液処理用重金属除去剤をそれぞれ製造した。
As is clear from Table 7, even when a heavy metal removal agent for waste liquid treatment consisting of a mixture of wakame charcoal powder and shell agglomerated precipitant is used, hexavalent chromium can be removed at a removal rate of 98.0%. did it.
Similarly, synthetic zeolite, activated carbon powder, onion skin calcined powder (vegetable charcoal) and shell aggregation coagulant were mixed as adsorbents to produce heavy metal removal agents for waste liquid treatment.

更に実施例2の海藻炭、実施例3のワカメ炭、実施例4のワカメ炭と重量との関係、実施例5の撹拌時間との関係、実施例6のpHとの関係、実施例7の他の重金属との関係について、吸着剤と貝殻凝集沈殿剤とを混合した廃液処理用重金属除去剤(いわゆる、同時に添加)を用いた場合でも、吸着剤の添加後、貝殻凝集沈殿剤を添加する方法と比べて、遜色ない本発明の効果が得られた。  Further, seaweed charcoal of Example 2, Wakame charcoal of Example 3, wakame charcoal of Example 4 and weight, relationship with stirring time of Example 5, relationship with pH of Example 6, Regarding the relationship with other heavy metals, even when using a heavy metal removal agent for waste liquid treatment (so-called, simultaneous addition) mixed with an adsorbent and a shell aggregation precipitant, add a shell aggregation precipitation agent after the addition of the adsorbent. Compared with the method, the same effects of the present invention were obtained.

本発明の重金属含有廃液処理方法は、重金属、特に六価クロムの除去に著しい効果を有し、産業廃棄物に含まれる六価クロムの除去法として低コストで効率的に行うことができるので、産業上の有用性は極めて大きいといえる。Heavy metal-containing waste liquid treatment how the present invention, heavy metals, in particular has a significant effect on the removal of hexavalent chromium, it is possible to perform efficiently at low cost as a method for removing hexavalent chromium contained in industrial waste Therefore, it can be said that the industrial utility is extremely large.

Claims (4)

重金属を含む処理用廃液に緑藻綱、紅藻綱又は褐藻綱から選ばれた少なくとも1種である海藻焼成物からなる吸着剤及び200℃〜350℃で焼成された焼成貝殻粉末を含む貝殻凝集沈殿剤を順次又は同時に添加し撹拌することを特徴とする重金属含有廃液処理方法。Shell flocculation precipitation comprising an adsorbent comprising a seaweed calcined material selected from at least one selected from the group of green algae, red algae or brown algae, and a calcined shell powder calcined at 200 to 350 ° C. A method for treating a heavy metal-containing waste liquid, wherein the agents are added sequentially or simultaneously and stirred. 前記褐藻綱の海藻が、コンブ目チガイソ科又はコンブ目コンブ科であることを特徴とする請求項1に記載の重金属含有廃液処理方法。The heavy metal-containing waste liquid treatment method according to claim 1, wherein the seaweed of the brown alga is a family Cypridaceae or Cypridaceae. 前記コンブ目チガイソ科が、ワカメ、ヒロメ又はコンブ目コンブ科のカジメから選ばれた少なくとも1種であることを特徴とする請求項1又は請求項2に記載の重金属含有廃液処理方法。The method for treating a heavy metal-containing waste liquid according to claim 1 or 2, wherein the Chamidaceae is at least one selected from wakame, hirome, or kazime of the order of the Coleoptera. 前記海藻焼成物は、200℃〜350℃で焼成されたものであることを特徴とする請求項1乃至請求項3のいずれかに記載の重金属含有廃液処理方法。The heavy metal-containing waste liquid treatment method according to any one of claims 1 to 3, wherein the seaweed fired product is fired at 200 ° C to 350 ° C.
JP2011106698A 2011-04-20 2011-04-20 Waste liquid treatment method containing heavy metals Active JP5939513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106698A JP5939513B2 (en) 2011-04-20 2011-04-20 Waste liquid treatment method containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106698A JP5939513B2 (en) 2011-04-20 2011-04-20 Waste liquid treatment method containing heavy metals

Publications (2)

Publication Number Publication Date
JP2012223749A JP2012223749A (en) 2012-11-15
JP5939513B2 true JP5939513B2 (en) 2016-06-22

Family

ID=47274544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106698A Active JP5939513B2 (en) 2011-04-20 2011-04-20 Waste liquid treatment method containing heavy metals

Country Status (1)

Country Link
JP (1) JP5939513B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699349B1 (en) * 2015-08-13 2017-01-24 한국과학기술연구원 Absorbing medium using water-treatment sludge and method for fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362771B2 (en) * 2004-03-19 2009-11-11 釧石工業株式会社 Shell cleaning and grinding equipment
GB2451509B (en) * 2007-08-02 2012-03-14 Forestry Commission Charcoals
JP5154898B2 (en) * 2007-11-27 2013-02-27 株式会社HydroWorks Flocculant

Also Published As

Publication number Publication date
JP2012223749A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
CN103212364B (en) Ferro-manganese composite oxide as well as preparation method and application thereof in removing arsenic in water
Sheela et al. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles
CN103073166B (en) Method for simultaneously stabilizing heavy metals and deeply dewatering municipal sludge for municipal sludge
CN104941574B (en) A kind of inorganic ions modified zeolite composite and its application
CN107188361B (en) Slow-release vulcanizing agent, preparation method thereof and method for purifying heavy metal and arsenic in acidic solution by using slow-release vulcanizing agent
CN106076261B (en) A kind of adsorbent for heavy metal and preparation method and application
CN104261536B (en) For quickly removing the efficient flocculant of heavy metal in water
JP6473885B2 (en) Plating wastewater treatment process
CN102001734A (en) Heavy metal settling agent for treating mercury-containing wastewater
CN103241890A (en) Method for processing chromium-containing tanning wastewater by using magnetic coagulation method
CN106865713A (en) A kind of graphene-based water purifying flocculating agent and preparation method and application
CN104495960A (en) Sodium bentonite processing agent for blue-green algae and preparation method thereof
CZ304650B6 (en) Adsorbents for removing arsenic and selenium from water
CN113772778B (en) Treatment method of acidified soil and acidic wastewater polluted by heavy metal ions
JP5550459B2 (en) Recovery phosphorus and recovery method
CN104445453A (en) Blue algae treating agent containing alfalfa roots and preparation method thereof
CN106861604A (en) A kind of calcium carbonate magnetic adsorbent preparation method and applications
JP5939513B2 (en) Waste liquid treatment method containing heavy metals
Wang et al. Efficient Cd (II) removal from aqueous solution using mechanically activated CaCO3: removal pathway and mechanism
WO2015095269A1 (en) Methods for removing contaminants from aqueous systems
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
JP2002052383A (en) Method for removing and stabilizing liquid chromic ions and oxymetal ions
CN113351154A (en) Preparation method and application of MnZnFe-LDH material
WO2014129836A1 (en) Composition containing powder of byssal threads and shell of mussel for adsorbing pollutants
CN104667866B (en) A kind of iron/titanium-based biomass carbon composite, preparation method and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5939513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250