JP5939178B2 - Pile head coupling structure and pile head coupling method - Google Patents

Pile head coupling structure and pile head coupling method Download PDF

Info

Publication number
JP5939178B2
JP5939178B2 JP2013040700A JP2013040700A JP5939178B2 JP 5939178 B2 JP5939178 B2 JP 5939178B2 JP 2013040700 A JP2013040700 A JP 2013040700A JP 2013040700 A JP2013040700 A JP 2013040700A JP 5939178 B2 JP5939178 B2 JP 5939178B2
Authority
JP
Japan
Prior art keywords
pile head
coupling cylinder
pile
coupling
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013040700A
Other languages
Japanese (ja)
Other versions
JP2013217182A (en
Inventor
恩田 邦彦
邦彦 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013040700A priority Critical patent/JP5939178B2/en
Publication of JP2013217182A publication Critical patent/JP2013217182A/en
Application granted granted Critical
Publication of JP5939178B2 publication Critical patent/JP5939178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、杭頭部と基礎スラブとを結合する技術に関する。特に、高支持力タイプの鋼管杭と基礎スラブとの結合構造に好適な技術に関する。   The present invention relates to a technique for joining a pile head and a foundation slab. In particular, the present invention relates to a technique suitable for a connecting structure between a high bearing capacity type steel pipe pile and a foundation slab.

近年、回転杭、鋼管ソイルセメント杭など、高支持力タイプの鋼管杭の開発によって、杭1本あたりに作用する荷重(常時、地震時)が大きくなる傾向にある。それに伴って、杭と上部構造の結合部にも、大きな荷重が掛かることが予想される。
従来の杭頭結合構造としては、例えば図18に示すような、道路橋示方書に記載の杭頭結合構造(構造Aと呼ぶ。)がある。この構造Aは、複数の中詰め補強鉄筋を杭頭内から基礎スラグに向けて突出させ、この補強鉄筋で杭と基礎スラブとの間の引張力を受けるものである。しかし、この構造Aでは杭本体の強度に対して、十分な杭頭結合部の強度を得ることは難しく、杭頭結合部の強度不足により基礎構造全体が不安定となってしまう懸念がある。
In recent years, due to the development of high-bearing-type steel pipe piles such as rotating piles and steel pipe soil cement piles, the load acting on each pile (always during an earthquake) tends to increase. Along with this, it is expected that a large load is also applied to the joint between the pile and the superstructure.
As a conventional pile head coupling structure, for example, there is a pile head coupling structure (referred to as structure A) described in a road bridge specification as shown in FIG. In this structure A, a plurality of intermediately reinforced reinforcing bars protrude from the head of the pile toward the foundation slag, and a tensile force between the pile and the foundation slab is received by the reinforcing reinforcing bars. However, in this structure A, it is difficult to obtain a sufficient strength of the pile head coupling portion relative to the strength of the pile body, and there is a concern that the entire foundation structure becomes unstable due to insufficient strength of the pile head coupling portion.

また、上記構造Aを強化した杭頭結合構造として、図19に示すように、杭外周に鉄筋を現場溶接した構造がある。この杭頭結合構造では、鉄筋の増加によって杭上方が過密配筋となって、施工性や品質信頼性が低下する恐れがある。また、建設現場において鉄筋を鋼管杭に溶接する作業を行うことから、雨天時の作業や溶接技術水準の差異により、溶接部の強度や耐久性が損なわれる恐れがある。   Moreover, as a pile head coupling | bonding structure which strengthened the said structure A, as shown in FIG. 19, there exists a structure which carried out the field welding of the reinforcing bar to the pile outer periphery. In this pile head connection structure, an increase in the number of reinforcing bars may result in an overcrowded reinforcement, which may reduce workability and quality reliability. In addition, since the work of welding the reinforcing bar to the steel pipe pile is performed at the construction site, there is a risk that the strength and durability of the welded portion may be impaired due to work in the rain or a difference in welding technology level.

さらに特許文献1に記載の杭頭結合構造がある。この杭頭結合構造では、図20に示すように、鋼管杭の頭部の周囲に、定着筋が固定された円筒状の外鋼管を配置し、この外鋼管を介して杭頭と基礎スラブとを結合することが記載されている。このとき、上記外鋼管の下端部に対し、水平ダイアフラムと呼ばれる円環状の鋼板が同心且つ一体的に設けられている。   Furthermore, there is a pile head coupling structure described in Patent Document 1. In this pile head coupling structure, as shown in FIG. 20, a cylindrical outer steel pipe with anchoring bars fixed is arranged around the head of the steel pipe pile, and the pile head, the foundation slab, Are described. At this time, an annular steel plate called a horizontal diaphragm is provided concentrically and integrally with the lower end of the outer steel pipe.

特開2005−139731号公報JP 2005-139731 A

しかし、特許文献1に記載の杭頭結合構造では、円筒状の外鋼管、定着鉄筋溶接の他、荷重伝達のために水平ダイアフラムを配する必要があり、水平ダイアフラム付きの外鋼管の製作に手間が掛かる。
また、円筒状の外鋼管に対し内向きフランジ状に水平ダイアフラムを設ける必要があるため、杭中心と外鋼管中心がほぼ同心となるように配置する必要がある。このため、施工に手間が掛かる。また、平面視において、杭頭からの外径方向への外鋼管の張出し量が水平ダイアフラムによって規定される(図21参照)。このため、必要被り厚Bが、鋼管杭と外鋼管との隙間分だけ外側に配置されて、その分、基礎スラブが大型化する。
本発明は、上記のような点に着目してなされたもので、より結合の高強度化を図りつつ施工が容易な杭頭と基礎スラブとの結合技術を提供することを目的としている。
However, in the pile head coupling structure described in Patent Document 1, it is necessary to arrange a horizontal diaphragm for load transmission in addition to a cylindrical outer steel pipe and anchored reinforcing bar welding, and it is troublesome to produce an outer steel pipe with a horizontal diaphragm. It takes.
Moreover, since it is necessary to provide a horizontal diaphragm in the shape of an inward flange with respect to a cylindrical outer steel pipe, it is necessary to arrange | position so that a pile center and an outer steel pipe center may become substantially concentric. For this reason, construction takes time. Further, in a plan view, the amount of the outer steel pipe protruding from the pile head in the outer diameter direction is defined by the horizontal diaphragm (see FIG. 21). For this reason, the required covering thickness B is arrange | positioned outside by the clearance gap between a steel pipe pile and an outer steel pipe, and a foundation slab enlarges that much.
This invention is made paying attention to the above points, and it aims at providing the coupling | bonding technique of the pile head and foundation slab which are easy to construct, aiming at the strengthening of the coupling | bonding more.

上記課題を解決するために、本発明の一態様は、
(1)少なくとも杭頭が鋼管からなる杭と基礎スラブとを結合する杭頭結合構造において、
外形形状が軸を上下に向け且つ頂点を下側に配した錐台形状の鋼管からなる結合用筒体と、その結合用筒体に固定されて当該結合用筒体の上端位置よりも上方に延びる複数の杭頭定着鉄筋と、を備え、
上記結合用筒体の下側開口部内に上記杭の杭頭部が差し込まれた状態に配置されると共に、上記結合用筒体の上側開口部、及び上記杭頭定着鉄筋のうち結合用筒体の上端位置よりも上方に位置する鉄筋部分が、上記基礎スラブ内に埋設され
上記上方に延びる杭頭定着鉄筋は、上記錐台形状の結合用筒体の側面と同方向に延びるように配筋されていることを特徴とする。
In order to solve the above problems, one embodiment of the present invention provides:
(1) In a pile head coupling structure in which at least a pile head is composed of a steel pipe and a foundation slab,
The outer shape of the coupling cylinder made of a frustum-shaped steel pipe with the axis facing up and down and the apex on the lower side, and fixed to the coupling cylinder and above the upper end position of the coupling cylinder A plurality of pile head anchoring reinforcing bars,
It is arranged in a state where the pile head of the pile is inserted into the lower opening of the coupling cylinder, and the coupling cylinder among the upper opening of the coupling cylinder and the pile head fixing reinforcing bar Reinforcing bar part located above the upper end position of is embedded in the foundation slab ,
The pile head fixing rebar extending upward is arranged to extend in the same direction as the side surface of the frustum-shaped coupling cylinder .

次に、本発明の第2の一態様は、
(2)上記(1)に記載した構成に対し、上記結合用筒体と対向する杭頭外周面及び上記杭と対向する結合用筒体の内周面の少なくとも一方に対して、ずれ止め用の突起部を設けたことを特徴とする。
次に、本発明の第3の一態様は、
(3)上記(1)又は(2)に記載した構成に対し、上記結合用筒体の上下軸を、杭の軸若しくは杭の軸と平行な方向に対し傾けて配置することを特徴する。
Next, the second aspect of the present invention is as follows.
(2) For the configuration described in (1) above, for preventing slippage, at least one of the outer peripheral surface of the pile head facing the coupling cylinder and the inner circumferential surface of the coupling cylinder facing the pile. The protrusion is provided.
Next, the third aspect of the present invention is as follows.
(3) With respect to the configuration described in (1) or (2) above, the vertical axis of the coupling cylinder is inclined with respect to a direction parallel to the axis of the pile or the axis of the pile.

次に、本発明の第4の一態様は、
(4)上記(1)〜(3)いずれか1つに記載の結合用筒体に対して杭頭定着鉄筋を予め固定してから、その杭頭定着鉄筋を有する結合用筒体の下端開口部内に杭頭部を配置し、当該杭頭部と結合用筒体との間に充填材を打設することで杭の杭頭と結合用筒体とを結合することを特徴とする杭頭結合方法を提供するものである。
上記充填材は、コンクリート、ソイルセメント、モルタルなどである。
Next, a fourth aspect of the present invention is as follows.
(4) After fixing a pile head fixing reinforcing bar beforehand with respect to the coupling cylinder as described in any one of said (1)-(3), lower end opening of the coupling cylinder which has the pile head fixing reinforcement A pile head characterized in that a pile head is arranged in the section and the pile head and the coupling cylinder are coupled by placing a filler between the pile head and the coupling cylinder. A bonding method is provided.
Examples of the filler include concrete, soil cement, and mortar.

本発明によれば、結合用筒体の外形形状を上広がりの錐台形状にすることで、水平ダイアフラムを設けなくても引張強度を向上させることが出来る。水平ダイアフラムが不要となることで、杭頭に対する結合用筒体の配置自由度が向上する。
この結果、より結合を高強度化出来るにも関わらず、施工が容易な杭頭と基礎スラブとの結合技術を提供することが可能となる。また施工が容易な分、品質向上に繋がる。
According to the present invention, the tensile strength can be improved without providing a horizontal diaphragm by making the outer shape of the coupling cylinder into an upwardly expanding frustum shape. By eliminating the need for a horizontal diaphragm, the degree of freedom of arrangement of the coupling cylinder relative to the pile head is improved.
As a result, it is possible to provide a technique for joining the pile head and the foundation slab, which is easy to construct, although the strength of the joint can be increased. Moreover, it leads to quality improvement because it is easy to install.

本発明に基づく実施形態に係る杭頭結合構造を説明する図である。It is a figure explaining the pile head coupling | bonding structure which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る施工例を説明する図である。It is a figure explaining the construction example which concerns on embodiment based on this invention. 荷重伝達機構を説明する図である。It is a figure explaining a load transmission mechanism. 杭頭定着鉄筋に取付け角度αを付ける場合の例を示す図である。It is a figure which shows the example in the case of attaching attachment angle (alpha) to a pile head fixing reinforcement. 角度αと応力増分との関係を示す図である。It is a figure which shows the relationship between angle (alpha) and a stress increment. 結合用筒体と杭頭定着鉄筋との間の伝達力を示す模式図である。It is a schematic diagram which shows the transmission force between the cylinder for a coupling | bonding, and a pile head fixing reinforcement. 杭頭定着鉄筋を鉛直方向に配筋した場合における結合用筒体と杭頭定着鉄筋との間の伝達力を示す模式図である。It is a schematic diagram which shows the transmission force between the cylinder for a coupling | bonding and the pile head fixing reinforcement when a pile head fixing reinforcement is arranged in the vertical direction. 結合用筒体の軸を傾けた場合の例を説明する図である。It is a figure explaining the example at the time of inclining the axis | shaft of the cylinder for a coupling | bonding. 結合用筒体の軸を傾けた場合の例を説明する模式的平面図である。It is a typical top view explaining the example at the time of inclining the axis | shaft of the cylinder for a coupling | bonding. 結合用筒体の軸を傾けた場合の例の施工例を説明する図である。It is a figure explaining the construction example of the example at the time of inclining the axis | shaft of the cylinder for a coupling | bonding. 捨コンクリートを打設した例を説明する図である。It is a figure explaining the example which laid discard concrete. 鉄筋干渉部分の例を示す模式的平面図である。It is a typical top view which shows the example of a reinforcement interference part. 結合用筒体の軸を傾けた場合における一部の杭頭定着鉄筋に取付け角度αを付ける場合の例を示す図である。It is a figure which shows the example in the case of attaching attachment angle (alpha) to some pile head fixing rebars when the axis | shaft of the cylinder for a coupling | tilt is inclined. 杭頭定着鉄筋を折り曲げずに配筋の向きを変更する場合の図である。It is a figure in the case of changing the direction of reinforcement without bending a pile head fixation reinforcement. 実施例を説明する図である。It is a figure explaining an Example. 杭頭定着鉄筋を鉛直方向に配筋した場合の例を説明する図である。It is a figure explaining the example at the time of arranging a pile head fixation reinforcement in the perpendicular direction. 杭頭定着鉄筋を結合用筒体に沿って配筋した場合の例を説明する図である。It is a figure explaining the example at the time of arranging a pile head fixation reinforcement along the cylinder for connection. 従来例を説明する図である。It is a figure explaining a prior art example. 従来例を説明する図である。It is a figure explaining a prior art example. 従来例を説明する図である。It is a figure explaining a prior art example. 従来例の場合の必要被り厚Bを示す図である。It is a figure which shows the required covering thickness B in the case of a prior art example. 従来例の諸元を説明する図である。It is a figure explaining the item of a prior art example.

次に、本発明の実施形態について図面を参照しつつ説明する。
(杭頭結合構造)
図1は、本実施形態に係る杭頭結合構造を説明する図である。
本実施形態の杭頭結合構造は、地盤に打設された鋼管杭1の頭部1aに対し、その上方に位置する基礎スラブ2を結合するための結合構造である。
ここで、本実施形態の杭1の杭頭にはずれ止め用の突起3がされている。そのずれ止め用の突起3は、杭頭の外周面から側方(外径方向)に張り出すように形成されている。図1では、ずれ止め用の突起3として、杭頭1aに同心に配置された円環状の突起を例示している。
Next, embodiments of the present invention will be described with reference to the drawings.
(Pile head connection structure)
FIG. 1 is a diagram illustrating a pile head coupling structure according to the present embodiment.
The pile head coupling structure of the present embodiment is a coupling structure for coupling the foundation slab 2 located above the head 1a of the steel pipe pile 1 placed on the ground.
Here, a protrusion 3 for preventing slippage is formed on the pile head of the pile 1 of the present embodiment. The protrusion 3 for preventing the shift is formed so as to protrude laterally (outer diameter direction) from the outer peripheral surface of the pile head. In FIG. 1, an annular protrusion arranged concentrically on the pile head 1 a is illustrated as the protrusion 3 for preventing misalignment.

また、本実施形態を適用する杭1としては、回転杭、鋼管ソイルセメント杭、SC杭などの高支持力タイプの鋼管杭が例示出来る。
また、少なくとも杭1の頭部1aに鋼管を有する杭1であれば本発明を適用することが可能である。例えばセメント杭の上端部にキャップ状の鋼管を取り付けたような杭1であっても、本発明は適用可能である。すなわち、本発明の対象とする好適な杭基礎は鋼管杭1であるが、耐震場所打ち杭など杭1の上部(頭部)のみが鋼管を用いて形成される杭1(下部は鉄筋コンクリートのみで形成)に、本願発明を適用することも可能である。
Moreover, as the pile 1 to which this embodiment is applied, a high-bearing-force type steel pipe pile such as a rotating pile, a steel pipe soil cement pile, or an SC pile can be exemplified.
In addition, the present invention can be applied to the pile 1 having a steel pipe at least at the head 1a of the pile 1. For example, even if it is the pile 1 which attached the cap-shaped steel pipe to the upper end part of a cement pile, this invention is applicable. That is, the preferred pile foundation targeted by the present invention is the steel pipe pile 1, but the pile 1 in which only the upper part (head) of the pile 1 such as an earthquake-resistant cast-in-place pile is formed using a steel pipe (the lower part is only reinforced concrete). It is also possible to apply the present invention to (formation).

(杭頭結合構造の構成部品)
本実施形態の杭頭結合構造を構成する部品として、倒立した錐台形状の結合用筒体4と、2以上の杭頭定着鉄筋5と、を備える。
上記結合用筒体4は、その外形形状が、軸Lを上下に向け且つ頂点P側を下側にした、つまり底辺を上側にした錐台形状の鋼管からなる。なお、結合用筒体4の内周面形状は錐台形状となっていなくても良い。本実施形態の結合用筒体4は、上側に向かうほど径が大きくなる円錐台形状の鋼管で構成した場合を例に挙げて説明する。上記錐体の断面は、円形に限定されず、四角形などの他断面形状であっても採用することが出来る。
その結合用筒体4の下端開口部の内径は、下側から上記杭頭を挿入可能な径となっている。
(Component parts of pile head connection structure)
As parts constituting the pile head coupling structure of this embodiment, an inverted frustum-shaped coupling cylinder 4 and two or more pile head anchoring reinforcing bars 5 are provided.
The coupling cylinder 4 is formed of a frustum-shaped steel pipe whose outer shape is oriented with the axis L up and down and the apex P side down, that is, the bottom side is up. In addition, the inner peripheral surface shape of the coupling cylinder 4 may not be a frustum shape. The coupling cylinder 4 of the present embodiment will be described by taking as an example a case where the coupling cylinder 4 is configured by a truncated cone-shaped steel pipe whose diameter increases toward the upper side. The cross section of the cone is not limited to a circular shape, and may be employed even if it has another cross sectional shape such as a quadrangle.
The inner diameter of the lower end opening of the coupling cylinder 4 is such that the pile head can be inserted from below.

結合用筒体4の外周面の、上下軸Lに対する傾斜は、杭頭の径Dとし、結合用筒体4の下端面での外径を「1.05×D」とした場合、結合用筒体4の上端面での外径が「1.3×D」以上であることが好ましい。なお、結合用筒体4の軸L方向の寸法(高さ)は2.0×Dとして記載している。通常、高さは、1.5×D〜2.0×Dの範囲で設定されるものと考えられる。
また、結合用筒体4の外周面の、上下軸Lに対する傾斜角θは、45度未満が好ましい。45度以上となると、上下方向の引張力の伝達に対する寄与度が小さくなる。更に、充填材や杭頭定着鉄筋配筋の施工性を考慮すると、傾斜角θは10度以上が好適である。
The inclination of the outer peripheral surface of the coupling cylinder 4 with respect to the vertical axis L is the diameter D of the pile head, and the outer diameter at the lower end surface of the coupling cylinder 4 is “1.05 × D”. It is preferable that the outer diameter at the upper end surface of the cylindrical body 4 is “1.3 × D” or more. The dimension (height) in the axis L direction of the coupling cylinder 4 is described as 2.0 × D. Usually, the height is considered to be set in the range of 1.5 × D to 2.0 × D.
The inclination angle θ of the outer peripheral surface of the coupling cylinder 4 with respect to the vertical axis L is preferably less than 45 degrees. When it is 45 degrees or more, the contribution to the transmission of the tensile force in the vertical direction becomes small. Furthermore, in consideration of the workability of the filler and the pile head fixing reinforcing bar reinforcement, the inclination angle θ is preferably 10 degrees or more.

次に、杭頭定着鉄筋5について説明する。
杭頭定着鉄筋5は、通常の建築用の鉄筋を採用すればよい。杭頭定着鉄筋5の断面は、円形に限定されず、角形等でも構わない。
そして、複数の杭頭定着鉄筋5が、上記結合用筒体4の外周面に対して周方向に間隔を開けて配置され、各杭頭定着鉄筋5の下側部分は、当該結合用筒体4に溶接等によって固定される。その各杭頭定着鉄筋5は、結合用筒体4の外周面に沿って上方、且つ結合用筒体4のなす錘台形状角度(錘台側面の傾斜角)と同方向に延びるように配筋されている。このように、本実施形態の杭頭定着鉄筋は、結合用筒体4の外周面に沿って軸Lが配置されることで、上記錐体形状の頂点Pを中心にして、複数の杭頭定着鉄筋が斜め上方に放射状に延びた状態となる。なお、杭頭定着鉄筋5は、予め結合用筒体4に固定しても良いし、結合用筒体4を杭頭に取り付けた後に、当該結合用筒体4に対して杭頭定着鉄筋5を溶接その他で固定しても良い。杭頭定着鉄筋5に予め結合用筒体4に固定しておいた方が、現場施工が楽になる。また、杭頭定着鉄筋5は、結合用筒体4の内周面側に固定されても良い。
Next, the pile head fixing rebar 5 will be described.
The pile head fixing reinforcing bar 5 may be a normal building reinforcing bar. The cross section of the pile head fixing rebar 5 is not limited to a circle, and may be a square or the like.
A plurality of pile head fixing rebars 5 are arranged at intervals in the circumferential direction with respect to the outer peripheral surface of the coupling cylinder 4, and the lower portion of each pile head fixing rebar 5 is connected to the coupling cylinder. 4 is fixed by welding or the like. Each pile head fixing rebar 5 is arranged so as to extend along the outer peripheral surface of the coupling cylinder 4 and extend in the same direction as the frustum shape angle (inclination angle of the frustum side surface) formed by the coupling cylinder 4. It is streaked. As described above, the pile head fixing reinforcing bar of the present embodiment has a plurality of pile heads around the apex P of the cone shape by arranging the axis L along the outer peripheral surface of the coupling cylinder 4. The fixing rebar is in a state of extending radially upward obliquely. The pile head fixing rebar 5 may be fixed to the coupling cylinder 4 in advance, or after the coupling cylinder 4 is attached to the pile head, the pile head fixing rebar 5 is attached to the coupling cylinder 4. May be fixed by welding or the like. The site construction is easier when the pile head fixing rebar 5 is fixed to the coupling cylinder 4 in advance. Further, the pile head fixing rebar 5 may be fixed to the inner peripheral surface side of the coupling cylinder 4.

なお、複数の杭頭定着鉄筋5の一部が、結合用筒体4の上端面に対して鉛直方向上方に延びるように設定されていても良いが、好ましくは、全ての杭頭定着鉄筋5が、結合用筒体4のなす錘台形状角度(錘台側面の傾斜角)と同方向に延びるように配筋されていることが好ましい。   It should be noted that a part of the plurality of pile head fixing rebars 5 may be set to extend vertically upward with respect to the upper end surface of the coupling cylinder 4, but preferably all the pile head fixing rebars 5. However, it is preferable that the bars are arranged so as to extend in the same direction as the frustum shape angle (inclination angle of the frustum side surface) formed by the coupling cylinder 4.

(杭頭結合方法)
予め地盤に打設されて地盤に立設している杭1の頭部1aが、図2のように、上記結合用筒体4の下端開口部内に配置されるように、当該結合用筒体4を杭頭部1aに配置する。
なお、予め杭頭定着鉄筋5を上述のように結合用筒体4に溶接して固定してあるものとする。なお、杭頭定着鉄筋5の溶接は、現場でも良いし、工場で実施しても良い。
(Pile head connection method)
As shown in FIG. 2, the coupling cylinder so that the head 1 a of the pile 1 that is previously placed on the ground and is erected on the ground is disposed in the lower end opening of the coupling cylinder 4. 4 is placed on the pile head 1a.
It is assumed that the pile head fixing rebar 5 is previously welded and fixed to the coupling cylinder 4 as described above. In addition, the welding of the pile head fixing rebar 5 may be performed on-site or may be performed in a factory.

次に、基礎スラブ2用の型枠(不図示)を設置すると共に、型枠内に基礎スラブ2用の鉄筋や梁等を配筋する(図1参照)。このとき、結合用筒体4の上端面が基礎スラブ2内に完全に埋設出来る位置に、上記型枠を設置したり、結合用筒体4の上下位置を許容範囲で調整したりする。ここで、図1では、結合用筒体4の上部が現場打ちコンクリート8の下部に埋設している例を説明しているが、結合用筒体4の上端面が現場打ちコンクリート8の下面に当接した状態となっていても良い。結合用筒体4の上部が現場打ちコンクリート8の下部に埋設している場合の方が結合が強固となる。   Next, a formwork (not shown) for the foundation slab 2 is installed, and reinforcing bars and beams for the foundation slab 2 are arranged in the formwork (see FIG. 1). At this time, the mold is installed at a position where the upper end surface of the coupling cylinder 4 can be completely embedded in the basic slab 2 or the vertical position of the coupling cylinder 4 is adjusted within an allowable range. Here, FIG. 1 illustrates an example in which the upper part of the connecting cylinder 4 is embedded in the lower part of the in-situ concrete 8, but the upper end surface of the connecting cylinder 4 is on the lower surface of the in-situ concrete 8. It may be in a contact state. In the case where the upper part of the connecting cylinder 4 is embedded in the lower part of the cast-in-place concrete 8, the connection becomes stronger.

次に、結合用筒体4内及び上記型枠内に充填材として現場打ちコンクリート7,8を打設する。そして打ち込んだコンクリート7,8の養生が完了したら、型枠を撤去する。捨て型枠でも良い。
結合用筒体4内及び上記型枠内に打設する充填材は、モルタルやソイルセメントなどでも良い。また、先に結合用筒体4内にコンクリート7等を打設してから、上記型枠内にコンクリート8等を打設するようにしても良い。
Next, cast-in-place concrete 7 and 8 is placed as a filler in the coupling cylinder 4 and the mold. When the concrete 7 and 8 that have been driven are completely cured, the formwork is removed. Abandoned formwork may be used.
The filler to be placed in the coupling cylinder 4 and in the mold may be mortar or soil cement. Alternatively, the concrete 7 or the like may be placed in the coupling cylinder 4 first, and then the concrete 8 or the like may be placed in the mold.

(作用効果など)
円錐台形状の結合用筒体4と鋼管杭1の定着構造について、円錐台形状の結合用筒体4の内面と鋼管杭1の外周との間にコンクリートやモルタル、ソイルセメントなどの充填材を打設することで、これらの材料を介して、鋼管杭1の杭頭部1aに設けたずれ止め用突起3と錐台形状の結合用筒体4との間で荷重を伝達する。
(Effects etc.)
About the fixing structure of the frustum-shaped coupling cylinder 4 and the steel pipe pile 1, a filler such as concrete, mortar, or soil cement is provided between the inner surface of the frustum-shaped coupling cylinder 4 and the outer periphery of the steel pipe pile 1. By driving, the load is transmitted between the displacement preventing projection 3 provided on the pile head 1a of the steel pipe pile 1 and the frustum-shaped coupling cylinder 4 through these materials.

また、錐台形状の結合用筒体4と基礎スラブ2との間では、図3に示すように、結合用筒体4に固定した杭頭定着鉄筋5を基礎スラブ2のコンクリートに埋設することで、鉄筋と基礎スラブ2コンクリートとの付着力により荷重を伝達する。
ここで、結合用筒体4を倒立した錐体形状とすることで、上下方向の引張力の荷重伝達を結合用筒体4を通じて行うことが出来る。この結果、従来のような水平ダイアフラムが不要となる。すなわち、杭頭結合部の断面性能は、結合用筒体4の径の2乗に比例するため、結合用筒体4を倒立した錐体形状とすることで、杭頭に作用する曲げモーメントに対する抵抗力(強度)が増し、鋼管杭1の高強度化に伴う杭頭反力増大に対応した「杭頭結合構造」を得ることができる。
Further, between the frustum-shaped coupling cylinder 4 and the foundation slab 2, as shown in FIG. 3, pile head fixing reinforcing bars 5 fixed to the coupling cylinder 4 are embedded in the concrete of the foundation slab 2. Then, the load is transmitted by the adhesive force between the reinforcing bar and the foundation slab 2 concrete.
Here, by making the coupling cylinder 4 into an inverted cone shape, the load transmission of the tensile force in the vertical direction can be performed through the coupling cylinder 4. As a result, a conventional horizontal diaphragm becomes unnecessary. That is, since the cross-sectional performance of the pile head coupling portion is proportional to the square of the diameter of the coupling cylinder 4, the coupling cylinder 4 is formed into an inverted cone shape, so that the bending moment acting on the pile head is reduced. Resistance force (strength) increases and the "pile head coupling structure" corresponding to the pile head reaction force increase accompanying the increase in strength of the steel pipe pile 1 can be obtained.

なお、荷重伝達力を高めるため、図2に示すように、円錐台形状の結合用筒体4下端の内面にずれ止め用の突起11を設けても良い。
そして、上記杭頭結合構造では、次の効果を得ることが出来る。
上記倒立した錐体形状の鋼管からなる結合用筒体4を通じて、杭1と基礎スラブ2との間の荷重伝達を行う事で、対象とする鋼管杭1の高強度化に伴う杭頭反力増大に対応した荷重伝達が可能となる。
In order to increase the load transmission force, as shown in FIG. 2, a protrusion 11 for preventing slippage may be provided on the inner surface of the lower end of the truncated conical cylinder 4.
And in the said pile head coupling | bonding structure, the following effect can be acquired.
The pile head reaction force accompanying the increase in strength of the target steel pipe pile 1 by transmitting the load between the pile 1 and the foundation slab 2 through the coupling cylinder 4 made of an inverted cone-shaped steel pipe. Load transmission corresponding to the increase is possible.

また、結合用筒体4を倒立した錐体形状の鋼管とすることで、従来のような水平ダイアフラムを設けなくても、結合用筒体4で垂直荷重を十分に伝達可能となる。この結果、杭頭結合構造の施工が簡略して施工容易性が向上すると共に施工時間の短縮にも繋がる。また、荷重伝達のための水平ダイアフラムが不要となる分、製作コストを下げることにも繋がる。   Further, by making the coupling cylinder 4 an inverted cone-shaped steel pipe, the coupling cylinder 4 can sufficiently transmit a vertical load without providing a conventional horizontal diaphragm. As a result, the construction of the pile head coupling structure is simplified, the construction ease is improved, and the construction time is shortened. In addition, since the horizontal diaphragm for load transmission becomes unnecessary, the manufacturing cost is reduced.

結合用筒体4について、杭頭が挿入される下端部に比べて上端部の径が大きくなっている。このため、基礎スラブ2内に埋設される杭頭定着鉄筋5の鉄筋部分で考えた場合、従来のような円筒形状の外鋼管に対して同数の杭頭定着鉄筋5を固定した場合に比べて、杭頭定着鉄筋5間の間隔を大きくなる。すなわち、鉄筋の配筋径が大きくなる。このことにより杭頭結合部の断面性能(径の2乗に比例)が向上するため、杭頭に作用する曲げモーメントに対する抵抗力(強度)が増し、鋼管杭1の高強度化に伴う杭頭反力増大に対応した「杭頭結合構造」を得ることができる。   About the cylinder 4 for a coupling | bonding, the diameter of an upper end part is large compared with the lower end part in which a pile head is inserted. For this reason, when it considers in the reinforcement part of the pile head fixation reinforcement 5 embed | buried in the foundation slab 2, compared with the case where the same number of pile head fixation reinforcement 5 is fixed with respect to the cylindrical outer steel pipe like the past. The space between the pile head fixing reinforcing bars 5 is increased. That is, the reinforcing bar diameter is increased. As a result, the cross-sectional performance (proportional to the square of the diameter) of the pile head joint is improved, so that the resistance (strength) to the bending moment acting on the pile head increases, and the pile head accompanying the increase in strength of the steel pipe pile 1 A “pile head connection structure” corresponding to an increase in reaction force can be obtained.

さらに、杭頭定着鉄筋5は下から上に放射状に広がる形で並ぶため、鉄筋の間隔が上方ほど大きくなり、基礎スラブ2の配筋を容易となる。なお、結合用筒体4の上端から突出する杭頭定着鉄筋5の部分は鉛直方向に向けて突出していても良い。
また、杭頭定着鉄筋5間の間隔を大きくできることから、基礎スラブ2内に配筋される横方向に延びる鉄筋の配筋が容易となる。
ここで、従来のような円筒形状の外鋼管を使用して、本実施形態と同等の杭頭定着鉄筋5間の間隔を確保しようとすると、外鋼管の径その分大きく設計する必要があり、杭頭結合構造が占める部分が大きくなってしまう。
Further, since the pile head fixing reinforcing bars 5 are arranged in such a manner as to spread radially from the bottom to the top, the interval between the reinforcing bars increases toward the upper side, and the reinforcement of the foundation slab 2 is facilitated. In addition, the part of the pile head fixing reinforcement 5 which protrudes from the upper end of the cylinder 4 for a coupling | bonding may protrude toward the perpendicular direction.
Moreover, since the space | interval between pile head fixing reinforcing bars 5 can be enlarged, the reinforcing bar reinforcement of the horizontal direction arranged in the foundation slab 2 becomes easy.
Here, using a cylindrical outer steel pipe as in the prior art, when trying to ensure the spacing between the pile head anchoring reinforcing bars 5 equivalent to the present embodiment, it is necessary to design the outer steel pipe with a larger diameter accordingly, The portion occupied by the pile head connection structure will be large.

また、上述のように水平ダイアフラムが不要であるので、結合用筒体4の下端部の内径を、杭頭の外径に近い径に設定することも可能となり、その分、杭頭外周での杭頭結合構造が大型化することも抑えることが可能である。また、結合用筒体4の下端部を杭1と同心に配置する必要もない。
以上のように、本発明を適用することで、高強度で施工性、品質信頼性が高く、かつ基礎スラブ2形状がコンパクトとなる「杭頭結合構造」を得ることができる。
In addition, since a horizontal diaphragm is unnecessary as described above, it is possible to set the inner diameter of the lower end portion of the coupling cylinder 4 to a diameter close to the outer diameter of the pile head. It is also possible to suppress an increase in the pile head coupling structure. Moreover, it is not necessary to arrange the lower end part of the coupling cylinder 4 concentrically with the pile 1.
As described above, by applying the present invention, it is possible to obtain a “pile head connection structure” having high strength, high workability and high quality reliability, and a compact shape of the foundation slab 2.

(結合用筒体4の外周面に対する杭頭定着鉄筋5の取り付け角αについて)
ここで、上記説明では、各杭頭定着鉄筋5は、結合用筒体4の外周面に沿って上方、且つ結合用筒体4のなす錘台形状角度(錘台側面の傾斜角)と同方向に延びるように配筋する場合で説明している。
杭頭定着鉄筋5が、図1に示すように、結合用筒体4のなす錐台形状角度と同方向に延びるように配筋すれば、結合用筒体4に作用する荷重は引張り力のみである。その際の最大応力σmaxは下記式で表すことが出来る。
σmax=Tp/(π・Di・t・cosθ)
ここで、
Tp:杭に作用する引張り力
Di:結合用筒体の下側の径
t:結合用筒体の板厚
θ:結合用筒体のなす錐台形状角度
である。
(About the attachment angle α of the pile head fixing rebar 5 to the outer peripheral surface of the connecting cylinder 4)
Here, in the above description, each pile head fixing rebar 5 is the same as the frustum shape angle (tilt angle of the frustum side surface) formed along the outer peripheral surface of the coupling cylinder 4 and formed by the coupling cylinder 4. The case where the bars are arranged so as to extend in the direction is described.
As shown in FIG. 1, if the pile head fixing rebar 5 is arranged so as to extend in the same direction as the frustum shape angle formed by the coupling cylinder 4, the load acting on the coupling cylinder 4 is only the tensile force. It is. The maximum stress σmax at that time can be expressed by the following equation.
σmax = Tp / (π · Di · t · cosθ)
here,
Tp: Tensile force acting on the pile
Di: Lower diameter of coupling cylinder t: Plate thickness of coupling cylinder θ: Frustum shape angle formed by coupling cylinder.

一方、図4に示すように、杭頭定着鉄筋5を結合用筒体4の錐台面に対し取り付け角度αをもって結合した場合、取り付け角度αを大きくするほど、結合用筒体4に作用する荷重は前述の引張り力の他、曲げモーメントが発生する。これにより結合用筒体4に作用するトータルの応力が大きくなるため、例えば結合用筒体の4板厚を大きくするなどの必要が生じる。   On the other hand, as shown in FIG. 4, when the pile head fixing rebar 5 is coupled to the frustum surface of the coupling cylinder 4 with the mounting angle α, the load acting on the coupling cylinder 4 as the mounting angle α is increased. In addition to the tensile force described above, a bending moment is generated. As a result, the total stress acting on the coupling cylinder 4 is increased, and therefore, for example, it is necessary to increase the thickness of the four plates of the coupling cylinder.

図5に、上記取り付け角度αと作用曲げモーメントに起因する応力増加との関係を示す。図5から分かるように、取り付け角αが0°から15°以下までは応力増加のペースはそれほど変わらず、15°における応力増分も26%程度であるが、取り付け角度αが15°を越えると応力増加のペースがしだいに増加する傾向にある。
このように、結合用筒体4に作用するトータルの応力を少なくするためには、杭頭定着鉄筋5を極力、結合用筒体4のなす錐台形状角度と同方向に延びるように配筋することが好ましいが、鉄筋の取り付け精度のバラツキや、放射状に広がる鉄筋同士の干渉を避けるため、杭頭定着鉄筋5と結合用筒体4の錐台面とのなす取り付け角度αが生じる場合は、±15°程度以内に収めることが望ましい。
FIG. 5 shows the relationship between the mounting angle α and the stress increase caused by the acting bending moment. As can be seen from FIG. 5, when the mounting angle α is 0 ° to 15 ° or less, the pace of stress increase does not change much, and the stress increment at 15 ° is about 26%, but when the mounting angle α exceeds 15 °, The pace of stress increase tends to increase gradually.
Thus, in order to reduce the total stress acting on the coupling cylinder 4, the bar head fixing rebar 5 is arranged as much as possible so as to extend in the same direction as the frustum shape angle formed by the coupling cylinder 4. However, in order to avoid variations in rebar mounting accuracy and interference between rebars that spread radially, when an attachment angle α formed between the pile head fixing rebar 5 and the frustum surface of the coupling cylinder 4 occurs, It is desirable to be within ± 15 °.

ここで、図6に示すように、杭頭定着鉄筋5を結合用筒体4のなす錐台形状角度と同方向に延びるように配筋する場合と、図7に示すように、杭頭定着鉄筋5を結合用筒体4の上端部から鉛直上方に向けて延びるように配筋させた場合について比較する。
図6に示すように、杭頭定着鉄筋5を結合用筒体4のなす錐台形状角度と同方向に延びるように配筋する場合には、上述のように結合用筒体に作用する荷重は引張り力のみである。その際の最大応力σmaxは上述のように「Tp/(π・Di・t・cosθ)」となる。
Here, as shown in FIG. 6, the pile head fixing rebar 5 is arranged to extend in the same direction as the frustum shape angle formed by the connecting cylinder 4, and as shown in FIG. 7, the pile head fixing The case where the reinforcing bars 5 are arranged so as to extend vertically upward from the upper end portion of the coupling cylinder 4 will be compared.
As shown in FIG. 6, when the pile head fixing rebar 5 is arranged to extend in the same direction as the frustum shape angle formed by the coupling cylinder 4, the load acting on the coupling cylinder as described above. Is the tensile force only. The maximum stress σmax at that time is “Tp / (π · Di · t · cos θ)” as described above.

一方、図7に示すように、杭頭定着鉄筋5を折り曲げて鉛直上方に配筋した場合には、結合用筒体の錐台面に対し大きな取付け角度を有することから、結合用筒体に作用する荷重は引張り力の他、所要以上の曲げモーメントが発生する。これにより結合用筒体に作用するトータルの応力が大きくなるため、本発明構造に比べて結合用筒体の板厚を大きくする必要がある。また、図7のような杭頭結合構造では、杭頭定着鉄筋5の固定のためには予め定着筋を結合用筒体4の上端部において大きく折り曲げておく必要があるため、加工コストが上昇するとともに、塑性加工による伸び性能の低下による早期破壊が懸念される。一方、杭頭定着鉄筋5を結合用筒体4のなす錐台形状角度と同方向に延びるように配筋する場合には、このような懸念はない。
このような観点から、複数の杭頭定着鉄筋5の全部を結合用筒体4の上端部において大きく折り曲げて鉛直上方に配筋することは好ましくないが、複数の杭頭定着鉄筋5の一部だけを、他の鉄筋のとの干渉を避けるために鉛直上方に配筋することは適宜実施しても良い。
On the other hand, as shown in FIG. 7, when the pile head fixing reinforcing bar 5 is bent and arranged vertically upward, it has a large attachment angle with respect to the frustum surface of the coupling cylinder, and thus acts on the coupling cylinder. In addition to the tensile force, the load to be generated generates an excessive bending moment. As a result, the total stress acting on the coupling cylinder increases, so that it is necessary to increase the plate thickness of the coupling cylinder as compared with the structure of the present invention. Further, in the pile head coupling structure as shown in FIG. 7, in order to fix the pile head fixing rebar 5, the fixing bar needs to be largely bent in advance at the upper end portion of the coupling cylinder 4, which increases the processing cost. At the same time, there is a concern about early failure due to a decrease in elongation performance due to plastic working. On the other hand, there is no such concern when arranging the pile head fixing reinforcing bars 5 so as to extend in the same direction as the frustum shape angle formed by the coupling cylinder 4.
From this point of view, it is not preferable to arrange all the plurality of pile head fixing rebars 5 at the upper end portion of the coupling cylinder 4 so as to be arranged vertically upward. In order to avoid interference with other reinforcing bars, it may be appropriately arranged to arrange the bars vertically upward.

(変形例)
ここで、結合用筒体4の軸Lを、杭1と同軸Lとなるように配置する必要もない。例えば基礎スラブ2の配筋との干渉を避けるように、適宜、結合用筒体4の上下軸Lを鉛直方向から、若しくは杭1の軸L若しくは軸Lと平行な方向に対し傾けるようにしても良い。ここに、杭1の軸Lが鉛直方向の場合には、その鉛直方向が基準となるが、杭1の軸Lが傾いている場合には、その杭1の軸Lを基準として、結合用筒体4の軸Lを設定する。
(Modification)
Here, it is not necessary to arrange the axis L of the coupling cylinder 4 so as to be coaxial with the pile 1. For example, in order to avoid interference with the reinforcement of the foundation slab 2, the vertical axis L of the coupling cylinder 4 is appropriately tilted from the vertical direction or the axis L of the pile 1 or a direction parallel to the axis L. Also good. Here, when the axis L of the pile 1 is in the vertical direction, the vertical direction is the reference. However, when the axis L of the pile 1 is tilted, the axis L for the pile 1 is used as a reference. The axis L of the cylinder 4 is set.

また結合用筒体4及び杭頭定着鉄筋5を基準に、基礎スラブ2の外周面側に、予め設定した必要被り厚Bを確保する必要がある。このとき、基礎スラブ2の外周面に近い結合用筒体4を杭1と同軸Lに配置した場合、その杭1の位置から基礎スラブ2の外周面(スラブ2縁端)までの寸法が大きくなる。
このとき、図8に示すように、結合用筒体4の上下軸Lを、鉛直方向Hから、一番近いスラブ2縁端から離れる方向に向けて傾けることで、平面視で、杭頭近傍位置からの被り厚を小さくすることが可能となる。すなわち、一番近いスラブ2縁端に近い結合用筒体4の外面が鉛直方向(スラブ2縁端と平行となる方向)に近付くように結合用筒体4の上下軸Lを設定するほど、杭頭近傍位置からの被り厚を小さく設定することが出来る。
Moreover, it is necessary to ensure the required covering thickness B set beforehand on the outer peripheral surface side of the foundation slab 2 on the basis of the coupling cylinder 4 and the pile head fixing rebar 5. At this time, when the coupling cylinder 4 close to the outer circumferential surface of the foundation slab 2 is arranged coaxially with the pile 1, the dimension from the position of the pile 1 to the outer circumferential surface (slab 2 edge) of the foundation slab 2 is large. Become.
At this time, as shown in FIG. 8, by tilting the vertical axis L of the coupling cylinder 4 from the vertical direction H toward the direction away from the edge of the nearest slab 2, in the plan view, in the vicinity of the pile head The cover thickness from the position can be reduced. That is, as the vertical axis L of the coupling cylinder 4 is set so that the outer surface of the coupling cylinder 4 near the edge of the nearest slab 2 approaches the vertical direction (direction parallel to the edge of the slab 2), The covering thickness from the position near the pile head can be set small.

図9は、各結合用筒体4の上下軸Lを、一番近いスラブ2縁端から離れる方向に傾けた場合の例を示す模式的平面図である。なお、基礎スラブ2の角部に配置される杭1を結合する結合用筒体4の上下軸Lは、2つのスラブ2縁端から離れる方向に傾けている。
このようにすることで、結合用筒体4の基礎スラブ2縁端方向への張出しを緩和し、基礎スラブ2の形状を、その分、コンパクトに設計することが可能となる。
この場合の、結合用筒体4の配置及び基礎スラブ2との関係を、図10に図示する。
なお、円錐台形状の結合用筒体4を傾けた際の定位置を安定化させるために、図11に示すように、結合用筒体4周辺に捨コンなどを打設してもよい。
また、錐台形状の結合用筒体4を、基礎スラブ2コンクリート打設時の型枠として利用してもよい。
FIG. 9 is a schematic plan view showing an example in which the vertical axis L of each coupling cylinder 4 is inclined in a direction away from the nearest edge of the slab 2. In addition, the vertical axis L of the coupling cylinder 4 that couples the piles 1 arranged at the corners of the foundation slab 2 is inclined in a direction away from the two slab 2 edges.
By doing in this way, the overhang | projection to the basic | foundation slab 2 edge direction of the cylinder 4 for coupling | bonding is relieve | moderated, and it becomes possible to design the shape of the basic | foundation slab 2 compactly by that much.
FIG. 10 illustrates the arrangement of the coupling cylinder 4 and the relationship with the basic slab 2 in this case.
In addition, in order to stabilize the fixed position when the frustoconical coupling cylinder 4 is tilted, as shown in FIG.
Moreover, you may utilize the cylinder 4 for a connection of frustum shape as a formwork at the time of concrete slab 2 concrete placement.

また、円錐台形状の結合用筒体4の製造について、平板からスパイラル製法で製作してもよいし、板曲げ加工、鋳造、鍛造で製作してもよい。
ここで、図8に示すような、結合用筒体4の上下軸Lの上方側を、鉛直方向Hから、一番近いスラブ2縁端から離れる方向に向けて傾ける構造では、隣接する杭間隔が小さい場合や杭頭定着鉄筋長が長い場合において、隣り合う鉄筋同士が干渉して施工が困難になる恐れがある。図12は上記の事例を示す模式的平面図である。図12中の一点鎖線が杭頭定着鉄筋の先端位置を示しており、これらが重なり合っている部分が鉄筋干渉部分となる。
Moreover, about manufacture of the cylinder 4 for a truncated cone shape, you may manufacture by a spiral manufacturing method from a flat plate, You may manufacture by plate bending process, casting, and forging.
Here, in the structure in which the upper side of the vertical axis L of the coupling cylinder 4 as shown in FIG. 8 is inclined from the vertical direction H toward the direction away from the edge of the nearest slab 2, the interval between adjacent piles When the length of the reinforcing bar is small or the length of the reinforcing bar at the head of the pile is long, adjacent reinforcing bars may interfere with each other and the construction may be difficult. FIG. 12 is a schematic plan view showing the above case. The dashed-dotted line in FIG. 12 has shown the front-end | tip position of a pile head fixed reinforcement, and the part which these overlapped becomes a reinforcement interference part.

上記鉄筋干渉部分を解消するために、鉄筋干渉部分に位置する少なくとも一部の杭頭定着鉄筋5については、図13に示すとおり、結合用筒体4の錐台面に対し角度を有するように取り付けることが考えられる。その場合は前述のとおり曲げモーメントが発生し、結合用筒体4に作用するトータルの応力が大きくなるが、これを防止するため、図14に示すように、杭頭定着鉄筋5の結合用筒体4への取り付け部分には角度をつけず、その先方で次第に曲率を付け、方向を変える構造を採用してもよい。すなわち、杭頭定着鉄筋5に急峻な折曲げ部を形成することなく、湾曲させるようにしても良い。   In order to eliminate the reinforcing bar interference part, at least a part of the pile head fixing reinforcing bar 5 located in the reinforcing bar interference part is attached so as to have an angle with respect to the frustum surface of the coupling cylinder 4 as shown in FIG. It is possible. In this case, as described above, a bending moment is generated, and the total stress acting on the coupling cylinder 4 is increased. To prevent this, as shown in FIG. You may employ | adopt the structure which attaches a curvature gradually in the other side, and changes a direction, without attaching an angle to the attachment part to the body 4. FIG. That is, the pile head fixing rebar 5 may be curved without forming a sharp bent portion.

図22に示す、上述の道路橋示方書に記載の杭頭結合構造Aの構造例に対し、本実施形態に基づき、同等の強度を有する構造を設計すると、図15に記載する構造となる。
この図15に記載する構造の場合、構造Aに比べて鉄筋量を約45%程度まで削減できるとともに、隣り合う鉄筋間隔を4倍程度まで広げることができる。このように、本実施形態に基づく杭頭結合構造は、道路橋示方書に記載の杭頭結合構造Aに対し、コスト性、施工性に優れた構造となる。
なお、鋼管杭1の頭部1aには荷重伝達のため、ずれ止め用の突起3を設けている。
If the structure which has equivalent intensity | strength is designed based on this embodiment with respect to the structural example of the pile head coupling | bonding structure A as described in the above-mentioned road bridge specification shown in FIG. 22, it will become the structure shown in FIG.
In the case of the structure shown in FIG. 15, the amount of reinforcing bars can be reduced to about 45% compared to structure A, and the interval between adjacent reinforcing bars can be increased to about four times. Thus, the pile head connection structure based on this embodiment turns into a structure excellent in cost efficiency and workability with respect to the pile head connection structure A as described in a road bridge specification.
In addition, the head 3a of the steel pipe pile 1 is provided with a protrusion 3 for preventing slippage for load transmission.

図16に示すような、杭頭定着鉄筋5の全てを曲げて鉛直上方に配筋した場合の杭頭結合構造の構造例と同等の強度を有する構造を設計すると、図17に記載する構造となる。
図16に示す構造の場合、引張り力および曲げモーメントにより結合用筒体に作用する最大応力は、Changらの解法(「An Asymptotic solution of Conical Shells of Constant Thickness」, AIAA, Vol.5, No.11, pp.2028-2033.)によると、θ=30°で、およそσM=0.6σNであるため、σmax=σM+σN=1.6×σN=1.6×Tp/(π・Di・t・cosθ)となる(ここに、σM:曲げモーメントによる応力、σN:引張り力による応力、Tp:杭に作用する引張り力、Di:結合用筒体の下側の径、t:結合用筒体の板厚、θ:結合用筒体のなす錐台形状角度)。本式より結合用筒体の必要板厚tを計算すると19mmとなる。
As shown in FIG. 16, when a structure having the same strength as the structure example of the pile head coupling structure when all the pile head fixing reinforcing bars 5 are bent and vertically arranged is arranged, the structure shown in FIG. Become.
In the case of the structure shown in FIG. 16, the maximum stress acting on the connecting cylinder by the tensile force and the bending moment is determined by Chang et al. (“An Asymptotic solution of Conical Shells of Constant Thickness”, AIAA, Vol. 5, No. 5). 11, pp. 2028-2033.) Since θ = 30 ° and approximately σ M = 0.6σ N , σmax = σ M + σ N = 1.6 × σ N = 1.6 × Tp / (π · Di · (where σ M is the stress due to the bending moment, σ N is the stress due to the tensile force, Tp is the tensile force acting on the pile, Di is the lower diameter of the coupling cylinder, and t is the bond. Plate thickness of the cylinder, θ: frustum-shaped angle formed by the coupling cylinder). From this equation, the required thickness t of the connecting cylinder is calculated to be 19 mm.

一方、図17に示す本実施形態の場合、最大応力度は、σmax=σN=Tp/(π・Di・t・cosθ)より、結合用筒体の必要板厚tを計算すると12mmとなり、図16に示す構造に比べて37%の板厚低減となる。このように、杭頭定着鉄筋5を鉛直上方に配筋する場合よりも、結合用筒体4のなす錐台形状角度と同方向に延びるように配筋することが好ましいことが分かる。 On the other hand, in the case of the present embodiment shown in FIG. 17, the maximum stress degree is 12 mm when the required plate thickness t of the coupling cylinder is calculated from σmax = σ N = Tp / (π · Di · t · cos θ), Compared to the structure shown in FIG. 16, the plate thickness is reduced by 37%. Thus, it can be seen that it is preferable to arrange the pile head anchoring reinforcing bars 5 so as to extend in the same direction as the frustum shape angle formed by the coupling cylinder 4 rather than arranging the pile head fixing reinforcing bars 5 vertically upward.

1 杭
2 基礎スラブ
3 突起
4 結合用筒体
5 杭頭定着鉄筋
7,8 コンクリート
L 上下軸
P 頂点
θ 傾斜角
DESCRIPTION OF SYMBOLS 1 Pile 2 Foundation slab 3 Protrusion 4 Coupling cylinder 5 Pile head anchoring reinforcement 7, 8 Concrete L Vertical axis P Vertex θ Inclination angle

Claims (4)

少なくとも杭頭が鋼管からなる杭と基礎スラブとを結合する杭頭結合構造において、
外形形状が軸を上下に向け且つ頂点を下側に配した錐台形状の鋼管からなる結合用筒体と、その結合用筒体に固定されて当該結合用筒体の上端位置よりも上方に延びる複数の杭頭定着鉄筋と、を備え、
上記結合用筒体の下側開口部内に上記杭の杭頭部が差し込まれた状態に配置されると共に、上記結合用筒体の上側開口部、及び上記杭頭定着鉄筋のうち結合用筒体の上端位置よりも上方に位置する鉄筋部分が、上記基礎スラブ内に埋設され
上記上方に延びる杭頭定着鉄筋は、上記錐台形状の結合用筒体の側面と同方向に延びるように配筋されていることを特徴とする杭頭結合構造。
In the pile head connection structure where the pile head and the foundation slab are combined at least with the pile head,
The outer shape of the coupling cylinder made of a frustum-shaped steel pipe with the axis facing up and down and the apex on the lower side, and fixed to the coupling cylinder and above the upper end position of the coupling cylinder A plurality of pile head anchoring reinforcing bars,
It is arranged in a state where the pile head of the pile is inserted into the lower opening of the coupling cylinder, and the coupling cylinder among the upper opening of the coupling cylinder and the pile head fixing reinforcing bar Reinforcing bar part located above the upper end position of is embedded in the foundation slab ,
The pile head fixing structure, wherein the pile head fixing rebar extending upward is arranged to extend in the same direction as a side surface of the frustum-shaped coupling cylinder .
上記結合用筒体と対向する杭頭外周面及び上記杭と対向する結合用筒体の内周面の少なくとも一方に対して、ずれ止め用の突起部を設けたことを特徴とする請求項1に記載した杭頭結合構造。   2. A protrusion for preventing displacement is provided on at least one of an outer peripheral surface of the pile head facing the coupling cylinder and an inner peripheral surface of the coupling cylinder facing the pile. The pile head connection structure described in 1. 上記結合用筒体の上下軸を、杭の軸若しくは杭の軸と平行な方向に対し傾けて配置することを特徴する請求項1又は請求項2に記載した杭頭結合構造。   The pile head coupling structure according to claim 1 or 2, wherein the vertical axis of the coupling cylinder is inclined with respect to a direction parallel to the pile axis or the pile axis. 請求項1〜請求項3のいずれか1項に記載の結合用筒体に対して杭頭定着鉄筋を予め固定してから、その杭頭定着鉄筋を有する結合用筒体の下端開口部内に杭頭部を配置し、当該杭頭部と結合用筒体との間に充填材を打設することで杭の杭頭と結合用筒体とを結合することを特徴とする杭頭結合方法。   A pile head anchoring reinforcing bar is fixed in advance to the coupling cylinder according to any one of claims 1 to 3, and then piled in a lower end opening of the coupling cylinder having the pile head anchoring reinforcing bar. A pile head coupling method, wherein a head is arranged and a pile head is coupled with a coupling cylinder by placing a filler between the pile head and the coupling cylinder.
JP2013040700A 2012-03-13 2013-03-01 Pile head coupling structure and pile head coupling method Active JP5939178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040700A JP5939178B2 (en) 2012-03-13 2013-03-01 Pile head coupling structure and pile head coupling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012056321 2012-03-13
JP2012056321 2012-03-13
JP2013040700A JP5939178B2 (en) 2012-03-13 2013-03-01 Pile head coupling structure and pile head coupling method

Publications (2)

Publication Number Publication Date
JP2013217182A JP2013217182A (en) 2013-10-24
JP5939178B2 true JP5939178B2 (en) 2016-06-22

Family

ID=49589597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040700A Active JP5939178B2 (en) 2012-03-13 2013-03-01 Pile head coupling structure and pile head coupling method

Country Status (1)

Country Link
JP (1) JP5939178B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702128B2 (en) * 2016-10-14 2020-05-27 日本製鉄株式会社 Foundation structure, pile head structure of steel pipe pile, and construction method of foundation structure
JP7095839B2 (en) * 2018-11-06 2022-07-05 株式会社竹中工務店 Slab support structure and slab construction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851243Y2 (en) * 1978-06-13 1983-11-22 住友金属工業株式会社 Steel pipe column end fixing device
JPS59160645U (en) * 1983-04-11 1984-10-27 新日本製鐵株式会社 Prefabricated pile head hardware
JPS61173554U (en) * 1985-04-15 1986-10-28
JP4452066B2 (en) * 2003-11-21 2010-04-21 住友金属工業株式会社 Pile head joint structure
JP4518930B2 (en) * 2004-12-09 2010-08-04 清水建設株式会社 Pile head joint structure and construction method

Also Published As

Publication number Publication date
JP2013217182A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP6702128B2 (en) Foundation structure, pile head structure of steel pipe pile, and construction method of foundation structure
JP5939178B2 (en) Pile head coupling structure and pile head coupling method
JP2003232033A (en) Foundation pile structure
JP4912580B2 (en) Pile head joint structure and construction method
JP7304248B2 (en) Pile head connection structure and construction method of pile head connection structure
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP5251760B2 (en) Pile head connection structure and its construction method
JP6703816B2 (en) Footing foundation structure
JP5456627B2 (en) Connection structure and method of connection between pile and steel column
JP2011058230A (en) Concrete pile with outer shell steel pipe, and pile head joint structure for the same
JP4430496B2 (en) Pile head joint structure and construction method
JP5207108B2 (en) Structure and method for joining pier and footing
JP2013189797A (en) Sc pile
JP3389162B2 (en) Pile head structure of steel pipe pile
JP4634829B2 (en) Base structure of base-isolated building
KR200455415Y1 (en) Head reinforcement assembly of concrete pile for foundation work
JP6130991B2 (en) Foundation structure
JP5381559B2 (en) Pile head connection structure and its construction method
JP2006037539A (en) Column-pile joining structure
JP2007303196A (en) Aseismatic reinforcing structure and aseismatic reinforcing method for existing pile
JP7200042B2 (en) pile foundation structure
JP5327615B2 (en) Joint structure of column and flat slab
JP2005171480A (en) Joint structure of pile head part and method of constructing pile body
JP2005105812A (en) Pile head reinforcing member, and pile head reinforcing structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5939178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250