JP5937867B2 - Ferritic stainless steel with excellent corrosion resistance of welds - Google Patents

Ferritic stainless steel with excellent corrosion resistance of welds Download PDF

Info

Publication number
JP5937867B2
JP5937867B2 JP2012076828A JP2012076828A JP5937867B2 JP 5937867 B2 JP5937867 B2 JP 5937867B2 JP 2012076828 A JP2012076828 A JP 2012076828A JP 2012076828 A JP2012076828 A JP 2012076828A JP 5937867 B2 JP5937867 B2 JP 5937867B2
Authority
JP
Japan
Prior art keywords
corrosion
corrosion resistance
stainless steel
less
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076828A
Other languages
Japanese (ja)
Other versions
JP2013204128A (en
Inventor
透 松橋
透 松橋
佑一 田村
佑一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2012076828A priority Critical patent/JP5937867B2/en
Publication of JP2013204128A publication Critical patent/JP2013204128A/en
Application granted granted Critical
Publication of JP5937867B2 publication Critical patent/JP5937867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接部の耐食性に優れるフェライト系ステンレス鋼に関する。   The present invention relates to a ferritic stainless steel having excellent corrosion resistance of a welded portion.

フェライト系ステンレス鋼は一般に耐食性に優れるだけでなく、オーステナイト系ステンレス鋼に比較して熱膨張係数が小さいことや、耐応力腐食割れ性に優れる等の特徴を有する。その特性から一般厨房機器だけでなく、屋根用材料や、貯水及び貯湯缶体などに広く用いられている。   Ferritic stainless steel generally has not only excellent corrosion resistance, but also has features such as a smaller thermal expansion coefficient and superior stress corrosion cracking resistance than austenitic stainless steel. Because of its characteristics, it is widely used not only for general kitchen equipment, but also for roofing materials, water storage and hot water storage cans.

このようなステンレス鋼を構造体として使用する場合、溶接施工は不可欠なものである。SUS430のような汎用フェライト系ステンレス鋼はそのC,N固溶限が小さいことから溶接部で鋭敏化を生じ、耐食性が低下する問題があった。この問題を解決するために、C,N量の低減やTiやNbなどの安定化元素の添加によるC,Nの固定等により、溶接金属部の鋭敏化を抑制した高純度フェライト鋼が開発され、広く実用化されている。   When such stainless steel is used as a structure, welding is indispensable. A general-purpose ferritic stainless steel such as SUS430 has a problem that the C and N solid solubility limit is small, so that the welded portion is sensitized and the corrosion resistance is lowered. In order to solve this problem, high-purity ferritic steel has been developed that suppresses the sensitization of the weld metal by reducing the amount of C and N and fixing C and N by adding stabilizing elements such as Ti and Nb. Has been widely used.

また、高純度フェライト鋼においても、溶接の入熱で生じたスケール部は耐食性が劣化することが知られている。一般的なステンレス鋼の溶接方法として用いられているTIG溶接では、入熱が大きいためにその傾向が大きい。この防止対策として、溶接時にAr等の不活性ガスを用いたシールドを十分に実施することで溶接スケールの生成を抑制することが重要であることが、非特許文献1等に示されている。   Also, in high purity ferritic steel, it is known that the corrosion resistance of the scale portion generated by the heat input of welding deteriorates. In TIG welding used as a general stainless steel welding method, the tendency is large due to large heat input. As a preventive measure, Non-Patent Document 1 and the like indicate that it is important to sufficiently suppress the generation of a welding scale by sufficiently performing a shield using an inert gas such as Ar during welding.

特許文献1には、Arガスシールドした場合にも発生する溶接熱影響部の耐食性を改善するため、溶接時の鋼の表層部にAlとTiの酸化物皮膜を形成させる方法として、式P1=5Ti+20(Al−0.01)≧1.5(式中のTi,Alは鋼中のそれぞれの含有量を示す)を満たすようにTiとAlを添加する技術が開示されている。   In Patent Document 1, in order to improve the corrosion resistance of the weld heat-affected zone that occurs even when Ar gas shielding is performed, as a method of forming an oxide film of Al and Ti on the surface layer of steel during welding, the formula P1 = A technique is disclosed in which Ti and Al are added so as to satisfy 5Ti + 20 (Al-0.01) ≧ 1.5 (Ti and Al in the formula indicate respective contents in steel).

特許文献2には、AlとTiとの複合添加に加え、Siを一定量以上添加することで、溶接部の耐すきま腐食性を向上させる技術が開示されている。   Patent Document 2 discloses a technique for improving the crevice corrosion resistance of a welded part by adding a certain amount or more of Si in addition to the combined addition of Al and Ti.

一方、特許文献3には、4Al+Ti≦0.32(式中のTi,Alは鋼中のそれぞれの含有量を示す)を満足することで、溶接時の入熱を低減させて溶接部のスケール生成を抑制し、溶接部の耐食性を向上させる技術が開示されている。   On the other hand, in Patent Document 3, 4Al + Ti ≦ 0.32 (Ti and Al in the formulas indicate respective contents in the steel) is satisfied, thereby reducing the heat input during welding and the scale of the welded portion. A technique for suppressing generation and improving corrosion resistance of a welded portion is disclosed.

前述の従来技術は、いずれもArガスシールドを実施した技術であるが、特許文献1,2ではAl,TiやSiを積極的に添加させることで溶接近傍部の酸化皮膜を制御するという技術であり、また特許文献3では逆にAl,Tiを抑制することで、溶接金属部の溶け込み性を改善し、溶接時の入熱を低減することを特徴としているが、いずれも溶接時のArガスシールドを必須とした技術であり、その省略については言及されていない。また溶接部や溶接熱影響部の耐食性を改善させることを目的としたもので溶接金属部の強度や構造にまで言及した技術ではない。   The above-mentioned conventional techniques are all techniques in which Ar gas shielding is performed, but Patent Documents 1 and 2 are techniques that control the oxide film in the vicinity of the weld by positively adding Al, Ti, or Si. In addition, Patent Document 3 is characterized in that, by conversely suppressing Al and Ti, the weldability of the weld metal part is improved and the heat input during welding is reduced, both of which are Ar gas during welding. It is a technology that requires shielding, and there is no mention of its omission. Moreover, it aims at improving the corrosion resistance of a welding part and a welding heat affected zone, and is not the technique which referred to the intensity | strength and structure of a weld metal part.

ところで、近年Arによるバックガスシールドを省略しても耐食性を担保できるとする方法が開示されている。特許文献4には、Crを22〜26%含有したフェライト系ステンレス鋼で、「4mm以上のすきま深さと最大すきま深さ30μm以下でアルゴンバックシールドなし」とし、かつボンド端部から2mm以内の溶接すき間部の酸化スケールの平均Cr比率が全金属元素の20質量%以上となることを特徴とする溶接すきま酸化皮膜の耐食性に優れるフェライト系ステンレス鋼が開示されている。   Incidentally, in recent years, a method has been disclosed in which corrosion resistance can be ensured even if back gas shielding by Ar is omitted. Patent Document 4 describes a ferritic stainless steel containing 22 to 26% Cr, “a gap depth of 4 mm or more and a maximum gap depth of 30 μm or less and no argon back shield”, and welding within 2 mm from the bond end. A ferritic stainless steel excellent in the corrosion resistance of the weld gap oxide film, characterized in that the average Cr ratio of the oxide scale in the gap portion is 20% by mass or more of all metal elements, is disclosed.

また、特許文献5にはフェライト系ステンレス鋼の成分範囲を、一例としてa値:Cr%+Mo%+1.5Si%+0.5Nb%+0.9Mn%+1.5Ni%≧23となるように規定することで、ガスシールドを省略しても溶接部の耐食性を向上できる技術が開示されている。   In Patent Document 5, the component range of ferritic stainless steel is defined as an example such that a value: Cr% + Mo% + 1.5Si% + 0.5Nb% + 0.9Mn% + 1.5Ni% ≧ 23 And the technique which can improve the corrosion resistance of a welding part even if a gas shield is abbreviate | omitted is disclosed.

更に特許文献6には、Arガスシールドを省略する場合に、材料表面にCaSが存在すると十分に溶接スケールが形成されないとして、Caを0.0010%以下に制御することが規定されている。   Further, Patent Document 6 stipulates that when Ar gas shielding is omitted, Ca is controlled to 0.0010% or less, assuming that a weld scale is not sufficiently formed if CaS is present on the material surface.

ただし、特許文献4は、シールドを省略してもCr酸化皮膜が生成することで耐食性を担保できるとしているが、すきまが非常に狭いため、温水タンク内のような比較的厳しい環境では、Cr皮膜が厚くともすきま腐食が発生する可能性が非常に高い。さらに特許文献4では溶加材を使用しないとしているので、特に22Crを超える鋼では溶融した溶接金属において、Crが酸素や窒素を吸収しやすいため、高Cr鋼ほど粒界部にCr欠乏部を形成しやすくなり、鋭敏化を生じる可能性が非常に大きい。   However, Patent Document 4 says that corrosion resistance can be ensured by forming a Cr oxide film even if the shield is omitted. However, since the clearance is very narrow, the Cr film is used in a relatively severe environment such as in a hot water tank. Even if it is thick, crevice corrosion is very likely to occur. Further, in Patent Document 4, since a filler metal is not used, especially in steels exceeding 22Cr, since Cr easily absorbs oxygen and nitrogen in a molten weld metal, a Cr-deficient part is formed in the grain boundary part as high Cr steel. It is very easy to form and is very likely to cause sensitization.

また、特許文献5では、フェライト系ステンレス鋼の成分を決定することで、オーステナイト系ステンレス鋼との異材溶接金属の組成を決定できるとしているが、実際の溶接金属部の組成は、溶接される相互の材料の体積比や、溶接金属部の凝固時における相互材料の混合比によって大きく変化するため、単純に片側の材料成分のみでその組織を制御しきることは非常に困難である。さらに特許文献5では、高純度フェライト系にさらに高価なNiを多量に添加することが示されている。Niに加えてSiやNb、Cuは固溶強化を促進する元素であるため、a値を高めた場合には当該材料の強度や硬さが上がりすぎるため、鏡板の絞り加工が困難になり、形状が安定しなくなる恐れがある。また上記a値はMnの添加により増加するが、特許文献5の本文中において、Mnは不動態皮膜中のCr濃度を低下させて耐食性の低下を招く要因となるのでMnの含有量は低い方が好ましい、と記載されており、Mnのみでの積極的な耐食性向上ではなく、a値に関与する元素全ての効果で目的の耐食性が得られるものである。   Further, in Patent Document 5, the composition of the dissimilar weld metal with the austenitic stainless steel can be determined by determining the components of the ferritic stainless steel, but the actual composition of the weld metal part is the mutual welded portion. Therefore, it is very difficult to simply control the structure with only one material component on one side. Further, Patent Document 5 shows that a large amount of more expensive Ni is added to a high purity ferrite system. Since Si, Nb, and Cu are elements that promote solid solution strengthening in addition to Ni, when the a value is increased, the strength and hardness of the material is excessively increased, making it difficult to draw the end plate. The shape may become unstable. Although the a value increases with the addition of Mn, in the text of Patent Document 5, Mn lowers the Cr concentration in the passive film and causes a decrease in corrosion resistance. The target corrosion resistance is obtained by the effect of all the elements involved in the value a, not by the active improvement of corrosion resistance only by Mn.

特許文献6で規定されているCa濃度レベルは、通常の高純度フェライト系ステンレス鋼であれば一般的な範囲である。更に、本文献で耐食性上の問題とされているCaSの生成は、鋼板の製造条件や他の添加成分の影響を大きく受けるためCa濃度だけでは決定されない。   The Ca concentration level defined in Patent Document 6 is a general range if it is a normal high purity ferritic stainless steel. Furthermore, the generation of CaS, which is regarded as a problem in corrosion resistance in this document, is greatly determined by the manufacturing conditions of the steel sheet and other additive components, and thus is not determined only by the Ca concentration.

高純度フェライト系ステンレス鋼の溶接構造体の例として、電気温水器や、エコキュート(登録商標)を代表とする家庭用自然冷媒(CO2)ヒートポンプ給湯機等においては、ステンレス鋼製の貯湯缶体が一般的に用いられている。貯湯缶体は、供給される水道圧により給湯されるタイプが大半であり、その圧力に耐えられるように、鏡板と胴板を溶接したカプセル状の構造が採用されている。この溶接部は、鏡板と胴板の重ね合わせた溶接部においてすきま構造を呈する。この部位においてArガスシールドを省略した際には、この溶接すきま部における耐食性低下を如何に抑制するかが重要な技術課題となる。 Examples of high purity ferritic stainless steel welded structures include stainless steel hot water storage cans for electric water heaters and household natural refrigerant (CO 2 ) heat pump water heaters such as Ecocute (registered trademark). Is generally used. Most hot water storage cans are supplied with hot water pressure, and a capsule-like structure in which the end plate and the body plate are welded is used to withstand the pressure. This welded portion exhibits a clearance structure in the welded portion where the end plate and the body plate are overlapped. When the Ar gas shield is omitted at this part, it is an important technical problem how to suppress the corrosion resistance deterioration in the weld gap.

フェライト系ステンレス鋼のTIG溶接においては、溶接金属部並びにその熱影響部(HAZ部)における耐食性劣化を抑制するために、Ar等の不活性ガスによるシールドが実施されている。しかしながら、近年工程省略やArガスコスト削減等による要望から、Arガスシールドを省略するTIG溶接施工が望まれてきている。ただし、従来の材料ならびに溶接条件のままで、単純にArシールドガスを省略しても、先に記載したような溶接部耐食性の低下を引き起こす。   In TIG welding of ferritic stainless steel, shielding with an inert gas such as Ar is performed in order to suppress corrosion resistance deterioration in the weld metal portion and its heat-affected zone (HAZ portion). However, in recent years, TIG welding construction in which the Ar gas shield is omitted has been desired due to demands for omitting the process and reducing the Ar gas cost. However, even if the Ar shielding gas is simply omitted with the conventional materials and welding conditions, the corrosion resistance of the weld as described above is reduced.

このような背景から、Arガスシールドを省略してもTIG溶接部の耐食性に優れるフェライト系ステンレス鋼の開発要望がある。   Against this background, there is a demand for the development of ferritic stainless steel that is excellent in corrosion resistance of TIG welds even if the Ar gas shield is omitted.

特開平5−70899号公報JP-A-5-70899 特開2006−241564号公報JP 2006-241564 A 特開2007−270290号公報JP 2007-270290 A 特開2009−185382号公報JP 2009-185382 A 特開2010−202916号公報JP 2010-202916 A 特開2011−202254号公報JP 2011-202254 A

ステンレス鋼便覧第三版Stainless steel handbook third edition

本発明は、溶接時、特にTIG溶接時のArガスシールドを省略しても、従来の溶接条件のままで溶接部の耐食性の低下を抑制することが可能なフェライト系ステンレス鋼を提供するものである。   The present invention provides a ferritic stainless steel that can suppress a decrease in corrosion resistance of a welded portion under conventional welding conditions even when an Ar gas shield is omitted during welding, particularly TIG welding. is there.

本発明者らは、Arガスシールドを省略しても、耐食性に優れるフェライト系ステンレス鋼を開発するために、鋭意研究を重ねた結果、以下の構成とすることで上記課題を解決できることを見出した。   The present inventors have found that, even if the Ar gas shield is omitted, in order to develop a ferritic stainless steel having excellent corrosion resistance, as a result of intensive research, the above problem can be solved by adopting the following configuration. .

本発明の要旨は以下のとおりである。
(1)質量%で,C:0.020%以下,N:0.025%以下,Si:0.05〜0.25%Mn:0.46〜1.5%P:0.035%以下,S:0.01%以下,Cr:18.0〜23.5%,Mo:0.3〜2.5%、Al:0.005〜0.15%,Ti:0.05〜0.25%,Nb:0.10〜0.5%を含有し,残部がFeおよび不可避的不純物からなり、更に成分組成が(A)式を満足することを特徴とするフェライト系ステンレス鋼。
(Si+2.5Al+3Ti)/Mn≦2.0 …(A)
但し、式中の元素記号は、当該元素の含有質量%を意味する。
(2)更に、質量%で、Cu:0.5%以下、Ni:0.05〜2.0%、V:0.05〜1.0%から選ばれる一種又は二種以上を含有することを特徴とする前記(1)に記載のフェライト系ステンレス鋼。
(3)更に、質量%で、Sn:0.05〜1%、Sb:0.05〜1%から選ばれる一種又は二種を含むことを特徴とする前記(1)または(2)に記載のフェライト系ステンレス鋼。
(4)更に、質量%で、Zr:0.2%以下、B:0.005%以下から選ばれる一種又は二種を含有することを特徴とする前記(1)〜(3)のいずれかに記載のフェライト系ステンレス鋼。
The gist of the present invention is as follows.
(1) By mass%, C: 0.020% or less, N: 0.025% or less, Si: 0.05 to 0.25% , Mn: 0.46 to 1.5% , P: 0.035 % Or less, S: 0.01% or less, Cr: 18.0 to 23.5%, Mo: 0.3 to 2.5%, Al: 0.005 to 0.15%, Ti: 0.05 to A ferritic stainless steel containing 0.25%, Nb: 0.10 to 0.5%, the balance being Fe and inevitable impurities, and the composition of the component satisfying the formula (A).
(Si + 2.5Al + 3Ti) /Mn≦2.0 (A)
However, the element symbol in a formula means the mass% of the said element.
(2) Further, by mass%, Cu: 0.5% or less, Ni: 0.05-2.0%, V: 0.05-1.0%, or one or more selected from The ferritic stainless steel as described in (1) above.
(3) Further described in (1) or (2) above, characterized by containing one or two kinds selected from Sn: 0.05 to 1% and Sb: 0.05 to 1% by mass%. Ferritic stainless steel.
(4) In addition, any one of the above (1) to (3), further comprising one or two kinds selected from Zr: 0.2% or less and B: 0.005% or less in mass% Ferritic stainless steel described in 1.

本発明によれば、溶接部の耐食性に優れるフェライト系ステンレス鋼を提供できる。とくにTIG溶接でのArガスシールドを省略しても耐食性低下を抑制することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel which is excellent in the corrosion resistance of a welding part can be provided. In particular, even if the Ar gas shield in TIG welding is omitted, it is possible to suppress a decrease in corrosion resistance.

耐食性試験用試験片を表す図である。It is a figure showing the test piece for a corrosion resistance test. Cu2+濃度、溶接時のArガスシールド有無、及びA式左辺と、すきま腐食深さとの関係を示す図である。It is a figure which shows the relationship between Cu2 + density | concentration, the Ar gas shield presence at the time of welding, and the left side of A type | formula, and crevice corrosion depth. A式左辺とすきま腐食深さとの関係を示す図である。It is a figure which shows the relationship between A type left side and crevice corrosion depth.

以下、本発明について詳細に説明する。特に指定しない限り、%は質量%を意味する。   Hereinafter, the present invention will be described in detail. Unless otherwise specified,% means mass%.

本発明者らは、フェライト系ステンレス鋼のTIG溶接部の耐食性において、Arガスシールドを省略しても、耐食性に優れたフェライト系ステンレス鋼を提供できる可能性について種々検討した結果、以下の知見を得た。
(1)TIG溶接時のシールドを省略すると、シールドを実施した場合と比較して、溶接部近傍における腐食発生部位が変化する。すなわちシールド省略時では、いわゆるHAZ部ではなく、溶接裏ビードと母材の境界部から約1mm離れた部位となる。
(2)本部位でのガスシールド無しにおける溶接スケール構造を調査した結果、耐食性が低い場合には、表面にCr、Feの皮膜中に、Ti,Al,Siの酸化物が局所的に点在しており、これが腐食の起点となると知見された。そのためTi,Al,Siを必要な限り低減することが重要である。
(3)ガスシールドを省略したTIG溶接においては、溶接時の入熱が大きい場合には、上記(2)だけでは溶接部のスケールが発達することで耐食性を担保できない場合がある。そこで(2)条件に加えてMnを添加すると、Cr主体の酸化物の表層側にMn主体の酸化物が形成され、溶接時の入熱によらず溶接スケール部の耐食性を向上させることが可能であることを知見した。これにはMnを0.33%以上添加させ、且つ、以下の(A)式を満たすことが必要である。
(Si+2.5Al+3Ti)/Mn≦2.0 …(A)
As a result of various investigations on the possibility of providing ferritic stainless steel having excellent corrosion resistance even if the Ar gas shield is omitted in the corrosion resistance of TIG welds of ferritic stainless steel, the present inventors have obtained the following knowledge. Obtained.
(1) If the shield at the time of TIG welding is omitted, the corrosion occurrence site in the vicinity of the weld changes as compared with the case where the shield is implemented. That is, when the shield is omitted, it is not a so-called HAZ portion, but a portion separated by about 1 mm from the boundary between the weld back bead and the base material.
(2) As a result of investigating the weld scale structure without a gas shield at this part, if the corrosion resistance is low, Ti, Al, Si oxides are locally scattered on the surface of the Cr, Fe film. It was found that this was the starting point for corrosion. Therefore, it is important to reduce Ti, Al, and Si as much as necessary.
(3) In TIG welding in which the gas shield is omitted, when the heat input during welding is large, the corrosion resistance may not be ensured only by the above (2) because the scale of the welded portion develops. Therefore, (2) When Mn is added in addition to the conditions, the Mn-based oxide is formed on the surface layer of the Cr-based oxide, and the corrosion resistance of the weld scale can be improved regardless of the heat input during welding. I found out. For this purpose, it is necessary to add 0.33% or more of Mn and satisfy the following formula (A).
(Si + 2.5Al + 3Ti) /Mn≦2.0 (A)

本知見を得るために、図1に示すような供試材を製造し、以下の実験を実施した。なお、図1に示すTIG溶接構造において、反トーチ側6に位置するのは、図1の下側半分に当る。つまり、裏ビードが存在する平面、及び溶接すきま部5を含むすきま空間である。また、これら反トーチ側6の部位のうち、耐食性が問題となるのは、図1右側の拡大図における裏ビード部8近傍、及び、溶接すきま部5である。そのため、本発明において耐食性評価は、上述の裏ビード部8近傍、及び、溶接すきま部5について行っている。このうち、裏ビード部8近傍を裏面溶接部4と記載する。   In order to obtain this knowledge, a specimen as shown in FIG. 1 was manufactured, and the following experiment was performed. In addition, in the TIG welding structure shown in FIG. 1, what is located on the anti-torch side 6 corresponds to the lower half of FIG. That is, it is a clearance space including the plane where the back bead exists and the weld clearance 5. Further, among these portions on the side opposite to the torch 6, the corrosion resistance becomes a problem in the vicinity of the back bead portion 8 and the weld gap portion 5 in the enlarged view on the right side of FIG. 1. Therefore, in this invention, corrosion resistance evaluation is performed about the above-mentioned back bead part 8 vicinity and the welding clearance gap part 5. FIG. Among these, the back bead part 8 vicinity is described as the back surface weld part 4. FIG.

[供試材の製造]
供試材は以下のように製造した。真空溶解炉により溶解した表1に示すAl,Ti,Si,Mnを種々変化させた開発鋼組成と比較鋼組成のフェライト系ステンレス鋼で、これを圧延・熱処理により厚さ0.8mmの冷延板を製造した。
[Manufacture of test materials]
The test material was manufactured as follows. Ferritic stainless steels with different steel compositions and comparative steel compositions with various changes in Al, Ti, Si, and Mn shown in Table 1 melted in a vacuum melting furnace, which are cold rolled to a thickness of 0.8 mm by rolling and heat treatment A board was produced.

この溶接試験材は以下のように作製した。供試材の表面を#600エメリー紙で湿式研磨した後40mm幅×200Lmmと55mm幅×200Lmmに切断した。このうち、幅55mm材を端から15mmで水平より15°に曲げ加工し、図1のように40mm幅の平板と組合わせて曲げ加工材端部をTIG溶接した。   This weld test material was produced as follows. The surface of the test material was wet-polished with # 600 emery paper and then cut into 40 mm width × 200 Lmm and 55 mm width × 200 Lmm. Of these, a 55 mm wide material was bent 15 mm from the end to 15 ° from the horizontal, and combined with a 40 mm wide flat plate as shown in FIG. 1, the end of the bent material was TIG welded.

[溶接条件]
溶接条件は、送り速度50cm/min、電流値は溶け込み量を変化させるために70Aを基本として50〜100Aの間で変化させた。ガスシールドを実施する場合にはArガスを用い、トーチ側は流量15L/min、アフターガスは20L/minで固定し、反トーチ側のガスは、シールド実施時は流量5L/min、停止時は流量ゼロとした。
[Welding conditions]
The welding conditions were a feed rate of 50 cm / min, and the current value was changed between 50 and 100 A based on 70 A in order to change the amount of penetration. When performing gas shielding, Ar gas is used, the torch side is fixed at a flow rate of 15 L / min, the after gas is fixed at 20 L / min, and the gas on the anti-torch side is flowed at a flow rate of 5 L / min and when stopped. The flow rate was zero.

[耐食性評価試験]
耐食性評価試験片は、本材料から溶接金属長さを20mm、長さ40mmの大きさに切断した。反トーチ側のみを試験環境に晒すために、トーチ側溶接金属部の試験面は、切断端面とともに#600のエメリー湿式研磨処理を施した。
[Corrosion resistance evaluation test]
The corrosion resistance evaluation test piece was cut from this material into a weld metal length of 20 mm and a length of 40 mm. In order to expose only the anti-torch side to the test environment, the test surface of the weld metal part on the torch side was subjected to # 600 emery wet polishing treatment together with the cut end surface.

試験液としては、NaClの他に酸化剤としてCuCl2試薬を用いて、600ppmCl-と、2ppmまたは20ppmCu2+となるように調整した試験液を用いた。なおCu2+は環境の酸化性を調整するために添加しており、高濃度ほどより厳しい腐食環境となる。調整した浸漬条件は80℃、酸素吹き込みとし、2週間連続浸漬とした。なお試験液は、1週間毎に交換した。 The test solution, with CuCl 2 reagent as an oxidizing agent in addition to NaCl, 600ppmCl - and, using the adjusted test solution so as to 2ppm or 20ppmCu 2+. Cu 2+ is added to adjust the oxidizing property of the environment, and the higher the concentration, the more severe the corrosive environment. The adjusted immersion conditions were 80 ° C. and oxygen blowing, and continuous immersion for 2 weeks. The test solution was changed every week.

試験後の裏面溶接部の孔食、及び溶接すきま部のすきま腐食深さは、焦点深度法を用いて測定した。すきま内の腐食測定は、溶接金属部を削り込み、溶接すきま部を開放してから行った。   The pitting corrosion of the back surface welded part after the test and the crevice corrosion depth of the welded crevice part were measured using the depth of focus method. The measurement of corrosion in the gap was performed after cutting the weld metal and opening the weld gap.

溶接部の表面皮膜は、日本電子(株)製AESを用いて、5000倍の観察倍率で表面元素の面分析を実施した。   The surface film of the welded portion was subjected to surface element surface analysis at an observation magnification of 5000 times using AES manufactured by JEOL Ltd.

[評価結果]
まず、溶接時のArガスシールド省略時の溶接材料の腐食感受性の変化について評価した。供試材は、表1のNo2および17の組成を用いた。ここでNo2はA式(Si+2.5Al+3Ti)/Mn=1.52で本発明条件を満たしており、No17は8.08で比較例とした。いずれもCrは約21%、Moは約1%の材料である。
[Evaluation results]
First, the change in the corrosion sensitivity of the welding material when the Ar gas shield was omitted during welding was evaluated. The composition of No. 2 and 17 of Table 1 was used for the test material. Here, No. 2 satisfies the conditions of the present invention with A formula (Si + 2.5Al + 3Ti) /Mn=1.52, and No. 17 is 8.08, which is a comparative example. In both cases, Cr is about 21% and Mo is about 1%.

TIG溶接条件は、電流値は95Aとし、裏面のArガスシールドは実施と省略の2条件とした。元の板厚は0.8mm、溶接裏面のビード幅は約1.2mmであった。腐食試験は600ppmCl-に、Cu2+を2ppm又は20ppm加えた2条件で実施した。 The TIG welding conditions were such that the current value was 95 A, and Ar gas shielding on the back surface was implemented and omitted. The original plate thickness was 0.8 mm, and the bead width on the back of the weld was about 1.2 mm. Corrosion test 600PpmCl - in was performed in two conditions plus 2ppm or 20ppm of Cu 2+.

この試験後の溶接すきま部腐食深さとCu濃度の関係を図2に示す。まずArガスシールドを実施した場合はCu2+=2,20ppmの何れも、A値が1.52を示す発明例(記号○)、同様に8.08となる比較例(●)とも腐食深さは50μm以下であった。とくに発明例は比較例に比べCu2+=20ppmでの腐食量は小さい傾向を示した。なお、このArガスシールドを実施した場合の腐食位置は、溶接すきまから2〜3mm程度離れた位置であり、いわゆる溶接の熱影響部(HAZ)であり、これは裏面溶接部の溶接ビード部でも同様に2〜3mmはなれた位置で孔食状の腐食が観察された。ただしこの裏面溶接部の孔食はすきま部よりも浅かった。 The relationship between the weld crevice corrosion depth and Cu concentration after this test is shown in FIG. First, when Ar gas shielding was carried out, both of the Cu 2+ = 2 and 20 ppm, both the invention example (symbol ◯) in which the A value is 1.52, and the comparative example (●) in which the A value is 8.08 are the corrosion depth. The thickness was 50 μm or less. In particular, the inventive examples showed a tendency for the amount of corrosion at Cu 2+ = 20 ppm to be smaller than that of the comparative examples. In addition, the corrosion position when this Ar gas shield is carried out is a position about 2 to 3 mm away from the welding gap, which is a so-called heat affected zone (HAZ) of welding, which is also a weld bead portion of the back surface welded portion. Similarly, pitting corrosion was observed at a position 2 to 3 mm apart. However, the pitting corrosion of this back surface welded part was shallower than the gap part.

一方、Arガスシールドを省略した場合には、Cu2+=2ppmでは発明例、比較例とも50μm以下の腐食深さであるが、Cu2+=20ppmの場合には発明例(△)は50μm以下を示すが、比較例(▲)では約100μmと大幅にすきま腐食深さが大きくなった。 On the other hand, when the Ar gas shield is omitted, the corrosion depth is 50 μm or less for both the inventive example and the comparative example at Cu 2+ = 2 ppm, but the inventive example (Δ) is 50 μm when Cu 2+ = 20 ppm. As shown below, the crevice corrosion depth was significantly increased to about 100 μm in the comparative example (▲).

Arガスシールドを省略した場合の腐食位置は、2および20ppmCu2+条件ともにArガスシールドを実施した場合と異なり、裏面溶接部の溶接ビード部境界から1mm以内の位置に、またすきま部でもすきま開始点(つまり、溶接すきま部における、溶接金属と被溶接材の境界部分)から1mm以内の位置で腐食が発生していた。 The corrosion position when the Ar gas shield is omitted is different from the case where the Ar gas shield is applied for both the 2 and 20 ppm Cu 2+ conditions, and the clearance starts within 1 mm from the weld bead boundary of the back surface welded part and also in the clearance part. Corrosion occurred at a position within 1 mm from the point (that is, the boundary between the weld metal and the welded material in the weld gap).

Arガスシールド省略した場合にすきま腐食深さが大きくなった理由は、Arガスシールドを省略することで腐食感受性が高くなる部位が溶接金属本体や溶接金属部からの距離が近い位置に変化したため、本試験材のような比較的溶接すきま部が開いた形状でも、すきまの最も狭い部分で腐食感受性が高くなってしまったため腐食発生が促進され、その構造のため生成する腐食性の高いすきま内部液がすきま内に滞留するためと理解される。   The reason why the crevice corrosion depth was increased when the Ar gas shield was omitted is because the site where the corrosion sensitivity is increased by omitting the Ar gas shield has changed to a position where the distance from the weld metal body and the weld metal part is close, Even with a shape with a relatively open weld gap, such as this test material, the corrosion sensitivity is increased at the narrowest gap, so the occurrence of corrosion is accelerated, and the highly corrosive gap internal liquid generated due to its structure. It is understood that it stays in the gap.

裏面溶接部の腐食深さが比較例でも50μm以下に抑制された理由は同様に、腐食感受性が高いために腐食は発生するものの、すきま構造でないために孔食が生じてもそれ以上進展が生じなかったためと判断される。   Similarly, the reason why the corrosion depth of the back surface welded part was suppressed to 50 μm or less was also due to the high corrosion susceptibility, but corrosion occurred. It is judged that there was not.

本発明例と比較例のArガスシールド省略時のすきま腐食挙動の差異を調査するため、溶接部すきま近傍のスケール部をAESで面分析した。その結果、発明例では表面にはMnとCr主体の酸化物が一様に観察されたが、比較例では表面にCr主体の酸化物の間にTiやAl、Siの酸化物が点在しているのが確認された。さらに腐食試験後の観察から、これらTiやAlの酸化物近傍が腐食試験で起点になった痕跡が観察された。これより本発明条件の材料を用いた場合Arガスシールドを省略しても、表面スケール部へのTiやAl、Siの酸化物が存在しないためにCrの高い酸化物皮膜が生成するのに加え、その外層側にMn主体の酸化物の存在によるものと推定される。溶接スケール部について深さ方向の元素プロファイルをAESで測定した結果、Mnが高い場合には、表層にMnが主体の酸化物が生成しており、その下にCr主体の酸化物が存在していた。一般的に高温での耐酸化性評価のように、ステンレス鋼を高温に数百時間のような長時間晒した場合の酸化物構造は、表層にはMn主体のスピネル型酸化物が、内層側にはCr主体のコランダム型酸化物が生成することが知られ、またそのスピネル酸化物にMnが多い場合にはスケールの剥離が抑制されることが知られている。今回のTIG溶接では数秒以下の非常に短時間の加熱によって生成する酸化物のため、上記の長時間酸化試験と比較して詳細な構造は異なるが、概略の構造は同様と推定される。溶接で生じるビードおよびその周囲のスケールは、上記酸化試験よりも更に短時間で生成する酸化物のため、外層のMn主体の酸化物が緻密で密着性に優れた構造となったために、すきま構造においても耐食性が向上したものと推定される。なおMn含有量が高い場合でもTiやAl、Siの含有量が高い場合には、上記の試験においてすきま腐食深さは大きくなった。これはTiやAl、Siが多い場合には、内層側のスケールが不均一のために、その外層に生じたMn酸化物も本発明範囲ほどに安定に生成しなくなるためと推定される。   In order to investigate the difference in crevice corrosion behavior when the Ar gas shield was omitted between the inventive example and the comparative example, the scale portion near the weld gap was subjected to surface analysis by AES. As a result, although Mn and Cr-based oxides were uniformly observed on the surface in the inventive example, Ti, Al, and Si oxides were scattered between the Cr-based oxides on the surface in the comparative example. It was confirmed that Further, from the observation after the corrosion test, traces of the vicinity of the oxides of Ti and Al starting from the corrosion test were observed. As a result, when the material of the present invention is used, even if the Ar gas shield is omitted, there is no oxide of Ti, Al, or Si on the surface scale portion, so that a high oxide film of Cr is generated. This is presumably due to the presence of an oxide mainly composed of Mn on the outer layer side. As a result of measuring the element profile in the depth direction with respect to the weld scale portion by AES, when Mn is high, an oxide mainly composed of Mn is formed on the surface layer, and an oxide mainly composed of Cr is present thereunder. It was. Generally, as in the evaluation of oxidation resistance at high temperatures, the oxide structure when stainless steel is exposed to high temperatures for a long time, such as several hundred hours, has a Mn-based spinel-type oxide on the inner layer side. Is known to produce a corundum type oxide mainly composed of Cr, and it is known that scale peeling is suppressed when the spinel oxide contains a large amount of Mn. In this TIG welding, since it is an oxide generated by heating for a very short time of several seconds or less, the detailed structure is different from the above long-time oxidation test, but the general structure is estimated to be the same. Since the bead generated by welding and the surrounding scale are oxides that are generated in a shorter time than the above oxidation test, the Mn-based oxide in the outer layer has a dense structure with excellent adhesion. It is presumed that the corrosion resistance has improved. Even when the Mn content was high, the crevice corrosion depth increased in the above test when the content of Ti, Al, or Si was high. This is presumably because when the amount of Ti, Al, and Si is large, the scale on the inner layer side is not uniform, and the Mn oxide generated in the outer layer is not generated as stably as the scope of the present invention.

以上から、TIG溶接部の耐食性は、Arガスシールドを省略すると低下すること、またArガスシールドを省略した場合でも材料の化学成分で示されるA式左辺(Si+2.5Al+3Ti)/Mnの値を低減させることにより、腐食性が過酷な温水環境においても裏面溶接部、及びすきま部の耐食性低下が抑制可能であることを明らかにした。   From the above, the corrosion resistance of TIG welds decreases when the Ar gas shield is omitted, and even when the Ar gas shield is omitted, the value of the left side of the formula A (Si + 2.5Al + 3Ti) / Mn indicated by the chemical composition of the material is reduced. As a result, it was clarified that the deterioration of the corrosion resistance of the back surface welded part and the gap part can be suppressed even in a hot water environment where the corrosiveness is severe.

そのため、Ti,Al,SiおよびMn濃度を変化させた材料を用いて[耐食性試験]での試験と同様の条件で実施した。その他成分のうちすきま腐食に大きな影響のあるCrとMoは、Crは18〜23.5%、Moは0.3〜2.5%とした。すき間形状は同じく15°、電流値は85Aで裏面のビード幅は1.2mmとし、反トーチ側のArガスシールドは省略した。腐食試験は600ppmCl-+20ppmCu2+の条件で実施した。その結果、図3のようにA式左辺:(Si+2.5Al+3Ti)/Mnとすきま腐食深さとの間で良好な相関関係が得られ、Arガスシールド省略時のすきま腐食深さを50μm以下とするには、A式左辺の値を2.0以下にすることが必要であることが分かった。以上よりArガスシールドを省略した条件でTIG溶接する場合には、A式左辺(Si+2.5Al+3Ti)/Mnの値が2.0以下、好ましくは1.8以下とすることが望ましいことを明らかにした。 Therefore, the test was carried out under the same conditions as the test in [Corrosion resistance test] using materials with different Ti, Al, Si and Mn concentrations. Among the other components, Cr and Mo, which have a great influence on crevice corrosion, were 18 to 23.5% for Cr and 0.3 to 2.5% for Mo. The gap shape was 15 °, the current value was 85A, the bead width on the back surface was 1.2 mm, and the Ar gas shield on the non-torch side was omitted. The corrosion test was performed under the condition of 600 ppm Cl +20 ppm Cu 2+ . As a result, as shown in FIG. 3, a good correlation is obtained between the left side of Formula A: (Si + 2.5Al + 3Ti) / Mn and the crevice corrosion depth, and the crevice corrosion depth when the Ar gas shield is omitted is set to 50 μm or less. It was found that the value on the left side of Formula A must be 2.0 or less. From the above, when TIG welding is performed with the Ar gas shield omitted, it is clear that the value of the left side of the formula A (Si + 2.5Al + 3Ti) / Mn is 2.0 or less, preferably 1.8 or less. did.

なお、すきま形状については、上記試験ではすきま角度を15°とすきまが広がった形状での評価であるが、すきま腐食を生じる臨界すきま形状としては、すきまの開始点、すなわちすきまの一番奥の位置から2mmにおいてのすきま開口部が40μm以上であれば、すきま腐食を生じないことを確認している。従い、本発明の構成で効果が得られるすきま形状とは、すきま角度15°に限らず、すきま発生部から2mmの位置で、すきま開口部が40μm以上であることを意味する。   In addition, the clearance shape is evaluated with a clearance angle of 15 ° in the above test, but the critical clearance shape causing clearance corrosion is the starting point of the clearance, that is, the innermost clearance. If the clearance opening at 2 mm from the position is 40 μm or more, it has been confirmed that crevice corrosion does not occur. Accordingly, the clearance shape that can provide the effect of the configuration of the present invention is not limited to the clearance angle of 15 °, but means that the clearance opening is 40 μm or more at a position 2 mm from the clearance generation portion.

上記知見から、Arガスシールドを省略した場合にすきま腐食を防止するには、(Si+2.5Al+3Ti)/Mnの値を2.0以下に制御することが重要であることを明らかにした。なお、本成分系では、Arガスシールドを通常通り実施した場合においても、優れた溶接部耐食性を示す。これはArガスシールドを実施しても条件によっては僅かに表面が変色したスケールが生じる。このスケールにおいても前述のような作用により、溶接部の耐食性が向上するものと判断される。   From the above findings, it was clarified that it is important to control the value of (Si + 2.5Al + 3Ti) / Mn to 2.0 or less in order to prevent crevice corrosion when the Ar gas shield is omitted. In addition, in this component system, even when Ar gas shielding is performed as usual, excellent welded portion corrosion resistance is exhibited. Even if the Ar gas shield is implemented, a scale having a slightly discolored surface is generated depending on conditions. Even in this scale, it is determined that the corrosion resistance of the welded portion is improved by the above-described action.

次に、本発明のフェライト系ステンレス鋼の成分組成について、詳細に説明する。   Next, the component composition of the ferritic stainless steel of the present invention will be described in detail.

Alは前述の通り脱酸元素として重要であり,また非金属介在物の組成を制御して組織を微細化する効果もある。しかし、前述の通りAlは溶接部の酸化皮膜の均一化を阻害する。また、Alの過剰な添加は、金属精錬時の非金属介在物の粗大化を招き,製品の疵発生の起点になる恐れもある。そのため,Al含有量の下限値を0.005%以上,上限値を0.15%以下とした。脱酸のためにはAlを0.01%以上含有させることが好ましいため、より望ましくは0.01%〜0.08%である。   As described above, Al is important as a deoxidizing element, and also has an effect of refining the structure by controlling the composition of nonmetallic inclusions. However, as described above, Al inhibits the uniformization of the oxide film at the weld. Moreover, excessive addition of Al leads to coarsening of non-metallic inclusions during metal refining, which may be a starting point for product defects. Therefore, the lower limit value of the Al content is set to 0.005% or more and the upper limit value is set to 0.15% or less. Since it is preferable to contain Al in an amount of 0.01% or more for deoxidation, it is more preferably 0.01% to 0.08%.

Tiは,C,Nを固定し,溶接部の粒界腐食を抑制して加工性を向上させる上で非常に重要な元素である。さらに材料中の腐食の起点となりうるSを固定することで耐食性を向上させることでも有用である。しかしながら、TiはAlと同様溶接部の酸化皮膜の均一化を阻害する。また過剰添加は、鋼板製造時の表面疵の原因となる。このため,Ti含有量の範囲を0.05%〜0.25%とした。より望ましくは0.07%〜0.20%である。   Ti is an extremely important element for fixing C and N and suppressing intergranular corrosion of the welded portion to improve workability. Furthermore, it is also useful to improve the corrosion resistance by fixing S which can be a starting point of corrosion in the material. However, Ti, like Al, inhibits the uniformization of the oxide film at the weld. Moreover, excessive addition causes a surface flaw at the time of steel plate manufacture. For this reason, the range of Ti content was made 0.05% to 0.25%. More desirably, it is 0.07% to 0.20%.

Siも,脱酸元素として重要な元素であり,耐食性,耐酸化性の向上にも有効である。しかし、TiやAlと同様に溶接部の酸化皮膜の均一化を阻害する。更に過剰な添加は加工性,製造性を低下させる。そのため、Siの含有量の上限値を0.25%以下とした。なおSiは前記の通り脱酸のための必須元素であるから0.05%以上含有させる。より望ましくは0.05%〜0.21%である.
Mnは,脱酸元素として重要な元素であり、本発明のように溶接時にArガスシールドを省略した場合には溶接スケール部でMn酸化物として生成し、耐すきま腐食性を向上させることを明らかにした。ただし、過剰に添加すると腐食の起点となるMnSを生成しやすくなり,またフェライト組織を不安定化させる。また固溶強化元素でもあるため、Mnの過剰な添加は加工性を低下させる。このため,Mnの含有量を0.33%〜1.5%以下とした。より望ましくは,0.40%〜1.0%、さらに望ましくは0.5%超である。
Si is also an important element as a deoxidizing element, and is effective in improving corrosion resistance and oxidation resistance. However, as with Ti and Al, it inhibits the uniformization of the oxide film at the weld. Furthermore, excessive addition reduces workability and manufacturability. Therefore, the upper limit value of the Si content is set to 0.25% or less. Since Si is an essential element for deoxidation as described above, 0.05% or more is contained. More desirably, it is 0.05% to 0.21%.
It is clear that Mn is an important element as a deoxidizing element, and when Ar gas shielding is omitted during welding as in the present invention, it is formed as Mn oxide at the weld scale and improves crevice corrosion resistance. I made it. However, if added in excess, MnS that becomes the starting point of corrosion tends to be generated, and the ferrite structure is destabilized. Moreover, since it is also a solid solution strengthening element, excessive addition of Mn reduces workability. Therefore, the Mn content is set to 0.33% to 1.5% or less. More desirably, it is 0.40% to 1.0%, and further desirably more than 0.5%.

次に、本発明のフェライト系ステンレス鋼を構成するその他元素について説明する。   Next, other elements constituting the ferritic stainless steel of the present invention will be described.

Cは,耐粒界腐食性および加工性を低下させるため,その含有量を低減させる必要がある。このため,Cの含有量の上限値を0.020%以下とした。しかし、Cの含有量を過度に低減させると、精錬コストが悪化するため,0.002%〜0.015%であることがより望ましい。   Since C lowers intergranular corrosion resistance and workability, its content needs to be reduced. For this reason, the upper limit of the C content is set to 0.020% or less. However, if the C content is excessively reduced, the refining cost deteriorates, so 0.002% to 0.015% is more desirable.

Nは,Cと同様に耐粒界腐食性,加工性を低下させるため,その含有量を低減させる必要がある。このため,Nの含有量の上限を0.025%以下とした。しかし、Nの含有量を過度に低減させると、精錬コストが悪化するため、0.002%〜0.015%であることがより望ましい。   N, like C, reduces intergranular corrosion resistance and workability, so its content needs to be reduced. For this reason, the upper limit of the content of N is set to 0.025% or less. However, if the N content is excessively reduced, the refining cost is deteriorated, so 0.002% to 0.015% is more desirable.

Pは,溶接性,加工性を低下させるだけでなく,粒界腐食を生じやすくするため,低く抑える必要がある。そのためPの含有量を0.035%以下とした。より望ましくは0.001%〜0.02%である。   P not only deteriorates weldability and workability, but also tends to cause intergranular corrosion, so P needs to be kept low. Therefore, the content of P is set to 0.035% or less. More desirably, it is 0.001% to 0.02%.

Sは,CaSやMnS等の腐食の起点となる水溶性介在物を生成させるため,低減させる必要がある。そのため、Sの含有量は0.01%以下とする。ただし、過度の低減はコストの悪化を招く。このため,Sの含有量は、0.0001%〜0.005%であることがより望ましい。   S needs to be reduced because it generates water-soluble inclusions that cause corrosion such as CaS and MnS. Therefore, the S content is 0.01% or less. However, excessive reduction causes cost deterioration. For this reason, the S content is more preferably 0.0001% to 0.005%.

Crは,ステンレス鋼の耐食性を確保する上で最も重要な元素であり,フェライト組織を安定化するためおよび溶接時のスケールの耐食性を向上させるために18.0%以上含有させる必要がある。しかし、Crは、加工性,製造性を低下させるため,上限を23.5%以下とした。Crの含有量は、望ましくは18.5%〜23.0%であり,より望ましくは20.0%〜22.5%である。   Cr is the most important element for securing the corrosion resistance of stainless steel, and needs to be contained in an amount of 18.0% or more in order to stabilize the ferrite structure and improve the corrosion resistance of the scale during welding. However, Cr lowers the workability and manufacturability, so the upper limit was made 23.5% or less. The content of Cr is desirably 18.5% to 23.0%, and more desirably 20.0% to 22.5%.

Moは,不働態皮膜の補修に効果があり,耐食性を向上させるのに非常に有効な元素である。また、MoはCrとともに含有されることにより耐孔食性を向上させる効果がある。またMoは,Niとともに含有されることにより再不働態化特性や腐食発生時の溶解速度抑制効果を有する。しかし、Moはレアメタルのため過剰添加はコストを増加させ、また加工性も著しく低下する。このため、Moの含有量の上限を2.5%以下とすることが好ましい。また、Moを含有させることにより、上記の特性を向上させるためには、Moを0.30%以上含有させることが必要である。Moの含有量は、望ましくは,0.50%〜2.0%であり,より望ましくは0.70%〜1.8%である。   Mo is an element that is effective in repairing a passive film and is very effective in improving corrosion resistance. Further, when Mo is contained together with Cr, there is an effect of improving pitting corrosion resistance. Further, when Mo is contained together with Ni, it has a repassivation characteristic and an effect of suppressing the dissolution rate when corrosion occurs. However, since Mo is a rare metal, excessive addition increases the cost, and the workability is significantly reduced. For this reason, it is preferable that the upper limit of Mo content be 2.5% or less. Moreover, in order to improve said characteristic by containing Mo, it is necessary to contain 0.30% or more of Mo. The Mo content is desirably 0.50% to 2.0%, and more desirably 0.70% to 1.8%.

Nbは,C,Nの安定化元素として、Tiと複合して添加することで溶接部の粒界腐食を抑制して加工性を向上させる。(Ti+Nb)/(C+N)≧6(式中のTi、Nb、C、Nは、鋼中の各成分の含有量[質量%]である。)を満たすことが好ましい。   Nb is added as a stabilizing element of C and N in combination with Ti to suppress intergranular corrosion of the weld and improve workability. It is preferable to satisfy (Ti + Nb) / (C + N) ≧ 6 (Ti, Nb, C, and N in the formula are the contents [mass%] of each component in the steel).

更にNbは溶接部の強度を向上させることが可能である。一方、過剰な添加は過度に強度を向上させ加工性を低下させる問題が生じる場合もあり、またコストも上昇する問題がある。加工性を低下させるため,Nbの含有量は0.10〜0.50%とする。望ましくは0.15%〜0.40%である。   Furthermore, Nb can improve the strength of the weld. On the other hand, excessive addition may cause a problem that the strength is excessively increased and the workability is lowered, and the cost is also increased. In order to reduce the workability, the Nb content is 0.10 to 0.50%. Desirably, it is 0.15% to 0.40%.

Cuは,一般に活性溶解速度を低下させる効果を有するため、必要に応じて0.10%以上添加する。しかし、温水環境においてはCuは有効な腐食抑制効果を有さないと考えられるだけでなく、その腐食環境によっては環境に存在するCuだけでなく、素材から溶出したCuが腐食を促進する場合もある。そのため、Cuの上限を0.50%以下とする。望ましくは,0.20%以下である。   Since Cu generally has an effect of reducing the active dissolution rate, it is added in an amount of 0.10% or more as necessary. However, in a hot water environment, Cu is not only considered not to have an effective corrosion inhibiting effect, but depending on the corrosive environment, not only Cu present in the environment but also Cu eluted from the material may promote corrosion. is there. Therefore, the upper limit of Cu is 0.50% or less. Preferably, it is 0.20% or less.

Vは前述のNbと同様の効果を有することに加え、耐候性や耐すきま腐食性を改善する作用も有するため、必要に応じて添加する。ただし、Vの過度の添加は加工性を低下させる上,耐食性向上効果も飽和するため,その添加量は0.05〜1.0%とすることが好ましい。より望ましくは0.10%〜0.70%である。   V has the same effect as Nb described above, and also has an effect of improving weather resistance and crevice corrosion resistance, so V is added as necessary. However, excessive addition of V lowers workability and also saturates the effect of improving corrosion resistance. Therefore, the addition amount is preferably 0.05 to 1.0%. More desirably, it is 0.10% to 0.70%.

Niは,活性溶解速度を抑制させる効果を有し,また水素過電圧が小さいために再不働態化特性に優れるため、必要により添加することが可能である。上記の特性を向上させるためには、Niを0.05%以上含有させることが好ましい。ただし、Niの過剰な添加は,加工性を低下させ,フェライト組織を不安定にする。またNiは原料価格が乱高下することがしばしばあり、極力少ないことが望ましい。そのためNiの含有量は、望ましくは0.05%〜2.0%であり,より望ましくは0.2%〜1.1%である。   Ni has the effect of suppressing the active dissolution rate and has excellent repassivation characteristics due to a small hydrogen overvoltage, so it can be added as necessary. In order to improve the above characteristics, it is preferable to contain 0.05% or more of Ni. However, excessive addition of Ni degrades workability and makes the ferrite structure unstable. Moreover, the price of raw materials often fluctuates, and it is desirable that Ni be as small as possible. Therefore, the Ni content is desirably 0.05% to 2.0%, and more desirably 0.2% to 1.1%.

SnおよびSbは、耐すきま腐食性を改善するだけでなく、腐食発生時の溶解速度抑制効果を有するため、この一種または二種を必要に応じて添加される。ただし、過度の添加は加工性を低下させる上,耐食性向上効果も飽和するため,その含有量は各々0.05〜1%とすることが好ましい。より望ましくは0.1%〜0.5%である。   Sn and Sb not only improve crevice corrosion resistance, but also have an effect of suppressing the dissolution rate when corrosion occurs, and therefore one or two of them are added as necessary. However, excessive addition reduces workability and also saturates the effect of improving corrosion resistance, so the content is preferably 0.05 to 1%. More desirably, it is 0.1% to 0.5%.

Zrは、Vと同様に耐すきま腐食性を改善するだけでなく、C,Nの安定化元素としての効果も有するため、必要に応じて添加される。ただし、Zrの過度の添加は加工性を低下させる上,耐食性向上効果も飽和するため,Zrを含有する場合の含有量の上限を0.2%以下とすることが好ましい。また、Zrを含有させることにより、上記の特性を向上させるためには、Zrは0.03%以上含有させることが好ましい。より望ましくは0.05%〜0.1%である。   Zr not only improves the crevice corrosion resistance like V, but also has an effect as a stabilizing element of C and N, so is added as necessary. However, excessive addition of Zr reduces workability and also saturates the effect of improving corrosion resistance. Therefore, the upper limit of the content when Zr is contained is preferably 0.2% or less. Moreover, in order to improve said characteristic by containing Zr, it is preferable to contain Zr 0.03% or more. More desirably, it is 0.05% to 0.1%.

Bは二次加工脆性改善に有効な粒界強化元素であるため、必要に応じて添加される。ただし過度の添加はフェライトを固溶強化して延性低下の原因になるため、Bを添加する場合は下限を0.0001%以上,上限を0.005%以下とすることが好ましく、0.0002%〜0.0020%とすることがより望ましい。   B is a grain boundary strengthening element effective for improving secondary work embrittlement, and is added as necessary. However, excessive addition causes solid solution strengthening of ferrite and causes a decrease in ductility. Therefore, when B is added, the lower limit is preferably 0.0001% or more and the upper limit is preferably 0.005% or less. % To 0.0020% is more desirable.

表1に示す化学成分(組成)を有するフェライト系ステンレス鋼からなる試験片を、以下に示す方法で製造した。まず、表1に示す化学成分の鋳鋼を真空溶解にて溶製して40mm厚のインゴットを製造し、これを熱間圧延で5mm厚に圧延した。その後、980℃で1分間の熱処理を行ったのちに、酸化スケールを研削除去し、さらに冷間圧延により厚み0.8mmの鋼板を製造した。その後、950〜1050℃の範囲で、1分間の熱処理を行った。表面の酸化スケールを酸洗除去して供試材とした。   Test pieces made of ferritic stainless steel having the chemical components (composition) shown in Table 1 were produced by the method shown below. First, a cast steel having chemical components shown in Table 1 was melted by vacuum melting to produce a 40 mm thick ingot, which was hot rolled to a thickness of 5 mm. Thereafter, after heat treatment at 980 ° C. for 1 minute, the oxide scale was ground and removed, and a steel plate having a thickness of 0.8 mm was manufactured by cold rolling. Then, heat processing for 1 minute was performed in the range of 950-1050 degreeC. The oxidized scale on the surface was removed by pickling to obtain a test material.

なお、表1に示す化学成分において、残部は、鉄及び不可避的不純物である。また、空欄の元素は、意図的に添加していないため、測定していないことを意味する。   In the chemical components shown in Table 1, the balance is iron and inevitable impurities. Moreover, since the element of a blank is not added intentionally, it means not measuring.

TIG溶接試験片の構造および条件については、[供試材の製造]に述べた条件を基本とした。即ち、TIG溶接試験材は、供試材の表面を#600エメリー紙で湿式研磨した後40mm幅×200Lmmと55mm幅×200Lmmに切断した。すき間の開口角をつけるため、この55mm幅材(試験片2)の端から15mmで水平より30°に曲げ加工し、図1のように40mm幅の平板(試験片1)と組み合わせて、曲げ加工材端部をTIG溶接した。溶接電流値は100〜85Aの間で変化させビード厚みを制御した。本試験ではArガスシールド無しでの特性を評価するため、トーチ側7は流量15L/minとし、それ以外は流量ゼロとした。送り速度は全て50cm/minとした。   The structure and conditions of the TIG welded test piece were based on the conditions described in [Production of Specimen]. That is, the TIG welded test material was cut into 40 mm width × 200 Lmm and 55 mm width × 200 Lmm after the surface of the test material was wet-polished with # 600 emery paper. In order to create an opening angle of the gap, the 55 mm width material (test piece 2) is bent 15 mm from the end at 30 ° from the horizontal, and combined with a 40 mm width flat plate (test piece 1) as shown in FIG. The end of the workpiece was TIG welded. The welding current value was changed between 100 and 85 A to control the bead thickness. In this test, in order to evaluate the characteristics without an Ar gas shield, the flow rate on the torch side 7 was set to 15 L / min, and the flow rate was set to zero otherwise. All the feed rates were 50 cm / min.

また材料の耐力を測定するために、JISに規格される5号試験片を作製し、引っ張り試験片とした。このときの耐力は高いほど缶体等の溶接構造部材としての変形への抵抗を高めるが、過度に高いと材料の成型性を損なう。特に温水缶体の鏡板は半球状の絞り加工を実施する場合が多く、材料の耐力が高すぎる場合は加工金型を損傷させる可能性がある。そのため耐力の値は400MPa以下を○とし、それ超える場合は×と評価した。   Moreover, in order to measure the proof stress of a material, the No. 5 test piece specified by JIS was produced, and it was set as the tensile test piece. The higher the yield strength, the higher the resistance to deformation as a welded structural member such as a can body. However, if it is too high, the moldability of the material is impaired. In particular, the end plate of the hot water can body is often subjected to a hemispherical drawing process, and if the proof stress of the material is too high, the working mold may be damaged. Therefore, the proof stress value was evaluated as x when 400 MPa or less, and x when exceeding.

溶接金属部の組織は断面埋め込み試料を作製したのち、JISで示される10%シュウ酸電解エッチングを実施し、鋭敏化有無を調査した。また一部材料は本方法で素材そのものの組織を判別した。   After preparing a cross-sectional embedded sample for the structure of the weld metal part, 10% oxalic acid electrolytic etching indicated by JIS was performed to investigate the presence or absence of sensitization. For some materials, the structure of the material itself was determined by this method.

Figure 0005937867
Figure 0005937867

本溶接材の腐食試験は以下のように実施した。基本的な条件は[耐食性試験]と同様である。試験片は、本材料から露出した溶接金属長さを20mm、長さ40mmの大きさに切断し、切断端面を#600のエメリー湿式研磨処理を施した。トーチ側の溶接金属部のみは、腐食環境に晒さないために、シリコン樹脂でコーティングした。なお研磨部の不働態皮膜を安定させるため、研磨後2日以上経過させてから腐食試験に供した。腐食試験液としては、酸化性の高い条件として、NaClとCuCl2試薬を用いて、600ppmCl-+20ppmCu2+に調整した試験液を用いた。浸漬条件は80℃、酸素吹き込みとし、2週間連続浸漬とした。なお試験液は、1週間毎に交換した。試験後の腐食深さは、裏面溶接部、及び溶接すきま部に生じた腐食孔深さを測定した。各々腐食深さの深い方から最大10点測定し、そのなかの最大値をそれぞれの腐食深さとした。ここで腐食深さが50μm以下を合格とし、それを超えた場合は不合格とした。表中「鋭敏化」では、裏面溶接部腐食深さの評価結果をビード部鋭敏化として50μm以下の場合を○、50μm超の場合を×として表記した。また、すきまの腐食深さの評価結果を、すきま腐食深さとして実測数値で示した。 The corrosion test of this welding material was performed as follows. The basic conditions are the same as in [Corrosion Resistance Test]. The test piece was cut into a length of 20 mm and a length of 40 mm of the weld metal exposed from the material, and the cut end surface was subjected to # 600 emery wet polishing. Only the weld metal part on the torch side was coated with silicon resin so as not to be exposed to the corrosive environment. In addition, in order to stabilize the passive state film | membrane of a grinding | polishing part, it used for the corrosion test, after passing 2 days or more after grinding | polishing. As the corrosion test solution, a test solution adjusted to 600 ppm Cl +20 ppm Cu 2+ using NaCl and CuCl 2 reagent was used as a highly oxidizing condition. The immersion conditions were 80 ° C. and oxygen blowing, and continuous immersion for 2 weeks. The test solution was changed every week. The corrosion depth after the test was determined by measuring the depth of the corrosion hole generated in the back surface welded portion and the weld gap. A maximum of 10 points were measured from the depth of each corrosion depth, and the maximum value was taken as each corrosion depth. Here, the corrosion depth of 50 μm or less was regarded as acceptable, and when exceeding, it was regarded as unacceptable. In the table, “sensitization” represents the evaluation result of the corrosion depth of the back surface welded portion as sensitization of the bead portion, and the case of 50 μm or less was represented as “◯” and the case of more than 50 μm as “x”. In addition, the evaluation result of the crevice corrosion depth was shown as a crevice corrosion depth as a measured value.

次に、Arガスシールド無しで溶接したサンプルにおける腐食試験後のすきま腐食深さは、表1に示すように、本発明成分を満足し、かつA式左辺(Si+2.5Al+3Ti)/Mnの値が2.0以下となるNo1〜15では、何れもすきま腐食深さは50μm以下となった。またこのNo1〜15ではフェライト単相組織を呈し、耐力も400MPa以下の条件を満たすことを確認した。   Next, the crevice corrosion depth after the corrosion test in the sample welded without the Ar gas shield satisfies the present invention component as shown in Table 1, and the value of the left side of the formula A (Si + 2.5Al + 3Ti) / Mn is In Nos. 1 to 15 that are 2.0 or less, the crevice corrosion depth is 50 μm or less. Further, in Nos. 1 to 15, it was confirmed that a ferrite single phase structure was exhibited and the proof stress satisfied a condition of 400 MPa or less.

一方、(Si+2.5Al+3Ti)/Mnの値(A値)が2.0超のNo.16〜19、21、23では何れも、50μm超のすきま腐食深さとなった。A値が規定値を超えていることに加え、No.16はMn、Cr、Nbが規定範囲外、No17はMn,Alが規定範囲外、No.18はMn、Nbが規定範囲外、No19はSi,Tiが規定範囲外、No.21はMn、Crが規定範囲外であった。No21はCrが規定範囲よりも高い値であり、このため断面観察の結果、Arガスシールドを省略した裏面溶接部のビード部で鋭敏化が観察された。これは高Crのため大気中の窒素を吸収しやすくなり、Cr窒化物が粒界に析出したためと推定され、このため実環境では溶接すきま部だけでなく、ビード部からの腐食も懸念される。No.23はA値のみが規定値より高い値となった。   On the other hand, when the value of (Si + 2.5Al + 3Ti) / Mn (A value) exceeds 2.0, In each of 16-19, 21, and 23, the crevice corrosion depth exceeded 50 μm. In addition to the A value exceeding the specified value, No. No. 16 is outside the specified range for Mn, Cr and Nb, No. 17 is outside the specified range for Mn and Al, No. 16 No. 18 has Mn and Nb out of specified range, No. 19 has Si and Ti out of specified range, No. 18 In No. 21, Mn and Cr were outside the specified ranges. As for No21, Cr is a value higher than the specified range. Therefore, as a result of cross-sectional observation, sensitization was observed at the bead portion of the back surface welded portion where the Ar gas shield was omitted. It is presumed that this is because it is easy to absorb nitrogen in the atmosphere due to high Cr, and Cr nitride is precipitated at the grain boundary. Therefore, in the actual environment, there is a concern about corrosion not only from the weld gap but also from the bead. . No. In 23, only the A value was higher than the specified value.

No20、22は、A値が2.0以下にもかかわらず、すきま腐食深さが50μm超となった。これは、No20ではTiが規定値以下で素材に腐食起点となるCaSが多く生成したためスケールを制御しても腐食が進展したと推定される。またNo20は加えてMnが規定値以上に高く、強度も規定値以上となった。これは素材の組織観察からフェライトとマルテンサイトが混在する二相組織になっていたためと判断され、高強度ではあるものの鏡板等の絞り加工は非常に困難であると判断される。またNo22は、Moが規定以下と低く,素材の耐食性が十分ではなかったと判断される。   In Nos. 20 and 22, the crevice corrosion depth exceeded 50 μm despite the A value being 2.0 or less. This is presumed that, in No20, since Ti was less than the specified value and a large amount of CaS was generated in the material as a corrosion starting point, corrosion progressed even if the scale was controlled. In addition, in No. 20, Mn was higher than the specified value, and the strength was also higher than the specified value. This is judged from the fact that the structure of the material is a two-phase structure in which ferrite and martensite are mixed, and although it is high in strength, it is judged that drawing of the end plate or the like is very difficult. Moreover, No22 is judged that Mo was as low as below specification, and the corrosion resistance of the material was not sufficient.

またNo18、20では、安定化元素であるTiまたはNbが添加されていないため、溶接部において鋭敏化が確認された。   Moreover, in No18 and 20, since the stabilizing element Ti or Nb was not added, sensitization was confirmed in the welded portion.

以上の結果から、成分は規定範囲内で、かつA値(Si+2.5Al+3Ti)/Mnが2.0以下に制御されているフェライト系ステンレス鋼では、溶接時のArガスシールドを省略した場合で酸化性の厳しい腐食環境においても腐食が抑制されることを明らかにした。またArガスシールドを省略しない場合においても、本鋼は優れた溶接部耐食性を有するものである。   From the above results, in the ferritic stainless steel in which the components are within the specified range and the A value (Si + 2.5Al + 3Ti) / Mn is controlled to 2.0 or less, the oxidation is performed when the Ar gas shield at the time of welding is omitted. It was clarified that the corrosion is suppressed even in severe corrosive environment. Even when the Ar gas shield is not omitted, this steel has excellent welded portion corrosion resistance.

本発明のフェライト系ステンレス鋼は、貯水・貯湯タンクのようにTIG溶接部を有する構造体において、優れた溶接部強度を必要とする部材に好適に用いることができる。さらに溶接継ぎ手構造を有し、優れた溶接部の耐食性が必要な場合にも、最適の材料を提供することが可能となる。   The ferritic stainless steel of the present invention can be suitably used for a member that requires excellent weld strength in a structure having a TIG weld, such as a water storage / hot water storage tank. Furthermore, even if it has a welded joint structure and excellent corrosion resistance of the welded portion is required, it is possible to provide an optimum material.

また適当な加工性と溶接部強度を有しており、例えば家電製品、浴槽、厨房機器、潜熱回収型ガス給湯器のドレン水回収器とその熱交換器、各種溶接パイプなどのような一般的な用途部材にも好適である。   It also has suitable workability and weld strength, such as general appliances such as home appliances, bathtubs, kitchen equipment, drain water recovery devices for latent heat recovery gas water heaters and their heat exchangers, various welding pipes, etc. It is also suitable for various application members.

1 試験片
2 試験片
3 溶接金属部
4 裏面溶接部
5 溶接すきま部
6 反トーチ側
7 トーチ側
8 裏ビード部
DESCRIPTION OF SYMBOLS 1 Test piece 2 Test piece 3 Weld metal part 4 Back surface weld part 5 Weld clearance part 6 Anti-torch side 7 Torch side 8 Back bead part

Claims (4)

質量%で,C:0.020%以下,N:0.025%以下,Si:0.05〜0.25%Mn:0.46〜1.5%P:0.035%以下,S:0.01%以下,Cr:18.0〜23.5%,Mo:0.3〜2.5%、Al:0.005〜0.15%,Ti:0.05〜0.25%,Nb:0.10〜0.5%を含有し,残部がFeおよび不可避的不純物からなり、更に成分組成が(A)式を満足することを特徴とするフェライト系ステンレス鋼。
(Si+2.5Al+3Ti)/Mn≦2.0 …(A)
但し、式中の元素記号は、当該元素の含有質量%を意味する。
% By mass, C: 0.020% or less, N: 0.025% or less, Si: 0.05 to 0.25% , Mn: 0.46 to 1.5% , P: 0.035% or less, S: 0.01% or less, Cr: 18.0 to 23.5%, Mo: 0.3 to 2.5%, Al: 0.005 to 0.15%, Ti: 0.05 to 0.25 %, Nb: 0.10 to 0.5%, the remainder is made of Fe and inevitable impurities, and the component composition satisfies the formula (A).
(Si + 2.5Al + 3Ti) /Mn≦2.0 (A)
However, the element symbol in a formula means the mass% of the said element.
更に、質量%で、Cu:0.5%以下、Ni:0.05〜2.0%、V:0.05〜1.0%の一種又は二種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。   Furthermore, it contains one or two or more of Cu: 0.5% or less, Ni: 0.05-2.0%, V: 0.05-1.0% in mass%. Item 2. The ferritic stainless steel according to Item 1. 更に、質量%で、Sn:0.05〜1%、Sb:0.05〜1%から選ばれる一種又は二種を含むことを特徴とする請求項1又は請求項2に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to claim 1 or 2, further comprising one or two kinds selected from Sn: 0.05 to 1% and Sb: 0.05 to 1% by mass%. steel. 更に、質量%で、Zr:0.2%以下、B:0.005%以下の一種又は二種を含有することを特徴とする請求項1〜請求項3のいずれかに記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to any one of claims 1 to 3, further comprising one or two kinds of Zr: 0.2% or less and B: 0.005% or less in mass%. steel.
JP2012076828A 2012-03-29 2012-03-29 Ferritic stainless steel with excellent corrosion resistance of welds Active JP5937867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076828A JP5937867B2 (en) 2012-03-29 2012-03-29 Ferritic stainless steel with excellent corrosion resistance of welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076828A JP5937867B2 (en) 2012-03-29 2012-03-29 Ferritic stainless steel with excellent corrosion resistance of welds

Publications (2)

Publication Number Publication Date
JP2013204128A JP2013204128A (en) 2013-10-07
JP5937867B2 true JP5937867B2 (en) 2016-06-22

Family

ID=49523548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076828A Active JP5937867B2 (en) 2012-03-29 2012-03-29 Ferritic stainless steel with excellent corrosion resistance of welds

Country Status (1)

Country Link
JP (1) JP5937867B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095888B1 (en) * 2014-01-14 2019-08-14 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in electrical conductivity and adhesion of oxide film
KR101659185B1 (en) * 2014-12-26 2016-09-23 주식회사 포스코 Ferritic stainless steel
WO2018147149A1 (en) * 2017-02-08 2018-08-16 Jfeスチール株式会社 Ferritic stainless steel sheet
WO2021193479A1 (en) * 2020-03-25 2021-09-30 日鉄ステンレス株式会社 Weld structure, stainless steel welded structure, stainless steel welded container and stainless steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JP3879164B2 (en) * 1997-03-18 2007-02-07 Jfeスチール株式会社 Method for producing ferritic stainless hot rolled steel strip with excellent cold rolling properties
JP2009097079A (en) * 2007-09-27 2009-05-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent atmospheric corrosion resistance
JP2009161836A (en) * 2008-01-09 2009-07-23 Nisshin Steel Co Ltd Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP5704823B2 (en) * 2010-02-25 2015-04-22 日新製鋼株式会社 Ferritic stainless steel with no rare earth metals and excellent oxidation resistance at high temperatures
JP5610796B2 (en) * 2010-03-08 2014-10-22 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas

Also Published As

Publication number Publication date
JP2013204128A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5931053B2 (en) Ferritic stainless steel and TIG welded structure with excellent corrosion resistance and strength of welds
JP5793283B2 (en) Ferritic stainless steel with few black spots
JP5489759B2 (en) Ferritic stainless steel with few black spots
KR101339484B1 (en) High-strength stainless steel pipe
JP5984213B2 (en) Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP2007262441A (en) Steel for crude oil tank and its production method
JP5937867B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP2739531B2 (en) Ferritic stainless steel with excellent weld corrosion resistance
JP6274370B1 (en) Ferritic stainless steel sheet
JP5949057B2 (en) Ferritic stainless steel with excellent corrosion resistance and low temperature toughness of welds
JP3190290B2 (en) Ferritic stainless steel with excellent corrosion resistance at welds
JPH06279951A (en) Ferritic stainless steel for water heater
JP5676896B2 (en) Ferritic stainless steel with excellent local corrosion resistance
JP6610792B2 (en) Ferritic stainless steel sheet
JP2014162988A (en) Ferritic stainless steel
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP7343691B2 (en) Welded structures, stainless steel welded structures, stainless steel welded vessels and stainless steel
JP7357761B2 (en) Clad steel plate and its manufacturing method and welded structure
JP6247196B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2011202254A (en) Ferritic stainless steel having excellent corrosion resistance in weld zone
NZ615961B2 (en) Ferritic stainless steel excellent in corrosion resistance and strength of weld zone and tig welded structure
JP2015175017A (en) HIGH CORROSION RESISTANT AUSTENITIC STAINLESS STEEL EXCELLENT IN σ EMBRITTLEMENT RESISTANCE AND WELDABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160513

R150 Certificate of patent or registration of utility model

Ref document number: 5937867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250