JP5937152B2 - Hydropower control system - Google Patents

Hydropower control system Download PDF

Info

Publication number
JP5937152B2
JP5937152B2 JP2014156297A JP2014156297A JP5937152B2 JP 5937152 B2 JP5937152 B2 JP 5937152B2 JP 2014156297 A JP2014156297 A JP 2014156297A JP 2014156297 A JP2014156297 A JP 2014156297A JP 5937152 B2 JP5937152 B2 JP 5937152B2
Authority
JP
Japan
Prior art keywords
hydroelectric generator
hydroelectric
generator
state
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014156297A
Other languages
Japanese (ja)
Other versions
JP2016034194A (en
Inventor
正博 友池
正博 友池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014156297A priority Critical patent/JP5937152B2/en
Publication of JP2016034194A publication Critical patent/JP2016034194A/en
Application granted granted Critical
Publication of JP5937152B2 publication Critical patent/JP5937152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

この発明は、水力発電所における発電機を制御する水力発電制御システムに関し、特に、発電機を停止状態から再起動させる水力発電制御システムに関する。   The present invention relates to a hydraulic power generation control system that controls a power generator in a hydroelectric power plant, and more particularly to a hydroelectric power generation control system that restarts a power generator from a stopped state.

川の水をそのまま引き込んで発電する流れ込み(自流)式発電においては、水槽水位の増減に従って発電機の出力調整や運転、停止の自動制御を行っている。また、連系する送電線の事故などによって、発電機が系統から分離されて単独運転となった場合、発電出力の周波数や電圧を検出する単独運転検出装置(周波数継電器と電圧継電器)の設定値が一定時限を超えると、閉塞継電器(86−A)によって発電機を自動停止させている。その後、運転者が、系統が復旧したことや発電機に故障がないことを確認して、閉塞継電器を手動操作して発電機を再起動させている。   In inflow (self-flowing) power generation that draws in the river water as it is and generates power, the output of the water tank is adjusted and the generator is automatically adjusted for operation and shutdown. In addition, when the generator is separated from the system due to an accident in the connected transmission line, etc., and is in isolated operation, the set value of the isolated operation detection device (frequency relay and voltage relay) that detects the frequency and voltage of the generated output Exceeds a certain time limit, the generator is automatically stopped by the closed relay (86-A). Thereafter, the driver confirms that the system has been restored and that there is no failure in the generator, and manually operates the blocked relay to restart the generator.

一方、異常事態の復旧を判定した時に、制御機に対して水力発電機の稼働の再開を指示する水力発電システムが知られている(例えば、特許文献1参照。)。この水力発電システムは、現場において保守員による復旧作業が行われ、復旧が完了して保守員がサーバに対して発電機の再稼働を要求すると、サーバは、異常事態が復旧したと判定して制御機に稼働再開を指示するものである。   On the other hand, a hydraulic power generation system that instructs a controller to resume operation of a hydroelectric generator when it is determined that an abnormal situation has been recovered is known (see, for example, Patent Document 1). In this hydropower system, when maintenance work is performed on site by the maintenance personnel, and the maintenance is completed and the maintenance personnel request the server to restart the generator, the server determines that the abnormal situation has been recovered. Instructs the controller to resume operation.

特開2008−099373号公報JP 2008-099373 A

ところで、従来は、系統が復旧したことや発電機に故障がないことを運転者が確認し、閉塞継電器を手動操作して発電機を再起動させるため、運転者が失念等した場合には、発電機の運転が遅れることになる。この結果、発電水が水槽から溢れ出たり、上流に位置する調整池の水位が自然流量によって上昇して、ダムから緊急放流する必要が生じたりする場合がある。   By the way, in the past, the driver confirmed that the system was restored and that there was no failure in the generator, and manually restarted the generator by manually operating the blocked relay, so if the driver forgot, The generator operation will be delayed. As a result, the generated water may overflow from the water tank, or the water level of the adjustment pond located upstream may rise due to the natural flow rate, which may require an emergency discharge from the dam.

一方、特許文献1の水力発電システムでは、保守員がサーバに対して発電機の再稼働を要求することで、異常事態が復旧したと判定するものであるため、保守員が要求を失念等した場合には、発電機の運転が遅れることになる。しかも、保守員の作業完了に伴う要求だけをもって発電機を再起動させるが、単独運転による自動停止状態から適正に再起動させるには、その他の状況・状態を適正に考慮して再起動の要否を判定する必要がある。   On the other hand, in the hydroelectric power generation system of Patent Document 1, since the maintenance staff determines that the abnormal situation has been recovered by requesting the server to restart the generator, the maintenance staff forgets the request. In some cases, the operation of the generator will be delayed. In addition, the generator is restarted only with a request accompanying the completion of work by the maintenance personnel, but in order to restart properly from the automatic stop state due to independent operation, it is necessary to restart considering the other situations and conditions appropriately. It is necessary to determine whether or not.

そこでこの発明は、単独運転による自動停止状態から早期かつ適正に発電機を再起動させることが可能な、水力発電制御システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a hydroelectric power generation control system capable of restarting a generator early and appropriately from an automatic stop state by an independent operation.

前記課題を解決するために、請求項1の発明は、送電系統に接続された水力発電機の運転を制御する水力発電制御システムであって、前記送電系統と前記水力発電機との接続を遮断可能な遮断手段と、電力の周波数および電圧の少なくとも一方に基づいて、前記水力発電機が前記送電系統から分離されて単独運転であることを検知する単独運転検知手段と、前記水力発電機が停止時に、前記遮断手段が非遮断状態となり、前記単独運転検知手段が非検知状態となった場合に、前記水力発電機を起動させる制御手段と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the invention of claim 1 is a hydraulic power generation control system that controls the operation of a hydroelectric generator connected to a power transmission system, and disconnects the connection between the power transmission system and the hydroelectric generator. Possible shut-off means, isolated operation detecting means for detecting that the hydroelectric generator is isolated from the power transmission system based on at least one of power frequency and voltage, and the hydroelectric generator is stopped. And a control means for starting the hydroelectric generator when the shut-off means is in a non-cut-off state and the isolated operation detection means is in a non-detection state.

この発明によれば、水力発電機が停止時に、遮断手段が非遮断状態(送電系統と水力発電機とが接続された状態)となり、単独運転検知手段が非検知状態(水力発電機が単独運転でない状態)となった場合に、制御手段によって水力発電機が起動される。   According to this invention, when the hydroelectric generator is stopped, the shut-off means is in a non-cut-off state (a state in which the power transmission system and the hydro-electric generator are connected), and the single operation detection means is in a non-detection state (the hydroelectric generator is in single operation). The hydraulic power generator is activated by the control means.

請求項2の発明は、請求項1に記載の水力発電制御システムにおいて、前記水力発電機に供給する水を貯留する貯水池の水位を計測する水位計測手段を備え、前記制御手段は、前記水力発電機が停止時に、前記遮断手段が非遮断状態となり、前記単独運転検知手段が非検知状態となり、かつ、前記水位計測手段によって水位の上昇が計測された場合に、前記水力発電機を起動させる、ことを特徴とする。   The invention according to claim 2 is the hydroelectric power generation control system according to claim 1, further comprising water level measuring means for measuring a water level of a reservoir storing water to be supplied to the hydroelectric generator, wherein the control means includes the hydroelectric power generation system. When the machine is stopped, the shut-off means is in a non-cut-off state, the isolated operation detection means is in a non-detection state, and when the rise in the water level is measured by the water level measurement means, the hydraulic power generator is started. It is characterized by that.

請求項3の発明は、請求項1または2に記載の水力発電制御システムにおいて、前記制御手段は、前記遮断手段が遮断状態となり、前記単独運転検知手段が検知状態となった場合に、前記水力発電機を停止させる、ことを特徴とする。   According to a third aspect of the present invention, in the hydraulic power generation control system according to the first or second aspect of the present invention, the control means is configured such that when the shut-off means is in a shut-off state and the independent operation detection means is in a detect state, the hydraulic power The generator is stopped.

請求項1の発明によれば、水力発電機が停止時に、所定の状態になると、制御手段によって自動的に水力発電機が起動されるため、保守員に依存せず、早期に水力発電機を再起動させることが可能となる。しかも、送電系統と水力発電機とが接続された状態となり、水力発電機が単独運転でないことが検知・確認された場合、つまり、水力発電機による発電を確実・適正に送電系統で受電できる状態になった場合に、水力発電機が起動されるため、適正な状態で水力発電機を再起動させることが可能となる。   According to the first aspect of the present invention, when the hydroelectric generator is in a predetermined state when it is stopped, the hydroelectric generator is automatically activated by the control means. It can be restarted. Moreover, when the power transmission system and the hydroelectric generator are connected, and it is detected and confirmed that the hydroelectric generator is not operating independently, that is, the power generation by the hydroelectric generator can be reliably and properly received by the power transmission system. In this case, since the hydroelectric generator is started, the hydroelectric generator can be restarted in an appropriate state.

請求項2の発明によれば、貯水池の水位の上昇が計測された場合に、水力発電機が起動されるため、より適正な状態で水力発電機を再起動させることが可能となる。すなわち、水力発電機の停止中に貯水池の水位が上昇していないにもかかわらず、水力発電機を再起動させると、貯水池の水位が必要最低水位よりも低下する場合があるが、この発明によれば、そのようなことがなく、より適正な状態で水力発電機を再起動させることが可能となる。   According to the invention of claim 2, since the hydroelectric generator is activated when the rise in the water level of the reservoir is measured, the hydroelectric generator can be restarted in a more appropriate state. That is, when the water level of the reservoir is not increased while the hydroelectric generator is stopped, the water level of the reservoir may be lower than the minimum required level when the hydroelectric generator is restarted. According to this, such a situation does not occur, and the hydroelectric generator can be restarted in a more appropriate state.

請求項3の発明によれば、遮断手段が遮断状態(送電系統と水力発電機との接続が遮断された状態)となり、単独運転検知手段が検知状態(水力発電機が単独運転)となった場合に、制御手段によって水力発電機が停止される。このため、適正な状態で安全に水力発電機を自動停止させることが可能となる。   According to invention of Claim 3, the interruption | blocking means will be in the interruption | blocking state (state in which the connection of a power transmission system and a hydroelectric generator was interrupted | blocked), and the independent operation detection means became the detection state (the hydroelectric generator was independent operation). In this case, the hydroelectric generator is stopped by the control means. For this reason, it becomes possible to automatically stop the hydroelectric generator safely in an appropriate state.

この発明の実施の形態に係る水力発電制御システムを示す概略構成ブロック図である。1 is a schematic block diagram showing a hydraulic power generation control system according to an embodiment of the present invention. 図1の水力発電制御システムが適用される流れ込み式発電設備を示す概要図である。It is a schematic diagram which shows the inflow type power generation equipment with which the hydroelectric power generation control system of FIG. 1 is applied. 図1の水力発電制御システムと送電系統との関係を示す概要図である。It is a schematic diagram which shows the relationship between the hydraulic power generation control system of FIG. 1, and a power transmission system. 図1の水力発電制御システムの単独運転検知装置の検出条件等を示す図(a)と、水力発電機の再起動条件等を示す図(b)である。It is a figure (a) which shows the detection conditions etc. of the independent operation detection apparatus of the hydroelectric power generation control system of Drawing 1, and a figure (b) which shows restart conditions etc. of a hydroelectric generator.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1〜図4は、この発明の実施の形態を示し、図1は、この実施の形態に係る水力発電制御システム1を示す概略構成ブロック図である。この水力発電制御システム1は、送電母線(送電系統)201に接続・連系された水力発電機101の運転を制御するシステムであり、主として、受電遮断器(遮断手段)2と、単独運転検知装置(単独運転検知手段)3と、水位計(水位計測手段)4と、閉塞継電器5と、制御部(制御手段)6と、を備えている。   1 to 4 show an embodiment of the present invention, and FIG. 1 is a schematic block diagram showing a hydraulic power generation control system 1 according to this embodiment. This hydroelectric power generation control system 1 is a system for controlling the operation of a hydroelectric generator 101 connected to or connected to a power transmission bus (power transmission system) 201, and mainly includes a power receiving breaker (breaking means) 2 and an independent operation detection. A device (single operation detecting means) 3, a water level meter (water level measuring means) 4, a block relay 5, and a control unit (control means) 6 are provided.

ここで、水力発電制御システム1が適用される流れ込み式発電設備について、図2に基づいて説明する。図2中符号101は、水力発電所Sに設置された水力発電機であり、水車や発電機などから構成されている。この水力発電機101は、上流側の水槽(貯水池)102と鉄管103を介して接続され、水槽102内の水が、発電水として鉄管103および入口弁104を介して、水力発電機101に流入することで発電され、放水路105に流出されるようになっている。   Here, a flow-type power generation facility to which the hydroelectric power generation control system 1 is applied will be described with reference to FIG. Reference numeral 101 in FIG. 2 denotes a hydroelectric generator installed in the hydroelectric power plant S, and is composed of a turbine, a generator, and the like. This hydroelectric generator 101 is connected to an upstream water tank (reservoir) 102 via an iron pipe 103, and water in the water tank 102 flows into the hydroelectric generator 101 via an iron pipe 103 and an inlet valve 104 as power generation water. As a result, electric power is generated and flows out into the water discharge channel 105.

また、水槽102の上流側には調整池(貯水池)111が設けられ、調整池111内の水が取水口ゲート112および水路113を介して水槽102に流入するようになっている。このように、水槽102と調整池111とが、水力発電機101に供給する水を貯留する貯水池を構成している。また、調整池111から溢れ出た放流水は、河川に流れるようになっている。   In addition, an adjustment pond (reservoir) 111 is provided on the upstream side of the water tank 102, and water in the adjustment pond 111 flows into the water tank 102 via the intake gate 112 and the water channel 113. Thus, the water tank 102 and the adjustment pond 111 constitute a reservoir for storing water to be supplied to the hydroelectric generator 101. Moreover, the discharged water overflowing from the adjustment pond 111 flows into the river.

受電遮断器2は、図3に示すように、送電母線201と水力発電機101との接続を遮断可能な遮断器であり、この受電遮断器2が非遮断状態の場合には、水力発電機101で発電された電力が送電母線201に送電される。一方、受電遮断器2が遮断状態の場合には、水力発電機101が送電母線201から分離される。この受電遮断器2は、送電系統全体を監視、管理等するシステムによって制御され、連系する送電母線201の事故などが発生すると遮断され、事故などが復旧すると投入されるようになっている。このような受電遮断器2の動作状態、つまり、遮断状態か非遮断状態かは、リアルタイムに制御部6に送信されるようになっている。   As shown in FIG. 3, the power receiving breaker 2 is a circuit breaker capable of interrupting the connection between the power transmission bus 201 and the hydroelectric generator 101, and when the power receiving breaker 2 is in a non-breaking state, the hydroelectric generator The electric power generated in 101 is transmitted to the power transmission bus 201. On the other hand, when the power receiving breaker 2 is in a cut-off state, the hydroelectric generator 101 is separated from the power transmission bus 201. The power receiving circuit breaker 2 is controlled by a system that monitors and manages the entire power transmission system, and is interrupted when an accident or the like of the connected power transmission bus 201 occurs, and is turned on when the accident or the like is restored. Such an operation state of the power receiving breaker 2, that is, whether it is in a cut-off state or a non-cut-off state is transmitted to the control unit 6 in real time.

ここで、この実施の形態では、水力発電機101を複数備え、各水力発電機101に対して発電機部遮断器・交流遮断器(52G)21が設けられている。そして、受電遮断器2が非遮断状態である通常運転状態において、水槽水位の増減に基づく制御シーケンスに従って各発電機部遮断器21が制御されることで、各水力発電機101による発電電力が出力調整されて、送電母線201に送電されるようになっている。   Here, in this embodiment, a plurality of hydroelectric generators 101 are provided, and a generator section breaker / AC breaker (52G) 21 is provided for each hydroelectric generator 101. Then, in the normal operation state where the power receiving breaker 2 is in the non-breaking state, each generator section breaker 21 is controlled according to the control sequence based on the increase / decrease in the water level of the aquarium, so that the power generated by each hydroelectric generator 101 is output. The power is adjusted and transmitted to the power transmission bus 201.

単独運転検知装置3は、水力発電所S内(受電遮断器2から水力発電機101側)の電力の周波数および電圧の少なくとも一方に基づいて、水力発電機101が送電母線201から分離されて単独運転であることを検知する装置であり、既製・既存の単独運転検知装置と同等の構成となっている。すなわち、電圧継電器(84)と周波数継電器(95)とを備え、図4(a)に示すように、次のいずれかのケース1〜4に該当して、所定の時限継続した場合に、水力発電機101が単独運転であると判断(検知)する。   The isolated operation detection device 3 is configured such that the hydroelectric generator 101 is separated from the power transmission bus 201 based on at least one of the frequency and voltage of electric power in the hydroelectric power plant S (from the power receiving breaker 2 to the hydroelectric generator 101 side). It is a device that detects driving, and has the same configuration as a ready-made / existing single operation detection device. That is, it is provided with a voltage relay (84) and a frequency relay (95), and, as shown in FIG. It is determined (detected) that the generator 101 is operating alone.

ケース1;水力発電機101側の電圧が所定上限値(84H)を超えた場合
ケース2;水力発電機101側の電圧が所定下限値(84L)よりも下がった場合
ケース3;水力発電機101側の周波数が所定上限値(95H)を超えた場合
ケース4;水力発電機101側の周波数が所定下限値(95L)よりも下がった場合
一方、水力発電機101の単独運転を検知した後に、すべてのケース1〜4に該当しなくなって所定の時限継続した場合に、水力発電機101が単独運転でなくなったと判断(非検知)する。このような単独運転検知装置3の動作結果、つまり、検知状態か非検知状態(復帰)かは、リアルタイムに制御部6に送信されるようになっている。
Case 1; When the voltage on the hydroelectric generator 101 side exceeds the predetermined upper limit value (84H) Case 2; When the voltage on the hydroelectric generator 101 side falls below the predetermined lower limit value (84L) Case 3; When the frequency on the side exceeds the predetermined upper limit value (95H) Case 4; When the frequency on the hydroelectric generator 101 side falls below the predetermined lower limit value (95L) On the other hand, after detecting the single operation of the hydroelectric generator 101 When it does not correspond to all cases 1 to 4 and continues for a predetermined time period, it is determined (non-detection) that the hydroelectric generator 101 is not in a single operation. Such an operation result of the isolated operation detection device 3, that is, whether it is a detection state or a non-detection state (return) is transmitted to the control unit 6 in real time.

水位計4は、水力発電機101に供給する水を貯留する貯水池の水位を常時計測する計測器であり、この実施の形態では、水槽102と調整池111との双方に配設されている。そして、各水位計4で計測された水位は、リアルタイムに制御部6に送信され、制御部6で記憶されるようになっている。   The water level meter 4 is a measuring instrument that constantly measures the water level of a reservoir that stores water to be supplied to the hydroelectric generator 101, and is disposed in both the water tank 102 and the adjustment pond 111 in this embodiment. The water level measured by each water level gauge 4 is transmitted to the control unit 6 in real time and stored in the control unit 6.

閉塞継電器5は、水力発電機101を自動停止または自動起動させるための継電器(86)であり、後述するように、制御部6によって制御される。   The closed relay 5 is a relay (86) for automatically stopping or automatically starting the hydroelectric generator 101, and is controlled by the control unit 6 as will be described later.

制御部6は、閉塞継電器5を制御することで水力発電機101を自動停止または自動起動するものであり、水力発電所S内に配設されている。   The control unit 6 controls the closed relay 5 to automatically stop or automatically start the hydroelectric generator 101, and is disposed in the hydroelectric power plant S.

まず、水力発電機101が起動時に、受電遮断器2が遮断状態となり、単独運転検知装置3が検知状態(単独運転検知装置3によって水力発電機101の単独運転が検知された状態)となった場合に、水力発電機101を停止させる。すなわち、送電母線201と水力発電機101との接続が遮断され(送電線事故等が発生し)、かつ、水力発電機101の周波数や電圧が異常となって単独運転が検知される、という自動停止条件が成立した場合に、閉塞継電器5によって水力発電機101を自動停止する。このように、受電遮断器2の遮断状態と単独運転検知装置3の検知状態との双方が確認されたことをもって、水力発電機101の単独運転状態を確定して、水力発電機101を停止するべきとするものである。   First, when the hydroelectric generator 101 is activated, the power receiving breaker 2 is cut off, and the single operation detection device 3 is in a detection state (the single operation of the hydroelectric generator 101 is detected by the single operation detection device 3). In this case, the hydroelectric generator 101 is stopped. That is, an automatic operation in which the connection between the power transmission bus 201 and the hydroelectric generator 101 is interrupted (a power transmission line accident or the like occurs), and the frequency or voltage of the hydroelectric generator 101 becomes abnormal and the isolated operation is detected. When the stop condition is satisfied, the hydroelectric generator 101 is automatically stopped by the closed relay 5. As described above, when both the interruption state of the power receiving breaker 2 and the detection state of the single operation detection device 3 are confirmed, the single operation state of the hydroelectric generator 101 is determined and the hydroelectric generator 101 is stopped. It should be.

一方、水力発電機101が停止時に、図4(b)に示すように、受電遮断器2が非遮断状態となり、単独運転検知装置3が非検知状態(単独運転検知装置3によって水力発電機101の単独運転が検知されない状態)となり、かつ、水位計4によって水位の上昇が計測された場合に、水力発電機101を起動させる。すなわち、送電母線201と水力発電機101とが接続され(送電線事故等が復旧し)、水力発電機101の周波数や電圧が正常となって単独運転が検知されず(水力発電機101に故障がなく)、かつ、水力発電機101の停止中に水槽102や調整池111の水位が上昇した、という自動起動条件が成立した場合に、閉塞継電器5によって水力発電機101を自動起動する。   On the other hand, when the hydroelectric generator 101 is stopped, as shown in FIG. 4B, the power receiving breaker 2 is in a non-cutoff state, and the single operation detection device 3 is in a non-detection state (the single operation detection device 3 causes the hydroelectric generator 101 to The hydroelectric generator 101 is activated when the water level gauge 4 measures the rise in the water level. That is, the power transmission bus 201 and the hydroelectric generator 101 are connected (the power transmission line accident is restored), the frequency and voltage of the hydroelectric generator 101 are normal, and no isolated operation is detected (the hydroelectric generator 101 has failed). If the automatic start condition that the water level of the water tank 102 or the regulating pond 111 has increased while the hydroelectric generator 101 is stopped is satisfied, the hydroelectric generator 101 is automatically started by the closed relay 5.

このように、受電遮断器2の非遮断状態、つまり送電線事故等の復旧と、単独運転検知装置3の非検知状態、つまり水力発電機101が正常であること、との双方が確認されたことをもって、水力発電機101が単独運転状態でないことを確定し、かつ、水位の上昇が確認された場合に、水力発電機101を再起動すべきとするものである。ここで、水槽102や調整池111の容量、水系統・水路などに応じて、水位の上昇は、水槽102と調整池111との双方を条件としてもよいし、いずれか一方を条件としてもよい。   As described above, both the non-cut-off state of the power receiving breaker 2, that is, the restoration of the power transmission line accident and the like, and the non-detection state of the isolated operation detection device 3, that is, that the hydroelectric generator 101 is normal were confirmed. Accordingly, when it is determined that the hydroelectric generator 101 is not in the single operation state and an increase in the water level is confirmed, the hydroelectric generator 101 should be restarted. Here, depending on the capacity of the water tank 102 and the adjustment pond 111, the water system / water channel, etc., the rise in the water level may be made on both the water tank 102 and the adjustment pond 111, or on one of them. .

次に、このような構成の水力発電制御システム1の作用および、水力発電制御システム1による水力発電制御方法などについて説明する。   Next, the operation of the hydroelectric power generation control system 1 having such a configuration, the hydroelectric power generation control method by the hydroelectric power generation control system 1, and the like will be described.

まず、水力発電機101が起動して発電、送電状態において、送電母線201に事故が発生すると、受電遮断器2が遮断され、水力発電機101が送電母線201から分離されて、水力発電機101側における電力の周波数および電圧が変動する。これにより、単独運転検知装置3によって、上記のようにして水力発電機101が単独運転であることが検知される。続いて、上記のような自動停止条件が成立するため、制御部6によって水力発電機101が自動停止され、水槽102や調整池111からの水が、水力発電機101側に流れなくなる。これにより、上流側からの水流がある場合には、水槽102や調整池111の水位が上昇する。   First, when an accident occurs in the power transmission bus 201 in the power generation and power transmission state when the hydroelectric generator 101 is activated, the power receiving breaker 2 is cut off, the hydroelectric generator 101 is separated from the power transmission bus 201, and the hydroelectric generator 101 The frequency and voltage of power on the side fluctuate. Thereby, it is detected by the independent operation detection device 3 that the hydroelectric generator 101 is in the isolated operation as described above. Subsequently, since the automatic stop condition as described above is established, the hydroelectric generator 101 is automatically stopped by the control unit 6, and water from the water tank 102 and the adjustment pond 111 does not flow to the hydroelectric generator 101 side. Thereby, when there is a water flow from the upstream side, the water level of the water tank 102 or the adjustment pond 111 rises.

その後、送電母線201の事故が復旧すると、受電遮断器2が投入され、水力発電機101が送電母線201に接続されて、水力発電機101側における電力の周波数および電圧が正常化する。これにより、上記のようにして単独運転検知装置3が非検知・復帰となる。そして、水槽102や調整池111の水位が上昇している場合には、上記のような自動起動条件が成立するため、制御部6によって水力発電機101が自動起動され、停止前の負荷で運転されるものである。   Thereafter, when the accident of the power transmission bus 201 is restored, the power receiving breaker 2 is turned on, the hydroelectric generator 101 is connected to the power transmission bus 201, and the frequency and voltage of power on the hydroelectric generator 101 side are normalized. As a result, the isolated operation detection device 3 is not detected / returned as described above. And when the water level of the water tank 102 or the adjustment pond 111 is rising, since the automatic start conditions as described above are satisfied, the hydroelectric generator 101 is automatically started by the control unit 6 and is operated with the load before the stop. It is what is done.

以上のように、この水力発電制御システム1および水力発電制御方法によれば、水力発電機101が停止時に、所定の状態になって自動起動条件が成立すると、制御部6によって自動的に水力発電機101が起動されるため、保守員に依存せず、早期に水力発電機101を再起動させることが可能となる。このため、発電水が水槽102や調整池111から溢れ出ることが防止・抑制され、発電水を発電に有効利用することができる。   As described above, according to the hydroelectric power generation control system 1 and the hydroelectric power generation control method, when the hydroelectric generator 101 is in a predetermined state and the automatic start condition is satisfied when the hydroelectric generator 101 is stopped, the hydroelectric power generation is automatically performed by the control unit 6. Since the machine 101 is started, the hydroelectric generator 101 can be restarted at an early stage without depending on maintenance personnel. For this reason, it is prevented and suppressed that the generated water overflows from the water tank 102 and the adjustment pond 111, and the generated water can be effectively used for power generation.

また、送電母線201と水力発電機101とが接続された状態となり、水力発電機101が単独運転でないことが検知・確認された場合、つまり、水力発電機101による発電を確実・適正に送電母線201で受電できる状態になった場合に、水力発電機101が起動されるため、適正な状態で水力発電機101を再起動させることが可能となる。   Further, when the power transmission bus 201 and the hydroelectric generator 101 are connected and it is detected and confirmed that the hydroelectric generator 101 is not operating independently, that is, the power generation by the hydroelectric generator 101 is reliably and appropriately performed. Since the hydroelectric generator 101 is activated when the electric power can be received in 201, the hydroelectric generator 101 can be restarted in an appropriate state.

しかも、水槽102や調整池111の水位が上昇している場合に、水力発電機101が起動されるため、より適正な状態で水力発電機101を再起動させることが可能となる。すなわち、水力発電機101の停止中に水槽102や調整池111の水位が上昇していないにもかかわらず、水力発電機101を再起動させると、水槽102や調整池111の水位が必要最低水位よりも低下する場合があるが、この水力発電制御システム1によれば、そのようなことがなく、より適正な状態で水力発電機101を再起動させることが可能となる。   Moreover, since the hydroelectric generator 101 is activated when the water level in the water tank 102 or the adjustment pond 111 is rising, the hydroelectric generator 101 can be restarted in a more appropriate state. That is, when the hydroelectric generator 101 is restarted even though the water level of the water tank 102 or the adjustment pond 111 has not risen while the hydroelectric generator 101 is stopped, the water level of the water tank 102 or the adjustment pond 111 is the required minimum water level. However, according to the hydroelectric power generation control system 1, it is not possible to restart the hydroelectric generator 101 in a more appropriate state.

一方、受電遮断器2が遮断されて送電母線201と水力発電機101との接続が遮断され、単独運転検知装置3で水力発電機101の単独運転が検知された場合に、制御部6によって水力発電機101が停止される。このため、適正な状態で安全に水力発電機101を自動停止させることが可能となる。   On the other hand, when the power receiving breaker 2 is cut off and the connection between the power transmission bus 201 and the hydroelectric generator 101 is cut off, and the isolated operation of the hydroelectric generator 101 is detected by the isolated operation detection device 3, The generator 101 is stopped. For this reason, it becomes possible to automatically stop the hydroelectric generator 101 safely in an appropriate state.

ところで、既存の流れ込み式発電設備・水力発電所Sにおいては、受電遮断器2、単独運転検知装置3、水位計4および閉塞継電器5が備わっているため、制御部6を設けるだけで、容易かつ低コストで水力発電制御システム1を構築することができる。   By the way, in the existing inflow type power generation equipment / hydroelectric power plant S, the power receiving breaker 2, the islanding operation detection device 3, the water level gauge 4 and the block relay 5 are provided. The hydroelectric power generation control system 1 can be constructed at a low cost.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、流れ込み式の水力発電の場合について説明したが、流れ込み式以外の水力発電にも適用することができる。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above-described embodiment, the case of inflow type hydroelectric power generation has been described, but the present invention can also be applied to hydroelectric power generation other than inflow type.

1 水力発電制御システム
2 受電遮断器(遮断手段)
3 単独運転検知装置(単独運転検知手段)
4 水位計(水位計測手段)
5 閉塞継電器
6 制御部(制御手段)
101 水力発電機
102 水槽(貯水池)
111 調整池(貯水池)
201 送電母線(送電系統)
S 水力発電所
1 Hydroelectric power generation control system 2 Receiving circuit breaker (breaking means)
3 Single operation detection device (Single operation detection means)
4 Water level gauge (water level measuring means)
5 Blocking relay 6 Control unit (control means)
101 Hydroelectric generator 102 Water tank (reservoir)
111 Regulating pond (reservoir)
201 Power transmission bus (power transmission system)
S Hydroelectric power plant

Claims (3)

送電系統に接続された水力発電機の運転を制御する水力発電制御システムであって、
前記送電系統と前記水力発電機との接続を遮断可能な遮断手段と、
電力の周波数および電圧の少なくとも一方に基づいて、前記水力発電機が前記送電系統から分離されて単独運転であることを検知する単独運転検知手段と、
前記水力発電機が停止時に、前記遮断手段が非遮断状態となり、前記単独運転検知手段が非検知状態となった場合に、前記水力発電機を起動させる制御手段と、
を備えることを特徴とする水力発電制御システム。
A hydraulic power generation control system for controlling the operation of a hydroelectric generator connected to a power transmission system,
A blocking means capable of blocking the connection between the power transmission system and the hydroelectric generator;
Based on at least one of the frequency and voltage of electric power, isolated operation detecting means for detecting that the hydroelectric generator is separated from the power transmission system and is operated independently,
Control means for starting the hydroelectric generator when the hydroelectric generator is stopped when the shutoff means is in a non-cutoff state and the single operation detection means is in a nondetection state;
A hydroelectric power generation control system comprising:
前記水力発電機に供給する水を貯留する貯水池の水位を計測する水位計測手段を備え、
前記制御手段は、前記水力発電機が停止時に、前記遮断手段が非遮断状態となり、前記単独運転検知手段が非検知状態となり、かつ、前記水位計測手段によって水位の上昇が計測された場合に、前記水力発電機を起動させる、
ことを特徴とする請求項1に記載の水力発電制御システム。
Water level measuring means for measuring the water level of a reservoir for storing water to be supplied to the hydroelectric generator,
The control means, when the hydroelectric generator is stopped, when the shut-off means is in a non-cut-off state, the isolated operation detection means is in a non-detection state, and when the rise of the water level is measured by the water level measurement means, Activating the hydroelectric generator,
The hydroelectric power generation control system according to claim 1.
前記制御手段は、前記遮断手段が遮断状態となり、前記単独運転検知手段が検知状態となった場合に、前記水力発電機を停止させる、
ことを特徴とする請求項1または2のいずれか1項に記載の水力発電制御システム。
The control means stops the hydraulic power generator when the shut-off means is in a shut-off state and the islanding detection means is in a detect state.
The hydroelectric power generation control system according to any one of claims 1 and 2.
JP2014156297A 2014-07-31 2014-07-31 Hydropower control system Active JP5937152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156297A JP5937152B2 (en) 2014-07-31 2014-07-31 Hydropower control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156297A JP5937152B2 (en) 2014-07-31 2014-07-31 Hydropower control system

Publications (2)

Publication Number Publication Date
JP2016034194A JP2016034194A (en) 2016-03-10
JP5937152B2 true JP5937152B2 (en) 2016-06-22

Family

ID=55452863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156297A Active JP5937152B2 (en) 2014-07-31 2014-07-31 Hydropower control system

Country Status (1)

Country Link
JP (1) JP5937152B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812369A (en) * 2019-01-10 2019-05-28 义乌市吉龙科技有限公司 A kind of fair current intelligent power generation system
CN113565669B (en) * 2021-08-19 2023-08-11 安徽响水涧抽水蓄能有限公司 Safe and reliable control method for mechanical braking system of pumped storage unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173915B2 (en) * 1993-04-16 2001-06-04 東芝エンジニアリング株式会社 Generator independent operation detection device
JP2000184601A (en) * 1998-12-16 2000-06-30 Kansai Electric Power Co Inc:The System interconnection power unit
JP4243709B2 (en) * 1999-10-15 2009-03-25 伸一 前仲 Independent operation detection system for private power generation facilities

Also Published As

Publication number Publication date
JP2016034194A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
CN104633638B (en) The integrated control method of the shutdown not blowing out function of power plant FCB
JP2016096086A5 (en)
TW201409894A (en) Method for controlling an electrical producer
CN101290342A (en) Hydroelectric units black start-up ability verification test method
CN103868145A (en) Dry burning prevention control method for wall hanging furnace
JP5937152B2 (en) Hydropower control system
CN102966578A (en) Pressure control method and device for pump unit of nuclear power station
CN109974028B (en) Optimization method for shutdown and non-shutdown of 660MW supercritical coal-fired unit
JP2014011834A (en) Power conditioner and fuel cell power generation system
JP5163830B1 (en) Pump operation control method and operation control apparatus
JP2015209665A (en) Plant monitoring control system
JP2008202555A (en) Water supply device
JP6932059B2 (en) Fuel supply system and fuel supply method
CN104314799A (en) Oil pump detecting device
JP2018031328A (en) Pump system, its operational method and power-generating plant
JP2013026182A (en) Fuel cell cogeneration system and fuel cell control method
US20080031394A1 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
JP2012103086A (en) Nuclear reactor water-level control system
JP2012210084A (en) Excitation controller and excitation control method of synchronous generator
JP2009077612A (en) System interconnection inverter device
JP5953356B2 (en) Gas turbine power generator
JP7347004B2 (en) Hydropower equipment control program
JP2012087510A (en) Water supply system
JP2013151891A (en) Influx type power generation control system
JP2008069652A (en) Automatic unit number control device and its simultaneous start preventing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5937152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250