JP5936879B2 - Antibacterial treatment method of culture plate - Google Patents

Antibacterial treatment method of culture plate Download PDF

Info

Publication number
JP5936879B2
JP5936879B2 JP2012043204A JP2012043204A JP5936879B2 JP 5936879 B2 JP5936879 B2 JP 5936879B2 JP 2012043204 A JP2012043204 A JP 2012043204A JP 2012043204 A JP2012043204 A JP 2012043204A JP 5936879 B2 JP5936879 B2 JP 5936879B2
Authority
JP
Japan
Prior art keywords
culture plate
antibacterial
synthetic resin
treatment
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043204A
Other languages
Japanese (ja)
Other versions
JP2013176344A (en
Inventor
小原 收
收 小原
高橋 善和
善和 高橋
小林 弘
弘 小林
康紀 中台
康紀 中台
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kazusa DNA Research Institute Foundation
Original Assignee
Kazusa DNA Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazusa DNA Research Institute Foundation filed Critical Kazusa DNA Research Institute Foundation
Priority to JP2012043204A priority Critical patent/JP5936879B2/en
Publication of JP2013176344A publication Critical patent/JP2013176344A/en
Application granted granted Critical
Publication of JP5936879B2 publication Critical patent/JP5936879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、特定の情報を持つ細胞を、生きた状態で分離し(セルソーター)、薬剤の効果を実証するなどで用いられる培養プレートの抗菌処理方法に関するものである。 The present invention relates to a method for antibacterial treatment of a culture plate used for separating cells having specific information in a living state (cell sorter) and demonstrating the effect of a drug.

特定の情報を持つ細胞を、生きた状態で分離し(セルソーター)、薬剤の効果を実証するなどで用いられる培養プレートでは分離した細胞が培養プレートに付着した雑菌によって死滅するなどの大きな影響を受けるため培養プレート自身に抗菌性が求められつつある。 Cells with specific information are isolated in a living state (cell sorter), and culture plates used to demonstrate the effects of drugs are greatly affected by the fact that the separated cells are killed by bacteria attached to the culture plate. Therefore, antibacterial properties are being demanded on the culture plate itself.

培養プレートは抗菌性の度合いにより菌増殖の程度が大きく影響を受ける。
このような培養プレートは、耐久性を考慮して、プラスチックや金属、セラミックス等が材料とされる場合が多い。
Culture plates are greatly affected by the degree of bacterial growth depending on the degree of antibacterial activity.
Such a culture plate is often made of plastic, metal, ceramics or the like in consideration of durability.

プラスチックから培養プレートを製造して抗菌性を付与する方法としては、ポリエチレン、ポリスチレン、塩化ビニル、ポリプロピレン等のプラスチックを加熱溶融し、5〜30%の濃度で抗菌剤を含有したプラスチックペレットであるマスターバッチを添加することにより、抗菌剤を練り込む方法が一般に行われている。尚、この方法の場合、最終製品への抗菌剤の添加量は0.3〜2%程度となる。前記プラスチックには、その種類や加工方法により若干の差があるものの通常は250〜300℃以上の耐熱性が要求され、また、抗菌剤には、この温度において、抗菌剤成分の揮発、分解、含有水分の放出等による抗菌剤の重量変化、抗菌効果の低下や変色等を生じないことが必要とされるため、プラスチックや抗菌剤の材料の選定に制限が生じるという問題があった。 As a method for producing an antibacterial property by producing a culture plate from plastic, a master is a plastic pellet containing an antibacterial agent at a concentration of 5 to 30% by heating and melting a plastic such as polyethylene, polystyrene, vinyl chloride, or polypropylene. A method of kneading an antibacterial agent by adding a batch is generally performed. In this method, the amount of antibacterial agent added to the final product is about 0.3 to 2%. The plastics are required to have a heat resistance of 250 to 300 ° C. or more, although there are some differences depending on the type and processing method. In addition, antibacterial agents volatilize, decompose, decompose, There is a problem that the selection of the material of the plastic or the antibacterial agent is limited because it is necessary to prevent the weight change of the antibacterial agent due to the release of the contained moisture, the decrease in the antibacterial effect, and the discoloration.

一方、金属やセラミックスへ抗菌性を付与する方法としては、予め成形した部材表面に貼着剤により抗菌剤を塗布したプラスチックフィルムを貼着する方法が一般に行われている(例えば、特許文献1参照)。
しかしながら、培養プレートのように部材の形状が凹凸で複雑である場合には、かかる部材表面の全面に均一に抗菌性を付与することは困難であるという問題があった(特許文献2参照)。
On the other hand, as a method for imparting antibacterial properties to metals and ceramics, a method of sticking a plastic film in which an antibacterial agent is applied to a previously molded member surface with an adhesive is generally performed (see, for example, Patent Document 1). ).
However, when the shape of the member is uneven and complex like a culture plate, there is a problem that it is difficult to uniformly impart antibacterial properties to the entire surface of the member (see Patent Document 2).

このような凹凸形状を有する多孔質部材の表面に抗菌性を付与する方法として蒸着重合膜を部材表面に被覆した後、オゾン処理によって抗菌性を付与する方法がある(特許文献3参照)。しかしながら、オゾン処理によって抗菌性を付与した培養プレートは、オゾン処理後経時変化が激しく約1ヶ月で抗菌性が無くなるという問題があった。 As a method for imparting antibacterial properties to the surface of a porous member having such a concavo-convex shape, there is a method of imparting antibacterial properties by ozone treatment after coating the vapor deposition polymer film on the surface of the member (see Patent Document 3). However, the culture plate to which antibacterial properties are imparted by ozone treatment has a problem that the antibacterial properties are lost after about one month because the change with time after ozone treatment is severe.

特開平7−80957号公報Japanese Patent Laid-Open No. 7-80957 特開平10−100311号公報Japanese Patent Laid-Open No. 10-10031 特許第4669714号Patent No. 4666914

本発明は、前記従来技術の問題点を解消し、抗菌性を付与する対象となる培養プレート全面に、いわゆる抗菌剤を用いることなく抗菌性を付与することを目的とする。 The object of the present invention is to solve the problems of the prior art and to impart antibacterial properties to the entire culture plate to be imparted with antibacterial properties without using a so-called antibacterial agent.

本発明者等は前記課題を解決するべく鋭意検討の結果、培養プレートの表面にポリ尿素、ナイロン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド等の合成樹脂被膜を形成後、真空紫外光照射処理することにより前記培養プレートに優れた抗菌性を付与することできることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors formed a synthetic resin film such as polyurea, nylon, polyethylene, polyethylene terephthalate, and polyimide on the surface of the culture plate, and then subjected to vacuum ultraviolet light irradiation treatment. The present inventors have found that an excellent antibacterial property can be imparted to the culture plate and completed the present invention.

即ち、本発明は以下の態様を有する。
[態様1]
培養プレートの表面に合成樹脂被膜を形成後、酸素雰囲気で真空紫外光照射処理することにより前記培養プレートに抗菌性を付与することを特徴とする、培養プレートの抗菌処理方法。
[態様2]
ディップコート、スピンコート、又は蒸着重合により合成樹脂被膜を形成する、態様1記載の方法。
[態様3]
合成樹脂がポリ尿素、ナイロン、ポリエチレン、ポリエチレンテレフタレート又はポリイミドである、態様1又は2記載の方法。
[態様4]
前記培養プレートがガラス又はプラスチックであることを特徴とする態様1〜3のいずれか一項に記載の方法。
[態様5]
態様1〜4のいずれか一項に記載の方法で得られる、抗菌性培養プレート。
[態様6]
前記培養プレートがガラス又はプラスチックであることを特徴とする態様5に記載の抗菌性培養プレート。
That is, this invention has the following aspects.
[Aspect 1]
An antibacterial treatment method for a culture plate, comprising forming a synthetic resin film on the surface of the culture plate and then applying antibacterial properties to the culture plate by performing vacuum ultraviolet light irradiation treatment in an oxygen atmosphere.
[Aspect 2]
The method according to aspect 1, wherein the synthetic resin film is formed by dip coating, spin coating, or vapor deposition polymerization.
[Aspect 3]
The method according to embodiment 1 or 2, wherein the synthetic resin is polyurea, nylon, polyethylene, polyethylene terephthalate, or polyimide.
[Aspect 4]
The method according to any one of aspects 1 to 3, wherein the culture plate is made of glass or plastic.
[Aspect 5]
The antibacterial culture plate obtained by the method as described in any one of aspects 1-4.
[Aspect 6]
6. The antibacterial culture plate according to aspect 5, wherein the culture plate is glass or plastic.

本発明の方法によれば、ディップコート、スピンコート、蒸着重合等により合成樹脂被膜を形成して抗菌性を付与するため、培養プレートを構成する材料及び培養プレートの形状等について制限されることなく、合成樹脂被膜の形成後に、真空紫外光照射処理を短時間することによって、培養プレート表面に均一に、黄色ブドウ球菌、大腸菌、肺炎かん菌、緑膿菌、O−157、枯草菌、セラチア及びMRSA等に対する優れた抗菌性を付与することができる。 According to the method of the present invention, since a synthetic resin film is formed by dip coating, spin coating, vapor deposition polymerization, etc. to impart antibacterial properties, the material constituting the culture plate and the shape of the culture plate are not limited. After the synthetic resin coating is formed, vacuum ultraviolet light irradiation treatment is performed for a short period of time, so that the surface of the culture plate is uniformly mixed with Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, O-157, Bacillus subtilis, Serratia and Excellent antibacterial properties against MRSA and the like can be imparted.

本発明の抗菌処理方法に使用される装置の説明図Explanatory drawing of the apparatus used for the antibacterial treatment method of this invention

本発明の抗菌処理方法は、まず、培養プレートの表面にディップコート、スピンコート、蒸着重合等の当業者に公知の任意の方法から、培養プレートの材質などに応じて適宜選択した方法によって合成樹脂被膜を形成する。 In the antibacterial treatment method of the present invention, first, a synthetic resin is selected from any method known to those skilled in the art, such as dip coating, spin coating, vapor deposition polymerization, etc., on the surface of the culture plate according to the method appropriately selected according to the material of the culture plate. Form a film.

前記培養プレートとしては、ガラス、金属、プラスチック等を使用することができ、この中でもガラス又はプラスチックを使用することが好ましい。因みに、培養プレートの大きさ及び形状等に特に制限はない。 As the culture plate, glass, metal, plastic or the like can be used, and among these, glass or plastic is preferably used. Incidentally, there is no particular limitation on the size and shape of the culture plate.

前記合成樹脂被膜は、ポリ尿素、ナイロン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド等の当業者に公知の任意の材質を使用することができる。尚、前記合成樹脂被膜の厚みは、合成樹脂被膜及び培養プレートの種類などに応じて、0.1μm以上の適当な厚さとすることが好ましい。0.1μm未満であると、抗菌性能が不足するからである。 The synthetic resin film may be made of any material known to those skilled in the art, such as polyurea, nylon, polyethylene, polyethylene terephthalate, and polyimide. The thickness of the synthetic resin film is preferably an appropriate thickness of 0.1 μm or more depending on the types of the synthetic resin film and the culture plate. It is because antibacterial performance is insufficient when it is less than 0.1 μm.

上記の培養プレートの表面に合成樹脂被膜を形成された後に、該皮膜に真空紫外光照射処理し、抗菌性を付与する。前記真空紫外光照射処理に関しては、前記合成樹脂被膜を酸素雰囲気で真空紫外光照射させることができれば特に温度や時間等の条件、紫外光照射のための装置及び照射出力等についての制限はなく、当業者が適宜選択することができる。通常、合成樹脂被膜が形成された培養プレートを室温、又は、約100℃まで、例えば、60〜80℃の範囲に加熱した後、 10000〜70000Pa程度の範囲の真空度に酸素を導入し、かかる酸素雰囲気で10〜60分程度真空紫外光照射させるようにすればよい。 After a synthetic resin film is formed on the surface of the culture plate, the film is subjected to vacuum ultraviolet light irradiation treatment to impart antibacterial properties. Regarding the vacuum ultraviolet light irradiation treatment, there are no restrictions on the conditions such as temperature and time, the apparatus for irradiation with ultraviolet light, the irradiation output, etc., as long as the synthetic resin film can be irradiated with vacuum ultraviolet light in an oxygen atmosphere. Those skilled in the art can select as appropriate. Usually, after the culture plate on which the synthetic resin coating is formed is heated to room temperature or about 100 ° C., for example, in the range of 60 to 80 ° C., oxygen is introduced to the degree of vacuum in the range of about 10,000 to 70000 Pa, and this is applied. What is necessary is just to irradiate vacuum ultraviolet light for about 10 to 60 minutes in oxygen atmosphere.

上記方法により、処理された培養プレートは、抗菌性を有する培養プレートとして機能することになる。 By the above method, the treated culture plate functions as a culture plate having antibacterial properties.

抗菌処理室1には図示しないが真空排気系が接続されて任意の真空度に調整自在となっている。抗菌処理室1にはエキシマ紫外線レーザー照射装置2が設置されていて成膜処理された培養プレート3を抗菌処理室1に設置した後、真空排気し、酸素ガス導入機構4から任意の真空度に酸素を導入しエキシマ紫外線レーザー照射ができるように設置されている。また、前記抗菌処理室1の中央下部に基板上下機構5が配置され、この基板上下機構5の上には被抗菌処理物である培養プレート3が設置され、最適条件下で抗菌処理ができるようにしてある。 Although not shown, the antibacterial treatment chamber 1 is connected to an evacuation system so that it can be adjusted to an arbitrary degree of vacuum. An excimer ultraviolet laser irradiation device 2 is installed in the antibacterial treatment chamber 1 and the culture plate 3 that has been subjected to film formation is placed in the antibacterial treatment chamber 1 and then evacuated to an arbitrary degree of vacuum from the oxygen gas introduction mechanism 4. It is installed so that excimer ultraviolet laser irradiation can be performed by introducing oxygen. In addition, a substrate up-and-down mechanism 5 is disposed at the lower center of the antibacterial treatment chamber 1, and a culture plate 3 as an antibacterial treatment object is installed on the substrate up-and-down mechanism 5 so that an antibacterial treatment can be performed under optimum conditions. It is.

以下、実施例を参照して本発明を説明する。尚、本発明の技術的範囲はこれら実施例の記載に限定されるものではなく、これら記載に基づき当業者が適宜変更・修正したものも本発明に含まれる。   Hereinafter, the present invention will be described with reference to examples. It should be noted that the technical scope of the present invention is not limited to the description of these examples, and modifications and corrections appropriately made by those skilled in the art based on these descriptions are also included in the present invention.

(実施例1)
ポリ尿素膜の成膜原料物質としては、1,12-ジアミノドデカン(DAD)と、1,3-ビス(イソシアナートメチル)シクロヘキサン(H6XDI)を用いた。また、非成膜処理物としては、ガラス製培養プレートを用いた。まず、特許文献3の実施例1に記載されている蒸着重合装置及び方法を用いてガラス製培養プレート(ウェルの径:35mm、ウェルの深さ:1.45〜1.55mm、プレート外寸:8.5×12.7×2.0cm、http://www.phoenixsci.co.jp/product/product07/を参照)にポリ尿素膜(厚さ:0.2μm)を形成させた。その後、図1に示した抗菌処理装置を用いて、下記の処理条件で抗菌性付与処理を行った。
Example 1
As raw materials for forming the polyurea film, 1,12-diaminododecane (DAD) and 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI) were used. In addition, a glass culture plate was used as the non-film-formed product. First, a glass culture plate (well diameter: 35 mm, well depth: 1.45 to 1.55 mm, outer plate size: 8.5 × 12.7) using the vapor deposition polymerization apparatus and method described in Example 1 of Patent Document 3. A polyurea film (thickness: 0.2 μm) was formed on × 2.0 cm, see http://www.phoenixsci.co.jp/product/product07/ . Thereafter, using the antibacterial treatment apparatus shown in FIG. 1, an antibacterial property imparting treatment was performed under the following treatment conditions.

具体的な真空紫外光照射条件は、抗菌処理室1の基板上下機構5上に設置した後、基板上下機構5によりエキシマ紫外線レーザー光源の窓6から培養プレート3までの距離を100mmに調整しバルブ7を閉じた。 Specific vacuum ultraviolet light irradiation conditions are as follows: the distance from the excimer ultraviolet laser light source window 6 to the culture plate 3 is adjusted to 100 mm by the substrate vertical mechanism 5 after being installed on the substrate vertical mechanism 5 in the antibacterial treatment chamber 1. 7 was closed.

次に前記抗菌処理室1の真空排気を停止し、酸素導入機構4から5×10Paの真空度に酸素を導入し、室温にて、エキシマ紫外線レーザー照射(照射出力40W)、を20分間行った。 Next, evacuation of the antibacterial treatment chamber 1 is stopped, oxygen is introduced from the oxygen introduction mechanism 4 to a vacuum degree of 5 × 10 4 Pa, and excimer ultraviolet laser irradiation (irradiation output 40 W) is performed at room temperature for 20 minutes. went.

尚、エキシマ紫外線レーザー光源としてはウシオ電機株式会社製光化学実験用エキシマ光照射ユニット(型式SUS06)を用いた。 As an excimer ultraviolet laser light source, an excimer light irradiation unit (model SUS06) for photochemical experiment manufactured by USHIO INC. Was used.

エキシマ紫外線レーザー照射終了後、抗菌処理室1に窒素ガスを大気圧になるまで導入し培養プレート3を取り出した。 After completion of the excimer ultraviolet laser irradiation, nitrogen gas was introduced into the antibacterial treatment chamber 1 until atmospheric pressure was reached, and the culture plate 3 was taken out.

(実施例2)
まず、実施例1と同様の蒸着重合法によってガラス製培養プレートにポリエチレンテレフタレート被覆被膜(厚さ:0.2μm)を形成させた。該培養プレートを、抗菌処理室1内で100℃に加熱した後、実施例1同じ真空紫外光照射処理条件で培養プレートに抗菌処理した。
(Example 2)
First, a polyethylene terephthalate-coated film (thickness: 0.2 μm) was formed on a glass culture plate by the same vapor deposition polymerization method as in Example 1. After the culture plate was heated to 100 ° C. in the antibacterial treatment chamber 1, the culture plate was subjected to an antibacterial treatment under the same vacuum ultraviolet light irradiation treatment conditions as in Example 1.

(抗菌性試験1)
こうして得られた本発明の培養プレートに加えて、実施例1と同様にポリ尿素膜を形成させた後、上記真空紫外光照射が施されていないポリ尿素膜被覆培養プレートを比較例1とした。更に、特許文献3に記載の方法で抗菌処理を施した培養プレート(ポリイミド被覆)を比較例2とした。これらの各培養プレートを、大気中に1週間放置し、その後、JIS Z 2801に従った試験方法で抗菌性の試験を行った。上記試験の結果を下記表1に示す。
(Antimicrobial test 1)
In addition to the culture plate of the present invention thus obtained, a polyurea film was formed in the same manner as in Example 1, and then the polyurea film-coated culture plate not subjected to vacuum ultraviolet light irradiation was used as Comparative Example 1. . Furthermore, a culture plate (polyimide coating) subjected to antibacterial treatment by the method described in Patent Document 3 was used as Comparative Example 2. Each of these culture plates was left in the atmosphere for 1 week, and then tested for antibacterial properties by a test method according to JIS Z 2801. The results of the above test are shown in Table 1 below.

(抗菌性試験1)
更に、抗菌処理後1ヶ月大気に暴露した各培養プレートについて、JIS Z 2801に従った試験方法で抗菌性の試験を行った。上記試験の結果を下記表2に示す。
(Antimicrobial test 1)
Further, each culture plate exposed to the atmosphere for 1 month after antibacterial treatment was subjected to an antibacterial test by a test method according to JIS Z 2801. The results of the above test are shown in Table 2 below.

Figure 0005936879
Figure 0005936879
Figure 0005936879
Figure 0005936879

以上の表に示された結果から、実施例1及び2の処理がされた本発明の培養プレートは、黄色ブドウ球菌、大腸菌、肺炎かん菌、緑膿菌、O−157、枯草菌、セラチア及びMRSAのいずれに対しても、比較例2と比べても極めて優れた抗菌性を示すことがわかった。 From the results shown in the above table, the culture plates of the present invention treated in Examples 1 and 2 were S. aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, O-157, Bacillus subtilis, Serratia and It was found that the antibacterial property was extremely excellent as compared with Comparative Example 2 for any of MRSA.

本発明の抗菌処理方法は様々な大きさ及び形状等を有する各種の培養プレートに適用することが可能である。 The antibacterial treatment method of the present invention can be applied to various culture plates having various sizes and shapes.

1 抗菌処理室
2 エキシマ紫外線レーザー照射装置
3 培養プレート
4 酸素導入機構
5 基板上下機構
6 エキシマ紫外線レーザー光源の窓
7 バルブ
DESCRIPTION OF SYMBOLS 1 Antibacterial treatment room 2 Excimer ultraviolet laser irradiation apparatus 3 Culture plate 4 Oxygen introduction mechanism 5 Substrate vertical mechanism 6 Excimer ultraviolet laser light source window 7 Valve

Claims (6)

培養プレートの表面に合成樹脂被膜を形成後、酸素雰囲気で真空紫外光照射処理することにより前記培養プレートに抗菌性を付与することを特徴とする、培養プレートの抗菌処理方法。 An antibacterial treatment method for a culture plate, comprising forming a synthetic resin film on the surface of the culture plate and then applying antibacterial properties to the culture plate by performing vacuum ultraviolet light irradiation treatment in an oxygen atmosphere. ディップコート、スピンコート、又は蒸着重合により合成樹脂被膜を形成する、請求項1記載の方法。 The method according to claim 1, wherein the synthetic resin film is formed by dip coating, spin coating, or vapor deposition polymerization. 合成樹脂がポリ尿素、ナイロン、ポリエチレン、ポリエチレンテレフタレート又はポリイミドである、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the synthetic resin is polyurea, nylon, polyethylene, polyethylene terephthalate or polyimide. 前記培養プレートがガラス又はプラスチックであることを特徴とする請求項1〜3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the culture plate is made of glass or plastic. 培養プレートの表面に合成樹脂被膜を形成後、酸素雰囲気で真空紫外光照射処理することにより前記培養プレートに抗菌性を付与することを含む、抗菌性培養プレートの製造方法 A method for producing an antibacterial culture plate, comprising: forming a synthetic resin film on a surface of a culture plate, and then imparting antibacterial properties to the culture plate by performing vacuum ultraviolet light irradiation treatment in an oxygen atmosphere . 前記培養プレートがガラス又はプラスチックであることを特徴とする請求項5に記載の製造方法The production method according to claim 5, wherein the culture plate is made of glass or plastic.
JP2012043204A 2012-02-29 2012-02-29 Antibacterial treatment method of culture plate Active JP5936879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043204A JP5936879B2 (en) 2012-02-29 2012-02-29 Antibacterial treatment method of culture plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043204A JP5936879B2 (en) 2012-02-29 2012-02-29 Antibacterial treatment method of culture plate

Publications (2)

Publication Number Publication Date
JP2013176344A JP2013176344A (en) 2013-09-09
JP5936879B2 true JP5936879B2 (en) 2016-06-22

Family

ID=49268722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043204A Active JP5936879B2 (en) 2012-02-29 2012-02-29 Antibacterial treatment method of culture plate

Country Status (1)

Country Link
JP (1) JP5936879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712072B2 (en) * 2015-02-27 2020-06-17 学校法人東海大学 Surface modification and sterilization of cell culture substrate with active oxygen
JP2018143163A (en) * 2017-03-03 2018-09-20 国立大学法人 熊本大学 Light irradiation device and light irradiation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669714B2 (en) * 2005-02-18 2011-04-13 株式会社アルバック Antibacterial treatment method for porous member and antibacterial filter
JP5607470B2 (en) * 2010-09-14 2014-10-15 公益財団法人かずさDna研究所 Substrate surface hydrophilization treatment method and workpiece manufacturing apparatus

Also Published As

Publication number Publication date
JP2013176344A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US11136439B2 (en) Method for preparing modified thermoplastics having germ-repellent properties and a product thereof, and a composition for preparing the modified thermoplastics
CN106413398A (en) Coating antimicrobic film compositions
KR101994364B1 (en) Master batch of antimicrobial plastics and manufacturing method thereof
JP5323099B2 (en) Silicone rubber showing effective antibacterial activity
JP2016516856A (en) Antibacterial polymer and method for producing the same
JP5936879B2 (en) Antibacterial treatment method of culture plate
US20230331953A1 (en) Use of materials incorporating microparticles for avoiding the proliferation of contaminants
KR20180071601A (en) Packaging film coated with zinc oxide nanoparticles and preparation method thereof
CN105153562A (en) Thermally formed antibacterial and mouldproof preservation box and container
KR20170136434A (en) Antimicrobial Plastic
Copello et al. Antimicrobial activity on glass materials subject to disinfectant xerogel coating
Rogalsky et al. Antimicrobial properties and thermal stability of polycarbonate modified with 1‐alkyl‐3‐methylimidazolium tetrafluoroborate ionic liquids
US20190276791A1 (en) Cell Culture Sheet
US20070142533A1 (en) Nano-silver infused polymeric composition and methods of manufacturing the same
US11045565B2 (en) Pasteurizing paints and method for pasteurizing paints
JP2013513644A (en) Method for disinfecting the surface of a product made of silicone rubber material
Li et al. Controllable deposition of Ag nanoparticles on various substrates via interfacial polyphenol reduction strategy for antibacterial application
CN113583281A (en) Preparation method and application of antibacterial polylactic acid film
CN112342496B (en) Preparation method of double-layer composite film
KR102522104B1 (en) Bio antibacterial pellet and antibacterial products by using metal derivatives and porous carriers
US20220204904A1 (en) Pro-biofilm coating, method for the production thereof and substrate coated with the same
KR101690630B1 (en) Coating method of silver on solid silicone substrate and the antibacterial solid silicone substrate having silver coating layer produced by the method
CN104686575B (en) The antibacterial application of germanium base graphene
US11554135B2 (en) Method and apparatus for using iodinated polymer as an antimicrobial agent to manage the suppression and disinfection of pathogens
KR102344329B1 (en) Method for forming double torsion spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5936879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250