KR20180071601A - Packaging film coated with zinc oxide nanoparticles and preparation method thereof - Google Patents

Packaging film coated with zinc oxide nanoparticles and preparation method thereof Download PDF

Info

Publication number
KR20180071601A
KR20180071601A KR1020160174401A KR20160174401A KR20180071601A KR 20180071601 A KR20180071601 A KR 20180071601A KR 1020160174401 A KR1020160174401 A KR 1020160174401A KR 20160174401 A KR20160174401 A KR 20160174401A KR 20180071601 A KR20180071601 A KR 20180071601A
Authority
KR
South Korea
Prior art keywords
zinc oxide
coating
oxide nanoparticles
dispersion solution
film
Prior art date
Application number
KR1020160174401A
Other languages
Korean (ko)
Other versions
KR102003884B1 (en
Inventor
방시영
김선종
Original Assignee
(주) 에이치피엠글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에이치피엠글로벌 filed Critical (주) 에이치피엠글로벌
Priority to KR1020160174401A priority Critical patent/KR102003884B1/en
Publication of KR20180071601A publication Critical patent/KR20180071601A/en
Application granted granted Critical
Publication of KR102003884B1 publication Critical patent/KR102003884B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

Provided is a packaging film including a film-like polymer support; and a coating layer of zinc oxide nanoparticles having an average particle size of 10 to 50 nm on the support. According to the present invention, provided are a packaging film having excellent barrier properties and antimicrobial activity by coating zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm on a variety of polymer supports through a simple process; and a preparation method thereof. The packaging film can be applied for packing food, medicines, etc.

Description

산화아연 나노입자가 코팅된 포장 필름 및 그 제조방법{Packaging film coated with zinc oxide nanoparticles and preparation method thereof}[0001] The present invention relates to a packaging film coated with zinc oxide nanoparticles,

본 발명은 산화아연 나노입자가 코팅된 포장 필름 및 그 제조방법에 관한 것으로, 보다 상세하게는 다양한 고분자 지지체 위에 산화아연 나노입자가 코팅된 필름을 제조함으로써, 항균성이 우수하여 식품 및 의약품 포장 등에 응용이 가능한 포장 필름에 관한 것이다.
The present invention relates to a packaging film coated with zinc oxide nanoparticles and a method for producing the same, and more particularly, to a zinc oxide nanoparticle coated film on various polymer scaffolds, And more particularly to a packaging film which can be used.

일반적으로 식품 또는 의약품 포장 필름으로서는 산소, 수분 및 자외선에 대한 차단성(barrier property)이 기본적으로 요구되며, 이에 더하여 식품이나 의약품과 같은 내용물의 보존을 향상시키고자 미생물에 의한 변질을 예방할 수 있는 항균성 포장 필름에 관한 연구가 활발히 진행되고 있다.
In general, barrier films for oxygen, moisture and ultraviolet rays are basically required as packaging films for foods or medicines. In addition, antimicrobial properties for preventing the deterioration by microorganisms in order to improve the preservation of contents such as foods and medicines Research on packaging films has been actively conducted.

그런데 종래 항균성 포장 필름은 대부분 은, 구리, 아연과 같은 고체상의 무기계 항균제를 분쇄한 미세 분말을 마스터배치에 혼련하고, 이를 필름으로 성형하거나, 또는 기재인 고분자 수지와 무기계 항균제를 직접 혼합하고 사출하는 공정으로 제조되고 있다. 그러나 이렇게 제조되는 포장 필름은 무기계 항균제가 고분자 수지의 매트릭스 내에 함침되는 형태이므로 포장 필름의 표면 특성이 떨어져 식품 또는 의약품과 직접적으로 접촉하는 포장 필름의 표면에서 항균성을 제어하기가 쉽지 않은 단점이 있고, 아울러 제조공정도 복잡하여 경제성이 떨어지는 문제점이 있다.
However, most conventional antimicrobial packaging films are produced by kneading a fine powder obtained by pulverizing a solid inorganic antibacterial agent such as copper and zinc into a master batch and molding the same into a film, or by mixing a polymeric resin as a base material directly with an inorganic antibacterial agent Process. However, since the inorganic antibacterial agent is impregnated in the matrix of the polymer resin, the packaging film thus produced has a disadvantage in that it is difficult to control the antibacterial property on the surface of the packaging film which is in direct contact with the food or medicine, In addition, there is a problem that the manufacturing process is complicated and the economical efficiency is low.

따라서 최근에는 나노기술을 활용함으로써 항균성을 갖는 나노입자의 큰 비표면적을 이용한 고분자 수지와 나노입자 사이의 계면작용을 통하여 포장 필름의 배리어 특성 및 항균성을 향상시킨 식품 포장재도 개발된바 있으나, 여전히 고분자 수지를 매트릭스로 하여 무기계 나노입자를 함침시킨 필름 형태가 주류를 이루고 있어 포장 필름의 표면 특성에는 한계가 있다.
Recently, there has been developed a food packaging material which improves the barrier property and antibacterial property of the packaging film through the interfacial action between the polymer resin and the nanoparticles using the large specific surface area of the nanoparticles having antimicrobial properties by utilizing nanotechnology, There are limitations in the surface characteristics of the packaging film because the mainstream is a film form impregnated with inorganic nanoparticles using a resin as a matrix.

그러므로 본 발명자 등은 항균성을 갖는 것으로 알려진 산화아연을 나노입자 형태로 하여, 상기 산화아연 나노입자를 고분자 수지 매트릭스 내에 함침시키는 것이 아니라, 간단한 공정에 의하여 필름 형상의 고분자 지지체 위에 코팅할 수 있으면, 필름 표면의 물성이 향상되어 배리어 특성을 비롯한 항균성이 크게 향상됨으로써, 식품 또는 의약품의 포장재로 양산할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
Therefore, the inventors of the present invention have found that when zinc oxide, which is known to have antimicrobial activity, is in the form of nanoparticles and the zinc oxide nanoparticles are not impregnated in the polymer resin matrix but can be coated on the film-like polymer scaffold by a simple process, The inventors of the present invention have completed the present invention by focusing on the fact that the physical properties of the surface are improved and the antimicrobial properties including the barrier properties are greatly improved and mass production can be achieved as a packaging material for foods or medicines.

특허문헌 1. 한국공개특허 제10-2001-0077332호Patent Document 1. Korean Patent Laid-Open No. 10-2001-0077332 특허문헌 2. 한국등록특허 제10-1334283호Patent Document 2. Korean Patent No. 10-1334283

비특허문헌 1. Aryou Emamifar et al., Food Control 22, 408-413(2011)Non-Patent Document 1. Aryou Emamifar et al., Food Control 22, 408-413 (2011)

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 다양한 고분자 지지체 위에, 평균입경이 10~50 nm로 조절된 산화아연 나노입자가 간단한 공정으로 코팅되어 배리어 특성과 항균성이 우수한 포장 필름 및 그 제조방법을 제공하고자 하는 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a zinc oxide nanoparticle having an average particle diameter of 10 to 50 nm coated on a variety of polymer scaffolds by a simple process, A packaging film and a manufacturing method thereof.

상기한 바와 같은 목적을 달성하기 위한 본 발명은 필름 형상의 고분자 지지체; 및 상기 지지체 위에 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층;을 포함하는 포장 필름을 제공한다.According to an aspect of the present invention, there is provided a polymeric film comprising: a film-shaped polymer scaffold; And a coating layer of zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm on the support.

상기 필름 형상의 고분자 지지체는 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-폴리글리콜산 공중합체, 폴리락트산-폴리카프로락톤 공중합체, 폴리산무수물, 폴리부틸렌숙시네이트, 폴리히드록시부티레이트, 폴리부티레이트아디페이트테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리비닐알코올, 폴리에틸렌, 폴리프로필렌, 폴리비닐클로라이드, 폴리아미드, 폴리우레탄 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The film-like polymer scaffold may be at least one selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, polyacid anhydride, polybutylene succinate, , At least one selected from the group consisting of polybutyrate adipate terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyvinyl alcohol, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyurethane and polyacrylate .

상기 산화아연 나노입자는 실란계 커플링제로 입자 표면이 피복된 것을 특징으로 한다.The zinc oxide nanoparticles are characterized in that the surface of the particles is coated with a silane-based coupling agent.

상기 코팅층은 그 두께가 0.5~10 ㎛인 것을 특징으로 한다.
The coating layer has a thickness of 0.5 to 10 탆.

또한, 본 발명은 I) 산화아연 나노입자를 증류수에 분산시키고 초음파 분쇄기로 0.5~1시간 처리하여 분산용액을 얻는 단계; II) 상기 분산용액을 원심분리 및 밀링하여 평균입경이 10~50 nm로 조절된 산화아연 나노입자를 형성하는 단계; III) 상기 II) 단계에서 형성된 산화아연 나노입자를 다시 증류수에 분산시킨 분산용액을 얻는 단계; 및 IV) 상기 III) 단계의 분산용액을 필름 형상의 고분자 지지체 위에 코팅하여 코팅층을 형성하는 단계;를 포함하는 포장 필름의 제조방법을 제공한다.The present invention also relates to a method for preparing a dispersion, comprising: I) dispersing zinc oxide nanoparticles in distilled water and treating the zinc oxide nanoparticles with an ultrasonic mill for 0.5 to 1 hour to obtain a dispersion solution; II) centrifuging and milling the dispersion solution to form zinc oxide nanoparticles having an average particle size of 10 to 50 nm; III) obtaining a dispersion solution in which the zinc oxide nanoparticles formed in the step II) are dispersed again in distilled water; And IV) coating the dispersion solution of step III) on a film-like polymeric support to form a coating layer.

상기 I) 단계의 분산용액은 분산안정제로서 분산용액 총 중량 대비 0.05~5 중량%의 폴리비닐피롤리돈을 더욱 포함하는 것을 특징으로 한다. The dispersion solution of step I) further comprises 0.05 to 5% by weight of polyvinylpyrrolidone as a dispersion stabilizer based on the total weight of the dispersion solution.

상기 III) 단계에서 얻어지는 분산용액은 농도가 0.1~10 중량%인 것을 특징으로 한다.The dispersion solution obtained in the step III) has a concentration of 0.1 to 10% by weight.

상기 III) 단계의 분산용액은 UV 경화형 수지 조성물 또는 열경화형 수지 조성물을 더욱 포함하는 것을 특징으로 한다.The dispersion solution of step III) further comprises a UV curable resin composition or a thermosetting resin composition.

상기 IV) 단계의 필름 형상의 고분자 지지체는 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-폴리글리콜산 공중합체, 폴리락트산-폴리카프로락톤 공중합체, 폴리산무수물, 폴리부틸렌숙시네이트, 폴리히드록시부티레이트, 폴리부티레이트아디페이트테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리비닐알코올, 폴리에틸렌, 폴리프로필렌, 폴리비닐클로라이드, 폴리아미드, 폴리우레탄 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The film-like polymer scaffold of step IV) may be selected from polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, polyacid anhydride, polybutylene succinate, Polypropylene, polyvinyl chloride, polyamide, polyurethane, and polyacrylate, selected from the group consisting of polyhydroxybutyrate, polybutylate adipate terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyvinyl alcohol, polyethylene, Or more.

상기 IV) 단계의 코팅은 스핀 코팅, 딥 코팅, 롤 코팅, 스크린 코팅, 분무 코팅, UV 경화 코팅 또는 열경화 코팅법에 의하여 수행되는 것을 특징으로 한다.The coating of step IV) is characterized by being performed by spin coating, dip coating, roll coating, screen coating, spray coating, UV curing coating or thermosetting coating method.

상기 스핀 코팅은 5~10회 수행하는 것을 특징으로 한다.
The spin coating is performed 5 to 10 times.

본 발명에 따르면, 다양한 고분자 지지체 위에, 평균입경이 10~50 nm로 조절된 산화아연 나노입자가 간단한 공정으로 코팅되어 배리어 특성과 항균성이 우수한 포장 필름 및 그 제조방법을 제공함으로써 식품 또는 의약품 포장 등에 응용이 가능하다.
According to the present invention, a zinc oxide nanoparticle having an average particle size of 10 to 50 nm is coated on various polymer scaffolds by a simple process to provide a barrier film having excellent barrier properties and antimicrobial activity, Application is possible.

도 1은 본 발명의 실시예에 따른 산화아연 나노입자의 성상을 관찰한 주사전자현미경(SEM) 이미지.1 is a scanning electron microscope (SEM) image of a zinc nano-particle according to an embodiment of the present invention.

이하에서는 본 발명에 따른 다양한 필름 형상의 고분자 지지체 위에, 평균입경이 10~50 nm로 조절된 산화아연 나노입자가 코팅된 포장 필름 및 그 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.
Hereinafter, a packaging film coated with zinc oxide nanoparticles adjusted to have an average particle diameter of 10 to 50 nm on a variety of film-shaped polymer scaffolds according to the present invention and a method for producing the same will be described in detail with reference to the accompanying drawings.

본 발명은 필름 형상의 고분자 지지체; 및 상기 지지체 위에 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층;을 포함하는 포장 필름을 제공한다.The present invention relates to a film-shaped polymeric support; And a coating layer of zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm on the support.

먼저, 상기 필름 형상의 고분자 지지체는 식품 또는 의약품의 포장재로 사용 가능한 것으로, 최근의 환경규제에 대응하기 위하여 주목받고 있는 소재로서 생분해성 고분자가 사용될 수 있는 바, 이러한 생분해성 고분자로서는 폴리락트산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리카프로락톤(polycaprolactone, PCL), 폴리락트산-폴리글리콜산 공중합체(poly(lactic-co-glycolic acid), PLGA), 폴리락트산-폴리카프로락톤 공중합체(poly(lactic acid-co-caprolactone), PLCL), 폴리산무수물(polyanhydride), 폴리부틸렌숙시네이트(polybutylene succinate, PBS), 폴리히드록시부티레이트(polyhydroxy butyrate, PHB), 또는 폴리부티레이트아디페이트테레프탈레이트(polybutyrate adipate terephthalate, PBAT)를 바람직하게 사용한다.First, the film-like polymer scaffold can be used as a packaging material for foods or pharmaceuticals. Biodegradable polymers can be used as materials that have been attracting attention in order to cope with recent environmental regulations. Examples of such biodegradable polymers include polylactic acid (PLGA), polyglycolic acid (PGA), polycaprolactone (PCL), polylactic acid-polyglycolic acid copolymer (PLGA), polylactic acid-poly Polylactic acid-co-caprolactone (PLCL), polyanhydride, polybutylene succinate (PBS), polyhydroxy butyrate (PHB) Preferably, polybutyrate adipate terephthalate (PBAT) is used.

또한, 포장 필름에 통상적으로 사용되는 합성고분자로서 폴리비닐알코올(PVA), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리아미드(PA), 폴리우레탄(PU) 또는 폴리아크릴레이트(PAR)도 사용할 수 있다.
In addition, as a synthetic polymer commonly used for packaging films, polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyamide (PA), polyurethane Acrylate (PAR) can also be used.

본 발명에서는, 상술한 필름 형상의 다양한 고분자 지지체 위에 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층이 형성된 것을 기술적 특징으로 한다. 일반적으로 산화아연 나노입자는 화학적 안정성, 우수한 촉매 활성, 형광 투과성 및 자외선 차단 등의 특성으로 인하여 광촉매 또는 반도체 소자 등에 이용되고 있으며, 나노입자로서 비표면적이 크기 때문에 항균성을 나타내는 것으로도 알려져 있다. 이러한 산화아연 나노입자는 현재 상업화되어 판매되고 있는데, 제조회사 및 제조방법에 따라 평균입경이 모두 다른바, 본 발명에서는 산화아연 전구체로부터 제조되는 방법으로서 공지된 mechnochemical processing(MCP) 방법을 일부 변형하여 제조사로부터 구입한 산화아연 나노입자의 평균입경을 10~50 nm로 조절하였다.The present invention is characterized in that a coating layer of zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm is formed on various film-like polymer scaffolds. In general, zinc oxide nanoparticles are used for photocatalysis or semiconductor devices due to their chemical stability, excellent catalytic activity, fluorescence permeability and ultraviolet shielding properties, and they are known to exhibit antibacterial properties because of their large specific surface area as nanoparticles. These zinc oxide nanoparticles are currently commercialized and sold. The zinc oxide nanoparticles have a different average particle diameter depending on the manufacturer and the manufacturing method. In the present invention, some modifications of the known mechnochemical processing (MCP) The average particle size of the zinc oxide nanoparticles purchased from the manufacturer was adjusted to 10 to 50 nm.

상기 산화아연 나노입자의 평균입경과 관련하여서는 일반적으로 그 크기가 클수록 기체 또는 수분에 대한 배리어 특성을 갖게 되지만, 평균입경이 50 nm를 초과하는 경우에는 배리어 특성과는 반대로 항균성이 떨어질 수 있다. 한편, 산화아연 나노입자의 평균입경이 작은 경우에는 항균성이 향상되는 반면, 분자 크기가 각각 다른 다양한 기체에 대한 배리어 특성을 유지하기 어려운 점이 있는바, 그 평균입경을 최소 10 nm로 조절하여야 한다. 즉, 본 발명에 따른 산화아연 나노입자 코팅층이 분자 크기가 다양한 기체에 대한 우수한 배리어 특성과 더불어 뛰어난 항균성을 나타내기 위해서는 산화아연 나노입자의 평균입경을 10~50 nm 범위에서 제어하는 것이 바람직하며, 평균입경이 20~30 nm이면 더욱 바람직하다.
With respect to the average particle diameter of the zinc oxide nanoparticles, generally, the larger the size of the zinc oxide nanoparticles, the barrier properties against gas or moisture are obtained. However, when the average particle diameter exceeds 50 nm, the antibacterial property may be inferior to the barrier property. On the other hand, when the average particle diameter of the zinc oxide nanoparticles is small, the antibacterial property is improved. On the other hand, the average particle diameter of the zinc oxide nanoparticles should be adjusted to at least 10 nm because there are difficulties in maintaining barrier properties for various gases having different molecular sizes. That is, in order for the zinc oxide nanoparticle coating layer according to the present invention to exhibit excellent barrier properties to gases having various molecular sizes and excellent antimicrobial properties, it is preferable to control the average particle diameter of the zinc oxide nanoparticles in the range of 10 to 50 nm, It is more preferable that the average particle diameter is 20 to 30 nm.

또한, 본 발명에 따른 상기 산화아연 나노입자는 입자표면이 3-아미노프로필트리메톡시실란 또는 3-글리시독시프로필트리메톡시실란 등과 같은 실란계 커플링제로 피복된 것을 사용함으로써 우수한 항균성을 그대로 발현하면서 자외선 차단 기능을 극대화할 수도 있다.
In addition, the zinc oxide nanoparticles according to the present invention have excellent antimicrobial activity as they are coated with a silane-based coupling agent such as 3-aminopropyltrimethoxysilane or 3-glycidoxypropyltrimethoxysilane It is possible to maximize the ultraviolet shielding function.

그리고 상기 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층은 그 두께가 두꺼워지면 배리어 특성이 향상되는 것은 당연한 결과라 하겠으나, 본 발명에서는 앞서 언급한 것처럼 항균성을 크게 향상시키기 위하여 산화아연 나노입자의 크기를 10~50 nm 범위로 제어하면, 산화아연 나노입자 코팅층의 두께가 최소 0.5 ㎛인 박막으로 형성되더라도 배리어 특성이 우수한 효과를 나타낼 수 있다. 아울러 산화아연 나노입자 코팅층의 두께가 10 ㎛를 초과하는 경우에는 균일한 코팅층을 형성하기 어렵고 포장 필름의 표면 특성이 떨어짐으로써 항균성이 저하될 수 있다. 따라서 본 발명에 따른 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층은 그 두께가 0.5~10 ㎛인 것이 바람직하다.
It is a matter of course that the coating layer of the zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm has an improved barrier property when the thickness thereof is increased. However, in the present invention, in order to greatly improve antibacterial activity, zinc oxide nanoparticles Is controlled to be in the range of 10 to 50 nm, even when the zinc oxide nanoparticle coating layer is formed as a thin film having a thickness of at least 0.5 탆, it can exhibit an excellent barrier property. When the thickness of the zinc oxide nanoparticle coating layer is more than 10 μm, it is difficult to form a uniform coating layer and the antibacterial property may be lowered due to a decrease in surface characteristics of the packaging film. Therefore, the coating layer of zinc oxide nanoparticles having an average particle size of 10 to 50 nm according to the present invention preferably has a thickness of 0.5 to 10 탆.

또한, 본 발명은 I) 산화아연 나노입자를 증류수에 분산시키고 초음파 분쇄기로 0.5~1시간 처리하여 분산용액을 얻는 단계; II) 상기 분산용액을 원심분리 및 밀링하여 평균입경이 10~50 nm로 조절된 산화아연 나노입자를 형성하는 단계; III) 상기 II) 단계에서 형성된 산화아연 나노입자를 다시 증류수에 분산시킨 분산용액을 얻는 단계; 및 IV) 상기 III) 단계의 분산용액을 필름 형상의 고분자 지지체 위에 코팅하여 코팅층을 형성하는 단계;를 포함하는 포장 필름의 제조방법을 제공한다.
The present invention also relates to a method for preparing a dispersion, comprising: I) dispersing zinc oxide nanoparticles in distilled water and treating the zinc oxide nanoparticles with an ultrasonic mill for 0.5 to 1 hour to obtain a dispersion solution; II) centrifuging and milling the dispersion solution to form zinc oxide nanoparticles having an average particle size of 10 to 50 nm; III) obtaining a dispersion solution in which the zinc oxide nanoparticles formed in the step II) are dispersed again in distilled water; And IV) coating the dispersion solution of step III) on a film-like polymeric support to form a coating layer.

상기 I) 단계에서는 입수한 산화아연 나노입자를 증류수에 분산시켜 초음파 분쇄기로 0.5~1시간 처리함으로써 분산용액 내 산화아연 나노입자의 분산성을 향상시킬 수 있다. 이때, 상기 분산용액에 분산안정제로서 분산용액 총 중량 대비 0.05~5 중량%의 폴리비닐피롤리돈(polyvinylpyrrolidone)을 더욱 포함시킴으로써 현탁액(suspension)의 분산성을 극대화 할 수 있다.The zinc oxide nanoparticles obtained in step I) may be dispersed in distilled water and treated with an ultrasonic mill for 0.5 to 1 hour to improve the dispersibility of the zinc oxide nanoparticles in the dispersion solution. At this time, 0.05 to 5% by weight of polyvinylpyrrolidone is further added to the dispersion solution as a dispersion stabilizer, based on the total weight of the dispersion solution, thereby maximizing the dispersibility of the suspension.

이어서, 상기 II) 단계에서는 I) 단계에서 얻어진 분산용액을 원심분리한 후, 통상의 밀링 공정을 통하여 평균입경이 10~50 nm로 조절된 산화아연 나노입자를 형성한다. Next, in the step II), the dispersion solution obtained in the step I) is centrifuged, and zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm are formed through a general milling process.

다음으로, 상기 II) 단계에서 형성된 평균입경이 10~50 nm로 조절된 산화아연 나노입자를 다시 증류수에 분산시킨 분산용액을 얻는 후, 이 분산용액을 필름 형상의 고분자 지지체 위에 코팅하여 코팅층을 형성함으로써 목적물인 포장 필름을 제조한다. 이때, 코팅층을 형성하기 위한 분산용액은 농도가 0.1~10 중량%인 것이 바람직한바, 분산용액의 농도가 0.1 중량% 미만이면 균일한 코팅층을 얻기 어렵고, 그 농도가 10 중량%를 초과하면 점도가 너무 높아 원활한 코팅공정을 수행할 수 없는 문제가 발생하므로, 코팅층을 형성하기 위한 분산용액의 농도는 0.1~10 중량%로 조절한다.
Next, a dispersion solution in which zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm formed in the step II) is dispersed in distilled water is obtained, and then the dispersion solution is coated on a film-like polymer scaffold to form a coating layer Thereby producing a packaging film as a target. If the concentration of the dispersion solution is less than 0.1% by weight, it is difficult to obtain a uniform coating layer. When the concentration exceeds 10% by weight, the viscosity of the coating solution becomes low It is too high to perform a smooth coating process, so that the concentration of the dispersion solution for forming the coating layer is adjusted to 0.1 to 10% by weight.

한편, 상기 III) 단계의 분산용액은 UV(자외선) 경화형 수지 조성물 또는 열경화형 수지 조성물을 더욱 포함할 수도 있는바, 폴리우레탄 아크릴레이트와 같이 말단에 탄소-탄소 이중 결합을 갖는 수지 및 광개시제 등이 함유된 수지 조성물, 또는 열경화성 아크릴레이트계 수지 조성물이 상기 III) 단계의 분산용액에 포함되어 UV 또는 열에 의해 경화됨으로써 산화아연 나노입자 코팅층의 기계적 물성이 크게 향상될 수 있다.
Meanwhile, the dispersion solution in the step III) may further include a UV (ultraviolet) curable resin composition or a thermosetting resin composition, and a resin having a carbon-carbon double bond at the terminal thereof such as a polyurethane acrylate and a photoinitiator Or the thermosetting acrylate resin composition is contained in the dispersion solution of step III) and is cured by UV or heat, the mechanical properties of the zinc oxide nanoparticle coating layer can be greatly improved.

또한, 상기 IV) 단계의 필름 형상의 고분자 지지체로서는 상술한 바와 같이 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-폴리글리콜산 공중합체, 폴리락트산-폴리카프로락톤 공중합체, 폴리산무수물, 폴리부틸렌숙시네이트, 폴리히드록시부티레이트, 폴리부티레이트아디페이트테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리비닐알코올, 폴리에틸렌, 폴리프로필렌, 폴리비닐클로라이드, 폴리아미드, 폴리우레탄 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 것을 사용할 수 있다.
As the film-like polymer scaffold of step IV), as described above, it is possible to use polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, Polybutylene terephthalate, polyethyleneterephthalate, polybutylene terephthalate, polyvinyl alcohol, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyurethane and polyacrylate May be used.

아울러 상기 IV) 단계에서 코팅층을 형성함에 있어서는 공지의 코팅법이라면 어느 것이나 제한 없이 이용할 수 있으나, 스핀 코팅, 딥 코팅, 롤 코팅, 스크린 코팅, 분무 코팅, UV 경화 코팅 또는 열경화 코팅법에 의하여 수행되는 것이 바람직하며, 그 중에서도 스핀 코팅법이 간편하게 균일한 코팅층을 얻을 수 있어 더욱 바람직하다.In addition, in forming the coating layer in the step IV), any known coating method can be used without limitation, but it can be applied by spin coating, dip coating, roll coating, screen coating, spray coating, UV curing coating or thermosetting coating Among them, the spin coating method is preferable because a uniform coating layer can be easily obtained.

특히, 스핀 코팅법에 의하여 코팅층을 형성하는 경우에는 5~10회 수행하는 것이 바람직한데, 스핀 코팅을 5회 미만으로 수행하면 배리어 특성이 떨어질 수 있고, 10회 이상 스핀 코팅을 수행하면 코팅층의 두께가 너무 두꺼워지게 되어 균일한 코팅층을 형성하기 어렵고 포장 필름의 표면 특성이 떨어짐으로써 항균성이 저하될 수 있다.Particularly, when the coating layer is formed by the spin coating method, the coating is preferably performed 5 to 10 times. If the spin coating is performed less than 5 times, the barrier property may be deteriorated. If the spin coating is performed 10 times or more, Becomes too thick to form a uniform coating layer, and the surface properties of the packaging film may be deteriorated, thereby decreasing the antimicrobial activity.

이하 구체적인 실시예 및 비교예를 상세히 설명한다.
Hereinafter, specific examples and comparative examples will be described in detail.

(실시예)(Example)

산화아연 나노입자를 증류수에 분산시키고 초음파 분쇄기로 30분 동안 처리하여 산화아연 나노입자 분산용액을 얻었다. 상기 분산용액을 원심분리한 후, 밀링공정을 통하여 평균입경이 20~30 nm로 조절된 산화아연 나노입자를 형성하였다. 상기 형성된 산화아연 나노입자를 다시 증류수에 분산시켜 코팅층 형성을 위한 0.5 중량% 농도의 분산용액(코팅용액)을 얻었다. 상기 0.5 중량% 농도의 분산용액(코팅용액)을 지지체인 폴리락트산(PLA) 필름(두께 25 ㎛) 위에 5회 스핀 코팅하여 0.5 ㎛ 두께의 산화아연 나노입자 코팅층을 형성한 복합 필름을 제조하였다.The zinc oxide nanoparticles were dispersed in distilled water and treated with an ultrasonic mill for 30 minutes to obtain a zinc oxide nanoparticle dispersion solution. After the dispersion solution was centrifuged, zinc oxide nanoparticles having an average particle diameter of 20 to 30 nm were formed through a milling process. The zinc oxide nanoparticles thus formed were dispersed again in distilled water to obtain a dispersion solution (coating solution) having a concentration of 0.5 wt% for forming a coating layer. The dispersion solution (coating solution) at the concentration of 0.5 wt% was spin-coated on the support polylactic acid (PLA) film (25 탆 thick) five times to prepare a composite film having a zinc oxide nanoparticle coating layer with a thickness of 0.5 탆.

도 1에는 본 발명의 실시예 1에 따른 산화아연 나노입자의 성상을 관찰한 주사전자현미경(SEM) 이미지를 나타내었는바, 평균입경이 20~30 nm로 조절된 산화아연 나노입자를 확인할 수 있다.FIG. 1 shows a scanning electron microscope (SEM) image of the zinc oxide nanoparticles according to Example 1 of the present invention. As a result, zinc oxide nanoparticles having an average particle diameter of 20 to 30 nm can be identified .

(비교예 1)(Comparative Example 1)

평균입경이 100~200 nm로 조절된 산화아연 나노입자를 사용하여 코팅용액을 얻은 것을 제외하고는 상기 실시예와 동일한 방법으로 산화아연 나노입자 코팅층을 형성한 복합 필름을 제조하였다.
A composite film in which a zinc oxide nanoparticle coating layer was formed was prepared in the same manner as in the above example except that a zinc oxide nanoparticle having an average particle diameter of 100 to 200 nm was used to obtain a coating solution.

(비교예 2)(Comparative Example 2)

평균입경이 60~100 nm로 조절된 산화아연 나노입자를 사용하여 코팅용액을 얻고, 코팅용액의 농도를 12 중량%, 코팅층의 두께를 15㎛로 제어하여 상기 실시예에 따라 산화아연 나노입자 코팅층을 형성한 복합 필름을 제조하였다The zinc oxide nanoparticles having an average particle diameter of 60 to 100 nm were used to obtain a coating solution. The concentration of the coating solution was controlled to 12 wt% and the thickness of the coating layer was controlled to 15 μm, To prepare a composite film

(시험예)(Test Example)

상기 실시예 및 비교예 1, 2로부터 제조된 산화아연 나노입자 코팅층을 형성한 복합 필름과, 대조군으로서 산화아연 나노입자 코팅층이 없는 폴리락트산(PLA) 필름의 산소투과도(oxygen transmission rate, OTR) 및 E. coli에 대한 항균성(antimicrobial rate, R)을 테스트하였다.The oxygen transmission rate (OTR) of the composite film on which the zinc oxide nanoparticle coating layer prepared from the above Examples and Comparative Examples 1 and 2 was formed and the polylactic acid (PLA) film without the zinc oxide nanoparticle coating layer as a control group The antimicrobial rate (R) for E. coli was tested.

산소투과도는 Oxygen Permeation Analyzer(Illinois Instruments, Model 8001)를 이용하여 23.0℃. 클리어 시간 10 min, 시작레벨 10(OTR), 종료범위 ㅁ1%의 조건으로 측정하였다. 한편, 항균성을 평가하기 위하여 JIS Z 2801 항균시험법에 따라 각각의 필름에 대해 Escherichia coli(ATCC8739, E. Coli) 그람양성균을 사용하여 시험을 수행하였으며, E. Coli균이 생장할 수 있도록 항온항습기 내부 온도를 37℃(RH≥90%)로 유지하고, 콜로니 형성단위(colony forming units, CFU)는 형성된 콜로니의 수로 확인하였고, 항균성 비율(antimicrobial rate, R)을 다음 식으로 계산하였다. (R(%)=[(B-C)/B] x 100)Oxygen permeability was measured at 23.0 ° C using an Oxygen Permeation Analyzer (Illinois Instruments, Model 8001). , A clear time of 10 min, a start level of 10 (OTR), and a termination range of 1%. On the other hand, in order to evaluate the antimicrobial activity, Escherichia coli (ATCC8739, E. Coli) Gram-positive bacteria was used for each of the films according to JIS Z 2801 Antibacterial Test Method and E. coli was grown in a constant temperature and humidity The internal temperature was maintained at 37 占 폚 (RH? 90%) and the colony forming units (CFU) were determined by the number of colonies formed and the antimicrobial rate (R) was calculated by the following formula. (R (%) = [(BC) / B] x 100)

상기 식에서, B는 대조군의 24시간 후 박테리아 셀의 CFU이고, C는 실시예 및 비교예 1, 2로부터 제조된 산화아연 나노입자 코팅층을 형성한 복합 필름의 24시간 후 박테리아 셀의 CFU를 의미한다. 하기 표 1에 그 결과를 나타내었다.
Where B is the CFU of the bacterial cell after 24 hours of the control and C is the CFU of the bacterial cell after 24 hours of the composite film formed from the zinc oxide nanoparticle coating layer prepared from the Example and Comparative Examples 1 and 2 . The results are shown in Table 1 below.

샘플Sample 산소투과도(OTR, cc/m2/day)Oxygen permeability (OTR, cc / m 2 / day) 항균성(antimicrobial rate, R)Antimicrobial rate (R) 실시예Example 122122 100100 비교예 1Comparative Example 1 155155 7373 비교예 2Comparative Example 2 120120 8181 대조군(PLA 필름)Control (PLA film) 1,4001,400 00

표 1에서 보는 바와 같이, 기본적으로 산화아연 나노입자 코팅층을 형성한 복합 필름은 대조군으로서 산화아연 나노입자 코팅층이 없는 PLA 필름에 비하여 산소투과도가 현저히 낮아 배리어 특성이 뛰어나고, 항균성도 우수함을 알 수 있다. 특히, 본 발명의 실시예로부터 제조된 산화아연 나노입자 코팅층을 형성한 복합 필름의 경우에는 비교예 1로부터 제조된 산화아연 나노입자 코팅층을 형성한 복합 필름과 대비하여, 산소투과도에는 크게 차이가 없어 배리어 특성의 변화는 미미하지만, 항균성에서 큰 차이를 확인할 수 있는바, 이는 실시예에 따른 산화아연 나노입자의 평균입경이 20~30 nm로 매우 작아 비표면적이 커지므로 필름 표면에서 미생물과 접촉하여 항균 활성이 크게 향상되는 것으로 해석된다.As shown in Table 1, the composite film formed basically with the zinc oxide nanoparticle coating layer had a significantly lower oxygen permeability than the PLA film without the zinc oxide nanoparticle coating layer as a control group, and thus showed excellent barrier properties and excellent antibacterial properties . Particularly, in the case of the composite film in which the zinc oxide nanoparticle coating layer prepared from the embodiment of the present invention is formed, the oxygen permeability is not significantly different from that of the composite film in which the zinc oxide nanoparticle coating layer formed in Comparative Example 1 is formed However, since the average particle diameter of the zinc oxide nanoparticles according to the present invention is as small as 20 to 30 nm, the specific surface area becomes large, so that the surface of the film is in contact with microorganisms It is interpreted that the antibacterial activity is greatly improved.

또한, 비교예 2로부터 제조된 산화아연 나노입자 코팅층을 형성한 복합 필름의 경우에도 비록 산화아연 나노입자의 평균입경은 비교예 1에서보다 작지만, 코팅용액의 농도가 상대적으로 높고, 이에 따라 코팅층의 두께가 매우 두꺼워지므로 실제 코팅과정에서 균일한 코팅층을 얻기 위한 원활한 코팅작업을 수행하기 어려울 뿐만 아니라, 코팅층이 형성된 필름의 표면 특성이 떨어짐으로써 항균성이 저하되는 것이라 할 수 있다.Also, in the case of the composite film in which the zinc oxide nanoparticle coating layer prepared in Comparative Example 2 was formed, although the average particle diameter of the zinc oxide nanoparticles was smaller than in Comparative Example 1, the concentration of the coating solution was relatively high, It is difficult to perform a smooth coating operation for obtaining a uniform coating layer in an actual coating process and the antibacterial property is lowered due to a decrease in the surface characteristics of the film on which the coating layer is formed.

따라서 본 발명에서는, 산화아연 나노입자의 평균입경을 10~50 nm로 제어하는 것이 매우 중요함과 더불어, 바람직하기로는 코팅층 형성을 위한 산화아연 나노입자 분산용액(코팅용액)의 농도를 0.1~10 중량%로, 또한 코팅층의 두께를 0.5~10 ㎛로 제어하는 것이 배리어 특성을 유지하면서 항균성을 극대화 할 수 있다.
Therefore, in the present invention, it is very important to control the average particle diameter of the zinc oxide nanoparticles to 10 to 50 nm, and it is preferable that the concentration of the zinc oxide nanoparticle dispersion solution (coating solution) By controlling the weight percentage and the thickness of the coating layer to 0.5 to 10 mu m, it is possible to maximize the antibacterial property while maintaining the barrier property.

그러므로 본 발명에 따르면, 다양한 고분자 지지체 위에, 평균입경이 10~50 nm로 조절된 산화아연 나노입자가 간단한 공정으로 코팅되어 배리어 특성과 항균성이 우수한 포장 필름 및 그 제조방법을 제공함으로써 식품 또는 의약품 포장 등에 응용이 가능하다.Therefore, according to the present invention, a zinc oxide nanoparticle having an average particle diameter of 10 to 50 nm is coated on various polymer scaffolds by a simple process to provide a barrier film having excellent barrier properties and antimicrobial activity, And so on.

Claims (11)

필름 형상의 고분자 지지체; 및
상기 지지체 위에 평균입경이 10~50 nm인 산화아연 나노입자의 코팅층;을 포함하는 포장 필름.
Film-shaped polymer scaffold; And
And a coating layer of zinc oxide nanoparticles having an average particle diameter of 10 to 50 nm on the support.
제1항에 있어서, 상기 필름 형상의 고분자 지지체는 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-폴리글리콜산 공중합체, 폴리락트산-폴리카프로락톤 공중합체, 폴리산무수물, 폴리부틸렌숙시네이트, 폴리히드록시부티레이트, 폴리부티레이트아디페이트테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리비닐알코올, 폴리에틸렌, 폴리프로필렌, 폴리비닐클로라이드, 폴리아미드, 폴리우레탄 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 포장 필름.The film-like polymer scaffold of claim 1, wherein the film-like polymer scaffold is selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, polyacid anhydride, Polyvinyl alcohol, polyethylene, polypropylene, polyvinyl chloride, polyamides, polyurethanes and polyacrylates, from the group consisting of polyvinyl butyrate, polyvinyl butyrate, polyvinyl butyrate, polyvinyl pyrrolidone, polyvinyl pyrrolidone, polyvinyl pyrrolidone, Lt; RTI ID = 0.0 > 1, < / RTI > 제1항에 있어서, 상기 산화아연 나노입자는 실란계 커플링제로 입자 표면이 피복된 것을 특징으로 하는 포장 필름.The packaging film according to claim 1, wherein the zinc oxide nanoparticles are coated with a silane-based coupling agent. 제1항에 있어서, 상기 코팅층은 그 두께가 0.5~10 ㎛인 것을 특징으로 하는 포장 필름.The packaging film according to claim 1, wherein the coating layer has a thickness of 0.5 to 10 mu m. I) 산화아연 나노입자를 증류수에 분산시키고 초음파 분쇄기로 0.5~1시간 처리하여 분산용액을 얻는 단계;
II) 상기 분산용액을 원심분리 및 밀링하여 평균입경이 10~50 nm로 조절된 산화아연 나노입자를 형성하는 단계;
III) 상기 II) 단계에서 형성된 산화아연 나노입자를 다시 증류수에 분산시킨 분산용액을 얻는 단계; 및
IV) 상기 III) 단계의 분산용액을 필름 형상의 고분자 지지체 위에 코팅하여 코팅층을 형성하는 단계;를 포함하는 포장 필름의 제조방법.
I) dispersing zinc oxide nanoparticles in distilled water and treating the nanoparticles with an ultrasonic mill for 0.5 to 1 hour to obtain a dispersion solution;
II) centrifuging and milling the dispersion solution to form zinc oxide nanoparticles having an average particle size of 10 to 50 nm;
III) obtaining a dispersion solution in which the zinc oxide nanoparticles formed in the step II) are dispersed again in distilled water; And
IV) coating the dispersion solution of step III) on a film-like polymeric support to form a coating layer.
제5항에 있어서, 상기 I) 단계의 분산용액은 분산안정제로서 분산용액 총 중량 대비 0.05~5 중량%의 폴리비닐피롤리돈을 더욱 포함하는 것을 특징으로 하는 포장 필름의 제조방법.[6] The method of claim 5, wherein the dispersion solution of step I) further comprises 0.05 to 5% by weight of polyvinylpyrrolidone as a dispersion stabilizer based on the total weight of the dispersion solution. 제5항에 있어서, 상기 III) 단계에서 얻어지는 분산용액은 농도가 0.1~10 중량%인 것을 특징으로 하는 포장 필름의 제조방법.The method for producing a packaging film according to claim 5, wherein the dispersion solution obtained in step III) has a concentration of 0.1 to 10% by weight. 제5항에 있어서, 상기 III) 단계의 분산용액은 UV 경화형 수지 조성물 또는 열경화형 수지 조성물을 더욱 포함하는 것을 특징으로 하는 포장 필름의 제조방법.[6] The method according to claim 5, wherein the dispersion solution in step III) further comprises a UV curable resin composition or a thermosetting resin composition. 제5항에 있어서, 상기 IV) 단계의 필름 형상의 고분자 지지체는 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-폴리글리콜산 공중합체, 폴리락트산-폴리카프로락톤 공중합체, 폴리산무수물, 폴리부틸렌숙시네이트, 폴리히드록시부티레이트, 폴리부티레이트아디페이트테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리비닐알코올, 폴리에틸렌, 폴리프로필렌, 폴리비닐클로라이드, 폴리아미드, 폴리우레탄 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 포장 필름의 제조방법.6. The method of claim 5, wherein the film-like polymer scaffold of step (IV) is selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, Polybutylene terephthalate, polybutylene terephthalate, polybutylene terephthalate, polyvinyl alcohol, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyurethane and polyacrylate ≪ RTI ID = 0.0 > 1, < / RTI > 제5항에 있어서, 상기 IV) 단계의 코팅은 스핀 코팅, 딥 코팅, 롤 코팅, 스크린 코팅, 분무 코팅, UV 경화 코팅 또는 열경화 코팅법에 의하여 수행되는 것을 특징으로 하는 포장 필름의 제조방법.[6] The method of claim 5, wherein the coating of step IV) is performed by spin coating, dip coating, roll coating, screen coating, spray coating, UV curing coating or thermosetting coating. 제10항에 있어서, 상기 스핀 코팅은 5~10회 수행하는 것을 특징으로 하는 포장 필름의 제조방법.The method of claim 10, wherein the spin coating is performed 5 to 10 times.
KR1020160174401A 2016-12-20 2016-12-20 Packaging film coated with zinc oxide nanoparticles and preparation method thereof KR102003884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160174401A KR102003884B1 (en) 2016-12-20 2016-12-20 Packaging film coated with zinc oxide nanoparticles and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160174401A KR102003884B1 (en) 2016-12-20 2016-12-20 Packaging film coated with zinc oxide nanoparticles and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20180071601A true KR20180071601A (en) 2018-06-28
KR102003884B1 KR102003884B1 (en) 2019-07-25

Family

ID=62780317

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174401A KR102003884B1 (en) 2016-12-20 2016-12-20 Packaging film coated with zinc oxide nanoparticles and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102003884B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019305A (en) * 2019-12-27 2020-04-17 福州大学 High-barrier modified ZnO/PET (zinc oxide/polyethylene terephthalate) protective film and preparation method thereof
KR20200045601A (en) 2018-10-22 2020-05-06 주식회사 에스에프씨 Antimicrobial Film Having Nano ZnO Particle, Method of Making the Same and Food Packing Products
CN111303666A (en) * 2018-12-12 2020-06-19 介休市博创纳米材料科技有限公司 Method for preparing lipophilic spherical zinc oxide dry powder by ultrasonic wet grinding
WO2021090961A1 (en) * 2019-11-04 2021-05-14 고의석 Food packaging materials comprising zinc polypeptide
KR102315596B1 (en) * 2021-02-19 2021-10-22 박한수 Coating Agent for Food Packing Paper, and Method for Manufacturing the Same
KR20220019425A (en) * 2020-08-10 2022-02-17 주식회사 비지에프에코바이오 Antiviral biodegradable sheets and uses thereof
EP3969208A4 (en) * 2019-07-17 2023-01-04 Hewlett-Packard Development Company, L.P. Three-dimensional printing with metal oxide nanoparticle fusing agents
KR20230016120A (en) * 2021-07-23 2023-02-01 한국과학기술연구원 Polyketone-based multilayer film for packaging material and preparation method thereof
KR20230085334A (en) 2021-12-07 2023-06-14 한전건 Antimicrobial film by nano ion clusters coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626834B1 (en) * 2021-10-26 2024-01-18 고의석 Package for food using starfish and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135718A (en) * 1997-07-17 1999-02-09 Toyobo Co Ltd Antimicrobial white polyester film and antimicrobial laminated white polyester film
KR20010077332A (en) 2000-02-02 2001-08-17 성재갑 Antibacterial film having natural antibacterial agent
JP2003292818A (en) * 2002-01-31 2003-10-15 Showa Denko Kk Aqueous slurry of silica-coated zinc oxide fine particle and polymer composition
KR20050013566A (en) * 2002-06-05 2005-02-04 쇼와 덴코 가부시키가이샤 Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof
KR20100121977A (en) * 2009-05-11 2010-11-19 주식회사 아이티피에스피 Food package film coated with nano zno or tio2
JP2011252120A (en) * 2010-06-04 2011-12-15 Toyo Ink Sc Holdings Co Ltd Ultraviolet blocking coating resin composition and packaging material using the same
KR101334283B1 (en) 2012-07-13 2013-11-28 (주)나노미래생활 Material for antimicrobial plastic, antimicrobial plastic, masterbatch for manufacturing antimicrobial plastic, and manufacturing method of antimicrobial plastic
KR20130134477A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Gas-barrier film and method formanufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135718A (en) * 1997-07-17 1999-02-09 Toyobo Co Ltd Antimicrobial white polyester film and antimicrobial laminated white polyester film
KR20010077332A (en) 2000-02-02 2001-08-17 성재갑 Antibacterial film having natural antibacterial agent
JP2003292818A (en) * 2002-01-31 2003-10-15 Showa Denko Kk Aqueous slurry of silica-coated zinc oxide fine particle and polymer composition
KR20050013566A (en) * 2002-06-05 2005-02-04 쇼와 덴코 가부시키가이샤 Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof
KR20100121977A (en) * 2009-05-11 2010-11-19 주식회사 아이티피에스피 Food package film coated with nano zno or tio2
JP2011252120A (en) * 2010-06-04 2011-12-15 Toyo Ink Sc Holdings Co Ltd Ultraviolet blocking coating resin composition and packaging material using the same
KR20130134477A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Gas-barrier film and method formanufacturing the same
KR101334283B1 (en) 2012-07-13 2013-11-28 (주)나노미래생활 Material for antimicrobial plastic, antimicrobial plastic, masterbatch for manufacturing antimicrobial plastic, and manufacturing method of antimicrobial plastic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1. Aryou Emamifar et al., Food Control 22, 408-413(2011)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045601A (en) 2018-10-22 2020-05-06 주식회사 에스에프씨 Antimicrobial Film Having Nano ZnO Particle, Method of Making the Same and Food Packing Products
CN111303666A (en) * 2018-12-12 2020-06-19 介休市博创纳米材料科技有限公司 Method for preparing lipophilic spherical zinc oxide dry powder by ultrasonic wet grinding
CN111303666B (en) * 2018-12-12 2021-08-10 介休市博创纳米材料科技有限公司 Method for preparing lipophilic spherical zinc oxide dry powder by ultrasonic wet grinding
EP3969208A4 (en) * 2019-07-17 2023-01-04 Hewlett-Packard Development Company, L.P. Three-dimensional printing with metal oxide nanoparticle fusing agents
WO2021090961A1 (en) * 2019-11-04 2021-05-14 고의석 Food packaging materials comprising zinc polypeptide
CN111019305A (en) * 2019-12-27 2020-04-17 福州大学 High-barrier modified ZnO/PET (zinc oxide/polyethylene terephthalate) protective film and preparation method thereof
CN111019305B (en) * 2019-12-27 2021-06-29 福州大学 High-barrier modified ZnO/PET (zinc oxide/polyethylene terephthalate) protective film and preparation method thereof
KR20220019425A (en) * 2020-08-10 2022-02-17 주식회사 비지에프에코바이오 Antiviral biodegradable sheets and uses thereof
KR102315596B1 (en) * 2021-02-19 2021-10-22 박한수 Coating Agent for Food Packing Paper, and Method for Manufacturing the Same
KR20230016120A (en) * 2021-07-23 2023-02-01 한국과학기술연구원 Polyketone-based multilayer film for packaging material and preparation method thereof
KR20230085334A (en) 2021-12-07 2023-06-14 한전건 Antimicrobial film by nano ion clusters coating

Also Published As

Publication number Publication date
KR102003884B1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
KR102003884B1 (en) Packaging film coated with zinc oxide nanoparticles and preparation method thereof
Vasile et al. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging.
Chong et al. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges
Tijing et al. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles
Rodríguez-Tobías et al. Novel antibacterial electrospun mats based on poly (d, l-lactide) nanofibers and zinc oxide nanoparticles
Wu et al. Electrospinning of PLA nanofibers: Recent advances and its potential application for food packaging
US8753657B2 (en) Antibacterial resin composition derived from a masterbatch, antibacterial fiber, antibacterial film and method for manufacturing the antibacterial resin composition derived from a master batch
Huo et al. Preparation of a novel chitosan-microcapsules/starch blend film and the study of its drug-release mechanism
Jayakumar et al. Biomedical applications of polymer/silver composite nanofibers
JP5599470B2 (en) Antifungal material
Askari et al. Three‐layered electrospun PVA/PCL/PVA nanofibrous mats containing tetracycline hydrochloride and phenytoin sodium: A case study on sustained control release, antibacterial, and cell culture properties
Tarus et al. Electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats containing silver nanoparticles for antifungi packaging
Sridhar et al. Green processing mediated novel polyelectrolyte nanofibers and their antimicrobial evaluation
EP3907078A1 (en) Biodegradable container, method for obtaining same and use thereof for contact, transport and/or storage of perishable products
Xu et al. Smart design of rapid crystallizing and nonleaching antibacterial poly (lactide) nanocomposites by sustainable aminolysis grafting and in situ interfacial stereocomplexation
Chen et al. Intensifying the antimicrobial activity of poly [2-(tert-butylamino) ethyl methacrylate]/polylactide composites by tailoring their chemical and physical structures
CN109021550A (en) A kind of hyperbranched aqueous polyurethane nano-zinc oxide composite material and preparation method thereof
Jia et al. Synthesis and antibacterial investigation of cationic waterborne polyurethane containing siloxane
Salehi-Abari et al. Synthesis and Characterisation of semi-interpenetrating network of Polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing
Rokbani et al. Rheological properties of poly (lactic acid) solutions added with metal oxide nanoparticles for electrospinning
KR101445304B1 (en) Material for antimicrobial fiber, antimicrobial fiber, master batch for antimicrobial fiber, and manufacturing method of the antimicrobial fiber
CN111867376A (en) Antimicrobial coating material comprising nanocrystalline cellulose and magnesium oxide and method of making the same
Ali et al. Preparation and characterization of polyvinyl alcohol/polylactic acid/titanium dioxide nanocomposite films enhanced by γ‐irradiation and its antibacterial activity
Benigno et al. Nanocomposites based on low density polyethylene filled with carbon nanotubes prepared by high energy ball milling and their potential antibacterial activity
Salimbeigi et al. Electrospun poly (e‐caprolactone)/propolis fiber morphology: A process optimisation study

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)