JP5934953B1 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5934953B1
JP5934953B1 JP2015088899A JP2015088899A JP5934953B1 JP 5934953 B1 JP5934953 B1 JP 5934953B1 JP 2015088899 A JP2015088899 A JP 2015088899A JP 2015088899 A JP2015088899 A JP 2015088899A JP 5934953 B1 JP5934953 B1 JP 5934953B1
Authority
JP
Japan
Prior art keywords
partition
plate
reinforcing plate
refrigerator
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015088899A
Other languages
Japanese (ja)
Other versions
JP2016205723A (en
Inventor
堀尾 好正
好正 堀尾
濱田 和幸
和幸 濱田
健一 柿田
健一 柿田
愼一 堀井
愼一 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015088899A priority Critical patent/JP5934953B1/en
Application granted granted Critical
Publication of JP5934953B1 publication Critical patent/JP5934953B1/en
Publication of JP2016205723A publication Critical patent/JP2016205723A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】回転仕切体の強度確保のための仕切板は庫外へ露出しており、表面温度が低下するため、結露防止用として必要以上に加温手段を通電して仕切板を温めて、入力電力が増加してしまう。【解決手段】左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体200を設けて扉ガスケット110の吸着面とした冷蔵庫において、回転仕切体200は、扉ガスケット110の吸着面を形成する仕切板210と、回転仕切体内部に配設された断熱材220と、仕切板210の周縁部および断熱材220の外面を覆う仕切枠体230と、回転仕切体200の内部に金属製の補強板250を配置し、仕切板210の内面に加温手段240を備えたことにより、庫内外の温度差による回転仕切体200の反りが防止でき、外部からの庫内への熱侵入を抑えることができるため、冷蔵庫100の消費電力を削減することができる。【選択図】図9A partition plate for securing the strength of a rotating partition is exposed to the outside of the cabinet, and the surface temperature decreases. Therefore, a heating means is energized more than necessary to prevent condensation, and the partition plate is warmed. Input power will increase. In a refrigerator in which a rotary partition 200 extending in the vertical direction is provided on the inner surface of at least one of the left and right doors to serve as a suction surface for a door gasket 110, the rotary partition 200 is provided with a door gasket 110. A partition plate 210 that forms a suction surface, a heat insulating material 220 disposed inside the rotating partition, a partition frame 230 that covers the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, and the rotating partition 200. By arranging the metal reinforcing plate 250 inside and providing the heating means 240 on the inner surface of the partition plate 210, it is possible to prevent the rotating partition 200 from warping due to a temperature difference between the inside and outside of the cabinet, and to the inside from the outside. Therefore, power consumption of the refrigerator 100 can be reduced. [Selection] Figure 9

Description

本発明は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞した冷蔵庫に関する。   The present invention relates to a refrigerator that is closed in a double door manner with left and right doors in which front openings of storage rooms are arranged.

家庭用の冷蔵庫は、多様なユーザニーズに対応すべく冷却貯蔵温度の多様化とともに貯蔵室ごとに多くの扉を設けた冷蔵庫が商品化されている。冷凍室を上部に配置したトップフリーザータイプ、上部の冷蔵室と下部の野菜室との間に冷凍室を配置したミッドフリーザータイプ、冷凍室を最下部に配置したボトムフリーザタイプ、上部の冷蔵室の下方に縦長の冷凍室と野菜室を併置したタイプ、冷凍室と冷蔵室とを左右に併置したサイドバイサイドタイプなど様々な形態が商品化されてきた。   Household refrigerators have been commercialized as refrigerators having many doors for each storage room as well as diversified cooling storage temperatures in order to meet various user needs. The top freezer type with the freezer compartment at the top, the mid freezer type with the freezer compartment between the upper refrigerator compartment and the lower vegetable compartment, the bottom freezer type with the freezer compartment at the bottom, and the upper refrigerator compartment Various forms have been commercialized, such as a type in which a vertically long freezer room and a vegetable room are arranged below, and a side-by-side type in which a freezer room and a refrigerator room are arranged side by side.

近年では、使い勝手を考慮して、使用頻度が高く収納容積の最も大きい冷蔵室を観音開き式の扉として最上段に配置し、その下方に製氷室や温度切替室、そしてその下方に野菜室、最下部に冷凍室を設置したタイプが主流になっている。冷蔵室の観音開き式扉の一方の開放端側の内面に閉扉時に他方の扉側へ回動する仕切体を取付けている。そして、仕切体は扉周縁のガスケットの吸着面となる。   In recent years, in consideration of convenience, the refrigerator compartment, which is frequently used and has the largest storage capacity, has been placed at the top as a double door, with an ice making room and temperature switching room below it, and a vegetable room below it. A type with a freezer compartment at the bottom is the mainstream. A partition that rotates to the other door side when the door is closed is attached to the inner surface of one open end of the double door of the refrigerator compartment. And a partition becomes an adsorption | suction surface of the gasket of a door periphery.

更に、大型化した観音開き式の扉は縦方向寸法も長くなり、縦方向に長い仕切体が湾曲することによる外面意匠上の課題を有する。その課題を解決するために、回転仕切体の扉ガスケットの吸着面を形成する薄鋼板製の仕切板は、平板状の吸着面とその両側端縁を内方に折り返して重ね合わせ、さらに内方に折曲してアングル部を有する形状としている。仕切板の周縁部および仕切板の庫内側に設けた断熱部材の外面は合成樹脂製の仕切枠体で覆われるとともに、仕切枠体で仕切板を係合保持し、仕切板内面に面ヒータを貼付けて仕切板表面に発生する結露を防止したものが広く普及している(例えば、特許文献1参照)。   Furthermore, the enlarged double doors have a longer vertical dimension, and have a problem in exterior design due to a long partition curved in the vertical direction. In order to solve the problem, the partition plate made of a thin steel plate that forms the suction surface of the door gasket of the rotating partition body is folded by overlapping the flat suction surface and both side edges thereof inward, and It is bent into a shape having an angle portion. The outer peripheral surface of the partition plate and the outer surface of the heat insulating member provided inside the partition plate are covered with a synthetic resin partition frame, and the partition plate is engaged and held by the partition frame, and a surface heater is provided on the inner surface of the partition plate. Those that have been stuck to prevent condensation on the surface of the partition plate are widely used (see, for example, Patent Document 1).

以下、図18、図19を用いて、従来の冷蔵庫の回転仕切体の仕様を説明する。   Hereafter, the specification of the rotation partition of the conventional refrigerator is demonstrated using FIG. 18, FIG.

回転仕切体13は、吸着面を形成する磁性体である薄鋼板製の仕切板16と、断熱層を形成する発泡スチロール製の成形断熱部材18と、これらを覆って回転仕切体13の外郭を形成する合成樹脂製の仕切枠体17と、仕切板16の内面に配設されたアルミ箔ヒータなどからなる面ヒータ19と、回転仕切体13の上端部に配設され、上端面にガイド溝が形成されたキャップ部材58とから構成されている。   The rotating partition 13 is formed of a thin steel plate partition plate 16 that is a magnetic material forming an adsorption surface, a polystyrene foamed heat insulating member 18 that forms a heat insulating layer, and forms an outer shell of the rotating partition 13 so as to cover them. A synthetic resin partition frame 17, a surface heater 19 made of an aluminum foil heater or the like disposed on the inner surface of the partition plate 16, and a guide groove on the upper end surface of the rotary partition 13. The cap member 58 is formed.

上記の構成では、薄鋼板製の仕切板16と面ヒータ19が直接接触しているため、漏電対応として仕切板16と冷蔵庫1本体を接続するアース線を配設する必要がある。   In the above configuration, since the partition plate 16 made of a thin steel plate and the surface heater 19 are in direct contact with each other, it is necessary to provide a ground wire for connecting the partition plate 16 and the refrigerator 1 main body in order to cope with electric leakage.

また、冷蔵庫と回転仕切体13の嵌合を目的としたキャップ部材58は、仕切板16と仕切枠17のそれぞれの上部終端を覆って連結する役目も果たしている。   Further, the cap member 58 for fitting the refrigerator and the rotary partition 13 also serves to cover and connect the upper ends of the partition plate 16 and the partition frame 17.

特開2010−249491号公報JP 2010-249491 A

しかしながら、上記従来の構成では、低温となった冷蔵室で冷やされた扉ガスケット12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することに加え、仕切板16が庫内側へ折り曲げた形状としているため、仕切板16の大気開放部の表面温度が低下し、必要以上に面ヒータの容量が大きくなり消費電力量が増加する。さらに、ヒータを接続する電線部分も仕切板16に配置するので取付スペースが大型化するという課題を有していた。   However, in the above-described conventional configuration, the door gasket 12 cooled in the cold room having a low temperature is in direct contact with the partition plate 16 made of a thin steel plate having high thermal conductivity, and the partition plate 16 is moved to the inside of the warehouse. Due to the bent shape, the surface temperature of the air release portion of the partition plate 16 decreases, the capacity of the surface heater increases more than necessary, and the power consumption increases. Furthermore, since the electric wire part which connects a heater is also arrange | positioned in the partition plate 16, it had the subject that an attachment space enlarged.

本発明は、上記の課題を解決するもので、回転仕切体のヒータ等の加温手段への電力入力を低減し、回転仕切体の構成をも簡素化できる冷蔵庫を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide a refrigerator that can reduce power input to a heating means such as a heater of a rotating partition and can simplify the configuration of the rotating partition. .

上記従来の課題を解決するために、本発明の冷蔵庫は、貯蔵室の前面開口に併置した左
右扉は観音開き式に閉塞され、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体が設けられ、前記回転仕切体が扉ガスケットの吸着面とされる冷蔵庫において、前記回転仕切体は、扉ガスケットの吸着面を形成する樹脂製仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う樹脂製仕切枠体と、前記回転仕切体の上部にガイド機構を有するキャップと、前記扉ガスケットに対向して前記回転仕切体内部に設けられたマグネットと、を備え、前記回転仕切体内部に側面部を折り曲げ断面コの字状に形成された金属製補強板が配置されたもので、前記金属製補強板の側面部に形成された穴と前記樹脂製仕切枠体に形成された係合部材とで前記金属製補強板は前記樹脂製仕切枠体に固定されるとともに、前記樹脂製仕切板と前記樹脂製仕切枠体と前記金属製補強板とを前記キャップで連結固定するものである。
In order to solve the above-described conventional problems, the refrigerator of the present invention is configured such that the left and right doors juxtaposed to the front opening of the storage chamber are closed in a double-split manner, and are vertically disposed on the inner surface of at least one of the left and right doors on the side opposite to the pivot. In a refrigerator provided with a rotating partition that extends in a direction, and the rotating partition is an adsorption surface of a door gasket, the rotating partition includes a resin partition plate that forms an adsorption surface of the door gasket, and the rotating partition A heat insulating material disposed inside, a resin partition frame covering the peripheral edge of the partition plate and the outer surface of the heat insulating material, a cap having a guide mechanism on the upper portion of the rotating partition, and facing the door gasket And a magnet provided inside the rotating partition, and a metal reinforcing plate formed in a U-shaped cross-section by bending a side surface inside the rotating partition . Side of reinforcing plate Together with the metal reinforcing plate is fixed to the resin partition frame body and formed hole and engaging members formed on the resin partition frame, the said resin partition plate resin partition frame And the metal reinforcing plate are connected and fixed by the cap.

これにより、仕切板表面の温度は庫内外からの熱影響が少なくなるため上昇し、結露を防止するための加温手段への電力入力が抑制される。さらに、アース線の廃止ができると共に、仕切体の内側に磁性体を配設するスペースも確保でき、簡単な構成で低コスト化が図れる。   As a result, the temperature of the partition plate surface rises due to less thermal influence from inside and outside the cabinet, and power input to the heating means for preventing condensation is suppressed. Furthermore, the ground wire can be eliminated, and a space for arranging the magnetic body inside the partition can be secured, so that the cost can be reduced with a simple configuration.

本発明の冷蔵庫は、回転仕切体の構成を簡素化するとともに、結露を防止するための電力入力を最小限に抑制でき、省エネを図ることができる。   The refrigerator of the present invention simplifies the configuration of the rotating partition and can suppress power input for preventing condensation to be minimized, thereby saving energy.

本発明の実施の形態1による冷蔵庫の観音開き式扉の開扉状態を示す正面図The front view which shows the door opening state of the double doors of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵室の図2のA−A断面図2 is a cross-sectional view of the refrigerating room according to Embodiment 1 of the present invention, taken along line AA in FIG. 本発明の実施の形態1による冷蔵室の回転仕切体の分解斜視図The exploded perspective view of the rotation partition of the refrigerator compartment by Embodiment 1 of the present invention (a)本発明の実施の形態1による冷蔵室の断熱材と加温手段の組立て側面図、(b)図5(a)のB−B断面図、(c)図5(a)のC部拡大図(A) Side view of assembly of heat insulating material and heating means of refrigerating room according to Embodiment 1 of the present invention, (b) BB sectional view of FIG. 5 (a), (c) C of FIG. 5 (a) Enlarged view 本発明の実施の形態1による冷蔵庫の加温手段の通電率と仕切板の表面温度の関係を説明したグラフThe graph explaining the relationship between the electricity supply rate of the heating means of the refrigerator by Embodiment 1 of this invention, and the surface temperature of a partition plate 本発明の実施の形態1による冷蔵庫の加温手段の具体構成図The specific block diagram of the heating means of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫のヒータ各部位におけるヒータ発熱量と仕切板表面温度の関係を説明した図The figure explaining the relationship between the heater calorific value and partition plate surface temperature in each heater part of the refrigerator according to Embodiment 1 of the present invention 本発明の実施の形態2による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 2 of this invention 本発明の実施の形態2による冷蔵室の図9のD−D断面図DD sectional drawing of FIG. 9 of the refrigerator compartment by Embodiment 2 of this invention 本発明の実施の形態2による冷蔵室の回転仕切体の分解斜視図The disassembled perspective view of the rotation partition of the refrigerator compartment by Embodiment 2 of this invention 本発明の実施の形態2による冷蔵庫の加温手段の具体構成図The specific block diagram of the heating means of the refrigerator by Embodiment 2 of this invention 本発明の実施の形態3による冷蔵室の回転仕切体の分解斜視図The disassembled perspective view of the rotation partition of the refrigerator compartment by Embodiment 3 of this invention 本発明の実施の形態3による冷蔵庫の加温手段の具体構成図The specific block diagram of the heating means of the refrigerator by Embodiment 3 of this invention 本発明の実施の形態4による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 4 of this invention 本発明の実施の形態5による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 5 of this invention 本発明の実施の形態6による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 6 of this invention 従来の冷蔵庫の冷蔵室扉の閉扉状態を示す断面図Sectional drawing which shows the closed state of the refrigerator compartment door of the conventional refrigerator 従来の冷蔵庫の回転仕切体の分解斜視図The exploded perspective view of the rotation partition of the conventional refrigerator

請求項1に記載の発明は、貯蔵室の前面開口に併置した左右扉は観音開き式に閉塞され、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体が設けられ、前記回転仕切体が扉ガスケットの吸着面とされる冷蔵庫において、前記回転仕切体は、扉ガスケットの吸着面を形成する樹脂製仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う樹脂製仕切枠体と、前記回転仕切体の上部にガイド機構を有するキャップと、前記扉ガスケットに対向して前記回転仕切体内部に設けられたマグネットと、を備え、前記回転仕切体内部に側面部を折り曲げ断面コの字状に形成された金属製補強板が配置されたもので、前記金属製補強板の側面部に形成された穴と前記樹脂製仕切枠体に形成された係合部材とで前記金属製補強板は前記樹脂製仕切枠体に固定されるとともに、前記樹脂製仕切板と前記樹脂製仕切枠体と前記金属製補強板とを前記キャップで連結固定することにより、冷蔵庫の庫内外の温度差による前記回転仕切体の反りが防止でき、外部からの庫内への熱侵入を抑えることができる。 According to the first aspect of the present invention, the left and right doors juxtaposed to the front opening of the storage chamber are closed in a double-spread manner, and a rotating partition body extending vertically on the inner surface of at least one of the left and right doors on the side opposite to the pivot is provided. In the refrigerator, wherein the rotating partition is an adsorption surface of the door gasket, the rotating partition is a resin partition plate that forms the adsorption surface of the door gasket, and heat insulation disposed inside the rotating partition. A partition wall made of resin, covering a peripheral edge of the partition plate and the outer surface of the heat insulating material, a cap having a guide mechanism at the top of the rotating partition, and the interior of the rotating partition facing the door gasket and a magnet provided in the intended rotating partition body inside the folding side portions U-shaped cross-section to form a metallic reinforcing plate is disposed, formed on the side surface of the metallic reinforcing plate Hole and said resin Together with the metal reinforcing plate in an engagement member formed in Setsuwaku body is fixed to the resin partition frame, the resin-made partition plate and the resin partition frame member and said metal reinforcing plate By connecting and fixing with the cap, warpage of the rotating partition due to a temperature difference between the inside and outside of the refrigerator can be prevented, and heat intrusion from outside to the inside of the refrigerator can be suppressed.

さらに、仕切板表面は単一部品であるため、段差や色調違いが発生することなく、見栄えがよく外観品位が高い冷蔵庫を提供することが出来る。   Furthermore, since the partition plate surface is a single component, it is possible to provide a refrigerator having a good appearance and a high appearance quality without causing a step or a color difference.

また、仕切板が樹脂製であるため、仕切板表面の温度が上昇し、露点温度に対する尤度が上がるため、結露に対して最小限の電力入力で防止することができ、省エネとなる。   Further, since the partition plate is made of resin, the temperature of the partition plate surface increases, and the likelihood for the dew point temperature increases, so that it is possible to prevent dew condensation with a minimum amount of power input, thereby saving energy.

請求項に記載の発明は、請求項に記載の発明において、前記樹脂製仕切枠体には前記樹脂製仕切板の表面温度を上げる加温手段が設けられ、前記加温手段を中心とした円周外において、前記金属製補強板を配設したことにより、加温手段からの発熱が庫内側へ伝わり難くなるため庫内の冷却負荷量が低減され省エネになる。また、反対に庫内からの熱
影響も低減できるため、回転仕切体の仕切板表面温度の温度分布ばらつきが抑制されると共に、表面温度を上げるための不必要な電力入力が削減できるため省エネとなる。さらに、金属製補強板が加温手段から受ける熱量が軽減されるため、熱膨張による温度差での反りを抑制することが出来る。
The invention according to claim 2 is the invention according to claim 1 , wherein the resin partition frame is provided with a heating means for raising a surface temperature of the resin partition plate, and the heating means is mainly used. Since the metal reinforcing plate is disposed outside the circumference, heat generated from the heating means is hardly transmitted to the inside of the warehouse, so that the amount of cooling load in the warehouse is reduced and energy is saved. On the other hand, since the heat influence from the inside of the cabinet can be reduced, variation in the temperature distribution of the partition plate surface temperature of the rotating partition is suppressed, and unnecessary power input for raising the surface temperature can be reduced, thereby saving energy. Become. Furthermore, since the amount of heat received by the metal reinforcing plate from the heating means is reduced, warpage due to a temperature difference due to thermal expansion can be suppressed.

請求項に記載の発明は、請求項1または2に記載の発明において、前記金属製補強板の断面コの字状に形成された平面部と前記加温手段の中心までの距離に対し、前記金属製補強板の端部と前記加温手段の中心までの距離を長くしたことにより、加温手段の中心から最も近い距離は、金属製補強板の断面コの字状に形成された平面部となるため、断熱厚みが最大限取れる。故に、回転仕切体の強度確保と庫内への熱侵入抑制による省エネの両立を図ることが出来る。 The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the distance between the flat portion formed in a U-shaped cross section of the metal reinforcing plate and the center of the heating means is as follows: By extending the distance from the end of the metal reinforcing plate to the center of the heating means, the closest distance from the center of the heating means is a plane formed in a U-shaped cross section of the metal reinforcing plate. Because it becomes a part, the insulation thickness can be maximized. Therefore, it is possible to achieve both energy securing by ensuring the strength of the rotating partition and suppressing heat intrusion into the cabinet.

請求項に記載の発明は、請求項1からのいずれか一項に記載の発明において、前記金属製補強板は前記回転仕切体の長手方向略全長域に配置されたことにより、反りの影響を排除することができるため、外部からの熱侵入を抑えた高信頼性の扉密閉が確保できる。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the metal reinforcing plate is disposed in a substantially full length region in the longitudinal direction of the rotating partition, thereby preventing warping. Since the influence can be eliminated, a highly reliable door seal with reduced heat entry from the outside can be secured.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の観音開き式扉の開扉状態を示す正面図、図2は同実施の形態1による冷蔵室の閉扉状態での要部を示す断面図、図3は同実施の形態1による図2のA−A断面図、図4は同実施の形態1による冷蔵室の回転仕切体の分解斜視図、図5(a)は同実施の形態1による冷蔵室の断熱材と加温手段の組立て側面図、(b)は図(a)のB−B断面図、(c)は図(a)のC部拡大図、図6は同実施の形態1による冷蔵庫の加温手段の通電率と仕切板の表面温度の関係を説明したグラフである。図7は冷蔵庫の加温手段の具体構成図、図8は冷蔵庫のヒータ各部位におけるヒータ発熱量と仕切板表面温度の関係を説明した図である。
(Embodiment 1)
FIG. 1 is a front view showing an open state of a double door of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view showing a main part in a closed state of a refrigerator compartment according to Embodiment 1, and FIG. 2 is an AA cross-sectional view of FIG. 2 according to the first embodiment, FIG. 4 is an exploded perspective view of a rotating partition of the refrigeration room according to the first embodiment, and FIG. 5A is a refrigeration room according to the first embodiment. FIG. 6B is a cross-sectional view taken along the line BB in FIG. 5A, FIG. 6C is an enlarged view of a portion C in FIG. It is the graph explaining the relationship between the electricity supply rate of the heating means of a refrigerator, and the surface temperature of a partition plate. FIG. 7 is a specific configuration diagram of the heating means of the refrigerator, and FIG. 8 is a diagram illustrating the relationship between the amount of heat generated by the heater and the partition plate surface temperature in each part of the heater of the refrigerator.

図1において、冷蔵庫100は向かって左側に位置する左側扉102及び向かって右側に位置する右側扉103を有し、図1では左側扉102と右側扉103を開扉させた状態を示している。左側扉102と右側扉103とが設けられている部分は冷蔵貯蔵室105の部分であり、左側扉102の下は製氷室106、さらに下は冷凍貯蔵室107、野菜室108とされている。右側扉103の下、製氷室106の右隣には切替室109が設けられている。   In FIG. 1, a refrigerator 100 has a left door 102 located on the left side and a right door 103 located on the right side, and FIG. 1 shows a state in which the left door 102 and the right door 103 are opened. . A portion where the left door 102 and the right door 103 are provided is a portion of the refrigerated storage chamber 105, and an ice making chamber 106 is provided below the left door 102, and a frozen storage chamber 107 and a vegetable compartment 108 are provided below. A switching chamber 109 is provided below the right door 103 and to the right of the ice making chamber 106.

左側扉102と右側扉103はそれぞれヒンジ部により枢支されて左側と右側に開くように構成されており、左側扉102の非枢支側には回転仕切体200を設けている。この回転仕切体200は、左側扉102の開閉動作に応じて回転し、閉扉された状態では、左側扉102、右側扉103の非枢支側を扉ガスケット110を介して閉塞して、冷蔵貯蔵室105内からの冷気漏れを防止している。   The left door 102 and the right door 103 are pivotally supported by hinge portions, respectively, and are configured to open to the left and right sides. A rotating partition 200 is provided on the non-pivot side of the left door 102. The rotating partition 200 rotates according to the opening / closing operation of the left door 102. When the left door 102 is closed, the non-pivot side of the left door 102 and the right door 103 is closed via the door gasket 110 to store in a refrigerator. Cold air leakage from the chamber 105 is prevented.

ここで、各貯蔵室間には断熱仕切部材(図示せず)が配置されており、この断熱仕切部材の前面には、鋼板製のカバー501、502、503が配設され、各貯蔵室扉の扉ガスケットを介して閉塞し、各貯蔵室からの冷気漏れを防止している。   Here, a heat insulating partition member (not shown) is disposed between the storage compartments, and steel cover 501, 502, 503 is disposed on the front surface of the heat insulation partition member, and each storage compartment door is provided. The door is closed via a door gasket to prevent cold air leakage from each storage room.

次に、図2から図5において、回転仕切体200は、扉ガスケット110の吸着面111を形成する仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温部分241と接続部分242で構成される加温手段240とから構成されている。また断熱材220と仕切枠体230の間には、熱膨張係数の小さな例えば金属プレートの補強板250が、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に配置される。   Next, in FIGS. 2 to 5, the rotary partition 200 includes a partition plate 210 that forms the suction surface 111 of the door gasket 110, a polystyrene foam heat insulating material 220 disposed inside the rotary partition 200, and a partition. A synthetic resin partition frame 230 covering the peripheral edge of the plate 210 and the outer surface of the heat insulating material 220, and a heating means 240 comprising a heating portion 241 and a connection portion 242 disposed at the center of the inner surface of the partition plate 210; It is composed of In addition, a reinforcing plate 250 made of, for example, a metal plate having a small thermal expansion coefficient is disposed between the heat insulating material 220 and the partition frame 230 at substantially the entire height of the rotary partition 200 with respect to the height direction of the refrigerator.

仕切板210は、合成樹脂製であり、内面には2つの磁性体211が取り付けられてい
る。磁性体211は、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に構成されており、左側扉102、右側扉103が閉扉した状態において、扉ガスケット110内に構成された磁性体112と対向するように配置されている。本実施の形態では直方体のプラスチックマグネットを使用した。
The partition plate 210 is made of synthetic resin, and two magnetic bodies 211 are attached to the inner surface. The magnetic body 211 is configured in substantially the entire height region of the rotary partition 200 with respect to the height direction of the refrigerator, and the magnetic body configured in the door gasket 110 when the left door 102 and the right door 103 are closed. 112 is arranged so as to be opposed to 112. In this embodiment, a rectangular parallelepiped plastic magnet is used.

加温手段240の加温部分241及び磁性体211は、仕切板210と断熱材220の間で圧接して保持されている。また、加温手段240の加温部分241は線状ヒータ等の直線状なもので、磁性体211の間に磁性体211と並行して配置される。加温手段240の接続部分242は発熱しない抵抗値の小さな電線であり、加温部分241とは逆面側で断熱材220と仕切枠体230で圧接保持されている。   The heating part 241 and the magnetic body 211 of the heating means 240 are held in pressure contact between the partition plate 210 and the heat insulating material 220. Further, the heating portion 241 of the heating means 240 is a straight line such as a linear heater, and is disposed between the magnetic bodies 211 in parallel with the magnetic bodies 211. The connecting portion 242 of the heating means 240 is an electric wire with a small resistance value that does not generate heat, and is pressed and held by the heat insulating material 220 and the partition frame 230 on the opposite side to the heating portion 241.

次に、図4で回転仕切体200の全体構成について、図5で加温手段240の配置について詳細に説明する。   Next, the overall configuration of the rotary partition 200 will be described in detail with reference to FIG. 4, and the arrangement of the heating means 240 will be described in detail with reference to FIG.

回転仕切体200は、扉ガスケット110の吸着面111を形成する合成樹脂製の仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220と、金属製プレートの補強板250と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、断熱材220の仕切板210側に加温部分241を、補強板250側に接続部分242が配置された加温手段240で構成される。回転仕切体200の上部には、冷蔵貯蔵室の天面に取り付けられたガイド113によって、ドアを閉めたときにガイドに沿って回転する機構を考慮した仕切枠体230と仕切板210を連結固定するキャップ213が取り付けてある。本実施の形態では、キャップ213が仕切枠体230と仕切板210を連結固定しているが、補強板250も一緒に連結固定してもよい。この場合、更に強度が増加される。   The rotating partition 200 includes a synthetic resin partition plate 210 that forms the suction surface 111 of the door gasket 110, a styrene foam insulating material 220 disposed inside the rotating partition 200, and a metal plate reinforcing plate 250. A synthetic resin partition frame 230 covering the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, a heating portion 241 on the partition plate 210 side of the heat insulating material 220, and a connection portion 242 on the reinforcing plate 250 side. It is comprised by the heating means 240 arrange | positioned. A partition frame 230 and a partition plate 210 are coupled and fixed to the upper part of the rotary partition 200 in consideration of a mechanism that rotates along the guide when the door is closed by a guide 113 attached to the top surface of the refrigerator compartment. A cap 213 is attached. In the present embodiment, the cap 213 connects and fixes the partition frame body 230 and the partition plate 210, but the reinforcing plate 250 may also be connected and fixed together. In this case, the strength is further increased.

また、キャップ213は回転仕切体200の上部につけているが、回転仕切体200の下部にも同様の機構をつけてもよい。この場合、回転仕切体200を上下、前後で固定することが出来るため庫内外の熱影響や部品単体の成型等による反りに対する影響を排除することが出来る。   Further, although the cap 213 is attached to the upper part of the rotary partition 200, a similar mechanism may be attached to the lower part of the rotary partition 200. In this case, since the rotary partition 200 can be fixed up and down, front and back, it is possible to eliminate the influence on the warp due to the heat effect inside and outside the cabinet and the molding of a single component.

また、仕切板210内面中央に配設された加温部分241と、仕切板210の内面には加温部分241を挟む形で2つの磁性体211が取り付けられている。尚、加温手段240は組立てられた断熱材220の最下部で、加温部分241(ヒータ)と接続部分242(電線)に区切られている。   In addition, a heating portion 241 disposed in the center of the inner surface of the partition plate 210, and two magnetic bodies 211 are attached to the inner surface of the partition plate 210 so as to sandwich the heating portion 241. The heating means 240 is divided into a heating portion 241 (heater) and a connection portion 242 (electric wire) at the lowermost part of the assembled heat insulating material 220.

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

従来の構成では、冷蔵室3の温度影響で冷やされた扉ガスケット11,12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、仕切板16の大気開放部の表面温度が低下する。これを補って露点温度以上にするために、面ヒータ19の容量を大きくする必要がある。本実施の形態の場合、回転仕切体200の扉ガスケット110の吸着面111を形成する仕切板210を合成樹脂製としているので、図6の加温手段の通電率と仕切板の表面温度の関係のグラフが示す様に、同一の通電率の条件では、本実施例の場合の仕切板210の表面温度は、従来の仕切板16の表面温度に対して約3K高くなる。また、外気条件が30℃、75%のときの露点温度を維持するための通電率は、約10%低減できる。これは、扉ガスケット110が接触する仕切板210を熱伝導率の小さな合成樹脂にしたことで、仕切板210の大気開放部212の温度の低下が抑制されたためである。このように、仕切板210の表面温度が上昇する(庫外温度に近づく)ことは、温度の低い庫内からの熱影響が小さくなっていることを意味する。従来の構成では強度確保のため仕切板16が庫内側へと折り曲げてあるため、ヒータにより暖められた仕切板16の熱
は庫内側へと侵入し、庫内の冷却負荷となっていた。仕切板210を熱伝導率の小さな合成樹脂にしたことで庫内への熱侵入が抑制され、冷却負荷も軽減されている。これによって、省エネ効果も得ることが出来る。
In the conventional configuration, the door gaskets 11 and 12 cooled by the temperature effect of the refrigerating chamber 3 are in direct contact with the partition plate 16 made of a thin steel plate having high thermal conductivity, so that the surface of the air release portion of the partition plate 16 is exposed. The temperature drops. In order to make up for this and make the dew point temperature or higher, it is necessary to increase the capacity of the surface heater 19. In the case of the present embodiment, since the partition plate 210 that forms the suction surface 111 of the door gasket 110 of the rotary partition 200 is made of synthetic resin, the relationship between the energization rate of the heating means and the surface temperature of the partition plate in FIG. As shown in the graph, the surface temperature of the partition plate 210 in this embodiment is about 3K higher than the surface temperature of the conventional partition plate 16 under the same power supply rate condition. Moreover, the energization rate for maintaining the dew point temperature when the outside air conditions are 30 ° C. and 75% can be reduced by about 10%. This is because the partition plate 210 with which the door gasket 110 contacts is made of a synthetic resin having a low thermal conductivity, so that a decrease in the temperature of the atmosphere opening portion 212 of the partition plate 210 is suppressed. Thus, the surface temperature of the partition plate 210 increasing (approaching the outside temperature) means that the thermal influence from the inside of the chamber having a low temperature is reduced. In the conventional configuration, the partition plate 16 is bent toward the inside of the cabinet to ensure the strength. Therefore, the heat of the partition plate 16 heated by the heater enters the inside of the cabinet and becomes a cooling load inside the cabinet. Since the partition plate 210 is made of a synthetic resin having a low thermal conductivity, the heat intrusion into the cabinet is suppressed and the cooling load is also reduced. Thereby, an energy saving effect can also be obtained.

加えて、回転仕切体200の内部に、扉ガスケット110内に構成された磁性体112と対向するように、磁性体211を配置することで、扉ガスケット110との吸着という、回転仕切体200の基本機能を確保することができる。   In addition, by arranging the magnetic body 211 inside the rotating partition 200 so as to face the magnetic body 112 configured in the door gasket 110, the adsorption of the rotating partition 200, that is, adsorption to the door gasket 110, is performed. Basic functions can be secured.

さらに、仕切板210の表面は、1部品で構成されているため、従来の仕切板16が取り付いていたような2部品構成での段差や隙間、部品同士での色調違いが起こることもなく、見栄えもよく外観品位の高い冷蔵庫を提供することが出来る。   Furthermore, since the surface of the partition plate 210 is composed of one part, there is no difference in level or gap between the two-part configuration that the conventional partition plate 16 is attached to, and the difference in color between parts, A refrigerator with good appearance and high quality can be provided.

本実施例では磁性体211の材料として直方体のプラスチックマグネットを使用した。マグネットは特性上、特定の方向のみ強く働く異方性と、どの方向もほぼ同じような磁化の強さを持つ等方性がある。本実施の形態では等方性に比べ磁力が強い異方性のマグネットを使用している。これは、冬場等の気温が低い場合に、扉ガスケット110が硬化し、ガスケット飛び付き性が劣化し、ガスケット隙が懸念されるが、磁力の強い異方性を用いることで飛び付き性を上げてガスケット隙による冷気漏れを防止できる。   In this embodiment, a rectangular plastic magnet is used as the material of the magnetic body 211. Due to the characteristics of magnets, there are anisotropy that works strongly only in a specific direction and isotropic with almost the same magnetization intensity in any direction. In the present embodiment, an anisotropic magnet having a stronger magnetic force than isotropic is used. This is because the door gasket 110 is hardened when the temperature is low, such as in winter, and the gasket jumping property is deteriorated, and there is a concern about the gap of the gasket. Cold air leakage due to gaps can be prevented.

マグネットは幅及び奥行きの寸法が大きくすれば磁力は強くなる。本実施の形態では、扉ガスケット110の内部に配設されているマグネットと同寸法とし、中心線を合わせている。これはマグネットの着磁面はN極とS極があり磁石の反発によって扉ガスケット110が浮いて隙間が出来るのを防止するためである。実際、冷蔵庫の長期使用時や、ドアの取り付けばらつきにより、回転仕切体200と回転仕切体200が取り付けていない側のドアが概ね2mm程度ずれる場合があるが、中心線を合わせ、同寸法としているため、ずれた場合でも追従し反発によるガスケット隙を防止することが出来る。新規で開発設計する場合など、構成上、ずれる寸法が大きくなる可能性がある場合は、マグネットの外形左右寸法は中心線を合わせつつ大きくすると良い。   The magnet becomes stronger when the width and depth are increased. In the present embodiment, the dimensions are the same as those of the magnet disposed inside the door gasket 110 and the center line is aligned. This is to prevent the magnetized surface of the magnet from having an N pole and an S pole and causing the door gasket 110 to float and create a gap due to the repulsion of the magnet. In fact, the rotary partition 200 and the door on which the rotary partition 200 is not attached may be displaced by about 2 mm when the refrigerator is used for a long time or due to variations in the door installation. For this reason, even if they deviate, it is possible to follow and prevent gasket gaps due to repulsion. If there is a possibility that the size of the displacement will increase due to the construction, such as when developing and designing a new one, the outer left and right dimensions of the magnet should be increased while matching the center line.

本実施の形態では、左右のドアがずれる寸法を2mm程度と想定しているが、ずれる範囲が分からない場合は、仕切板210と断熱材220の間で圧接して保持されている内部のマグネットを、仕切板210の断面水平方向に遊びを取ることで、ドアがずれた場合でもマグネットが動きガスケットに追従するようにしても良い。このとき、マグネットは後ろから断熱材220によって圧接保持されているため、仕切板210に対して浮いて隙間が出来ることはない。   In this embodiment, it is assumed that the left and right doors are displaced by about 2 mm. However, when the range of displacement is not known, the internal magnet held in pressure contact between the partition plate 210 and the heat insulating material 220. By taking play in the horizontal direction of the cross section of the partition plate 210, the magnet may move and follow the gasket even when the door is displaced. At this time, since the magnet is pressed and held by the heat insulating material 220 from behind, the magnet does not float with respect to the partition plate 210 and no gap is formed.

また、マグネットの上下端を分割し、マグネット幅をマグネット基準幅に対して大きくとるようにしても良い。特に、上下端はガスケットの4隅でありガスケットが追従し難い傾向にあるためである。   Alternatively, the upper and lower ends of the magnet may be divided so that the magnet width is larger than the magnet reference width. In particular, the upper and lower ends are the four corners of the gasket, and the gasket tends to hardly follow.

本実施の形態の冷蔵庫において、左側扉と右側扉の扉ガスケット110が吸着する磁性体112の左右での磁力を左<右としている。これは、扉の幅方向の寸法は、左:右で概ね3:7であり、扉の回転軌跡と回転仕切体200が取り付いている左側扉の開扉力が大きいためである。このとき、マグネットの取付け作業で、左右で磁力の違うマグネットを間違えて取り付けないように、本実施の形態の冷蔵庫においては、マグネットの片側に切り込みを入れつつ、仕切板側も合わせた形状としている。切り込みは、コの字形状でも端面をC面カットしても良い。   In the refrigerator of the present embodiment, the left and right magnetic forces of the magnetic body 112 adsorbed by the door gasket 110 of the left door and the right door are left <right. This is because the dimension of the door in the width direction is approximately 3: 7 on the left: right, and the door opening trajectory and the door opening force of the left door to which the rotating partition 200 is attached are large. At this time, in the refrigerator of the present embodiment, the partition plate side is also combined with the partition plate side so as not to mistakenly attach the magnets having different magnetic forces on the left and right sides in the magnet mounting operation. . The incision may be a U-shape or the end face may be C-plane cut.

また、磁石は着磁面によって磁力が異なるため、表裏が判別できるように例えば、筋や刻印等を入れることで判別しやすくすることも、モノづくり工程でポカよけを行うための
有効な手段である。
In addition, since magnets have different magnetic forces depending on the magnetized surface, it is also an effective means to prevent debris in the manufacturing process. It is.

マグネットの材料はフェライト磁石を用いたが、強力な磁石(例えばネオジム磁石)を用いることで飛び付き性は良化するが、高価となるため製品の目標コストによっては使い分けることも良い。   Ferrite magnets are used as the magnet material, but the use of a strong magnet (for example, a neodymium magnet) improves the jumping property. However, since the magnet becomes expensive, it may be properly used depending on the target cost of the product.

ガスケットの吸引力は、マグネットの外形寸法や着磁方法、材料を変更することで様々な磁力のマグネットが出来るが、飛び付き性や、開扉力を考慮して適切な磁力のマグネットを使用すると良い。   The attractive force of the gasket can be changed by changing the external dimensions, magnetizing method, and material of the magnet. However, it is better to use a magnet with an appropriate magnetic force in consideration of the sticking property and opening force. .

磁石は熱エネルギーの関係で磁気特性が変化する特性を持っている。更に、本実施の形態での磁石は、プラスチックマグネットを使用しており、ゴムに磁石材料や金属粉末を加えて作られているものであるため、弾性特性を持っている。そのため、マグネットに直接、熱影響を与えないように、本実施の形態では、図3のように、マグネットとヒータを離して配設し、直接接触することがないようにしている。   Magnets have the property that their magnetic properties change due to thermal energy. Further, the magnet in the present embodiment uses a plastic magnet, and is made by adding a magnet material or metal powder to rubber, and thus has elastic characteristics. Therefore, in this embodiment, as shown in FIG. 3, the magnet and the heater are arranged apart from each other so as not to be directly in contact with each other so that the magnet is not directly affected by heat.

マグネットとヒータが直接接触することがないように、マグネットとヒータが配設する間にリブ等を設け、機械的構造をもって接触しないようにしても良い。この場合、リブに沿ってマグネット及びヒータを配設することも出来るため、ガイドの役割も担うこととなる。   In order to prevent direct contact between the magnet and the heater, a rib or the like may be provided between the magnet and the heater so that the magnet and the heater are not in contact with each other. In this case, since a magnet and a heater can be arranged along the rib, it also serves as a guide.

また、仕切板210と仕切枠体230を合成樹脂製とした場合、熱膨張の影響で例えば庫内温度が低いと仕切枠体230は縮み、庫外温度が高いと仕切板210は伸びる方向となる。従ってこの伸縮差により回転仕切体200は長手側に反る力が働くが、金属製の補強板250が回転仕切体200の略全高域に挿入されているので、反りの影響を排除することができる。これによって、外部からの熱侵入を抑えた高信頼性の扉密閉が確保できる。   Further, when the partition plate 210 and the partition frame 230 are made of synthetic resin, the partition frame 230 contracts due to the influence of thermal expansion, for example, when the internal temperature is low, and the partition plate 210 extends when the external temperature is high. Become. Accordingly, the rotating partition 200 is subjected to a warping force in the longitudinal direction due to the expansion / contraction difference, but since the metal reinforcing plate 250 is inserted in substantially the entire height region of the rotating partition 200, the influence of the warping can be eliminated. it can. As a result, a highly reliable door seal with reduced heat intrusion from outside can be secured.

次に、補強板250について説明する。   Next, the reinforcing plate 250 will be described.

図2のように、補強板250は、回転仕切体200の内部で庫内側に位置し、ヒータ線を中心とした所定円周の外側に配設している。これにより、ヒータの発熱が庫内側へ伝わり難くなるため庫内の冷却負荷量が低減され省エネになる。更に、補強板250の奥面部、即ち庫内側の形状は、仕切枠体230に略並行に配置した形状であり、補強板250の側面部は折り曲げた形状である。即ち、断面コの字状に形成されている。さらに、側面部には穴を開け、仕切枠体230から出した爪に固定する方法を取っている。これにより、庫内外での温度差による熱膨張による影響を抑え、長手方向の反りを抑制している。   As shown in FIG. 2, the reinforcing plate 250 is located inside the rotary partition 200 inside the warehouse, and is disposed outside a predetermined circumference centered on the heater wire. Thereby, since it becomes difficult to transmit the heat_generation | fever of a heater to the inner side of a warehouse, the amount of cooling loads in a warehouse is reduced and it becomes energy saving. Furthermore, the back surface portion of the reinforcing plate 250, that is, the shape inside the warehouse is a shape arranged substantially in parallel with the partition frame 230, and the side surface portion of the reinforcing plate 250 is a bent shape. That is, it is formed in a U-shaped cross section. Further, a method is adopted in which a hole is formed in the side surface portion and fixed to a claw taken out from the partition frame body 230. Thereby, the influence by the thermal expansion by the temperature difference in the inside and outside of a store | warehouse | chamber is suppressed, and the curvature of a longitudinal direction is suppressed.

本実施の形態では、補強板250の仕切枠体230への固定を爪固定としているが、補強板250の奥面部に貫通穴を設け、仕切枠体230に引っ掛け機構を設けることで、補強板250をスライドさせながら仕切枠体230に固定することも出来る。この場合、貫通穴の数を適当に設定することで作業工数低減と固定強度を最大限に保つことが可能となる。スライド機構とした場合には、補強板250が仕切枠体230に固定されていることが目視で理解できるため、作業の正確性向上と確実性向上ができる。   In the present embodiment, the reinforcement plate 250 is fixed to the partition frame body 230 with a claw. However, the reinforcement plate 250 is provided with a through-hole in the back surface portion, and the partition frame body 230 is provided with a hooking mechanism. 250 can be fixed to the partition frame 230 while sliding. In this case, by setting the number of through holes appropriately, it is possible to reduce work man-hours and maintain the maximum fixing strength. In the case of the slide mechanism, since it can be visually understood that the reinforcing plate 250 is fixed to the partition frame 230, the accuracy of work and the reliability can be improved.

本実施の形態では、補強板250と回転仕切体200とは熱縁切り構造を備えている。これは、庫内の0〜10℃程度の冷蔵温度帯により、回転仕切体200が冷却され、回転仕切体200から補強板250へと冷熱が伝熱する。この伝熱を抑制する方法として、熱縁切り構造を備える。補強板250と仕切枠体230が面接触すると伝熱しやすくなり、回転仕切体200自体のソリ強度も悪化する。具体的な熱縁切り構造は、仕切枠体230
にリブを設け、補強板250との隙間を作っている。リブの高さは、仕切枠体230の板厚の半分以下としており、概ね1mm程度である。さらに、このリブは、補強板250を取り付けるときのガイドにもしており作業性の向上も図っている。さらに、仕切枠体230自身のソリ抑制、ねじれ抑制の効果も担っており、解析等を用いて最適な位置及び形状を選定すると良い。
In the present embodiment, the reinforcing plate 250 and the rotary partition 200 have a thermal edge cutting structure. This is because the rotating partition 200 is cooled by the refrigeration temperature zone of about 0 to 10 ° C. in the warehouse, and the cold heat is transferred from the rotating partition 200 to the reinforcing plate 250. As a method of suppressing this heat transfer, a thermal edge cutting structure is provided. When the reinforcing plate 250 and the partition frame 230 come into surface contact, heat transfer is facilitated, and the warp strength of the rotary partition 200 itself is also deteriorated. The specific thermal edge cutting structure is the partition frame 230.
Ribs are provided to create a gap with the reinforcing plate 250. The height of the rib is not more than half the plate thickness of the partition frame 230, and is about 1 mm. Further, this rib also serves as a guide when the reinforcing plate 250 is attached to improve workability. Furthermore, the partition frame 230 itself has an effect of suppressing warpage and torsion, and an optimal position and shape may be selected using analysis or the like.

本実施の形態では、リブ形状としたが、突起として点接触としても良い。この場合、伝熱がさらに抑制されることとなる。   In the present embodiment, the rib shape is used, but a point contact may be used as the protrusion. In this case, heat transfer is further suppressed.

仕切枠体230自身も、部分的に薄肉化を施すことによって、熱縁切り構造とすることができる。また、薄肉よりも貫通穴を開けて穴部に断熱材を施しても良い。これにより、さらに伝熱しにくくなる。   The partition frame body 230 itself can also be made into a thermal edge cutting structure by partially thinning. Moreover, you may make a through-hole rather than thin wall and give a heat insulating material to a hole part. Thereby, it becomes difficult to transfer heat further.

補強板250の奥平面部には、強度に影響し難い部分に穴を設けることで部品自体の軽量化が図れると共に、材料費減によるコストダウンや重量減をすることができる。本実施の形態では、補強板250の平面部に複数個の概ね35×15mmの長穴を設けている。強度解析や実機試作検討を行いながら変形変位の影響が小さい部分の穴抜きを行うことで、強度確保しつつ、約15%の重量減を行うことが出来ている。   By providing a hole in the back plane portion of the reinforcing plate 250 where the strength is hardly affected, the weight of the component itself can be reduced, and the cost and weight can be reduced by reducing the material cost. In the present embodiment, a plurality of approximately 35 × 15 mm long holes are provided in the flat portion of the reinforcing plate 250. By drilling holes where the effect of deformation and displacement is small while conducting strength analysis and prototype testing, it is possible to reduce the weight by about 15% while ensuring strength.

また、補強板250は両端を曲げた断面コの字状の形状とし、板厚よりも曲げ寸法高さ(フランジ高さ)を大きくしている。すなわち、補強板250自身で強度を確保した形状としている。具体的には、板厚をt1.0mmとし、フランジ高さを13.0mmと8.5mmとし、左右で高さは違う寸法としている。これは、ドアを開閉するときの回転仕切体200の回転軌跡上、左右での厚みが異なるためである。   The reinforcing plate 250 has a U-shaped cross-section with both ends bent, and the bending dimension height (flange height) is larger than the plate thickness. That is, the reinforcing plate 250 itself has a shape that ensures strength. Specifically, the plate thickness is t1.0 mm, the flange height is 13.0 mm and 8.5 mm, and the height is different on the left and right. This is because the left and right thicknesses are different on the rotation trajectory of the rotary partition 200 when the door is opened and closed.

補強板250の板厚、フランジ高さは単体強度に影響を及ぼすファクターであり、一般的に、強度(断面2次モーメント)は、(幅の3乗)×高さ/12の曲げ応力の式にて表せる。高さであるフランジ高さを高くすることで、補強板250の強度、即ち、回転仕切体200の強度を高めることができる。しかしながら、フランジ高さを高くすると、ヒータが発熱する熱影響を受けやすくなり、庫内への侵入熱となるため消費電力量が増加する恐れがある。そのため、本実施の形態では、ヒータ線を中心とした所定円周の外側において、補強板250の背面平面部までのヒータ線中心からの距離:Xに対し、フランジまでの距離:Yの関係を、X≦Yとすることで強度と庫内への熱侵入抑制による省エネを図っている。   The thickness of the reinforcing plate 250 and the height of the flange are factors that affect the strength of a single unit. In general, the strength (second moment of cross section) is expressed by a bending stress of (the cube of width) × height / 12. It can be expressed as By increasing the height of the flange, which is the height, the strength of the reinforcing plate 250, that is, the strength of the rotary partition 200 can be increased. However, if the height of the flange is increased, the heater is likely to be affected by the heat generated and becomes heat entering the cabinet, which may increase power consumption. Therefore, in the present embodiment, on the outside of a predetermined circumference centered on the heater wire, the relationship between the distance from the heater wire center to the back flat portion of the reinforcing plate 250: X and the distance to the flange: Y is as follows. , X ≦ Y is intended to save energy by suppressing strength and heat penetration into the interior.

本実施の形態の回転仕切体200の長さは、概ね800mm程度であるが、今後の冷蔵庫の大容量化に伴う場合や、冷蔵室の大型化によるものなどで、回転仕切体200の長手方向に長くなる場合には、補強板250の強度確保のためフランジ高さを高くしつつ板厚を下げるか、板厚を上げてフランジ高さを低くすると良い。   The length of the rotary partition 200 according to the present embodiment is about 800 mm, but the longitudinal direction of the rotary partition 200 is due to the future increase in the capacity of the refrigerator or the size of the refrigerator compartment. In order to ensure the strength of the reinforcing plate 250, it is preferable to decrease the plate thickness while increasing the flange height, or increase the plate thickness to decrease the flange height.

本実施の形態の補強板250は、表面に亜鉛メッキ処理を施して腐食を抑制している。補強板250は回転仕切体200の内部に配設され、直接、外気に触れることはなく腐食し難いが、亜鉛メッキ処理を表面に施すことで10年を超える長期や、雨水にさらされた場合でも機能を損なわないようにしている。   The reinforcing plate 250 of the present embodiment suppresses corrosion by applying a galvanizing process to the surface. The reinforcing plate 250 is disposed inside the rotary partition 200 and is not directly corroded without being exposed to the outside air. However, when the surface is subjected to galvanizing treatment, the reinforcing plate 250 is exposed to rainwater for a long period exceeding 10 years. However, it does not impair the function.

本実施の形態の補強板250は、回転仕切体200の略全高域に配設し、長手方向の冷蔵貯蔵室の天面側を折り曲げてキャップ213とビス固定している。これにより、反りに対する強度UPと、ドア開閉時に応力がかかるキャップ213と回転仕切体200との嵌合力を上げて変形の抑制を図ることが出来る。キャップ213と補強板250と仕切枠体230とは、ビスで共締めしているため、さらに、作業工数の低減、部品点数の低減によ
りコストダウンも図っている。
The reinforcing plate 250 according to the present embodiment is disposed substantially at the entire height of the rotary partition 200, and the top surface side of the refrigerated storage chamber in the longitudinal direction is bent and fixed to the cap 213 with screws. As a result, it is possible to suppress deformation by increasing the strength against warping and increasing the fitting force between the cap 213 and the rotary partition 200 that are stressed when the door is opened and closed. Since the cap 213, the reinforcing plate 250, and the partition frame 230 are fastened together with screws, the cost is reduced by reducing the number of work steps and the number of parts.

本実施の形態では、回転仕切体200の上部に関して説明したが、下部も補強板250と仕切枠体230とをビス共締めしてもよい。上下部でキャップ213と補強板250と仕切枠体230と仕切板210を纏めてビス固定することで、より強固な嵌合とすることが出来る。   In the present embodiment, the upper part of the rotary partition 200 has been described, but the reinforcing plate 250 and the partition frame 230 may be fastened together with screws at the lower part. By fastening the cap 213, the reinforcing plate 250, the partition frame 230, and the partition plate 210 together with screws at the upper and lower portions, a stronger fitting can be achieved.

補強板250は、回転仕切体200の略全高域に配設しているが、補強板250の奥平面部の少なくとも一部を、回転仕切体200と冷蔵室ドアとの固定連結部を含む上下端まで配設することで回転仕切体200の強度確保を行っている。   The reinforcing plate 250 is disposed in substantially the entire height region of the rotary partition 200, but at least a part of the back plane portion of the reinforcing plate 250 includes upper and lower parts including a fixed connection portion between the rotary partition 200 and the refrigerator compartment door. The strength of the rotary partition 200 is ensured by disposing it to the end.

次に、本実施の形態における、加熱用ヒータについて説明する。   Next, the heater for heating in this embodiment will be described.

図7において、加温手段240は図中一点鎖線右側に長さLを持つ直線状のヒータの加温部分241と、一点鎖線左側に発熱しない電線等の接続部分242で構成される。加温部分241は図4に示す様に、回転仕切体200の略全高域とほぼ同じ長さで、合成樹脂製の仕切板210の中央に配置される。加温部分241はその発熱量すなわちワット密度が可変であり、図7では部位a、b、cと3区分を可変としている。加温部分241のヒータを可変にする具体的な手段としては、線状巻線抵抗線の巻きピッチを変えて抵抗値を可変したり、印刷抵抗の抵抗ペースト成分を可変してシート抵抗としたり、抵抗値の異なる発熱抵抗線を直列接続すれば可能である。本実施の形態では部位を3区分としたが、目的に応じて複数区分とすれば良い。   In FIG. 7, the heating means 240 includes a heating portion 241 of a linear heater having a length L on the right side of the alternate long and short dash line and a connecting portion 242 such as an electric wire that does not generate heat on the left side of the alternate long and short dash line. As shown in FIG. 4, the heating portion 241 has a length substantially the same as the entire height of the rotary partition 200 and is disposed at the center of the synthetic resin partition plate 210. The heating portion 241 has a variable calorific value, that is, a watt density. In FIG. 7, the sections a, b, and c are variable. As specific means for changing the heater of the heating portion 241, the resistance value can be changed by changing the winding pitch of the linear winding resistance wire, or the resistance paste component of the printing resistor can be changed to make the sheet resistance. This is possible by connecting in series the heating resistance wires having different resistance values. In this embodiment, the region is divided into three sections, but may be divided into a plurality of sections according to the purpose.

図8において、ヒータに通電がない場合、仕切板210の表面温度は点線で示す様に、中央部(部位b)では高く、両端に向かうほど温度は低くなる(部位a、c)。これは冷蔵貯蔵室105と扉ガスケット110の密閉性や熱伝導、あるいは冷蔵貯蔵室105内の冷気循環影響により温度分布の不均一が発生してしまうからである。回転仕切体200の上下端はドアを開閉するために、庫内内箱との隙間を設けている。この隙間を、左右のガスケットをあわせることで庫内外の冷気漏れを防止しているが、庫内を循環する冷気が隙間に入りやすくなるため、表面温度が低い傾向にある。次に、ヒータを通電する場合、仕切板210の表面温度が結露領域にあるので、ヒータを通電して各部位を結露境界線以上の温度に昇温させる必要がある。   In FIG. 8, when the heater is not energized, the surface temperature of the partition plate 210 is high at the center (part b) as shown by the dotted line, and the temperature decreases toward both ends (parts a and c). This is because non-uniform temperature distribution occurs due to the sealing property and heat conduction between the refrigerated storage chamber 105 and the door gasket 110, or the influence of cold air circulation in the refrigerated storage chamber 105. In order to open and close the door, the upper and lower ends of the rotary partition 200 are provided with a gap with the inner box. The gap between the left and right gaskets is used to prevent leakage of cold air inside and outside the cabinet. However, since the cold air circulating inside the cabinet easily enters the gap, the surface temperature tends to be low. Next, when the heater is energized, since the surface temperature of the partition plate 210 is in the dew condensation region, it is necessary to energize the heater to raise the temperature of each part to a temperature above the dew condensation boundary line.

この時、従来の様な一点鎖線で示す発熱量一定のヒータでは、各部位の温度上昇が一定のため、最も温度の低い部位a、cに発熱量を合わせる必要があり、部位bに対しては一点鎖線の様に不必要な温度上昇が発生してしまう。   At this time, in a heater with a constant calorific value indicated by a one-dot chain line as in the prior art, since the temperature rise of each part is constant, it is necessary to match the calorific value to the parts a and c having the lowest temperature. Unnecessary temperature rise occurs as shown by the alternate long and short dash line.

一方、本実施の形態では図7に示す様に、ヒータの発熱量を部位により可変にしている。すなわち実線で示す様に、部位bは発熱量を小さくし、部位a、cでは大きくする。こうすることで、ヒータ通電なしの仕切板210の表面温度(点線)は、露点境界線を必要最小限越えた均一な表面温度(実線)にすることができる。これをヒータの発熱量で従来と比較すると、斜線で囲った領域分の発熱量が不要で、その分消費電力量が削減できる。   On the other hand, in this embodiment, as shown in FIG. 7, the amount of heat generated by the heater is variable depending on the part. That is, as shown by the solid line, the part b reduces the amount of heat generation and increases the part a and c. By doing so, the surface temperature (dotted line) of the partition plate 210 without energizing the heater can be made a uniform surface temperature (solid line) exceeding the dew point boundary line as much as possible. Compared with the conventional heat generation amount of the heater, the heat generation amount for the area surrounded by the oblique lines is unnecessary, and the power consumption can be reduced accordingly.

以上のように、本実施の形態においては、加温手段240の加温部分241を複数に分割した部位とし、各部位のワット密度を可変としたことにより、冷蔵庫100の回転仕切体200の形状変更等による断熱性能差に対しても、仕切板210の表面温度が均一化されるので、温度分布ばらつきがなくなり不必要な電力入力が削減できる。   As described above, in the present embodiment, the heating portion 241 of the heating means 240 is divided into a plurality of parts, and the watt density of each part is variable, so that the shape of the rotary partition 200 of the refrigerator 100 is changed. The surface temperature of the partition plate 210 is made uniform even when there is a difference in heat insulation performance due to changes or the like, so there is no variation in temperature distribution and unnecessary power input can be reduced.

加温手段240には、ヒータの加温部分241と電線の接続部分242とを電気的に接続する切替え部分243が部位aの範囲にある。切替え部分243には防水性が要求され
、樹脂モールドやチューブ封止するのが一般的で、加温部分241の線形より太くなる。
The heating means 240 has a switching portion 243 that electrically connects the heating portion 241 of the heater and the connecting portion 242 of the electric wire within the range of the portion a. The switching portion 243 is required to be waterproof, and is generally sealed with a resin mold or tube, and becomes thicker than the linear shape of the heating portion 241.

本実施の形態では、アルミ箔にヒータが溶着されたアルミ箔ヒータを用いている。これによって、仕切板210の表面に対して、ヒータがアルミを介して面接触できる。なお、アルミ無しでヒータを配設しても良い。この場合は、仕切板210に溝等をつけてヒータを圧接して入れ込むことで容易に固定出来るため、材料費低減と工程の簡素化が可能となる。   In the present embodiment, an aluminum foil heater in which a heater is welded to an aluminum foil is used. Thus, the heater can come into surface contact with the surface of the partition plate 210 via the aluminum. In addition, you may arrange | position a heater without aluminum. In this case, since it can fix easily by attaching a groove | channel etc. to the partition plate 210 and pressing and inserting a heater, material cost reduction and simplification of a process are attained.

ヒータが接する仕切板210の部分は、板厚を薄くすれば伝熱がよくなり、ヒータ容量も低減できるため省エネになる。薄くすると表面のヒケ発生等での外観不良や高度な成型精度が必要で生産性が落ちることでのコストUPとなる場合があり、本実施の形態では、ヒータが接する仕切板210の部分の厚みを1mm以上としている。これによって、省エネ効果とコストのバランスを両立させている。   In the part of the partition plate 210 that contacts the heater, if the plate thickness is reduced, heat transfer is improved, and the heater capacity can be reduced, thereby saving energy. If the thickness is reduced, it may increase the cost due to poor appearance due to the occurrence of sink marks on the surface and high molding accuracy, resulting in a decrease in productivity. In this embodiment, the thickness of the portion of the partition plate 210 in contact with the heater is increased. Is 1 mm or more. This balances energy savings with cost.

ヒータが接する仕切板210の部分を薄い板や膜等を重ねて3層程度の多重構造としても良い。この場合、成型機で1mm以下の厚みが出来なくとも、ヒータが接する部分のみ、例えば薄い平板を重ねることで伝熱向上することが出来る。   The part of the partition plate 210 in contact with the heater may have a multi-layer structure of about three layers by stacking thin plates or films. In this case, even if a thickness of 1 mm or less cannot be achieved by the molding machine, heat transfer can be improved by stacking, for example, thin flat plates only on the portion where the heater contacts.

回転仕切体200内部は断熱材として、発泡スチロール製の断熱材220を配設しているが、この発泡密度を30%程度としている。この低密度発泡によって、断熱材自体の強度を確保し、回転仕切体200自体のソリ強度も向上させている。さらに低発泡密度としてもよい。   The inside of the rotary partition 200 is provided with a heat insulating material 220 made of styrene foam as a heat insulating material, and the foaming density is about 30%. By this low density foaming, the strength of the heat insulating material itself is secured, and the warp strength of the rotating partition 200 itself is also improved. Furthermore, it is good also as a low foaming density.

本実施の形態では、発泡スチロール製の断熱材220を配設しているが、高断熱性能である発泡ウレタンでも良い。この場合、断熱性能を表す熱伝導率が約3倍に向上するため、更なる必要なヒータ容量も低減でき、省エネを推進することが出来る。加えて、成型された発泡スチロールよりも、ウレタンを内部に流し込んで発泡するため周囲の部品との密着によって、回転仕切体全体としての強度を上げることができる。   In the present embodiment, the heat insulating material 220 made of polystyrene foam is disposed, but urethane foam having high heat insulating performance may be used. In this case, since the thermal conductivity representing the heat insulation performance is improved by about three times, further necessary heater capacity can be reduced and energy saving can be promoted. In addition, since the urethane is poured into the inside and foamed rather than the molded foamed polystyrene, the strength of the rotating partition as a whole can be increased by close contact with surrounding parts.

また、回転仕切体200の内部に真空断熱材を配設しても良い。この場合、断熱性能が更に向上するため、庫内からの熱影響を更に抑制できると共に、真空断熱材が柱の役目をすることで強度も強くなる。   Further, a vacuum heat insulating material may be disposed inside the rotary partition 200. In this case, since the heat insulation performance is further improved, it is possible to further suppress the thermal influence from the inside of the warehouse, and the vacuum heat insulating material serves as a pillar, so that the strength is increased.

真空断熱材を発泡スチロール製の断熱材220の内部に配設し一体発泡することも出来る。この場合、真空断熱材の周囲は断熱材220で覆われるため真空断熱材の外皮による熱の回り込みも発生せず、断熱性能に優れた構造となり、必要なヒータ容量及び通電率を下げることが出来るため省エネとなる。   A vacuum heat insulating material may be disposed inside the heat insulating material 220 made of foamed polystyrene and integrally foamed. In this case, since the periphery of the vacuum heat insulating material is covered with the heat insulating material 220, heat wraparound by the outer skin of the vacuum heat insulating material does not occur, and the structure has excellent heat insulating performance, and the required heater capacity and energization rate can be reduced. Therefore, it becomes energy saving.

仕切板210は合成樹脂製である。本実施の形態では、PS(ポリスチレン)を使用している。ABS材料を用いても良い。この場合、ヒータ線やヒータ線と電線部を接続する溶着部、マグネット等に可塑剤(樹脂を柔らかくする添加剤)が混入されているが、ABS材料を用いることによって、可塑剤の他素材への移行が更にし難くなる。   The partition plate 210 is made of synthetic resin. In this embodiment, PS (polystyrene) is used. ABS material may be used. In this case, a plasticizer (an additive that softens the resin) is mixed in the heater wire, the welded portion that connects the heater wire and the wire portion, a magnet, or the like. It becomes more difficult to migrate.

ABS材料はPS材料に対して高価であるため可塑剤の移行性への配慮としては、アルミテープを貼り付けるもしくは覆う事で移行性を無くすことも出来る。   Since the ABS material is more expensive than the PS material, the migration can be eliminated by attaching or covering the aluminum tape as a consideration for the migration of the plasticizer.

仕切板210の材料として、磁性材を含んだ材料や、表面に磁性塗料を塗布したものを用いても良い。この場合、ガスケットとの密着性及び飛び付き性が向上するため、強固であれば、磁性体211を用いなくてもよい。これにより、断熱材の厚みを増やすことが出来るため更なる省エネと、部品点数の低減で直材及び工数のコストダウンを図ることが出
来る。
As the material of the partition plate 210, a material containing a magnetic material or a material having a magnetic coating applied to the surface may be used. In this case, since the adhesion to the gasket and the jumping property are improved, the magnetic body 211 may not be used if it is strong. Thereby, since the thickness of a heat insulating material can be increased, the cost reduction of a direct material and a man-hour can be aimed at by the further energy saving and reduction of a number of parts.

以上のように、本実施の形態においては、冷蔵貯蔵室105の左右扉の少なくともいずれか一方(ここでは左側扉102)の反枢支側の内面に、縦方向に亙る回転仕切体200を設けて扉ガスケット110の吸着面111を樹脂性の仕切板210とし、仕切板210内側に磁性体211を扉ガスケット110内蔵の磁性体112と対向する位置に配置し、その磁性体211の間に加温手段240の加温部分241を直線的に並行に配置し、仕切板210周縁部および断熱材220の外面を樹脂製の仕切枠体230で覆うと共に、回転仕切体200の内部に金属製の補強板250を配置し、金属製の補強板250は断面コの字状で、仕切枠体230に係止したことにより、庫内外の温度差による回転仕切体200の反りが防止でき、外部からの庫内への熱侵入を抑えることができる。   As described above, in the present embodiment, the rotary partition 200 that extends in the vertical direction is provided on the inner surface of at least one of the left and right doors of the refrigerated storage chamber 105 (here, the left door 102) on the side opposite to the pivot. Then, the adsorption surface 111 of the door gasket 110 is used as a resinous partition plate 210, and a magnetic body 211 is disposed inside the partition plate 210 at a position facing the magnetic body 112 built in the door gasket 110, and is added between the magnetic bodies 211. The heating portions 241 of the heating means 240 are arranged linearly in parallel, and the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220 are covered with a resin partition frame 230, and the rotating partition 200 is made of metal. Since the reinforcing plate 250 is disposed and the metallic reinforcing plate 250 has a U-shaped cross section and is locked to the partition frame 230, it is possible to prevent the rotating partition 200 from warping due to a temperature difference between inside and outside the cabinet. of It is possible to suppress heat penetration into the inner.

さらに、仕切板210の表面温度を従来の薄鋼板製よりも高く維持でき、結露防止のための加温手段240の電力入力が少なくなるので、冷蔵庫100の消費電力を削減することができる。   Furthermore, the surface temperature of the partition plate 210 can be maintained higher than that of a conventional thin steel plate, and the power input of the heating means 240 for preventing condensation is reduced, so that the power consumption of the refrigerator 100 can be reduced.

また、加温手段240の接続部分242を断熱材220を介して、加温部分241と逆面に配置するので、加温部分241が直線状に配置され、仕切板210内面に配置する磁性体211の取り付けスペースが確保でき、扉ガスケット110内面の磁性体112と精度良く対向されるので、回転仕切体200と扉ガスケット110との吸着状態の信頼性が確保できる。   Further, since the connecting portion 242 of the heating means 240 is disposed on the opposite side of the heating portion 241 via the heat insulating material 220, the heating portion 241 is disposed linearly and is disposed on the inner surface of the partition plate 210. Since the mounting space 211 can be secured and the magnetic body 112 on the inner surface of the door gasket 110 is accurately opposed, the reliability of the suction state between the rotating partition 200 and the door gasket 110 can be secured.

さらに、加温手段240は合成樹脂製の仕切板210の内面に配設され、人が触れる部分が合成樹脂のため漏電対応の必要がなく、アース線の廃止で低コスト化を図ることができる。   Further, the heating means 240 is disposed on the inner surface of the partition plate 210 made of synthetic resin, and the portion touched by a person is a synthetic resin, so there is no need to cope with electric leakage, and the cost can be reduced by eliminating the ground wire. .

また、断熱材220と仕切枠体230の間に略全高域に金属製の補強板250を挿入するので、合成樹脂製の仕切板210と仕切枠体230の熱膨張差による回転仕切体200の反りが防止でき、外部からの熱侵入を抑えた高信頼性の扉密閉が確保できる。   Further, since the metal reinforcement plate 250 is inserted between the heat insulating material 220 and the partition frame body 230 at almost the entire height region, the rotation partition body 200 of the rotating partition body 200 due to the difference in thermal expansion between the partition plate 210 made of synthetic resin and the partition frame body 230. Warpage can be prevented, and a highly reliable door seal with reduced heat entry from the outside can be secured.

(実施の形態2)
図9は本発明の実施の形態2による冷蔵室の閉扉状態での要部を示す断面図、図10は同実施の形態2による図9のD−D断面図、図11は同実施の形態2による冷蔵室の回転仕切体の分解斜視図、図12は同実施の形態2による冷蔵庫の加温手段の具体構成図である。なお、実施の形態1と同一構成については同一符号を付して、異なる部分について説明する。
(Embodiment 2)
9 is a cross-sectional view showing a main part of the refrigerator compartment in the closed state according to the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along the line DD of FIG. 9 according to the second embodiment, and FIG. 2 is an exploded perspective view of the rotating partition of the refrigerator compartment according to FIG. 2, and FIG. 12 is a specific configuration diagram of the heating means of the refrigerator according to the second embodiment. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and a different part is demonstrated.

図9から図12において、加温手段240の加温部分241は、仕切板210に直線的に配置された2本の磁性体211の間に配置され、2本(往復)の加温部分241は並行して磁性体211と接触しないように断熱材220で圧接保持されている。尚、本実施の形態では磁性体211の間に配置する加温部分241を2本としたが、スペースが確保できれば更に本数を増やしてもよい。   9 to 12, the heating portion 241 of the heating means 240 is disposed between two magnetic bodies 211 that are linearly disposed on the partition plate 210, and two (reciprocating) heating portions 241. Are held in pressure contact with the heat insulating material 220 so as not to contact the magnetic body 211 in parallel. In this embodiment, two heating portions 241 are arranged between the magnetic bodies 211, but the number may be increased as long as a space can be secured.

また、加温手段240にはヒータの加温部分241と電線の接続部分242を電気的に接続する切替え部分243が部位aの範囲にある。切替え部分243には防水性が要求され、樹脂モールドやチューブ封止するのが一般的で、加温部分241の線形より太くなる。そのためその横を並走する加温部分241の本数は、他の部位b、cと比べ少ない本数となる。   Further, the heating means 240 has a switching portion 243 that electrically connects the heating portion 241 of the heater and the connection portion 242 of the electric wire within the range of the portion a. The switching portion 243 is required to be waterproof, and is generally sealed with a resin mold or tube, and becomes thicker than the linear shape of the heating portion 241. Therefore, the number of warming portions 241 that run side by side is smaller than that of the other parts b and c.

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

実施の形態1で説明した様に、図12に示す仕切板210の表面温度を全長Lにおいて一定にするように、加温部分241のヒータのワット密度を同様に可変させる。本実施の形態では複数本の加温部分241が配置されているので、実施の形態1よりもさらに低入力で所望の温度上昇を得ることができる。   As described in the first embodiment, the watt density of the heater of the heating portion 241 is similarly varied so that the surface temperature of the partition plate 210 shown in FIG. In the present embodiment, since a plurality of heating portions 241 are arranged, a desired temperature increase can be obtained with a lower input than in the first embodiment.

しかしながら、部位aには切替え部位243a、243bがあり部位cよりも加温部分241の本数が少なくなり、部位cと同じワット密度のヒータでは加温不足となる。そこで部位aのヒータ線は1本に対し部位cは2本であるため、部位aのワット密度を部位cの約2倍にすれば同等の温度上昇を得ることができる。   However, there are switching portions 243a and 243b in the portion a, and the number of the heated portions 241 is smaller than that in the portion c, and the heater having the same watt density as the portion c is insufficiently heated. Therefore, since the heater wire of the part a has two parts c, if the watt density of the part a is about twice that of the part c, an equivalent temperature rise can be obtained.

尚、本実施の形態では部位aに関してワット密度を上げることとしたが、加温部分241のヒータ本数が他の部位に対して少ない任意の部位に対して行えば良い。   In the present embodiment, the watt density is increased with respect to the part a. However, it may be performed for an arbitrary part where the number of heaters of the heating portion 241 is smaller than the other parts.

以上のように、本実施の形態においては、仕切板210内側の磁性体211の間に加温手段240の加温部分241を複数本直線的に配置するので、狭スペースでの配置が可能で、かつ加温部分241のヒータの単位長さ当たりのワット密度を小さく、あるいは通電率を下げることが可能で、結露防止のための入力電力を低減できる。さらに断熱材220の片側面だけで加温手段240を構成するので、配線作業も簡素化でき工数削減を図ることができる。   As described above, in the present embodiment, since the plurality of heating portions 241 of the heating means 240 are linearly arranged between the magnetic bodies 211 inside the partition plate 210, arrangement in a narrow space is possible. In addition, the watt density per unit length of the heater of the heating portion 241 can be reduced or the energization rate can be lowered, and the input power for preventing condensation can be reduced. Furthermore, since the heating means 240 is constituted by only one side surface of the heat insulating material 220, wiring work can be simplified and man-hours can be reduced.

また、加温手段240の加温部分241を複数に分割した部位として各部位のワット密度を可変とし、切替え部位243a、243bと平行となる加温部分241の範囲のワット密度を、他の範囲のワット密度よりも大きくしたことにより、切替え部位243a、243b付近の加温部分241の本数減による温度上昇不足分を補え、回転仕切体200の仕切板210の表面温度が均一化され、温度分布ばらつきがなくなりさらに電力入力が低減できる。   Moreover, the watt density of each part is made variable as the part which divided | segmented the heating part 241 of the heating means 240 into several, and the watt density of the range of the heating part 241 parallel to switching part 243a, 243b is set to another range. By making the watt density larger than the watt density, the surface temperature of the partition plate 210 of the rotating partition 200 is made uniform by compensating for the shortage of temperature rise due to the decrease in the number of the heating portions 241 near the switching portions 243a and 243b. The variation is eliminated and the power input can be further reduced.

(実施の形態3)
図13は本発明の実施の形態3による冷蔵室の回転仕切体の分解斜視図、図14は同実施の形態3による冷蔵庫の加温手段の具体構成図である。なお、実施の形態1および2と同一構成については同一符号を付して、異なる部分について説明する。
(Embodiment 3)
FIG. 13 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the third embodiment of the present invention, and FIG. 14 is a specific configuration diagram of the heating means of the refrigerator according to the third embodiment. The same components as those in the first and second embodiments are denoted by the same reference numerals, and different portions will be described.

図13および14において、加温手段240の接続部分(電線)242と加温部分(ヒータ)241を電気的に接続する切替え部位243a、243bは、回転仕切体200の長手方向の中心に近接して配置される。一方の切替え部位243aの接続部分242側にはワット密度W1で長さL1の部位dが接続され、他方の切替え部位243bには同じワット密度W1と長さL1の部位jが接続される。さらに、部位dにはワット密度W2で長さL2の部位eと、ワット密度W3で長さL3の部位fが順につながる。また、部位jの方にはワット密度W2で長さL2の部位iと、ワット密度W3で長さL3の部位hが順につながり、最終的にワット密度W4で長さL4の部位gが、部位fと部位hに接続され可変ワット密度の閉ループのヒータを構成する。尚、本実施の形態では発熱部位を部位dからjの7か所としたが、切替え部位243a、243bを中心としてワット密度と長さが対称となる任意の部位数にすればよい。   13 and 14, switching portions 243 a and 243 b that electrically connect the connecting portion (electric wire) 242 and the heating portion (heater) 241 of the heating means 240 are close to the center in the longitudinal direction of the rotary partition 200. Arranged. A part d having a watt density W1 and a length L1 is connected to the connection part 242 side of one switching part 243a, and a part j having the same watt density W1 and a length L1 is connected to the other switching part 243b. Further, a part e having a watt density W2 and a length L2 and a part f having a watt density W3 and a length L3 are sequentially connected to the part d. In addition, a part i having a watt density W2 and a length L2 and a part h having a watt density W3 and a length L3 are sequentially connected to the part j, and finally a part g having a watt density W4 and a length L4 is connected to the part j. A closed loop heater having a variable watt density connected to f and part h is formed. In the present embodiment, the heat generating parts are seven places from parts d to j, but the number of parts may be any number where the watt density and the length are symmetric with respect to the switching parts 243a and 243b.

また、切替え部位243a、243bの横を並走する加温部分241の部位gは、他の部位より本数が少ないため、ワット密度を大きくすればよい。すなわち、W4>(W1〜W3)の関係になることが一般的である。   Moreover, since the site | part g of the heating part 241 which runs alongside the switching site | part 243a, 243b has few numbers than another site | part, what is necessary is just to enlarge a watt density. That is, it is general that the relationship is W4> (W1 to W3).

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

加温手段240が通電されると、加温部分241の各部位dからjが発熱し、仕切板210の表面を全長Lにおいて所望の温度に安定させる。この時、何らかの作業ミスが発生し切替え部位243aと243bが逆設置、すなわち加温部分241の正しい発熱部位の順d→e→f→g→h→i→jが、間違ってj→i→h→g→f→e→dの順になってしまった場合、もし各部位dからjのワット密度と長さが異なっていれば、逆設置されると、仕切板210の表面温度は大きくばらつき、偏った温度分布となってしまう。   When the heating means 240 is energized, j generates heat from each portion d of the heating portion 241, and the surface of the partition plate 210 is stabilized at a desired temperature over the entire length L. At this time, some work mistake occurs and the switching parts 243a and 243b are reversely installed, that is, the order of the correct heat generation part of the heating part 241 is d → e → f → g → h → i → j, but j → i → In the order of h → g → f → e → d, if the watt density and length of each part d to j are different, the surface temperature of the partition plate 210 will vary greatly if installed in reverse. The temperature distribution becomes uneven.

しかし、本実施の形態では切替え部位243aと243bが逆設置されたとしても、加温部分241の全長Lにおけるワット密度と長さの関係は、上下対称なため正規取付と全く変わらない。   However, in the present embodiment, even if the switching portions 243a and 243b are reversely installed, the relationship between the watt density and the length in the entire length L of the warming portion 241 is vertically symmetrical, so that it is not different from regular mounting.

以上のように、本実施の形態においては、一方の切替え部位243aに接続される加温部分の部位dのワット密度と長さが、他方の切替え部位243bに接続される加温部分の部位jと同一で、更にワット密度を可変としてそれぞれへ順に接続される加温部分の部位eおよび部位iも同様にワット密度と長さを同一とし、すなわち切替え部位243a、bを中心に対称な発熱分布とした加温手段240において、切替え部位243a、243bを回転仕切体200の長手方向の中心に配置したので、回転仕切体200の組立作業で加温手段240を装着する時に、切替え部位243aと243bを逆にして固定した場合でも、加温部分241の可変としたワット密度と長さの関係は上下対称となり、その回転仕切体200の仕切板210の表面温度も同じになる。よって、作業工程での組立不良がなくせるばかりでなく、加温手段240の向きを確認して装着する工数も大幅に短縮することができる。   As described above, in the present embodiment, the watt density and the length of the portion d of the heating portion connected to one switching portion 243a are equal to the portion j of the heating portion connected to the other switching portion 243b. In addition, the watt density is variable, and the parts e and i of the heating part connected in order to each other are similarly made to have the same watt density and length, that is, a symmetrical heat generation distribution centering around the switching parts 243a and b. In the heating means 240, the switching parts 243a and 243b are arranged at the center in the longitudinal direction of the rotary partition 200. Therefore, when the heating means 240 is mounted in the assembly work of the rotary partition 200, the switching parts 243a and 243b are arranged. Even when fixed in reverse, the relationship between the watt density and the length of the heating portion 241 that is variable is vertically symmetric, and the surface of the partition plate 210 of the rotating partition 200 is the same. Temperature is also the same. Therefore, not only assembly failures in the work process can be eliminated, but also the number of man-hours to be mounted after confirming the orientation of the heating means 240 can be significantly reduced.

(実施の形態4)
図15は本発明の実施の形態4による冷蔵室の閉扉状態での要部を示す断面図である。なお、実施の形態1ないし3と同一構成については同一符号を付して、異なる部分について説明する。
(Embodiment 4)
FIG. 15: is sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 4 of this invention. The same components as those in the first to third embodiments are denoted by the same reference numerals, and different portions will be described.

図15において、回転仕切体200の内部には実施の形態1から3と同様に、発泡スチロール製の断熱材220と加温手段240及び背面側には金属性プレートの補強板250が配設してあり、補強板250は、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に配置される。仕切板210は合成樹脂性で構成されており、前面には金属板260が配設されている。   In FIG. 15, as in the first to third embodiments, a styrofoam heat insulating material 220 and a heating means 240 and a reinforcing plate 250 made of a metallic plate are arranged on the back side in the rotary partition 200. Yes, the reinforcing plate 250 is disposed in substantially the entire height of the rotary partition 200 with respect to the height direction of the refrigerator. The partition plate 210 is made of synthetic resin, and a metal plate 260 is disposed on the front surface.

本実施の形態では、仕切板210の上から金属板260を扉ガスケット110の吸着面111に合うように配設しているため、吸着用のマグネットが不要となり、回転仕切体200内部の断熱材を大きくとることができるため、庫内からの冷熱影響を低減でき必要なヒータ容量及び通電率を低減できるため省エネを図ることが出来る。   In the present embodiment, since the metal plate 260 is arranged from above the partition plate 210 so as to fit the suction surface 111 of the door gasket 110, a magnet for suction becomes unnecessary, and the heat insulating material inside the rotary partition 200 is provided. Therefore, it is possible to reduce the influence of cooling from the interior and reduce the required heater capacity and energization rate, so that energy can be saved.

さらに、金属板260は、回転仕切体200の強度確保用としての補強板250とは異なり、扉ガスケット110の吸着用であるため、厚みも薄くできる。また、端面の折り返しも不要であるため、軽量化と形状の簡略化が図れ、コスト低減も出来る。   Furthermore, unlike the reinforcing plate 250 for securing the strength of the rotating partition 200, the metal plate 260 is used for adsorbing the door gasket 110, and thus can be thin. Further, since the end face does not need to be folded back, the weight can be reduced, the shape can be simplified, and the cost can be reduced.

なお、金属板260を強度確保用とするならば、厚みUPと端面折り返しを行うことで、補強板250と合わせ、より強固な回転仕切体200としての構成を可能とする。   If the metal plate 260 is used for ensuring strength, the thickness UP and the end face folding are performed, so that the reinforcing plate 250 and the stronger rotating partition 200 can be configured.

(実施の形態5)
図16は本発明の実施の形態5による冷蔵室の閉扉状態での要部を示す断面図である。なお、実施の形態1ないし4と同一構成については同一符号を付して、異なる部分につい
て説明する。
(Embodiment 5)
FIG. 16: is sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 5 of this invention. The same components as those in the first to fourth embodiments are denoted by the same reference numerals, and different portions will be described.

図16において、回転仕切体200の内部には実施の形態1から3と同様に、発泡スチロール製の断熱材220が配設され、背面側には金属性プレートの補強板250が配設してある。仕切板210は合成樹脂性で構成されており、仕切板210の前面には加温手段240と金属板260が配設されている。   In FIG. 16, as in the first to third embodiments, a polystyrene foam heat insulating material 220 is disposed inside the rotary partition 200, and a metallic plate reinforcing plate 250 is disposed on the back side. . The partition plate 210 is made of synthetic resin, and a heating means 240 and a metal plate 260 are disposed on the front surface of the partition plate 210.

本実施の形態では、仕切板210の上から加温手段240と金属板260を扉ガスケット110の吸着面111に合うように配設している。これによって、吸着用のマグネットが不要となり、回転仕切体200内部の断熱材を大きくとることができるため、庫内からの冷熱影響を低減でき必要なヒータ容量及び通電率を低減できるため省エネを図ることが出来る。   In the present embodiment, the heating means 240 and the metal plate 260 are arranged from above the partition plate 210 so as to match the adsorption surface 111 of the door gasket 110. This eliminates the need for a magnet for adsorption and allows a large amount of heat insulating material inside the rotary partition 200, thereby reducing the effect of cooling from the interior and reducing the required heater capacity and energization rate, thereby saving energy. I can do it.

さらに、加温手段240は回転仕切体200の外形寸法である外枠外に配設されているため、低温となっている冷蔵室3からの熱影響は縁切りによって、影響を受け難い構成となっている。逆もしかりで、加温手段の熱は庫内側へと伝わり難い。加えて、金属板260に直接、加熱された熱を伝えることが出来るため、ヒータの容量及び通電率は少なくてよく、省エネ性に優れている。   Furthermore, since the heating means 240 is disposed outside the outer frame, which is the outer dimension of the rotary partition 200, the thermal effect from the cold room 3 that is at a low temperature is less affected by edge cutting. Yes. On the other hand, it is difficult for the heat of the heating means to be transferred to the inside. In addition, since the heated heat can be directly transmitted to the metal plate 260, the heater capacity and power supply rate may be small, and energy saving is excellent.

さらに、加温手段240と金属板260をアセンブリ化して後から取り付けることで、作業性が向上すると共に作業時間の短縮での工数削減が図れる。   Furthermore, by attaching the heating means 240 and the metal plate 260 after assembly, workability can be improved and man-hours can be reduced by shortening the work time.

(実施の形態6)
図17は本発明の実施の形態6による冷蔵室の閉扉状態での要部を示す断面図である。なお、実施の形態1ないし5と同一構成については同一符号を付して、異なる部分について説明する。
(Embodiment 6)
FIG. 17: is sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 6 of this invention. The same components as those in the first to fifth embodiments are denoted by the same reference numerals, and different portions will be described.

図17において、回転仕切体200は、扉ガスケット110の吸着面111を形成する仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温部分241と接続部分242で構成される加温手段240とから構成されている。   In FIG. 17, the rotary partition 200 includes a partition plate 210 that forms the suction surface 111 of the door gasket 110, a polystyrene foam insulating material 220 disposed inside the rotary partition 200, a peripheral portion of the partition plate 210, and It is composed of a synthetic resin partition frame 230 that covers the outer surface of the heat insulating material 220, and a heating means 240 that includes a heating portion 241 and a connection portion 242 disposed in the center of the inner surface of the partition plate 210.

本実施の形態では、断熱材220と仕切板210の間に冷蔵庫の高さ方向に対して回転仕切体200の略全高域に配置された補強板250を配設し、仕切板210と補強板250の間に加温手段240を配設している。   In the present embodiment, a reinforcing plate 250 is disposed between the heat insulating material 220 and the partition plate 210 in substantially the entire height region of the rotary partition 200 with respect to the height direction of the refrigerator. Heating means 240 is disposed between 250.

補強板250の仕切板210内側に接する面は、扉ガスケット110内に構成された磁性体112と対向するように配置されており、特に、中心線をあわせて幅方向を構成している。これによって、吸着用のマグネットが不要となり、回転仕切体200の強度確保と扉ガスケット110との密着性を確保した上で、構成の簡素化による材料費と金型費、製造工程での工数も低減できる。   The surface in contact with the inside of the partition plate 210 of the reinforcing plate 250 is disposed so as to face the magnetic body 112 configured in the door gasket 110, and in particular, forms the width direction with the center line. This eliminates the need for a magnet for adsorption, ensures the strength of the rotating partition 200 and the adhesion to the door gasket 110, and also reduces the material cost and mold cost due to the simplification of the configuration and the number of man-hours in the manufacturing process. Can be reduced.

なお、本実施の形態では、加温手段240のヒータ配設を1本として記載しているが、複数本としても良い。   In the present embodiment, the heater arrangement of the heating means 240 is described as one, but a plurality of heaters may be provided.

なお、補強板250の扉ガスケット110内に構成された磁性体112と合わさる部分を外観品位の向上のため、仕切板210内側に接するようにしているが、表面に露出し、直接、扉ガスケット110に接するようにしても良い。こうすることで、飛び付き性が向上し、密着性が良くなる。   The portion of the reinforcing plate 250 that is combined with the magnetic body 112 configured in the door gasket 110 is in contact with the inside of the partition plate 210 to improve the appearance quality, but is exposed to the surface and directly exposed to the door gasket 110. You may make it contact. By doing so, the jumping property is improved and the adhesion is improved.

以上のように、本発明にかかる冷蔵庫は、回転仕切体と扉ガスケットの吸着面である仕切板を樹脂製としたものであり、結露を防止しつつ消費電力が削減できるので、業務用冷蔵庫等にも適用できる。また、樹脂製のフランジ内面に磁性体を配設して、扉ガスケットとの吸着を行う方法は、冷蔵庫の各貯蔵室を仕切る断熱仕切部材の前面のカバーにも応用できる。   As described above, the refrigerator according to the present invention is such that the partition plate which is the adsorption surface of the rotating partition and the door gasket is made of resin, and power consumption can be reduced while preventing condensation, so that a commercial refrigerator or the like It can also be applied to. Moreover, the method of arranging a magnetic body on the inner surface of the resin flange and adsorbing it with the door gasket can also be applied to the front cover of the heat insulating partition member that partitions the storage compartments of the refrigerator.

100 冷蔵庫
102 左側扉
103 右側扉
105 冷蔵貯蔵室
106 製氷室
107 冷凍貯蔵室
108 野菜室
109 切替室
110 扉ガスケット
111 吸着面
112 磁性体
200 回転仕切体
210 仕切板
211 磁性体
212 大気開放部
220 断熱材
230 仕切枠体
240 加温手段
241 加温部分(ヒータ)
242 接続部分(電線)
243a、243b 切替え部位
250 補強板
501、502、503 カバー
DESCRIPTION OF SYMBOLS 100 Refrigerator 102 Left side door 103 Right side door 105 Refrigerated storage room 106 Ice making room 107 Frozen storage room 108 Vegetable room 109 Switching room 110 Door gasket 111 Adsorption surface 112 Magnetic body 200 Rotary partition body 210 Partition plate 211 Magnetic body 212 Atmospheric release part 220 Thermal insulation Material 230 Partition frame 240 Heating means 241 Heating part (heater)
242 Connection part (electric wire)
243a, 243b switching part 250 reinforcing plate 501, 502, 503 cover

Claims (4)

貯蔵室の前面開口に併置した左右扉は観音開き式に閉塞され、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体が設けられ、前記回転仕切体が扉ガスケットの吸着面とされる冷蔵庫において、前記回転仕切体は、扉ガスケットの吸着面を形成する樹脂製仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う樹脂製仕切枠体と、前記回転仕切体の上部にガイド機構を有するキャップと、前記扉ガスケットに対向して前記回転仕切体内部に設けられたマグネットと、を備え、前記回転仕切体内部に側面部を折り曲げ断面コの字状に形成された金属製補強板が配置されたもので、前記金属製補強板の側面部に形成された穴と前記樹脂製仕切枠体に形成された係合部材とで前記金属製補強板は前記樹脂製仕切枠体に固定されるとともに、前記樹脂製仕切板と前記樹脂製仕切枠体と前記金属製補強板とを前記キャップで連結固定する冷蔵庫。 The left and right doors juxtaposed to the front opening of the storage chamber are closed in a double-spread manner, and a rotating partition body is provided on the inner surface of at least one of the left and right doors on the opposite side of the pivot, and the rotating partition body is a door. In the refrigerator used as the gasket suction surface, the rotating partition includes a resin partition plate forming the door gasket suction surface, a heat insulating material disposed inside the rotating partition, and a peripheral portion of the partition plate. And a resin partition frame that covers the outer surface of the heat insulating material, a cap having a guide mechanism at the top of the rotating partition, and a magnet provided inside the rotating partition facing the door gasket. A metal reinforcing plate having a U-shaped cross-section formed by bending a side surface portion inside the rotating partition, and a hole formed in the side surface portion of the metal reinforcing plate and the resin partition frame Engagement formed on the body Refrigerator said metallic reinforcing plate to be connected and fixed is fixed to the resin partition frame member, the resin-made partition plate and the resin partition frame body and the metal reinforcing plate in the cap in the wood. 前記回転仕切体内には前記樹脂製仕切板の表面温度を上げる加温手段が設けられ、前記加温手段を中心とした所定円周の外側に前記金属製補強板を配設した請求項に記載の冷蔵庫。 The rotary partition in the body is provided with heating means to raise the surface temperature of the resin partition plate, to claim 1 which is disposed the metal reinforcing plate on the outside of a predetermined circumference around the said heating means The refrigerator described. 前記金属製補強板の断面コの字状に形成された平面部と前記加温手段の中心までの距離に対し、前記金属製補強板の端部と前記加温手段の中心までの距離を長くした請求項1または2に記載の冷蔵庫。 The distance between the end of the metal reinforcing plate and the center of the heating means is longer than the distance between the flat portion formed in a U-shaped cross section of the metal reinforcing plate and the center of the heating means. The refrigerator according to claim 1 or 2 . 前記金属製補強板は前記回転仕切体の長手方向略全長域に配置された請求項1からのいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3 , wherein the metal reinforcing plate is disposed in a substantially full length region in a longitudinal direction of the rotating partition.
JP2015088899A 2015-04-24 2015-04-24 refrigerator Active JP5934953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088899A JP5934953B1 (en) 2015-04-24 2015-04-24 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088899A JP5934953B1 (en) 2015-04-24 2015-04-24 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016053346A Division JP6467593B2 (en) 2016-03-17 2016-03-17 refrigerator

Publications (2)

Publication Number Publication Date
JP5934953B1 true JP5934953B1 (en) 2016-06-15
JP2016205723A JP2016205723A (en) 2016-12-08

Family

ID=56120533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088899A Active JP5934953B1 (en) 2015-04-24 2015-04-24 refrigerator

Country Status (1)

Country Link
JP (1) JP5934953B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004088A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Refrigerator
JP2018063077A (en) * 2016-10-13 2018-04-19 東芝ライフスタイル株式会社 refrigerator
CN108870848A (en) * 2017-05-10 2018-11-23 松下电器产业株式会社 Rotate spacer body and refrigerator
JP2020169811A (en) * 2016-06-27 2020-10-15 パナソニックIpマネジメント株式会社 refrigerator
CN111936807A (en) * 2018-04-02 2020-11-13 三菱电机株式会社 Refrigeration refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6901370B2 (en) * 2017-10-02 2021-07-14 パナソニック株式会社 refrigerator
WO2019130384A1 (en) * 2017-12-25 2019-07-04 三菱電機株式会社 Freezing refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311478A (en) * 1998-04-28 1999-11-09 Toshiba Corp Partition wall of refrigerator
JP2000055534A (en) * 1998-08-03 2000-02-25 Matsushita Refrig Co Ltd Door device for refrigerator or the like
JP2007147090A (en) * 2005-11-24 2007-06-14 Hitachi Appliances Inc Refrigerator
JP2010249491A (en) * 2009-03-26 2010-11-04 Toshiba Corp Refrigerator
JP2011174625A (en) * 2010-02-23 2011-09-08 Panasonic Corp Refrigerator
JP2012072967A (en) * 2010-09-29 2012-04-12 Toshiba Corp Refrigerator
US20130241386A1 (en) * 2012-03-16 2013-09-19 Samsung Electronics Co., Ltd. Refrigerator
JP2014173762A (en) * 2013-03-07 2014-09-22 Mitsubishi Electric Corp Cool box

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311478A (en) * 1998-04-28 1999-11-09 Toshiba Corp Partition wall of refrigerator
JP2000055534A (en) * 1998-08-03 2000-02-25 Matsushita Refrig Co Ltd Door device for refrigerator or the like
JP2007147090A (en) * 2005-11-24 2007-06-14 Hitachi Appliances Inc Refrigerator
JP2010249491A (en) * 2009-03-26 2010-11-04 Toshiba Corp Refrigerator
JP2011174625A (en) * 2010-02-23 2011-09-08 Panasonic Corp Refrigerator
JP2012072967A (en) * 2010-09-29 2012-04-12 Toshiba Corp Refrigerator
US20130241386A1 (en) * 2012-03-16 2013-09-19 Samsung Electronics Co., Ltd. Refrigerator
JP2014173762A (en) * 2013-03-07 2014-09-22 Mitsubishi Electric Corp Cool box

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004088A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Refrigerator
JP2020169811A (en) * 2016-06-27 2020-10-15 パナソニックIpマネジメント株式会社 refrigerator
JP2018063077A (en) * 2016-10-13 2018-04-19 東芝ライフスタイル株式会社 refrigerator
CN108870848A (en) * 2017-05-10 2018-11-23 松下电器产业株式会社 Rotate spacer body and refrigerator
JP2018189334A (en) * 2017-05-10 2018-11-29 パナソニック株式会社 Rotary partition body and refrigerator
CN108870848B (en) * 2017-05-10 2021-12-21 松下电器产业株式会社 Rotary partition body and refrigerator
CN111936807A (en) * 2018-04-02 2020-11-13 三菱电机株式会社 Refrigeration refrigerator
CN111936807B (en) * 2018-04-02 2022-02-18 三菱电机株式会社 Refrigeration refrigerator

Also Published As

Publication number Publication date
JP2016205723A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5934953B1 (en) refrigerator
US10145604B2 (en) Refrigerator
EP2639534B1 (en) Heated rotating mullion bar and refrigerator comprising said bar.
US6428130B1 (en) Refrigerator mullion
KR101367034B1 (en) Trim kit structure of out-door for refrigerator
KR20130009090A (en) Refrigerator
WO2015162894A1 (en) Refrigerator
JP5961822B2 (en) refrigerator
JPWO2018181439A1 (en) refrigerator
JP6467593B2 (en) refrigerator
TW201942532A (en) Refrigerator-freezer
JP6901370B2 (en) refrigerator
JP5934951B2 (en) refrigerator
WO2019093011A1 (en) Refrigerator
CN107560265B (en) Refrigerator and vertical beam thereof
WO2009152778A1 (en) An electric refrigerator
KR100507328B1 (en) Mounting structure of the front middle plate of the refrigerator
JP2002228346A (en) Intermediate partition structure of refrigerator
JP2000213853A (en) Refrigerator
CN219713765U (en) Vertical beam assembly for refrigerator and refrigerator
CN206449987U (en) Freezer
JP4280243B2 (en) refrigerator
WO2017183645A1 (en) Refrigerator
CN103604265A (en) Refrigerator
JP6292990B2 (en) refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5934953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151