JP5934951B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5934951B2
JP5934951B2 JP2014124012A JP2014124012A JP5934951B2 JP 5934951 B2 JP5934951 B2 JP 5934951B2 JP 2014124012 A JP2014124012 A JP 2014124012A JP 2014124012 A JP2014124012 A JP 2014124012A JP 5934951 B2 JP5934951 B2 JP 5934951B2
Authority
JP
Japan
Prior art keywords
partition plate
partition
refrigerator
door
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124012A
Other languages
Japanese (ja)
Other versions
JP2016003811A (en
Inventor
健一 柿田
健一 柿田
濱田 和幸
和幸 濱田
堀尾 好正
好正 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014124012A priority Critical patent/JP5934951B2/en
Priority to DE212015000112.1U priority patent/DE212015000112U1/en
Priority to PCT/JP2015/002135 priority patent/WO2015162894A1/en
Publication of JP2016003811A publication Critical patent/JP2016003811A/en
Application granted granted Critical
Publication of JP5934951B2 publication Critical patent/JP5934951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Description

本発明は、本体上部に設けた貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞した冷蔵庫に関する。   The present invention relates to a refrigerator that is closed in a double door manner with left and right doors that are provided with a front opening of a storage chamber provided in an upper part of a main body.

家庭用の大容量冷蔵庫は、多様なユーザニーズに対応すべく冷却貯蔵温度の多様化とともに貯蔵室ごとに多くの扉を設けた冷蔵庫が商品化されており、これまで、冷蔵庫に対して冷凍室を上部に配置したトップフリーザータイプ、上部の冷蔵室と下部の野菜室との間に冷凍室を配置したミドルフリーザータイプ、冷凍室を最下部に配置したボトムフリーザタイプ、上部の冷蔵室の下方に縦長の冷凍室と野菜室を併置したタイプ、冷凍室と冷蔵室とを左右に併置したサイドバイサイドタイプなど様々な形態が商品化されてきた。   Large-capacity refrigerators for home use have commercialized refrigerators with many doors in each storage room along with diversification of cooling storage temperature to meet various user needs. The top freezer type with the top placed, the middle freezer type with the freezer compartment placed between the upper refrigerator compartment and the lower vegetable compartment, the bottom freezer type with the freezer compartment placed at the bottom, and the upper refrigerator compartment below Various forms such as a type in which a vertically long freezer room and a vegetable room are juxtaposed and a side-by-side type in which a freezer room and a refrigerator room are juxtaposed on the left and right have been commercialized.

このような商品環境の中で、近年では、使い勝手を考慮して、使用頻度が高く収納容積の最も大きい冷蔵室を観音開き式の扉として最上段に配置し、その下方に製氷室や温度切替室、そしてその下方に野菜室、最下部に冷凍室を設置したタイプが主流になっており、前記冷蔵室の観音開き式扉の一方の開放端側の内面に閉扉時には他方の扉側へ回動する仕切体を取付けてガスケットの吸着面を設けるようにしている。   In such a product environment, in recent years, considering ease of use, a refrigerator room that is frequently used and has the largest storage capacity has been placed at the top as a double door, and an ice making room and a temperature switching room are located below it. The main type is a vegetable room at the bottom and a freezer room at the bottom. When the door is closed on the inner surface of one open end of the refrigerating compartment door, it turns to the other door. A partition is attached to provide a gasket adsorption surface.

更に、近年の冷蔵庫における観音開き式の扉では、扉が大型化して縦方向寸法も長くなっており、縦方向に長い仕切体が湾曲することによる外面意匠上の課題を解決するために、回転仕切体の扉ガスケットの吸着面を形成する薄鋼板製の仕切板を、平板状の吸着面とその両側端縁を内方に折り返して重ね合わせ、さらに内方に折曲してアングル部を有する形状とし、仕切板の周縁部および仕切板の庫内側に設けた断熱部材の外面を合成樹脂製の仕切枠体で覆うとともにこの仕切枠体で仕切板を係合保持し、加えて仕切板内面に面ヒーターを貼付けて仕切板表面に発生する結露を防止したものが広く普及している(例えば、特許文献1参照)。   Furthermore, in the case of the double doors in recent refrigerators, the size of the door is increased and the longitudinal dimension is long, and in order to solve the problem of the external design due to the curved long partition in the longitudinal direction, A thin steel plate partition plate that forms the suction surface of the door gasket of the body, the flat suction surface and its side edges are folded back inward, overlapped, and further folded inward to have an angle part The outer peripheral surface of the partition plate and the outer surface of the heat insulating member provided on the inner side of the partition plate are covered with a synthetic resin partition frame body, and the partition plate is engaged and held by the partition frame body. The thing which stuck the surface heater and prevented the dew condensation which generate | occur | produces on the partition plate surface has prevailed widely (for example, refer patent document 1).

以下、図10、図11を用いて、従来の冷蔵庫の回転仕切体の仕様を説明する。   Hereafter, the specification of the rotation partition of the conventional refrigerator is demonstrated using FIG. 10, FIG.

回転仕切体13の基本構成としては、吸着面を形成する磁性体である薄鋼板製の仕切板16と断熱層を形成する発泡スチロール製の成形断熱部材18と、これらを覆って回転仕切体13の外郭を形成する合成樹脂製の仕切枠体17と、仕切板16の内面に配設されたアルミ箔ヒーターなどからなる面ヒーター19と、回転仕切体13の上端部に配設され、上端面にガイド溝が形成されたキャップ部材58とから構成されている。   The basic structure of the rotating partition 13 includes a partition plate 16 made of a thin steel plate, which is a magnetic body that forms an attracting surface, a molded heat insulating member 18 made of polystyrene foam that forms a heat insulating layer, and the rotating partition 13 that covers these components. A synthetic resin partition frame 17 forming an outer shell, a surface heater 19 made of an aluminum foil heater or the like disposed on the inner surface of the partition plate 16, and an upper end portion of the rotary partition 13 are disposed on the upper end surface. The cap member 58 is formed with a guide groove.

一般的には、上記の構成では、薄鋼板製の仕切板16と面ヒーター19が直接接触しているため、漏電対応として仕切板16と冷蔵庫1本体を接続するアース線を配設する必要がある。   In general, in the above configuration, since the partition plate 16 made of a thin steel plate and the surface heater 19 are in direct contact with each other, it is necessary to provide a ground wire for connecting the partition plate 16 and the refrigerator 1 main body as a countermeasure against electric leakage. is there.

また、冷蔵庫と回転仕切体13の嵌合を目的としたキャップ部材58は、仕切板16と仕切枠17のそれぞれの上部終端を覆って連結する役目も果たしている。   Further, the cap member 58 for fitting the refrigerator and the rotary partition 13 also serves to cover and connect the upper ends of the partition plate 16 and the partition frame 17.

特開2010−249491号公報JP 2010-249491 A

しかしながら、上記従来の構成では、低温となった冷蔵室の温度影響で冷やされた扉ガスケット12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、仕切板16の大気開放部の表面温度が低下し、必要以上に面ヒーターの容量が大きくなり消費電力量が増加するという課題を有していた。   However, in the above conventional configuration, the door gasket 12 cooled by the temperature effect of the refrigerator compartment that has become a low temperature directly contacts the partition plate 16 made of a thin steel plate having high thermal conductivity, so that the atmosphere of the partition plate 16 is increased. There was a problem that the surface temperature of the open portion was lowered, the capacity of the surface heater was increased more than necessary, and the power consumption was increased.

本発明は、上記の課題を解決するもので、回転仕切体のヒーター等の加温手段への電力入力を低減できる冷蔵庫を提供することを目的とする。   This invention solves said subject and aims at providing the refrigerator which can reduce the electric power input to heating means, such as a heater of a rotary partition.

また、上記従来の構成では、仕切板が絶縁性のない薄鋼板製でその面積も大きく、内面に面ヒーター等電気部品を貼付ける場合に、漏電への配慮からアース線を配設する必要があり、構成が複雑で、高コストになるという課題を有していた。   In the above conventional configuration, the partition plate is made of a non-insulating thin steel plate and has a large area. When an electric part such as a surface heater is attached to the inner surface, it is necessary to provide a ground wire in consideration of leakage. There is a problem that the configuration is complicated and the cost is high.

本発明は、上記の課題を解決するもので、アース線を廃止し、簡単な構成で低コスト化が図れ、最適寸法で仕切板が設計できる冷蔵庫を提供することを目的とする。   An object of the present invention is to solve the above problems, and to provide a refrigerator in which a ground wire is eliminated, a cost can be reduced with a simple configuration, and a partition plate can be designed with an optimum size.

上記従来の課題を解決するために、本発明の冷蔵庫は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に直線状に配設された線状ヒータと、 前記左右扉が閉塞された状態において前記扉ガスケットに内蔵された磁性体と対向する位置の前記仕切板の内面凹部に配置された直方体のプラスチックマグネットと、を備え、前記仕切板と前記仕切枠体とを合成樹脂製で形成し、前記線状ヒータが当接する箇所の前記仕切板の樹脂厚みを0.8mm以上で3mm以下とし、前記線状ヒータと前記プラスチックマグネットは、前記仕切板と前記断
熱材の間で圧接保持されたものである。これにより、回転仕切体の結露を防止するための加温手段への電力入力が抑制され、アース線を廃止することができる。さらに必要最小限の加温手段への電力入力と、加温手段熱量による仕切板の許容変形量が考慮でき、仕切板の樹脂厚み寸法設計で最適な回転仕切体が構成できる。
In order to solve the above-mentioned conventional problems, the refrigerator of the present invention is closed in a double door manner with left and right doors that are arranged with the front opening of the storage room, and is vertically mounted on the inner surface of at least one of the left and right doors on the side opposite to the pivot. In a refrigerator provided with a rotating partition body extending in a direction to serve as a suction surface for a door gasket, the rotating partition body includes at least a partition plate that forms a suction surface for the door gasket, and a heat insulating material disposed inside the rotary partition body. A partition frame that covers the peripheral edge of the partition plate and the outer surface of the heat insulating material, a linear heater that is linearly disposed on the inner surface of the partition plate, and the door gasket in a state where the left and right doors are closed A rectangular parallelepiped plastic magnet disposed in the concave portion on the inner surface of the partition plate at a position facing the magnetic body incorporated in the partition plate , the partition plate and the partition frame body are made of synthetic resin, and the linear shape Heater is on The resin thickness of the partition plate at the contact point is 0.8 mm or more and 3 mm or less, and the linear heater and the plastic magnet are connected to the partition plate and the cutting plate
It is held in pressure contact between the heat materials . Thereby, the electric power input to the heating means for preventing the condensation of the rotating partition is suppressed, and the ground wire can be eliminated. Furthermore, the minimum required electric power input to the heating means and the allowable deformation amount of the partition plate due to the heat amount of the heating means can be taken into consideration, and an optimum rotating partition can be configured by designing the resin thickness dimension of the partition plate.

また、本発明の冷蔵庫は、仕切板の内面に磁性体を配設し、前記磁性体は前記左右扉が閉塞された状態において、前記扉ガスケットに内蔵された磁性体と対向する位置に配置し、前記磁性体が当接する箇所の前記仕切板の樹脂厚みを0.5mm以上で2mm以下としたものである。これにより、必要最小限の扉ガスケットと仕切板との吸着力確保と、仕切板樹脂成形時の許容変形量が考慮でき、仕切板の樹脂厚み寸法設計で最適な回転仕切体が構成できる。   In the refrigerator of the present invention, a magnetic body is disposed on the inner surface of the partition plate, and the magnetic body is disposed at a position facing the magnetic body incorporated in the door gasket in a state where the left and right doors are closed. The resin thickness of the partition plate where the magnetic material comes into contact is 0.5 mm or more and 2 mm or less. As a result, it is possible to secure the minimum necessary adsorption force between the door gasket and the partition plate, and to consider the allowable deformation amount at the time of molding the partition plate resin, and it is possible to configure an optimum rotating partition body by designing the resin thickness dimension of the partition plate.

本発明の冷蔵庫は、回転仕切体の結露を防止するための電力入力を最小限に抑制でき、省エネを図ることができる。   The refrigerator of the present invention can minimize power input for preventing condensation of the rotating partition and can save energy.

本発明の実施の形態1による冷蔵庫の観音開き式扉の開扉状態を示す正面図The front view which shows the door opening state of the double doors of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵室の閉扉状態での要部を示す断面図Sectional drawing which shows the principal part in the closed state of the refrigerator compartment by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵室の図2のA部詳細拡大図Detail enlarged view of part A of FIG. 2 of the refrigerator compartment according to Embodiment 1 of the present invention 本発明の実施の形態1による冷蔵室の図2の別事例のA部詳細拡大図Detail enlarged view of part A of the refrigerating room according to Embodiment 1 of the present invention in FIG. 本発明の実施の形態1による冷蔵室の図2のB−B断面図FIG. 2 is a cross-sectional view of the refrigerator compartment according to the first embodiment of the present invention, taken along line BB in FIG. 本発明の実施の形態1による冷蔵室の回転仕切体の分解斜視図The exploded perspective view of the rotation partition of the refrigerator compartment by Embodiment 1 of the present invention 本発明の実施の形態1による冷蔵庫の加温手段の通電率と仕切板の表面温度の関係を説明したグラフThe graph explaining the relationship between the electricity supply rate of the heating means of the refrigerator by Embodiment 1 of this invention, and the surface temperature of a partition plate 本発明の実施の形態1による冷蔵庫の仕切板厚みと加温による変形量及び表面温度上昇値の関係を説明した図The figure explaining the partition plate thickness of the refrigerator by Embodiment 1 of this invention, the deformation | transformation amount by heating, and the surface temperature rise value 本発明の実施の形態1による冷蔵庫の仕切板厚みと成形による変形量及び磁性体による吸着量の関係を説明した図The figure explaining the partition plate thickness of the refrigerator by Embodiment 1 of this invention, the deformation amount by shaping | molding, and the relationship of the adsorption amount by a magnetic body 従来の冷蔵庫の冷蔵室扉の閉扉状態を示す断面図Sectional drawing which shows the closed state of the refrigerator compartment door of the conventional refrigerator 従来の冷蔵庫の回転仕切体の分解斜視図The exploded perspective view of the rotation partition of the conventional refrigerator

請求項1に記載の発明は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に直線状に配設された線状ヒータと、 前記左右扉が閉塞された状態において前記扉ガスケットに内蔵された磁性体と対向する位置の前記仕切板の内面凹部に配置された直方体のプラスチックマグネットと、を備え、前記仕切板と前記仕切枠体とを合成樹脂製で形成し、前記線状ヒータが当接する箇所の前記仕切板の樹脂厚みを0.8mm以上で3mm以下とし、前記線状ヒータと前記プラスチックマグネットは、前記仕切板と前記断熱材の間で圧接保持されたことにより、前記加温手段による加温時の仕切板変形量の抑制、すなわち反りによる前記回転仕切体への繰り返し応力影響を排除しつつ、前記回転仕切体の仕切板表面の結露を最小限の電力入力で防止することができる。 According to the first aspect of the present invention, there is provided a rotating partition body that is closed in a double-spreading manner with left and right doors arranged in parallel with the front opening of the storage chamber, and that hangs vertically on the inner surface of at least one of the left and right doors on the opposite side. In the refrigerator provided and used as the suction surface of the door gasket, the rotating partition includes at least a partition plate that forms the suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, and a peripheral edge of the partition plate And a partition frame that covers the outer surface of the heat insulating material, a linear heater that is linearly disposed on the inner surface of the partition plate, and a magnetic body that is built in the door gasket in a state where the left and right doors are closed. A rectangular parallelepiped plastic magnet disposed in the inner surface concave portion of the partition plate at an opposing position, the partition plate and the partition frame body are made of synthetic resin, and the portion where the linear heater abuts is formed. Partition tree The fat thickness is 0.8 mm or more and 3 mm or less, and the linear heater and the plastic magnet are held in pressure contact between the partition plate and the heat insulating material. It is possible to prevent dew condensation on the surface of the partition plate of the rotating partition with a minimum power input while suppressing the amount of deformation of the plate, that is, eliminating the influence of repeated stress on the rotating partition due to warping.

請求項2に記載の発明は、請求項1に記載の発明において、前記プラスチックマグネットが当接する箇所の前記仕切板の樹脂厚みを0.5mm以上で2mm以下とすることにより、前記仕切板の樹脂成形時の変形量すなわち反りが抑制でき、さらに仕切板厚みが最小限であるため前記扉ガスケットとの吸着力が確保され、外部からの庫内への熱侵入を抑えることができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the resin thickness of the partition plate at a location where the plastic magnet abuts is 0.5 mm or more and 2 mm or less. The amount of deformation at the time of molding, that is, warpage can be suppressed, and the partition plate thickness is minimal, so that the adsorbing force with the door gasket is ensured, and the heat intrusion from the outside into the cabinet can be suppressed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の観音開き式扉の開扉状態を示す正面図、図2は同実施の形態1による冷蔵室の閉扉状態での要部を示す断面図、図3は同実施の形態1による冷蔵室の図2のA部詳細拡大図、図4は同実施の形態1による冷蔵室の図2の別事例のA部詳細拡大図、図5は同実施の形態1による冷蔵室の図2のB−B断面図、図6は同実施の形態1による冷蔵室の回転仕切体の分解斜視図、図7は同実施の形態1による冷蔵庫の加温手段の通電率と仕切板の表面温度の関係を説明したグラフ、図8は同実施の形態1による冷蔵庫の仕切板厚みと加温による変位量及び表面温度上昇値の関係を説明した図、図9は同実施の形態1による冷蔵庫の仕切板厚みと成形による変形量及び磁性体による吸着量の関係を説明した図である。
(Embodiment 1)
FIG. 1 is a front view showing an open state of a double door of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view showing a main part in a closed state of a refrigerator compartment according to Embodiment 1, and FIG. 2 is a detailed enlarged view of part A of FIG. 2 of the refrigerating room according to the first embodiment, FIG. 4 is a detailed enlarged view of part A of FIG. 2 of the refrigerating room according to the first embodiment, and FIG. 5 is the same embodiment. 2 is a cross-sectional view of the refrigerator compartment according to FIG. 2, FIG. 6 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the first embodiment, and FIG. 7 is an energization of the heating means of the refrigerator according to the first embodiment. 8 is a graph illustrating the relationship between the rate and the surface temperature of the partition plate, FIG. 8 is a diagram illustrating the relationship between the partition plate thickness of the refrigerator according to the first embodiment, the amount of displacement due to heating, and the surface temperature rise value, and FIG. The figure explaining the relationship between the partition plate thickness of the refrigerator according to Embodiment 1, the amount of deformation by molding, and the amount of adsorption by the magnetic material A.

図1において、冷蔵庫100は向かって左側に位置する左側扉102及び向かって右側に位置する右側扉103を有し、図1では左側扉102と右側扉103を開扉させた状態を示している。左側扉102と右側扉103とが設けられている部分は冷蔵貯蔵室105の部分であり、左側扉102の下は製氷室106、さらに下は冷凍貯蔵室107、野菜室108とされている。右側扉103の下で、製氷室106の右隣には切替室109が設けられている。   In FIG. 1, a refrigerator 100 has a left door 102 located on the left side and a right door 103 located on the right side, and FIG. 1 shows a state in which the left door 102 and the right door 103 are opened. . A portion where the left door 102 and the right door 103 are provided is a portion of the refrigerated storage chamber 105, and an ice making chamber 106 is provided below the left door 102, and a frozen storage chamber 107 and a vegetable compartment 108 are provided below. A switching chamber 109 is provided below the right door 103 and to the right of the ice making chamber 106.

左側扉102と右側扉103はそれぞれヒンジ部により枢支されて左側と右側に開くように構成されており、左側扉102の非枢支側には回転仕切体200を設けている。この回転仕切体200は、左側扉102の開閉動作に応じて回転し、閉扉された状態では、左側扉102、右側扉103の非枢支側を扉ガスケット110を介して閉塞して、冷蔵貯蔵
室105内からの冷気漏れを防止している。
The left door 102 and the right door 103 are pivotally supported by hinge portions, respectively, and are configured to open to the left and right sides. A rotating partition 200 is provided on the non-pivot side of the left door 102. The rotating partition 200 rotates according to the opening / closing operation of the left door 102. When the left door 102 is closed, the non-pivot side of the left door 102 and the right door 103 is closed via the door gasket 110 to store in a refrigerator. Cold air leakage from the chamber 105 is prevented.

ここで、各貯蔵室間には断熱仕切部材(図示せず)が配置されており、この断熱仕切部材の前面には、鋼板製のカバー501、502、503が配設され、各貯蔵室扉の扉ガスケットを介して閉塞し、各貯蔵室からの冷気漏れを防止している。   Here, a heat insulating partition member (not shown) is disposed between the storage compartments, and steel cover 501, 502, 503 is disposed on the front surface of the heat insulation partition member, and each storage compartment door is provided. The door is closed via a door gasket to prevent cold air leakage from each storage room.

次に、図2から図9において、回転仕切体200は、扉ガスケット110の吸着面111を形成する仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温手段240とから構成されている。   Next, in FIG. 2 to FIG. 9, the rotary partition 200 includes a partition plate 210 that forms the suction surface 111 of the door gasket 110, a polystyrene foam heat insulating material 220 disposed inside the rotary partition 200, and a partition. It consists of a synthetic resin partition frame 230 that covers the peripheral edge of the plate 210 and the outer surface of the heat insulating material 220, and heating means 240 disposed at the center of the inner surface of the partition plate 210.

また、仕切板210は、合成樹脂製であり、内面には2つの磁性体211が取り付けられている。磁性体211は、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に構成されており、左側扉102、右側扉103が閉扉した状態において、扉ガスケット110内に構成された磁性体112と対向するように配置されており、本実施例では直方体のプラスチックマグネットを使用した。更に、加温手段240及び磁性体211は、仕切板210と断熱材220の間で圧接して保持されている。また、加温手段240は線状ヒーター等の直線状なもので、磁性体211の間に磁性体211と並行して配置される。   The partition plate 210 is made of synthetic resin, and two magnetic bodies 211 are attached to the inner surface. The magnetic body 211 is configured in substantially the entire height region of the rotary partition 200 with respect to the height direction of the refrigerator, and the magnetic body configured in the door gasket 110 when the left door 102 and the right door 103 are closed. 112. In this embodiment, a rectangular parallelepiped plastic magnet is used. Further, the heating means 240 and the magnetic body 211 are held in pressure contact between the partition plate 210 and the heat insulating material 220. The heating means 240 is a linear device such as a linear heater, and is disposed between the magnetic bodies 211 in parallel with the magnetic bodies 211.

ここで、仕切板210、加温手段240、磁性体211の配置関係の詳細例について説明する。一例は図3に示すように、仕切板210は大気開放側が平面で、そこから樹脂厚み距離Xを隔てて、断熱材220側で仕切板210と加温手段240(線状ヒーター絶縁被覆)が当接する。また、磁性体211も同様に樹脂厚み距離Yを隔てて、断熱材220側で仕切板210と当接される。   Here, the detailed example of the arrangement | positioning relationship of the partition plate 210, the heating means 240, and the magnetic body 211 is demonstrated. For example, as shown in FIG. 3, the partition plate 210 is flat on the air release side, and is separated from the resin thickness distance X by the partition plate 210 and the heating means 240 (linear heater insulation coating) on the heat insulating material 220 side. Abut. Similarly, the magnetic body 211 is also in contact with the partition plate 210 on the side of the heat insulating material 220 with a resin thickness distance Y therebetween.

次に、図4は他の事例を示すもので、仕切板210は大気開放部212が大気側に曲線状の凸部を有しており、その樹脂厚み距離Xを隔てて断熱材220側の凹部に加温手段240がはめ込まれ、仕切板210と加温手段240(線状ヒーター絶縁被覆)が当接される。また、大気側が平面である仕切板210の箇所で、樹脂厚み距離Yを隔てた断熱材220側において、磁性体211が仕切板210と当接する。図4に示すような形状に仕切板210を成形することで、複雑な形状の成形金型が不要となり、加温手段240の組立時の位置合わせも容易に行うことができる。   Next, FIG. 4 shows another example. In the partition plate 210, the atmosphere opening portion 212 has a curved convex portion on the atmosphere side, and the resin thickness distance X is separated from the heat insulating material 220 side. The heating means 240 is fitted in the recess, and the partition plate 210 and the heating means 240 (linear heater insulation coating) are brought into contact with each other. Further, the magnetic body 211 comes into contact with the partition plate 210 on the side of the heat insulating material 220 separated by the resin thickness distance Y at the location of the partition plate 210 whose atmosphere side is a plane. By forming the partition plate 210 into a shape as shown in FIG. 4, a molding die having a complicated shape is not necessary, and the heating means 240 can be easily aligned during assembly.

また、回転仕切体200の全体構成を図6の斜視図を用いてもう少し詳細に説明する。回転仕切体200は、扉ガスケット110の吸着面111を形成する合成樹脂製の仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220(図示せず)と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温手段240と、仕切板210の内面には加温手段240を挟む形で2つの磁性体211が取り付けられている。   The overall configuration of the rotary partition 200 will be described in a little more detail with reference to the perspective view of FIG. The rotary partition 200 includes a synthetic resin partition plate 210 that forms the adsorption surface 111 of the door gasket 110, a polystyrene foam heat insulating material 220 (not shown) disposed inside the rotary partition 200, and a partition plate. A synthetic resin partition frame 230 covering the peripheral edge of 210 and the outer surface of the heat insulating material 220, a heating means 240 disposed in the center of the inner surface of the partition plate 210, and a heating means 240 on the inner surface of the partition plate 210. Two magnetic bodies 211 are attached in a sandwiched manner.

このとき、仕切枠体230の上端面にガイド溝231が形成されており、冷蔵庫100の天井面から下方に突設されたガイドピン(図示せず)が係合している。   At this time, a guide groove 231 is formed on the upper end surface of the partition frame 230, and a guide pin (not shown) protruding downward from the ceiling surface of the refrigerator 100 is engaged.

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、従来の構成では、低温となった冷蔵室3の温度影響で冷やされた扉ガスケット11,12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、必要以上に仕切板16の大気開放部の表面温度が低下し、これを補って露点温度以上にするために、面ヒーター19の容量を大きくする必要があったのに対して、本実施の形態の場合、回転仕
切体200の扉ガスケット110の吸着面111を形成する仕切板210を合成樹脂製としている。このことで図7の加温手段の通電率と仕切板の表面温度の関係のグラフが示す様に、同一の通電率の条件では、本実施例の場合の仕切板210の表面温度は、従来の仕切板の表面温度に対して約3℃高く、また、外気条件が30℃、75%のときの露点温度を維持するための通電率は、約10%低減できることがわかる。これは、扉ガスケット110が接触する仕切板210を熱伝導率の小さな合成樹脂にしたことで、仕切板210の大気開放部212の温度の低下が抑制されたことによる。
First, in the conventional configuration, the door gaskets 11 and 12 cooled by the temperature effect of the refrigerator compartment 3 which has become low temperature are in direct contact with the partition plate 16 made of a thin steel plate having a high thermal conductivity. In the case of the present embodiment, the surface temperature of the air release portion of the partition plate 16 is lowered, and it is necessary to increase the capacity of the surface heater 19 in order to make up for this to be equal to or higher than the dew point temperature. The partition plate 210 that forms the suction surface 111 of the door gasket 110 of the rotary partition 200 is made of synthetic resin. Thus, as shown in the graph of the relationship between the energization rate of the heating means and the surface temperature of the partition plate in FIG. 7, the surface temperature of the partition plate 210 in this embodiment is the same as that of the conventional example under the same energization rate conditions. It can be seen that the energization rate for maintaining the dew point temperature when the surface temperature of the partition plate is about 3 ° C. higher than the surface temperature of the partition plate and the outside air conditions are 30 ° C. and 75% can be reduced by about 10%. This is because the partition plate 210 with which the door gasket 110 contacts is made of a synthetic resin having a low thermal conductivity, so that a decrease in the temperature of the atmosphere opening portion 212 of the partition plate 210 is suppressed.

加えて、扉ガスケット110内に構成された磁性体112と対向するように、磁性体211を配置することで、扉ガスケット110との吸着という、回転仕切体200の基本機能を確保することができる。   In addition, by disposing the magnetic body 211 so as to face the magnetic body 112 configured in the door gasket 110, it is possible to ensure the basic function of the rotating partition 200, such as adsorption to the door gasket 110. .

次に、図3及び図4に示す仕切板210の樹脂厚みの距離X、Yについて、図8及び図9の関係図を用いて説明する。まず図8において、加温手段240から一定熱量を供給して、加温手段240と大気開放部212の間の樹脂厚み距離Xを変化させると、大気開放部212(測定点Z)の温度上昇値ΔTは、右肩下がりの一次直線で変化する。すなわち仕切板210の樹脂厚みが、厚くなるほどΔTは小さくなる。この時、仕切板210表面を結露させないΔTの最小限界は、実験的に厚みXが3mmの時であることを見出した。最も理想的な厚みXの値は1mmでそのΔTは3℃であった。   Next, distances X and Y of the resin thickness of the partition plate 210 shown in FIGS. 3 and 4 will be described with reference to the relational diagrams of FIGS. 8 and 9. First, in FIG. 8, when a certain amount of heat is supplied from the heating means 240 to change the resin thickness distance X between the heating means 240 and the atmosphere release section 212, the temperature of the atmosphere release section 212 (measurement point Z) increases. The value ΔT varies with a linear line descending to the right. That is, ΔT decreases as the resin thickness of the partition plate 210 increases. At this time, it was found that the minimum limit of ΔT that does not cause condensation on the surface of the partition plate 210 was experimentally when the thickness X was 3 mm. The most ideal value of thickness X was 1 mm and ΔT was 3 ° C.

また、加温手段240から熱量が加わると、熱膨張係数差により仕切板210は反る方向に変形が発生し、その変形量は右肩下がりの二次曲線で変化する。すなわち仕切板210の樹脂厚みが、薄くなるほど変形量は大きくなる。この時、仕切板210の信頼性を考慮した応力限界の最大変形量は、実験的に厚みXが0.8mmの時であることを見出した。まとめると、仕切板210表面の結露を防止する点から3mm以下、回転仕切体200の繰り返し応力排除の点から0.8mm以上が良く、樹脂厚みXは0.8mm≦X≦3mmの範囲が最適となる。   Further, when heat is applied from the heating means 240, the partition plate 210 is deformed in the direction of warping due to the difference in thermal expansion coefficient, and the amount of deformation changes in a quadratic curve descending to the right. That is, the amount of deformation increases as the resin thickness of the partition plate 210 decreases. At this time, it was found that the maximum deformation amount at the stress limit considering the reliability of the partition plate 210 was experimentally when the thickness X was 0.8 mm. In summary, 3 mm or less is preferable from the viewpoint of preventing condensation on the surface of the partition plate 210, 0.8 mm or more is preferable from the point of eliminating repeated stress of the rotating partition 200, and the resin thickness X is optimally in the range of 0.8 mm ≦ X ≦ 3 mm. It becomes.

次に図9では、一定の磁力を有する磁性体211において、仕切板210の磁性体211と扉ガスケット110吸着面の間の樹脂厚み距離Yを変化させると、回転仕切体200の磁性体211による扉ガスケット110との吸着力は、右肩下がりの一次直線で変化する。すなわち仕切板210の樹脂厚みが厚くなるほど吸着力は低下する。この時、回転仕切体200と扉ガスケット110の吸着で、冷蔵貯蔵室105からの冷気漏れを防止できる最小吸着力は、実験的に厚みYが2mmであることを見出した。   Next, in FIG. 9, if the resin thickness distance Y between the magnetic body 211 of the partition plate 210 and the adsorption surface of the door gasket 110 is changed in the magnetic body 211 having a constant magnetic force, the magnetic body 211 of the rotating partition 200 The adsorbing force with the door gasket 110 changes in a straight line that descends to the right. That is, the adsorption force decreases as the resin thickness of the partition plate 210 increases. At this time, it has been experimentally found that the minimum adsorbing force capable of preventing the cold air leakage from the refrigerated storage chamber 105 by the adsorption of the rotating partition 200 and the door gasket 110 is a thickness Y of 2 mm.

また、仕切板210を樹脂成形した時に反りが発生し、その変位量は右肩下がりの二次曲線で変化する。すなわち仕切板210の樹脂厚みが、薄くなるほど変形量は増加する。この時、仕切板210の反りが扉ガスケット110との密着性に影響しない最大変形量は、実験的に厚みYが0.5mmの時であることを見出した。まとめると、磁性体211による吸着力を確保する点から2mm以下、仕切板210の成形時の反り影響排除の点から0.5mm以上が良く、樹脂厚みYは0.5mm≦Y≦2mmの範囲が最適となる。   Further, when the partition plate 210 is resin-molded, warpage occurs, and the amount of displacement changes with a quadratic curve that descends to the right. That is, the amount of deformation increases as the resin thickness of the partition plate 210 decreases. At this time, it has been found that the maximum deformation amount at which the warp of the partition plate 210 does not affect the adhesion with the door gasket 110 is experimentally when the thickness Y is 0.5 mm. In summary, 2 mm or less from the point of securing the attractive force by the magnetic material 211, 0.5 mm or more is good from the point of eliminating the influence of warping when the partition plate 210 is molded, and the resin thickness Y is in the range of 0.5 mm ≦ Y ≦ 2 mm. Is optimal.

以上のように、本実施の形態においては、冷蔵貯蔵室105の左右扉の少なくともいずれか一方(ここでは左側扉102)の反枢支側の内面に、縦方向に亙る回転仕切体200を設けて扉ガスケット110の吸着面111を合成樹脂性の仕切板210とし、仕切板210内側に磁性体211を扉ガスケット110内蔵の磁性体112と対向する位置に配置し、その磁性体211の間に加温手段240を直線的に並行に配置し、仕切板210周縁部および断熱材220の外面を合成樹脂製の仕切枠体230で覆い、加温手段240が当接する箇所の仕切板210の樹脂厚みXを、0.8mm≦X≦3mmの範囲とすることにより、加温手段240を加温した時の回転仕切体200の変形による反り影響が排除でき
、仕切板210の表面温度を従来の薄鋼板製よりも高く維持でき、結露防止のための加温手段240の電力入力が少なくなるので、冷蔵庫100の消費電力を削減することができる。
As described above, in the present embodiment, the rotary partition 200 that extends in the vertical direction is provided on the inner surface of at least one of the left and right doors of the refrigerated storage chamber 105 (here, the left door 102) on the side opposite to the pivot. Then, the adsorption surface 111 of the door gasket 110 is a synthetic resin partition plate 210, and a magnetic body 211 is disposed inside the partition plate 210 at a position facing the magnetic body 112 built in the door gasket 110, and between the magnetic bodies 211. The heating means 240 is arranged linearly in parallel, the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220 are covered with a synthetic resin partition frame 230, and the resin of the partition plate 210 where the heating means 240 abuts. By setting the thickness X in the range of 0.8 mm ≦ X ≦ 3 mm, the influence of warping due to the deformation of the rotating partition 200 when the heating means 240 is heated can be eliminated, and the surface temperature of the partition plate 210 is controlled. Thin steel can be maintained higher than, the power input of the heating means 240 for preventing dew condensation is reduced, it is possible to reduce the power consumption of the refrigerator 100.

また、磁性体211を左右の扉102、103が閉塞された状態において、扉ガスケット110に内蔵された磁性体112と対向する位置に配置し、磁性体211が当接する箇所の仕切板210の樹脂厚みYを、0.5mm≦Y≦2mmの範囲とすることにより、仕切板210の樹脂成形時の変形による反りが抑制でき、さらに仕切板210の厚みが最小限であるため扉ガスケット110との吸着力が確保され、外部から冷蔵貯蔵室105への熱侵入を抑えられ、さらに冷蔵庫100の消費電力を削減することができる。   In addition, the magnetic body 211 is disposed at a position facing the magnetic body 112 built in the door gasket 110 in a state where the left and right doors 102 and 103 are closed, and the resin of the partition plate 210 at the location where the magnetic body 211 abuts. By setting the thickness Y in the range of 0.5 mm ≦ Y ≦ 2 mm, warpage due to deformation of the partition plate 210 during resin molding can be suppressed, and the thickness of the partition plate 210 is minimized, so Adsorption power is secured, heat penetration from the outside into the refrigerated storage room 105 can be suppressed, and power consumption of the refrigerator 100 can be further reduced.

以上のように、本発明にかかる冷蔵庫は、回転仕切体と扉ガスケットの吸着面である仕切板を樹脂製としたものであり、結露を防止しつつ消費電力を削減できるので、業務用冷蔵庫等にも適用できる。また、樹脂製のフランジ内面に磁性体を配設して、扉ガスケットとの吸着を行う方法は、冷蔵庫の各貯蔵室を仕切る断熱仕切部材の前面のカバーにも応用できる。   As described above, the refrigerator according to the present invention is such that the partition plate which is the adsorption surface of the rotating partition and the door gasket is made of resin, and power consumption can be reduced while preventing condensation. It can also be applied to. Moreover, the method of arranging a magnetic body on the inner surface of the resin flange and adsorbing it with the door gasket can also be applied to the front cover of the heat insulating partition member that partitions the storage compartments of the refrigerator.

100 冷蔵庫
102 左側扉
103 右側扉
105 冷蔵貯蔵室
106 製氷室
107 冷凍貯蔵室
108 野菜室
109 切替室
110 扉ガスケット
111 吸着面
112 磁性体
200 回転仕切体
210 仕切板
211 磁性体
212 大気開放部
220 断熱材
230 仕切枠体
231 ガイド溝
240 加温手段
501、502、503 カバー
DESCRIPTION OF SYMBOLS 100 Refrigerator 102 Left side door 103 Right side door 105 Refrigerated storage room 106 Ice making room 107 Frozen storage room 108 Vegetable room 109 Switching room 110 Door gasket 111 Adsorption surface 112 Magnetic body 200 Rotary partition body 210 Partition plate 211 Magnetic body 212 Atmospheric release part 220 Thermal insulation Material 230 Partition frame 231 Guide groove 240 Heating means 501, 502, 503 Cover

Claims (2)

貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に直線状に配設された線状ヒータと、 前記左右扉が閉塞された状態において前記扉ガスケットに内蔵された磁性体と対向する位置の前記仕切板の内面凹部に配置された直方体のプラスチックマグネットと、を備え、前記仕切板と前記仕切枠体とを合成樹脂製で形成し、前記線状ヒータが当接する箇所の前記仕切板の樹脂厚みを0.8mm以上で3mm以下とし、前記線状ヒータと前記プラスチックマグネットは、前記仕切板と前記断熱材の間で圧接保持されたことを特徴とする冷蔵庫。 It is closed in a double-spreading manner with left and right doors that are aligned with the front opening of the storage chamber, and a rotating partition body that extends in the vertical direction is provided on the inner surface of at least one of the left and right doors as an adsorption surface of the door gasket In the refrigerator, the rotating partition covers at least a partition plate that forms an adsorption surface of the door gasket, a heat insulating material disposed inside the rotating partition, a peripheral portion of the partition plate, and an outer surface of the heat insulating material. A partition frame, a linear heater disposed linearly on the inner surface of the partition plate, and an inner surface of the partition plate at a position facing the magnetic body incorporated in the door gasket in a state where the left and right doors are closed. A rectangular parallelepiped plastic magnet disposed in the recess, the partition plate and the partition frame are made of synthetic resin, and the resin thickness of the partition plate at the location where the linear heater contacts is 0.8 mm. Above The refrigerator , wherein the linear heater and the plastic magnet are held in pressure contact between the partition plate and the heat insulating material . 前記プラスチックマグネットが当接する箇所の前記仕切板の樹脂厚みを0.5mm以上で2mm以下としたことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a resin thickness of the partition plate where the plastic magnet comes into contact is 0.5 mm or more and 2 mm or less.
JP2014124012A 2014-04-24 2014-06-17 refrigerator Active JP5934951B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014124012A JP5934951B2 (en) 2014-06-17 2014-06-17 refrigerator
DE212015000112.1U DE212015000112U1 (en) 2014-04-24 2015-04-20 fridge
PCT/JP2015/002135 WO2015162894A1 (en) 2014-04-24 2015-04-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124012A JP5934951B2 (en) 2014-06-17 2014-06-17 refrigerator

Publications (2)

Publication Number Publication Date
JP2016003811A JP2016003811A (en) 2016-01-12
JP5934951B2 true JP5934951B2 (en) 2016-06-15

Family

ID=55223209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124012A Active JP5934951B2 (en) 2014-04-24 2014-06-17 refrigerator

Country Status (1)

Country Link
JP (1) JP5934951B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798832B2 (en) * 2016-09-07 2020-12-09 東芝ライフスタイル株式会社 refrigerator
MY197702A (en) * 2019-05-21 2023-07-06 Mitsubishi Electric Corp Refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567765B2 (en) * 1991-11-07 1996-12-25 三洋電機株式会社 Cold storage
JPH10318657A (en) * 1997-05-21 1998-12-04 Hitachi Ltd Refrigerator
JP3441363B2 (en) * 1998-04-28 2003-09-02 株式会社東芝 Refrigerator partition wall
JP5198104B2 (en) * 2008-03-21 2013-05-15 株式会社東芝 refrigerator
JP2012026624A (en) * 2010-07-22 2012-02-09 Hitachi Appliances Inc Refrigerator
JP5788159B2 (en) * 2010-09-29 2015-09-30 株式会社東芝 refrigerator
JP5631253B2 (en) * 2011-04-13 2014-11-26 福島工業株式会社 refrigerator

Also Published As

Publication number Publication date
JP2016003811A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
US10145604B2 (en) Refrigerator
AU2016204133B2 (en) Refrigerator
TWI392841B (en) Refrigerator
CN107923690A (en) Freezer
JP2016197005A5 (en)
WO2015162894A1 (en) Refrigerator
KR101622008B1 (en) Sealing structure of a central wall for refrigrator and refrigrator having the same
JP5934953B1 (en) refrigerator
JP5961822B2 (en) refrigerator
JP5934951B2 (en) refrigerator
JP6886383B2 (en) refrigerator
JP5919582B2 (en) refrigerator
JP2015129605A (en) refrigerator
WO2014136518A1 (en) Cold storage
WO2015105038A1 (en) Refrigerator
JP6901370B2 (en) refrigerator
JP3942856B2 (en) refrigerator
JP6292990B2 (en) refrigerator
JP6127273B2 (en) vending machine
JP2018066498A (en) refrigerator
CN103175367A (en) Refrigeration device
EP2643647A2 (en) Refrigerator
CN108240155B (en) Household electrical appliance
WO2019171533A1 (en) Refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5934951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151