JP5934532B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5934532B2
JP5934532B2 JP2012064855A JP2012064855A JP5934532B2 JP 5934532 B2 JP5934532 B2 JP 5934532B2 JP 2012064855 A JP2012064855 A JP 2012064855A JP 2012064855 A JP2012064855 A JP 2012064855A JP 5934532 B2 JP5934532 B2 JP 5934532B2
Authority
JP
Japan
Prior art keywords
positive electrode
tert
butyl
electrolyte
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012064855A
Other languages
Japanese (ja)
Other versions
JP2013196994A (en
Inventor
陽 小林
陽 小林
一 宮代
一 宮代
雅人 田渕
雅人 田渕
克人 三浦
克人 三浦
松尾 孝
孝 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Osaka Soda Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Osaka Soda Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012064855A priority Critical patent/JP5934532B2/en
Publication of JP2013196994A publication Critical patent/JP2013196994A/en
Application granted granted Critical
Publication of JP5934532B2 publication Critical patent/JP5934532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極材料、負極材料、および非水電解質からなる非水電解質二次電池に関するものであり、より詳細には、オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含み、かつ電位を印加する以前に熱処理を施した正極を用いることにより、高容量で、かつ、サイクル充放電特性に優れた非水電解質二次電池に関するものである。   The present invention relates to a nonaqueous electrolyte secondary battery comprising a positive electrode material, a negative electrode material, and a nonaqueous electrolyte, and more specifically, a phenol structure in which both of the ortho positions are substituted with tert-butyl groups. The present invention relates to a non-aqueous electrolyte secondary battery that has a high capacity and excellent cycle charge / discharge characteristics by using a positive electrode that contains a compound having a heat treatment and is subjected to a heat treatment before applying a potential.

従来、リチウムイオン電池に代表される非水電解質二次電池は、電解質にイオン導電性の点から溶液またはペースト状のものが用いられている。しかし、液漏れによる機器の損傷の恐れがあることから、種々の安全対策が必要であり、大型電池開発の障壁になっている。   Conventionally, a non-aqueous electrolyte secondary battery represented by a lithium ion battery has been used in the form of a solution or a paste from the viewpoint of ionic conductivity. However, since there is a risk of equipment damage due to liquid leakage, various safety measures are necessary, which is a barrier to the development of large batteries.

これに対し無機結晶性物質、無機ガラス、有機高分子系物質などの固体電解質が提案されている。しかしながら、無機系電解質はイオン導電性が高いものの、電解質が結晶質あるいは非晶質からなり、充放電時の正負極活物質による体積変化の緩和が難しいため、電池の大型化が困難である。一方、有機高分子系物質は一般に柔軟性、曲げ加工性、および成形性に優れ、応用されるデバイスの設計の自由度が高くなるなどの点から、その進展が期待される。   In contrast, solid electrolytes such as inorganic crystalline substances, inorganic glasses, and organic polymer substances have been proposed. However, although the inorganic electrolyte has high ionic conductivity, it is difficult to increase the size of the battery because the electrolyte is crystalline or amorphous and it is difficult to reduce the volume change due to the positive and negative electrode active materials during charge and discharge. On the other hand, organic polymer materials are generally expected to progress in terms of excellent flexibility, bending workability, and moldability, and increasing the degree of freedom in the design of applied devices.

有機高分子系固体電解質は、従来リチウム二次電池に用いられている正負極材料と組み合わせることができれば、より高い安全性を有した大型電池の開発が可能となる。しかしながら、これまで上記の正負極材料と高分子電解質を用いた電池については良好な特性が報告されていなかった。従来リチウム二次電池と同様に高分子系固体電解質を用いたリチウム二次電池においてもまた、活物質や電解質の劣化以外に集電体の劣化もまた電池の性能劣化の要因とされている。   If the organic polymer solid electrolyte can be combined with positive and negative electrode materials conventionally used in lithium secondary batteries, it is possible to develop a large battery having higher safety. However, good characteristics have not been reported so far for batteries using the above positive and negative electrode materials and polymer electrolyte. In the lithium secondary battery using the polymer solid electrolyte as in the conventional lithium secondary battery, the deterioration of the current collector is also a factor of the battery performance deterioration in addition to the deterioration of the active material and the electrolyte.

例えば、リチウムイオン伝導性ポリマー(高分子電解質)と正極層状化合物の組み合わせに関する既報告としては、特許文献1に、正極付近に位置する有機電解質の劣化を抑制する目的として無機材料を用いて正極表面が保護されており、これによりサイクル寿命が向上したとの報告がある。しかしながら、50サイクル経過時に初期容量の60%まで放電容量まで低下しており、サイクル寿命に関しては問題があった。   For example, as a previous report regarding a combination of a lithium ion conductive polymer (polymer electrolyte) and a positive electrode layered compound, Patent Document 1 discloses that a positive electrode surface is formed using an inorganic material for the purpose of suppressing deterioration of an organic electrolyte located near the positive electrode. Are protected, and this has been reported to improve cycle life. However, when 50 cycles have elapsed, the discharge capacity has decreased to 60% of the initial capacity, and there has been a problem with respect to the cycle life.

有機電解質の酸化分解の抑制として正極中に酸化防止剤のようなラジカル捕捉剤を加える試みも検討されている。特許文献2、3に、ラジカル捕捉剤として一般的なフェノール系酸化防止剤の記載があるが、電解液に対して溶解性があり、かつリチウムイオンとの反応性のある水酸基を有するフェノール系酸化防止剤をコントロールし効果を発揮することは難しいと考えられる。   Attempts to add a radical scavenger such as an antioxidant into the positive electrode have been studied as a suppression of oxidative degradation of the organic electrolyte. Patent Documents 2 and 3 describe a general phenol-based antioxidant as a radical scavenger. However, the phenol-based oxidation is soluble in the electrolyte and has a hydroxyl group reactive with lithium ions. It is considered difficult to control the inhibitor and exert its effect.

特開2003-338321号公報JP 2003-338321 A 特開平10-162809号公報Japanese Patent Laid-Open No. 10-162809 特開平11-67211号公報JP-A-11-67211

以上のような事情を鑑み、本発明の課題は、高容量でサイクル充放電特性の優れた二次電池を提供することである。   In view of the circumstances as described above, an object of the present invention is to provide a secondary battery having high capacity and excellent cycle charge / discharge characteristics.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アルミニウムあるいはアルミニウム合金を正極の集電体とする電池において、ポリエーテル共重合体、電解質塩化合物を含む高分子固体電解質用組成物で正極材料の表面を覆われた正極がオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を高容量含み、かつ電位を印加する以前に熱処理を施した正極を二次電池に採用することで、含フッ素有機系支持電解質を用いても高容量でサイクル充放電特性が優れた二次電池が得られることを見出して、本発明を完成するに至った。
一般に、覆われる表面は、主表面、特に1つの主表面である。本明細書において、「主表面」とは、固体電解質に接触する面を意味する。「主表面」は、一般に、負極材料または正極材料における最も広い面積を有する平面(表面)である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a battery having a positive electrode current collector made of aluminum or an aluminum alloy is used for a polymer solid electrolyte containing a polyether copolymer and an electrolyte salt compound. The positive electrode whose surface is covered with the composition contains a high capacity of a compound having a phenol structure in which both of the ortho positions are substituted with tert-butyl groups, and heat treatment is applied before applying a potential. By adopting a positive electrode for a secondary battery, it was found that a secondary battery having a high capacity and excellent cycle charge / discharge characteristics could be obtained even when a fluorine-containing organic supporting electrolyte was used, and the present invention was completed. .
In general, the surface to be covered is the main surface, in particular one main surface. In this specification, the “main surface” means a surface in contact with the solid electrolyte. The “main surface” is generally a plane (surface) having the largest area in the negative electrode material or the positive electrode material.

すなわち本発明は、上記知見に基づき完成されたものであり、以下の(i)、 (ii)の成分からなる高分子固体電解質用組成物で正極材料の表面を覆われた正極がオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含み、かつ電位を印加する以前に熱処理を施した正極が用いられた非水系電解質二次電池の製造方法を提供する。   That is, the present invention has been completed based on the above knowledge, and the positive electrode whose surface of the positive electrode material is covered with the composition for a polymer solid electrolyte comprising the following components (i) and (ii) is in the ortho position. Provided is a method for producing a non-aqueous electrolyte secondary battery using a positive electrode that includes a compound having a phenol structure, both of which are substituted with a tert-butyl group, and that has been heat-treated before applying a potential.

項1.
アルミニウムあるいはアルミニウム合金を正極の集電体とする電池において、
(i)式(1):

Figure 0005934532
で示される単量体から誘導される繰り返し単位95〜5モル%、および
式(2):
Figure 0005934532
[式中、Rは炭素数1〜12のアルキル基、または−CHO(CR)である。R、R、Rは、同一または異なって、水素原子または−CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていても良い。Rは炭素数1〜12のアルキル基、置換基を有していてもよいアリール基であり、nは0〜12の整数である。]
で示される単量体から誘導される繰り返し単位5〜95モル%、および
式(3):
Figure 0005934532
[式中、R5はエチレン性不飽和基を含有する基を表す]
で示される単量体から誘導される繰り返し単位0〜20モル%を有する重量平均分子量が10〜10の範囲内であるポリエーテル共重合体と
(ii)電解質塩化合物
を含む高分子固体電解質によって正極材料の表面が覆われた正極が、
(iii)オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物
を含有し、正極の熱処理を行っていることを特徴とする非水電解質二次電池。 Item 1.
In a battery using aluminum or an aluminum alloy as a positive electrode current collector,
(I) Formula (1):
Figure 0005934532
And 95 to 5 mol% of repeating units derived from the monomer represented by formula (2):
Figure 0005934532
[Wherein, R represents an alkyl group having 1 to 12 carbon atoms, or —CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 and R 3 are the same or different and are a hydrogen atom or —CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 are between R 1 , R 2 and R 3 . May be different. R 4 is an alkyl group having 1 to 12 carbon atoms and an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
5 to 95 mol% of repeating units derived from the monomer represented by formula (3):
Figure 0005934532
[Wherein R 5 represents a group containing an ethylenically unsaturated group]
A polymer solid comprising a polyether copolymer having 0 to 20 mol% of repeating units derived from the monomer represented by formula (II) and a weight average molecular weight in the range of 10 4 to 10 7 and (ii) an electrolyte salt compound A positive electrode whose surface is covered with an electrolyte
(Iii) A nonaqueous electrolyte secondary battery comprising a compound having a phenol structure in which both of the ortho positions are substituted with a tert-butyl group, and performing heat treatment of the positive electrode.

項2.
オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含む高分子固体電解質を正極材料の電極上に塗布する工程、もしくは、オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含む正極材料を集電体上に塗布する工程で作製されることを特徴とする請求項1に記載の非水電解質二次電池。
Item 2.
A step of applying a solid polymer electrolyte containing a compound having a phenol structure in which both of the ortho positions are substituted with tert-butyl groups on the electrode of the positive electrode material, or both of the ortho positions are tert-butyl The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is produced in a step of applying a positive electrode material containing a compound having a phenol structure substituted on a group onto a current collector.

項3.
前記オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物が、2,6−ジ−tert−ブチル−フェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,2−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレイト、またはイソオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートである請求項1または2に記載の非水電解質二次電池。
Item 3.
Compounds having a phenol structure in which both of the ortho positions are substituted with tert-butyl groups are 2,6-di-tert-butyl-phenol and 2,6-di-tert-butyl-4-methylphenol. 2,6-di-tert-butyl-4-ethylphenol, 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4- Bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-triazine, tetrakis [methylene-3- (3,5-di-tert-butyl -4-hydroxyphenyl) propionate] methane, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propione Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocin Namamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl) -4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, or isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is propionate.

項4.
前記電解質塩化合物がLiCFSO、LiN(FSO、LiN(CFSO、LiN(CSOから選ばれる1種以上を含むことを特徴とする請求項1〜3のいずかに記載の非水電解質二次電池。
項5.
前記高分子固体電解質用組成物に非プロトン性有機溶媒が更に添加されたことを特徴とする請求項1〜4のいずかに記載の非水電解質二次電池。
Item 4.
The electrolyte salt compound includes one or more selected from LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2. Item 4. The nonaqueous electrolyte secondary battery according to any one of Items 1 to 3.
Item 5.
The non-aqueous electrolyte secondary battery according to claim 1, wherein an aprotic organic solvent is further added to the polymer solid electrolyte composition.

項6.
前記非プロトン性有機溶媒がエーテル類およびエステル類からなる群より選ばれることを特徴とする請求項5に記載の非水電解質二次電池。
項7.
前記熱処理が50℃以上150℃以下の範囲内で行われていることを特徴とする請求項1〜6のいずかに記載の非水電解質二次電池。
Item 6.
6. The nonaqueous electrolyte secondary battery according to claim 5, wherein the aprotic organic solvent is selected from the group consisting of ethers and esters.
Item 7.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the heat treatment is performed within a range of 50 ° C. or more and 150 ° C. or less.

項8.
前記正極材料がAMO(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、AM(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、AMO(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、AMBO(Aはアルカリ金属、BはP、Si、またはその混合物、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)のいずれかの組成からなることを特徴とする請求項1〜7のいずかに記載の非水電解質二次電池。
Item 8.
The positive electrode material is AMO 2 (A is an alkali metal, M is a single or two or more transition metals, and a part thereof may include a non-transition metal), AM 2 O 4 (A is an alkali metal, M Consists of a single or two or more transition metals, part of which may contain a non-transition metal), A 2 MO 3 (A is an alkali metal, M is a single or two or more transition metals, A part thereof may contain a non-transition metal), AMBO 4 (A is an alkali metal, B is P, Si, or a mixture thereof, M is a single or two or more transition metals, and a part thereof is non- The nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the nonaqueous electrolyte secondary battery has a composition of any one of (which may contain a transition metal).

本発明によれば、アルミニウムあるいはアルミニウム合金を正極の集電体とする電池において、高分子固体電解質用組成物で正極材料の表面を覆われた正極がオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含み、かつ、電位を印加する以前に正極に熱処理を施すことにより、含フッ素有機系支持電解質を用いても、高容量で、かつサイクル充放電特性に優れた非水電解質二次電池を提供することができる。   According to the present invention, in a battery having a positive electrode current collector made of aluminum or an aluminum alloy, both of the positive electrodes whose surfaces of the positive electrode material are covered with the polymer solid electrolyte composition are in the tert-butyl group. Even if a fluorine-containing organic supporting electrolyte is used, it has high capacity and cycle charge / discharge characteristics by subjecting the positive electrode to heat treatment before applying a potential. An excellent nonaqueous electrolyte secondary battery can be provided.

以下、本発明の構成につき詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail.

式(1)の化合物はエチレンオキシドである。式(1)の化合物は基礎化学品であり、市販品を容易に入手可能である。   The compound of formula (1) is ethylene oxide. The compound of the formula (1) is a basic chemical product, and a commercially available product is easily available.

式(2)の化合物は市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。市販品から入手可能な化合物としては、例えば、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、ターシャリーブチルグリシジルエーテル、ベンジルグリシジルエーテル、1,2−エポキシドデカン、1,2−エポキシオクタン、1,2−エポキシヘプタン、2−エチルヘキシルグリシジルエーテル、1,2−エポキシデカン、1,2−エポキシへキサン、グリシジルフェニルエーテル、1,2−エポキシペンタン、グリシジルイソプロピルエーテルなどが使用できる。これら市販品のなかでは、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、グリシジルイソプロピルエーテルが好ましく、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテルが特に好ましい。合成によって得られる式(2)で表される単量体では、Rは−CHO(CR)が好ましく、R、R、Rの少なくとも一つが−CHO(CHCHO)であることが好ましい。R4は炭素数1〜6のアルキル基が好ましく、炭素数1〜4がより好ましい。nは2〜6が好ましく、2〜4がより好ましい。 The compound of the formula (2) can be easily synthesized by obtaining it from a commercial product or by a general ether synthesis method from epihalohydrin and alcohol. Examples of commercially available compounds include propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, tertiary butyl glycidyl ether, benzyl glycidyl ether, 1,2-epoxide decane, 1,2 -Epoxy octane, 1,2-epoxyheptane, 2-ethylhexyl glycidyl ether, 1,2-epoxydecane, 1,2-epoxyhexane, glycidyl phenyl ether, 1,2-epoxypentane, glycidyl isopropyl ether, etc. can be used. . Among these commercially available products, propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, and glycidyl isopropyl ether are preferable, and propylene oxide, butylene oxide, methyl glycidyl ether, and ethyl glycidyl ether are particularly preferable. In the monomer represented by the formula (2) obtained by synthesis, R is preferably —CH 2 O (CR 1 R 2 R 3 ), and at least one of R 1 , R 2 , and R 3 is —CH 2 O. it is preferably (CH 2 CH 2 O) n R 4. R 4 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. n is preferably from 2 to 6, and more preferably from 2 to 4.

式(3)の化合物において、R5の例は、二重結合を有する炭化水素基であってよく、特に、二重結合を有する環状の炭化水素基、またはCH=CH−A−(Aは、直接結合、または炭素数1〜30の炭化水素基、例えばアルキレン基)であってよい。
式(3)の化合物は市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。例えば、アリルグリシジルエーテル、4−ビニルシクロヘキシルグリシジルエーテル、α−テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4−エポキシ−1−ブテン、3,4−エポキシ−1−ペンテン、4,5−エポキシ−2−ペンテン、1,2−エポキシ−5,9−シクロドデカジエン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5−シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル−4−ヘキセノエートが挙げられ、これらの中では、アリルグリシジルエーテル、ビニルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルが好ましい。
In the compound of the formula (3), an example of R 5 may be a hydrocarbon group having a double bond, in particular, a cyclic hydrocarbon group having a double bond, or CH 2 ═CH—A 1 — ( A 1 may be a direct bond or a hydrocarbon group having 1 to 30 carbon atoms, such as an alkylene group.
The compound of the formula (3) can be easily synthesized from a commercially available product or by a general ether synthesis method from epihalohydrin and alcohol. For example, allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpinyl glycidyl ether, cyclohexenyl methyl glycidyl ether, p-vinylbenzyl glycidyl ether, allyl phenyl glycidyl ether, vinyl glycidyl ether, 3,4-epoxy-1 -Butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecadiene, 3,4-epoxy-1-vinylcyclohexene, 1, 2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl cinnamate, glycidyl crotonate, glycidyl-4-hexenoate, among these allyl glycidyl ether, Alkenyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate are preferred.

本発明のポリエーテル共重合体(i)は、
(A):式(1)の単量体から誘導された繰り返し単位:

Figure 0005934532

(B):式(2)の単量体から誘導された繰り返し単位:
Figure 0005934532

(C):式(3)の単量体から誘導された繰り返し単位:
Figure 0005934532

[式中、Rは炭素数1〜12のアルキル基、または−CHO(CR)である。R、R、Rは、同一または異なって、水素原子または−CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていても良い。Rは炭素数1〜12のアルキル基であり、nは0〜12の整数である。Rはエチレン性不飽和基を含有する基を表す。] を有する。 The polyether copolymer (i) of the present invention is
(A): Repeating unit derived from the monomer of formula (1):
Figure 0005934532

(B): Repeating unit derived from the monomer of formula (2):
Figure 0005934532

(C): Repeating unit derived from the monomer of formula (3):
Figure 0005934532

[Wherein, R represents an alkyl group having 1 to 12 carbon atoms, or —CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 and R 3 are the same or different and are a hydrogen atom or —CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 are between R 1 , R 2 and R 3 . May be different. R 4 is an alkyl group having 1 to 12 carbon atoms, and n is an integer of 0 to 12. R 5 represents a group containing an ethylenically unsaturated group. ]

Rは−CHO(CR)が好ましく、R、R、R3の少なくとも一つが−CHO(CHCHO)であることが好ましい。Rは炭素数1〜6のアルキル基が好ましく、炭素数1〜4がより好ましい。nは2〜6が好ましく、2〜4がより好ましい。 R is preferably —CH 2 O (CR 1 R 2 R 3 ), and at least one of R 1 , R 2 and R 3 is preferably —CH 2 O (CH 2 CH 2 O) n R 4 . R 4 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. n is preferably from 2 to 6, and more preferably from 2 to 4.

本発明のポリエーテル共重合体(i)の合成は次のようにして行える。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにKを含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各モノマーを溶媒の存在下又は不存在下、反応温度10〜120℃、撹拌下で反応させることによってポリエーテル共重合体が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫-リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。 The synthesis of the polyether copolymer (i) of the present invention can be performed as follows. Coordination anion initiator such as catalyst system mainly composed of organic aluminum, catalyst system mainly composed of organic zinc, organotin-phosphate ester condensate catalyst system as a ring-opening polymerization catalyst, or potassium containing K + as a counter ion By using an anionic initiator such as alkoxide, diphenylmethyl potassium, potassium hydroxide, and the like, each of the monomers is reacted in the presence or absence of a solvent at a reaction temperature of 10 to 120 ° C. with stirring to obtain a polyether copolymer. can get. From the viewpoint of the degree of polymerization or the properties of the resulting copolymer, a coordination anion initiator is preferred, and an organotin-phosphate ester condensate catalyst system is particularly preferred because of ease of handling.

本発明のポリエーテル共重合体(i)においては、繰り返し単位(A)、(B)、および(C)のモル比が、(A)95〜5モル%、(B)5〜95モル%、および(C)0〜20モル%が適当であり、好ましくは(A)92〜10モル%、(B)7〜90モル%、および(C)1〜15モル%、更に好ましくは(A)90〜20モル%、(B)10〜80モル%、および(C)2〜15モル%である。繰り返し単位(A)が95モル%を越えるとガラス転移温度の上昇とオキシエチレン鎖の結晶化を招き、結果的に固体電解質のイオン伝導性を著しく悪化させることとなる。一般にポリエチレンオキシドの結晶性を低下させることによりイオン伝導性が向上することは知られているが、本発明のポリエーテル共重合体はこの点において格段に優れている。   In the polyether copolymer (i) of the present invention, the molar ratio of the repeating units (A), (B), and (C) is (A) 95-5 mol%, (B) 5-95 mol%. And (C) 0-20 mol% is suitable, preferably (A) 92-10 mol%, (B) 7-90 mol%, and (C) 1-15 mol%, more preferably (A) ) 90-20 mol%, (B) 10-80 mol%, and (C) 2-15 mol%. If the repeating unit (A) exceeds 95 mol%, the glass transition temperature rises and the oxyethylene chain crystallizes, resulting in a marked deterioration in the ionic conductivity of the solid electrolyte. In general, it is known that ion conductivity is improved by reducing the crystallinity of polyethylene oxide, but the polyether copolymer of the present invention is remarkably superior in this respect.

本発明のポリエーテル共重合体(i)の分子量は、良好な加工性、機械的強度、柔軟性を得るために、重量平均分子量10〜10の範囲内、好ましくは5×10〜5×10の範囲内、さらに好ましくは10〜5×10の範囲内のものが適する。重量平均分子量が10未満の共重合体では、形状安定性を高めるために架橋密度を高くする必要があるために、プラスチック状のものしか得られず、伸びも殆どなく、イオン伝導度が低い。重量平均分子量が10より大きい共重合体では、著しく加工性が悪く取り扱いが困難である。 The molecular weight of the polyether copolymer (i) of the present invention is within the range of a weight average molecular weight of 10 4 to 10 7 , preferably 5 × 10 4 to 5 in order to obtain good processability, mechanical strength and flexibility. within 5 × 10 6 range, more preferably suitable are those of 10 5 to 5 × 10 6 range. A copolymer having a weight average molecular weight of less than 10 4 needs to have a high cross-linking density in order to enhance shape stability, so that only a plastic form can be obtained, there is almost no elongation, and ionic conductivity is low. . A copolymer having a weight average molecular weight of more than 10 7 has remarkably poor processability and is difficult to handle.

本発明のポリエーテル共重合体(i)は、ブロック共重合体、ランダム共重合体何れの共重合タイプでも良い。ランダム共重合体の方がよりポリエチレンオキシドの結晶性を低下させる効果が大きいので好ましい。   The polyether copolymer (i) of the present invention may be a copolymer type of either a block copolymer or a random copolymer. Random copolymers are preferred because they have a greater effect of reducing the crystallinity of polyethylene oxide.

電極間の短絡を抑制するために架橋高分子固体電解質を電極間に介在することが好ましい。架橋高分子固体電解質は、例えば、予め架橋を施した高分子固体電解質膜を電極間に貼り合わせる手法、負極の表面にラジカル重合開始剤を含む高分子固体電解質を配してから、これに架橋を施す手法によって導入することができる。電極間に介在する架橋高分子固体電解質の厚さは、一般に0.1μm〜400μmであってよい。   In order to suppress a short circuit between the electrodes, it is preferable to interpose a crosslinked polymer solid electrolyte between the electrodes. Cross-linked solid polymer electrolytes include, for example, a method of attaching a pre-cross-linked solid polymer electrolyte membrane between electrodes, a polymer solid electrolyte containing a radical polymerization initiator on the surface of the negative electrode, It can be introduced by the method of applying. The thickness of the crosslinked polymer solid electrolyte interposed between the electrodes may generally be 0.1 μm to 400 μm.

本発明の架橋高分子固体電解質は、ポリエーテル共重合体、ラジカル開始剤を含む高分子固体電解質用組成物に電解質塩化合物を共存させて高分子固体電解質を構成し、非プロトン性有機溶媒の存在下または不存在下に、熱を加えるもしくは紫外線などの活性エネルギー線を照射することによって架橋した架橋体である。   The crosslinked polymer solid electrolyte of the present invention comprises a polymer solid electrolyte by coexisting an electrolyte salt compound in a composition for a polymer solid electrolyte containing a polyether copolymer and a radical initiator, and an aprotic organic solvent. In the presence or absence, it is a crosslinked product that is crosslinked by applying heat or irradiating active energy rays such as ultraviolet rays.

熱による架橋の場合では、有機過酸化物、アゾ化合物等から選ばれるラジカル開始剤が用いられる。有機過酸化物としては、ケトンパーオキシド、パーオキシケタール、ハイドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、アゾ化合物としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられる。ラジカル重合開始剤の添加量は種類により異なるが、通常、ポリエーテル共重合体(i)を100重量%として0.1〜10重量%の範囲内である。   In the case of crosslinking by heat, a radical initiator selected from organic peroxides, azo compounds and the like is used. As organic peroxides, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy esters, etc., which are usually used for crosslinking are used. As azo compounds, azonitriles are used. A compound, an azoamide compound, an azoamidine compound, or the like that is usually used for crosslinking is used. The amount of radical polymerization initiator added varies depending on the type, but is usually in the range of 0.1 to 10% by weight with respect to 100% by weight of the polyether copolymer (i).

活性エネルギー線を照射する架橋の場合のラジカル開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などが用いられる。これらのラジカル重合開始剤の添加量は種類により異なるが、通常、ポリエーテル共重合体(i)を100重量%として0.01〜5.0重量%の範囲内である。   As the radical initiator in the case of crosslinking that irradiates active energy rays, alkylphenone-based, benzophenone-based, acylphosphine oxide-based, titanocenes, triazines, bisimidazoles, oxime esters, and the like are used. The amount of these radical polymerization initiators to be added varies depending on the type, but is usually in the range of 0.01 to 5.0% by weight with respect to 100% by weight of the polyether copolymer (i).

本発明においては、高分子固体電解質用組成物に架橋を施す場合に架橋助剤を使用してもよい。架橋助剤は、通常、多官能性化合物(例えば、CH=CH−、CH=CH−CH−、CF=CF−を少なくとも2個含む化合物)である。 In the present invention, a crosslinking aid may be used when the composition for a polymer solid electrolyte is crosslinked. Crosslinking aid is usually polyfunctional compound - a (e.g., CH 2 = CH-, CH 2 = CH-CH 2, CF 2 = CF- at least two containing compound).

本発明において用いることができる電解質塩化合物(ii)は、ポリエーテル共重合体又は該共重合体の架橋体、および必要なら非プロトン性有機溶媒からなる混合物に相溶することが好ましい。ここで相溶とは電解質塩が結晶化などして析出してこない状態を意味する。   The electrolyte salt compound (ii) that can be used in the present invention is preferably compatible with a mixture comprising a polyether copolymer or a crosslinked product of the copolymer and, if necessary, an aprotic organic solvent. Here, “compatible” means a state where the electrolyte salt does not precipitate due to crystallization.

本発明の電解質塩化合物(ii)の例としては、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSOが挙げられ、これら例に加えて、LiClO4、LiBF4、LiAsF6、LiPF6、LiSCN、LiBr、LiI、Li2SO4、LiB(Cも挙げられる。電解質塩化合物(ii)は、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSOからなる群から選択された少なくとも1種であってよい。電解質塩化合物(ii)は、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSOからなる群から選択された少なくとも1種に加えて、LiClO4、LiBF4、LiAsF6、LiPF6、LiSCN、LiBr、LiI、Li2SO4、LiB(Cからなる群から選択された少なくとも1種を併用してもよい。 Examples of the electrolyte salt compound (ii) of the present invention include LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2. In addition to the examples, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , LiB (C 2 O 4 ) 2 may also be mentioned. The electrolyte salt compound (ii) is at least one selected from the group consisting of LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2. It may be. The electrolyte salt compound (ii) is at least one selected from the group consisting of LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2. In addition, at least one selected from the group consisting of LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , LiB (C 2 O 4 ) 2 may be used in combination. .

本発明において、電解質塩化合物の使用量は、電解質塩化合物のモル数/ポリエーテル共重合体のエーテル酸素原子の総モル数の値が0.0001〜5が好ましく、更に好ましくは0.001〜0.5の範囲がよい。   In the present invention, the amount of the electrolyte salt compound used is preferably 0.0001 to 5, more preferably 0.001 to 5 in terms of the number of moles of the electrolyte salt compound / the total number of moles of ether oxygen atoms in the polyether copolymer. A range of 0.5 is good.

本発明では非プロトン性有機溶媒を例えば可塑剤として添加してよい。高分子固体電解質に非プロトン性有機溶媒を混入すると、ポリマーの結晶化が抑制されガラス転移温度が低下し、低温でも無定形相が多く形成されるためにイオン伝導度が良くなる。非プロトン性有機溶媒は、本発明で使用できる高分子固体電解質と組み合わせることで、内部抵抗の小さい高性能の電池を得るのに適している。本発明の高分子固体電解質は、非プロトン性有機溶媒と組み合わせることでゲル状となってもよい。ここで、ゲルとは溶媒によって膨潤した高分子である。   In the present invention, an aprotic organic solvent may be added as a plasticizer, for example. When an aprotic organic solvent is mixed in the polymer solid electrolyte, the crystallization of the polymer is suppressed, the glass transition temperature is lowered, and many amorphous phases are formed even at a low temperature, so that the ionic conductivity is improved. The aprotic organic solvent is suitable for obtaining a high-performance battery having a low internal resistance by combining with the solid polymer electrolyte that can be used in the present invention. The polymer solid electrolyte of the present invention may be gelled by combining with an aprotic organic solvent. Here, the gel is a polymer swollen by a solvent.

非プロトン性有機溶媒としては、非プロトン性のエーテル類及びエステル類が好ましい。具体的には、プロピレンカーボネート、γ−ブチロラクトン、ブチレンカーボネート、 ビニルカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルモノグライム、メチルジグライム、メチルトリグライム、メチルテトラグライム、エチルモノグライム、エチルジグライム、エチルトリグライム、エチルメチルモノグライム、ブチルジグライム、3-メチル−2−オキサゾリドン、テトラヒドロフラン、 2−メチルテトラヒドロフラン、 1,3−ジオキソラン、 4,4-メチル−1 ,3-ジオキソラン、ギ酸メチル、酢酸メチル、プロピオン酸メチル等が挙げられ、中でも、プロピレンカーボネート、γ−ブチロラクトン、ブチレンカーボネート、 ビニルカーボネート、エチレンカーボネート、メチルトリグライム、メチルテトラグライム、エチルトリグライム、エチルメチルモノグライムが好ましい。これらは1種または2種以上で用いることができる。   As the aprotic organic solvent, aprotic ethers and esters are preferable. Specifically, propylene carbonate, γ-butyrolactone, butylene carbonate, vinyl carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl monoglyme, methyl diglyme, methyl triglyme, methyl tetraglyme, ethyl monoglyme , Ethyl diglyme, ethyl triglyme, ethyl methyl monoglyme, butyl diglyme, 3-methyl-2-oxazolidone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4,4-methyl-1,3-dioxolane , Methyl formate, methyl acetate, methyl propionate, etc., among them, propylene carbonate, γ-butyrolactone, butylene carbonate, vinyl carbonate, ethylene Len carbonate, methyltriglyme, methyltetraglyme, ethyltriglyme, and ethylmethylmonoglyme are preferred. These can be used alone or in combination of two or more.

電解質塩化合物および必要な非プロトン性有機溶媒をポリエーテル共重合体に混合する方法に特に制限はないが、電解質塩化合物および必要な非プロトン性有機溶媒を含む溶液にポリエーテル共重合体を長時間浸漬して含浸させる方法、電解質塩化合物および必要な非プロトン性有機溶媒をポリエーテル共重合体へ機械的に混合させる方法、ポリエーテル共重合体および電解質塩化合物を非プロトン性有機溶媒に溶かして混合させる方法あるいはポリエーテル共重合体を一度他の溶媒に溶かした後、非プロトン性有機溶媒を混合させる方法などがある。他の溶媒を使用して製造する場合の他の溶媒としては各種の極性溶媒、例えばテトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、メチルエチルケトン、メチルイソブチルケトン等が単独、或いは混合して用いられる。他の溶媒は、ポリエーテル共重合体を架橋する前、架橋する間または架橋した後に除去できる。   There is no particular limitation on the method of mixing the electrolyte salt compound and the necessary aprotic organic solvent into the polyether copolymer, but the polyether copolymer is long in the solution containing the electrolyte salt compound and the necessary aprotic organic solvent. Method of soaking by impregnation for a period of time, method of mechanically mixing electrolyte salt compound and necessary aprotic organic solvent into polyether copolymer, dissolving polyether copolymer and electrolyte salt compound in aprotic organic solvent Or a method in which the polyether copolymer is once dissolved in another solvent and then mixed with an aprotic organic solvent. Other polar solvents such as tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, dioxane, methyl ethyl ketone, methyl isobutyl ketone, etc. used alone or in combination are used as other solvents in the case of producing using other solvents. It is done. Other solvents can be removed before, during or after cross-linking the polyether copolymer.

本発明において用いることができるオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物(iii)は一般的に酸化防止剤として市販されており、2,6−ジ−tert−ブチル−フェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,2−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレイト、またはイソオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが挙げられる。これらは1種または2種以上で用いることができる。   The compound (iii) having a phenol structure in which both of the ortho positions which can be used in the present invention are substituted with a tert-butyl group is generally commercially available as an antioxidant, and 2,6-di- tert-butyl-phenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 1,6-hexanediol-bis [3- (3 5-Di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3 5-triazine, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,2-thio-diethylenebis [3- 3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3 , 5-di-tert-butyl-4-hydroxy-hydrocinnamamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2, 4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, or isooctyl-3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate. These can be used alone or in combination of two or more.

本発明のオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物(iii)の添加方法は特に限定されないが、集電体上にフェノール構造を有する化合物を含んだ正極材料のスラリーを塗布する、あるいは、正極上にフェノール構造を有する化合物を含んだ高分子固体電解質用組成物の溶液を塗布することでフェノール構造を有する化合物を添加することが均一性の観点で好ましい。   The method for adding the compound (iii) having a phenol structure in which both of the ortho positions of the present invention are substituted with a tert-butyl group is not particularly limited, but a positive electrode containing a compound having a phenol structure on a current collector From the viewpoint of uniformity, it is preferable to add a compound having a phenol structure by applying a slurry of the material or by applying a solution of a composition for a polymer solid electrolyte containing a compound having a phenol structure on the positive electrode. .

本発明のオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物(iii)の添加量は、集電体上にフェノール構造を有する化合物を含んだ正極材料のスラリーを塗布する場合は正極材料を100重量%として0.1重量%以上20重量%以下が好ましく、正極上にフェノール構造を有する化合物を含んだ高分子固体電解質用組成物の溶液を塗布する場合は該高分子固体電解質用組成物を100重量%として0.1重量%以上20重量%以下が好ましい。0.1重量%以上20重量%以下であることによって、電池特性が高くなる。   The addition amount of the compound (iii) having a phenol structure in which both of the ortho positions of the present invention are substituted with tert-butyl groups is obtained by adding a slurry of a positive electrode material containing a compound having a phenol structure on a current collector. When applied, the positive electrode material is 100% by weight, preferably 0.1% by weight or more and 20% by weight or less. When applying a solution of a composition for a polymer solid electrolyte containing a compound having a phenol structure on the positive electrode, The content of the polymer solid electrolyte composition is preferably 100% by weight and preferably 0.1% by weight to 20% by weight. When the content is 0.1% by weight or more and 20% by weight or less, battery characteristics are improved.

正極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に正極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と正極活物質を金属基板に固定するためのバインダーより構成されている。金属電極基板には、アルミニウムあるいはアルミニウム合金が用いられる。   The positive electrode material is, for example, a metal electrode substrate as an electrode material substrate, a positive electrode active material on the metal electrode substrate, and a good ion exchange with the electrolyte layer, and the conductive auxiliary agent and the positive electrode active material are fixed to the metal substrate. It is made up of a binder. Aluminum or an aluminum alloy is used for the metal electrode substrate.

本発明で使用される正極活物質粒子は、LiMO2、LiM2O4、Li2MO3、LiMBO4のいずれかの組成からなるアルカリ金属含有複合酸化物粉末である。Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい。BはP, Si、またはその混合物からなる。なお正極活物質粒子の粒径には、好ましくは50μm以下、より好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。 The positive electrode active material particles used in the present invention are alkali metal-containing composite oxide powders having a composition of any one of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 , and LiMBO 4 . M consists of a single transition metal or two or more transition metals, and a part thereof may contain a non-transition metal. B consists of P, Si, or a mixture thereof. The particle diameter of the positive electrode active material particles is preferably 50 μm or less, more preferably 20 μm or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.

正極活物質の好ましい具体例としては、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixFeO2, LixCoaMn1-aO2, LixCoaNi1-aO2, LixCoaCr1-aO2, LixCoaFe1-aO2, LixCoaTi1-aO2, LixMnaNi1-aO2, LixMnaCr1-aO2, LixMnaFe1-aO2, LixMnaTi1-aO2, LixNiaCr1-aO2, LixNiaFe1-aO2, LixNiaTi1-aO2, LixCraFe1-aO2, LixCraTi1-aO2, LixFeaTi1-aO2, LixCobMncNi1-b-cO2, LixCrbMncNi1-b-cO2, LixFebMncNi1-b-cO2, LixTibMncNi1-b-cO2, LixMn2O4, LixMndCo2-dO4, LixMndNi2-dO4, LixMndCr2-dO4, LixMndFe2-dO4, LixMndTi2-dO4, LiyMnO3, LiyMneCo1-eO3, LiyMneNi1-eO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixCofMn1-fPO4, LixCofNi1-fPO4, LixCofFe1-fPO4, LixMnfNi1-fPO4, LixMnfFe1-fPO4, LixNifFe1-fPO4,LiyCoSiO4, LiyMnSiO4, LiyNiSiO4, LiyFeSiO4, LiyCogMn1-gSiO4, LiyCogNi1-gSiO4, LiyCogFe1-gSiO4, LiyMngNi1-gSiO4, LiyMngFe1-gSiO4, LiyNigFe1-gSiO4, LiyCoPhSi1-hO4, LiyMnPhSi1-hO4, LiyNiPhSi1-hO4, LiyFePhSi1-hO4, LiyCogMn1-gPhSi1-hO4, LiyCogNi1-gPhSi1-hO4, LiyCogFe1-gPhSi1-hO4, LiyMngNi1-gPhSi1-hO4, LiyMngFe1-gPhSi1-hO4, LiyNigFe1-gPhSi1-hO4などのリチウム含有複合酸化物をあげることができる。(ここで、x=0.01〜1.2, y=0.01〜2.2, a=0.01〜0.99, b=0.01〜0.98, c=0.01〜0.98但し、b+c=0.02〜0.99, d=1.49〜1.99, e=0.01〜0.99, f=0.01〜0.99, g=0.01〜0.99, h=0.01〜0.99である。) Preferred examples of the positive electrode active material include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CrO 2 , Li x FeO 2 , Li x Co a Mn 1-a O 2 , Li x Co a Ni 1-a O 2 , Li x Co a Cr 1-a O 2 , Li x Co a Fe 1-a O 2 , Li x Co a Ti 1-a O 2 , Li x Mn a Ni 1-a O 2 , Li x Mn a Cr 1-a O 2 , Li x Mn a Fe 1-a O 2 , Li x Mn a Ti 1-a O 2 , Li x Ni a Cr 1-a O 2 , Li x Ni a Fe 1-a O 2 , Li x Ni a Ti 1-a O 2 , Li x Cr a Fe 1-a O 2 , Li x Cr a Ti 1-a O 2 , Li x Fe a Ti 1-a O 2 , Li x Co b Mn c Ni 1-bc O 2 , Li x Cr b Mn c Ni 1-bc O 2 , Li x Fe b Mn c Ni 1-bc O 2 , Li x Ti b Mn c Ni 1-bc O 2 , Li x Mn 2 O 4 , Li x Mn d Co 2-d O 4 , Li x Mn d Ni 2-d O 4 , Li x Mn d Cr 2-d O 4 , Li x Mn d Fe 2-d O 4 , Li x Mn d Ti 2-d O 4 , Li y MnO 3 , Li y Mn e Co 1-e O 3 , Li y Mn e Ni 1-e O 3 , Li y Mn e Fe 1-e O 3, Li y Mn e Ti 1 -e O 3, Li x CoPO 4, Li x MnPO 4, Li x NiPO 4, Li x FePO 4, Li x Co f Mn 1-f PO 4, Li x Co f Ni 1 -f PO 4 , Li x Co f Fe 1-f PO 4 , Li x Mn f Ni 1-f PO 4 , Li x Mn f Fe 1-f PO 4 , Li x Ni f Fe 1-f PO 4 , Li y CoSiO 4 , Li y MnSiO 4 , Li y NiSiO 4 , Li y FeSiO 4 , Li y Co g Mn 1-g SiO 4 , Li y Co g Ni 1-g SiO 4 , Li y Co g Fe 1-g SiO 4 , Li y Mng g Ni 1-g SiO 4 , Li y Mng g Fe 1-g SiO 4 , Li y Ni g Fe 1-g SiO 4 , Li y CoP h Si 1 -h O 4 , Li y MnP h Si 1-h O 4 , Li y NiP h Si 1-h O 4 , Li y FeP h Si 1-h O 4 , Li y Co g Mn 1-g P h Si 1 -h O 4, Li y Co g Ni 1-g P h Si 1-h O 4, Li y Co g Fe 1-g P h Si 1-h O 4, Li y Mn g Ni 1-g P h Si It is mentioned 1-h O 4, Li y Mn g Fe 1-g P h Si 1-h O 4, Li y Ni g Fe 1-g P h Si 1-h O 4 lithium-containing composite oxides such as it can. (Where x = 0.01 to 1.2, y = 0.01 to 2.2, a = 0.01 to 0.99, b = 0.01 to 0.98, c = 0.01 to 0.98 where b + c = 0.02 to 0.99, d = 1.49 to 1.99, e = 0.01 to 0.99, f = 0.01 to 0.99, g = 0 .01-0.99, h = 0.01-0.99.)

また、前記好ましい正極活物質のうち、より好ましい正極活物質としては、具体的には、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixCoaNi1-aO2, LixMnaNi1-aO2, LixCobMncNi1-b-cO2, LixMn2O4, LiyMnO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixMnfFe1-fPO4, をあげることができる。(ここで、x=0.01〜1.2, y=0.01〜2.2, a=0.01〜0.99, b=0.01〜0.98, c=0.01〜0.98但し、b+c=0.02〜0.99, d=1.49〜1.99, e=0.01〜0.99, f=0.01〜0.99である。なお、上記のx, yの値は充放電によって増減する。) Among the preferable positive electrode active materials, more preferable positive electrode active materials include, specifically, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CrO 2 , Li x Co a Ni 1- a O 2 , Li x Mn a Ni 1-a O 2 , Li x Co b Mn c Ni 1-bc O 2 , Li x Mn 2 O 4 , Li y MnO 3 , Li y Mn e Fe 1-e O 3 , Li y Mn e Ti 1- e O 3, Li x CoPO 4, Li x MnPO 4, Li x NiPO 4, Li x FePO 4, Li x Mn f Fe 1-f PO 4, it can be mentioned. (Where x = 0.01 to 1.2, y = 0.01 to 2.2, a = 0.01 to 0.99, b = 0.01 to 0.98, c = 0.01 to 0.98 where b + c = 0.02 to 0.99, d = 1.49 to 1.99, e = 0.01 to 0.99, and f = 0.01 to 0.99. The values of x and y increase or decrease due to charge / discharge.)

負極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に負極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と負極活物質を金属基板に固定するためのバインダーより構成されている。この場合の金属電極基板には、例えば銅が用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。   The negative electrode material is, for example, a metal electrode substrate as an electrode material substrate, a negative electrode active material on the metal electrode substrate, and exchange of good ions with the electrolyte layer, and the conductive auxiliary agent and the negative electrode active material are fixed to the metal substrate It is made up of a binder. In this case, for example, copper is used for the metal electrode substrate, but the metal electrode substrate is not limited to this, and may be nickel, stainless steel, gold, platinum, titanium, or the like.

本発明で使用される負極活物質は、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、40〜90%、特に70%程度のものを用いることが好ましい。   The negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of occluding and releasing alkali metal ions such as lithium ions, lithium, or the like. It is a powder made of a metal such as lithium, an aluminum compound, a tin compound, or a silicon compound that can occlude and release alkali metal ions such as ions. The particle diameter is preferably from 10 nm to 100 μm, more preferably from 20 nm to 20 μm. Moreover, you may use as a mixed active material of a metal and a carbon material. It is preferable to use a negative electrode active material having a porosity of 40 to 90%, particularly about 70%.

正極活物質、負極活物質を溶剤で導電助剤、バインダー、増粘剤などと共に混合しスラリーとするが、溶剤としては水又は水溶性有機溶剤を使用する。導電助剤としては、アセチレンブラック、ケッチェンブラック、炭素繊維、グラファイトなどの導電性カーボンや、導電性ポリマー、金属粉末などが挙げられるが、導電性カーボンが特に好ましい。これら導電剤は活物質を100重量%として、20重量%以下、好ましくは、15重量%以下、例えば0.01〜10重量%を添加する。バインダーとしては、例えばフッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム、アクリル系重合体、ビニル系重合体から選ばれる1種以上の化合物を用いることができる。また、耐酸化性、少量で充分な密着性、極板に柔軟性が得られるためアクリル系重合体を用いることが好ましい。これらバインダーは活物質を100重量%として、好ましくは5重量%以下、より好ましくは3重量%以下、例えば0.01〜2重量%添加する。また、増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース等もしくはこれらのアルカリ金属塩、ポリエチレンオキサイド等である。これら増粘剤は活物質を100重量%として、好ましくは5重量%以下、より好ましくは3重量%以下、例えば0.01〜2重量%添加する。   A positive electrode active material and a negative electrode active material are mixed together with a conductive additive, a binder, a thickener, and the like in a solvent to form a slurry, and water or a water-soluble organic solvent is used as the solvent. Examples of the conductive assistant include conductive carbon such as acetylene black, ketjen black, carbon fiber, and graphite, conductive polymer, and metal powder, and conductive carbon is particularly preferable. These conductive agents are added in an amount of 20% by weight or less, preferably 15% by weight or less, for example, 0.01 to 10% by weight based on 100% by weight of the active material. As the binder, for example, at least one compound selected from a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymer, and vinyl polymer can be used. In addition, it is preferable to use an acrylic polymer because oxidation resistance, sufficient adhesion with a small amount, and flexibility in the electrode plate can be obtained. These binders are added in an amount of 100% by weight of the active material, preferably 5% by weight or less, more preferably 3% by weight or less, for example, 0.01 to 2% by weight. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and the like, or alkali metal salts thereof, polyethylene oxide and the like. These thickeners are added in an amount of 100% by weight of the active material, preferably 5% by weight or less, more preferably 3% by weight or less, for example, 0.01 to 2% by weight.

正極活物質粉末や負極活物質粉末等の金属電極基板への形成は、ドクターブレード法やシルクスクリーン法などにより行われる。   Formation of the positive electrode active material powder and the negative electrode active material powder on the metal electrode substrate is performed by a doctor blade method, a silk screen method, or the like.

例えばドクターブレード法では、負極活物質粉末や正極活物質粉末を水もしくはn−メチルピロリドン等の有機溶剤に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な溶剤を除去するため、例えば50〜130℃で(特に80℃で)真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。   For example, in the doctor blade method, a negative electrode active material powder or a positive electrode active material powder is dispersed in water or an organic solvent such as n-methylpyrrolidone to form a slurry, which is applied to a metal electrode substrate, and then a blade having a predetermined slit width. Uniform to an appropriate thickness. The electrode is dried in a vacuum state, for example, at 50 to 130 ° C. (especially at 80 ° C.) in order to remove excess solvent after applying the active material. An electrode material is manufactured by press-molding the dried electrode with a pressing device.

その後、電極材料の主表面に高分子固体電解質を例えばドクターブレード法などを用いて塗布する。高分子固体電解質は、その粘度に応じてアセトニトリル等の溶剤と混合し、適切な粘度に調整したのち塗布し、必要に応じて静置し、多孔質部分に高分子固体電解質溶液を含浸させ、これを加熱乾繰させてもよい。溶剤乾燥後の塗布層(高分子固体電解質)の厚みは400μm以下が好ましく、更に好ましくは200μm以下、特に0.1〜150μmである。   Thereafter, a polymer solid electrolyte is applied to the main surface of the electrode material using, for example, a doctor blade method. The polymer solid electrolyte is mixed with a solvent such as acetonitrile according to its viscosity, applied after adjusting to an appropriate viscosity, allowed to stand as necessary, and impregnated with a polymer solid electrolyte solution in the porous portion, This may be heated and dried. The thickness of the coating layer after drying the solvent (polymer solid electrolyte) is preferably 400 μm or less, more preferably 200 μm or less, particularly 0.1 to 150 μm.

本発明のオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物(iii)の添加方法は特に限定されないが、フェノール構造を有する化合物を含んだスラリー状の正極材料を金属電極基板に塗布する、あるいは、フェノール構造を有する化合物を含んだ高分子固体電解質溶液を正極材料の表面に塗布することでフェノール構造を有する化合物を添加することが均一性の観点で好ましい。   The method for adding the compound (iii) having a phenol structure in which both of the ortho positions of the present invention are substituted with a tert-butyl group is not particularly limited, but a slurry-like positive electrode material containing a compound having a phenol structure is used. From the viewpoint of uniformity, it is preferable to apply a compound having a phenol structure by applying it to a metal electrode substrate or by applying a solid polymer electrolyte solution containing a compound having a phenol structure to the surface of the positive electrode material.

本発明において、電位を印加する以前に正極の熱処理を行っている。高分子固体電解質で表面を覆われ、かつオルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含む正極を熱処理する方法は特に限定しないが、窒素、アルゴン等の不活性ガス雰囲気下で高分子固体電解質表面を暴露した状態で熱処理を施すことが好ましい。熱処理の温度は50℃以上150℃以下の範囲が好ましい。50℃以上150℃以下の範囲の熱処理温度によって、有機材料の酸化分解が生じることなく、工業的効率よく、熱処理を行える。熱処理の時間は温度により異なるが通常10日以内であり、例えば10分〜48時間である。   In the present invention, the positive electrode is heat-treated before the potential is applied. A method for heat-treating a positive electrode containing a compound having a phenol structure in which the surface is covered with a solid polymer electrolyte and both ortho-positions are substituted with tert-butyl groups is not particularly limited. It is preferable to heat-treat in the state which exposed the polymer solid electrolyte surface in inert gas atmosphere. The temperature of the heat treatment is preferably in the range of 50 ° C. or higher and 150 ° C. or lower. Heat treatment can be carried out industrially efficiently at a heat treatment temperature in the range of 50 ° C. to 150 ° C. without causing oxidative decomposition of the organic material. The heat treatment time varies depending on the temperature, but is usually within 10 days, for example, 10 minutes to 48 hours.

高分子固体電解質を塗布した負極電極および正極電極を重ね合わせることで非水電解質二次電池が組み上げられる。この際、塗布した高分子固体電解質の厚み、あるいは機械的強度が不十分な場合、電極材間に架橋高分子固体電解質を介在させることが好ましい。架橋高分子固体電解質は、別途作製した架橋高分子固体電解質膜を電極間に介在させる手法、負極表面に配した高分子固体電解質に架橋を施す手法によって導入することができる。   A non-aqueous electrolyte secondary battery is assembled by superimposing a negative electrode and a positive electrode coated with a polymer solid electrolyte. At this time, when the thickness or mechanical strength of the applied polymer solid electrolyte is insufficient, it is preferable to interpose a crosslinked polymer solid electrolyte between the electrode materials. The crosslinked polymer solid electrolyte can be introduced by a technique in which a separately prepared crosslinked polymer solid electrolyte membrane is interposed between the electrodes, or a technique in which the polymer solid electrolyte disposed on the negative electrode surface is crosslinked.

なお、正極材料のみの特性を評価する際には、対極にリチウムシートを用いることで、電極材料の可逆性を評価できる。また、正極材料と負極材料の組み合わせ評価の場合には、リチウムシートを用いず、正極材料と炭素系負極材料との組み合わせが用いられる。   When evaluating the characteristics of only the positive electrode material, the reversibility of the electrode material can be evaluated by using a lithium sheet for the counter electrode. In the case of evaluating the combination of the positive electrode material and the negative electrode material, a combination of the positive electrode material and the carbon-based negative electrode material is used without using the lithium sheet.

以下に例を挙げ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り本発明は以下に記載する実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples described below as long as the gist of the invention is not exceeded.

実施例
本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明は、以下の実施例に限定されるものではない。
EXAMPLES Specific modes for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to the following examples.

本実施例では、負極材料と、非水電解質と、正極材料とからなる非水電解質二次電池において、可逆容量、サイクル性能を比較するために以下の実験を行った。   In this example, the following experiment was conducted to compare reversible capacity and cycle performance in a non-aqueous electrolyte secondary battery including a negative electrode material, a non-aqueous electrolyte, and a positive electrode material.

[合成例(ポリエーテル共重合用触媒の製造)]
撹拌機、温度計及び蒸留装置を備えた3つ口フラスコにトリブチル錫クロライド10g及びトリブチルホスフェート35gを入れ、窒素気流下に撹拌しながら250℃で20分間加熱して留出物を留去させ残留物として固体状の縮合物質を得た。以下の重合例で重合触媒として用いた。
[Synthesis Example (Production of Polyether Copolymer Catalyst)]
In a three-necked flask equipped with a stirrer, thermometer and distillation apparatus, 10 g of tributyltin chloride and 35 g of tributyl phosphate are added and heated at 250 ° C. for 20 minutes with stirring under a nitrogen stream to distill off the distillate. As a product, a solid condensate was obtained. It used as a polymerization catalyst in the following polymerization examples.

ポリエーテル共重合体のモノマー換算組成はH NMRスペクトルにより求めた。
ポリエーテル共重合体の分子量測定にはゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。GPC測定は(株)島津製作所製RID−6A、昭和電工(株)製ショウデックスKD-807、KD-806、KD-806MおよびKD-803カラム、および溶媒にDMFを用いて60℃で行った。
The monomer equivalent composition of the polyether copolymer was determined by 1 H NMR spectrum.
For measuring the molecular weight of the polyether copolymer, gel permeation chromatography (GPC) measurement was performed, and the weight average molecular weight was calculated in terms of standard polystyrene. GPC measurement was performed at 60 ° C. using RID-6A manufactured by Shimadzu Corporation, Showdex KD-807, KD-806, KD-806M and KD-803 columns manufactured by Showa Denko KK, and DMF as a solvent. .

[重合例1]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a):

Figure 0005934532
150g、及び溶媒としてn−ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド150gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー280gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。 [Polymerization Example 1]
The inside of a glass four-necked flask having an internal volume of 3 L was purged with nitrogen, and 1 g of the condensate shown in the synthesis example of the catalyst as a polymerization catalyst and a glycidyl ether compound (a) adjusted to a water content of 10 ppm or less:
Figure 0005934532
150 g of n-hexane was charged as a solvent and 150 g of ethylene oxide, and 150 g of ethylene oxide was sequentially added while monitoring the polymerization rate of the compound (a) by gas chromatography. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. The polymerization reaction was stopped by adding 1 mL of methanol. After taking out the polymer by decantation, it was dried at 40 ° C. under normal pressure for 24 hours and further under reduced pressure at 45 ° C. for 10 hours to obtain 280 g of polymer. Table 1 shows the weight average molecular weight and monomer conversion composition analysis results of the obtained polyether copolymer.

[重合例2]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a)150g、アリルグリシジルエーテル 30g、及び溶媒としてn−ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド150gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー290gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 2]
The inside of a glass four-necked flask having an internal volume of 3 L is purged with nitrogen, and 1 g of the condensate shown in the synthesis example of the catalyst as a polymerization catalyst and 150 g of glycidyl ether compound (a) adjusted to a water content of 10 ppm or less, allyl glycidyl ether 30 g and n-hexane 1000 g were charged as a solvent, and 150 g of ethylene oxide was successively added while monitoring the polymerization rate of the compound (a) by gas chromatography. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. The polymerization reaction was stopped by adding 1 mL of methanol. After taking out the polymer by decantation, it was dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. under reduced pressure for 10 hours to obtain 290 g of polymer. Table 1 shows the weight average molecular weight and monomer conversion composition analysis results of the obtained polyether copolymer.

[重合例3]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a)75g、連鎖移動剤としてエチレングリコールモノメチルエーテル0.5g、及び溶媒としてトルエン500gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド150gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。2000gのn−ヘキサンに反応溶液を注ぎ、デカンテーションならびに洗浄によりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー200gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。
[Polymerization Example 3]
The inside of a glass four-necked flask having an internal volume of 3 L is purged with nitrogen, and as a polymerization catalyst, 1 g of the condensate shown in the synthesis example of the catalyst, 75 g of glycidyl ether compound (a) adjusted to a water content of 10 ppm or less, a chain transfer agent As a solvent, 0.5 g of ethylene glycol monomethyl ether and 500 g of toluene as a solvent were added, and 150 g of ethylene oxide was sequentially added while monitoring the polymerization rate of the compound (a) by gas chromatography. The polymerization temperature at this time was 20 ° C., and the reaction was carried out for 10 hours. The polymerization reaction was stopped by adding 1 mL of methanol. The reaction solution was poured into 2000 g of n-hexane, and the polymer was taken out by decantation and washing, and then dried at 40 ° C. under normal pressure for 24 hours and further at 45 ° C. for 10 hours under reduced pressure to obtain 200 g of polymer. Table 1 shows the weight average molecular weight and monomer conversion composition analysis results of the obtained polyether copolymer.

Figure 0005934532
Figure 0005934532

[架橋例1]
重合例2で得たポリエーテル共重合体1.0g、光開始剤ベンゾフェノン0.002g、架橋助剤N,N'−m−フェニレンビスマレイミド0.05g、かつモル比(電解質塩化合物のモル数)/(共重合体のエーテル酸素原子の総モル数)が0.05となるようにLiN(CFSO2)2(LiTFSI)をアセトニトリル10mlに溶解したものを、ポリエチレンテレフタレートフィルム上に500μmギャップのバーコーターを用いて塗布し、そのまま80℃に加熱して乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、高圧水銀灯(30mW/cm)を30秒間照射することにより架橋高分子電解質膜を作製した。
[Crosslinking example 1]
1.0 g of the polyether copolymer obtained in Polymerization Example 2, 0.002 g of the photoinitiator benzophenone, 0.05 g of the crosslinking aid N, N′-m-phenylenebismaleimide, and the molar ratio (the number of moles of the electrolyte salt compound) ) / (Total number of moles of ether oxygen atoms in the copolymer) of 0.05, LiN (CF 3 SO 2 ) 2 (LiTFSI) dissolved in 10 ml of acetonitrile was placed on a polyethylene terephthalate film with a 500 μm gap. After coating with a bar coater, heating to 80 ° C. as it is and drying, the polymer surface is irradiated with a high pressure mercury lamp (30 mW / cm 2 ) for 30 seconds with the electrolyte surface covered with a laminate film. An electrolyte membrane was produced.

[実施例1] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
正極活物質には、平均粒径10μmのLiCo1/3Mn1/3Ni1/3を用いた。この正極活物質10.0gに対して、導電助剤としてアセチレンの熱分解によって製造された球状炭素微粒子を0.5g、バインダーとしてスチレンブタジエンゴム(SBR)を0.1g、増粘剤としてカルボキシメチルセルロースナトリウム塩(CMC)を0.2g添加し、水を溶媒としてステンレスボールミルを用いて、1時間攪拌したのち、アルミ集電体上に50μmギャップのバーコーターを用いて塗布し、80℃真空状態で12時間以上乾繰後、ロールプレスして正極シートとした。
また、重合例1で得たポリエーテル共重合体1.0g、2,6−ジ−tert−ブチル−4−メチルフェノール0.05g、かつモル比(電解質塩化合物のモル数)/(共重合体のエーテル酸素原子の総モル数)が0.05となるようにLiTFSIをアセトニトリル10mlに溶解したものを、上記の正極シート上に500μmギャップのバーコーターを用いて塗布し、そのまま80℃に加熱して正極シート内に高分子電解質組成物をよく含浸させ、かつ乾燥させたのち、更にアルゴンガス雰囲気下にて100℃で12時間熱処理を施し、正極シート上に高分子電解質が一体化された正極/電解質シートを作製した。
アルゴンガスで置換されたグローブボックス内において、正極/電解質シートに架橋例1で得た架橋高分子電解質膜を貼り合わせ、更に対極として金属リチウムを貼り合わせて、試験用2032型コイン電池を組み立てた。電気化学特性は北斗電工(株)製の充放電装置を用い、4時間で所定の充電および放電が行える試験条件(C/4)にて、4.2 V上限、2.5Vを下限とし、一定電流通電により正極の評価をした。試験温度は60℃環境とした。試験結果を表2に示す。
Example 1 Fabrication of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium LiCo 1/3 Mn 1/3 Ni 1/3 O 2 with an average particle size of 10 μm was used as the positive electrode active material. . With respect to 10.0 g of this positive electrode active material, 0.5 g of spherical carbon fine particles produced by thermal decomposition of acetylene as a conductive assistant, 0.1 g of styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose as a thickener 0.2 g of sodium salt (CMC) was added, and the mixture was stirred for 1 hour using a stainless ball mill with water as a solvent, and then applied onto an aluminum current collector using a 50 μm gap bar coater, and in a vacuum state at 80 ° C. After drying for 12 hours or more, roll pressing was performed to obtain a positive electrode sheet.
Further, 1.0 g of the polyether copolymer obtained in Polymerization Example 1, 0.05 g of 2,6-di-tert-butyl-4-methylphenol, and molar ratio (number of moles of electrolyte salt compound) / (copolymerization) A solution prepared by dissolving LiTFSI in 10 ml of acetonitrile so that the total number of moles of ether oxygen atoms in the coalescence is 0.05 is coated on the above positive electrode sheet using a 500 μm gap bar coater and heated to 80 ° C. as it is. The polymer electrolyte composition was thoroughly impregnated into the positive electrode sheet and dried, and further heat-treated at 100 ° C. for 12 hours in an argon gas atmosphere, so that the polymer electrolyte was integrated on the positive electrode sheet. A positive electrode / electrolyte sheet was prepared.
In the glove box substituted with argon gas, the cross-linked polymer electrolyte membrane obtained in the cross-linking example 1 was bonded to the positive electrode / electrolyte sheet, and metal lithium was bonded as a counter electrode to assemble a test 2032 type coin cell. . The electrochemical characteristics were measured using a charging / discharging device manufactured by Hokuto Denko Co., Ltd., under the test conditions (C / 4) where predetermined charging and discharging can be performed in 4 hours, with 4.2 V as the upper limit and 2.5 V as the lower limit. The positive electrode was evaluated by applying a constant current. The test temperature was 60 ° C. environment. The test results are shown in Table 2.

[実施例2] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
2,6−ジ−tert−ブチル−4−メチルフェノールの代わりにテトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンを用いた以外は実施例1と同様の方法で正極/電解質シートを作製した。これに対極として金属リチウムを貼り合わせてコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
Example 2 Production of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium Instead of 2,6-di-tert-butyl-4-methylphenol, tetrakis [methylene-3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionate] A positive electrode / electrolyte sheet was produced in the same manner as in Example 1 except that methane was used. To this, metallic lithium was bonded as a counter electrode to prepare a coin battery, and the electrochemical characteristics of the positive electrode were evaluated. The test results are shown in Table 2.

[実施例3] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
2,6−ジ−tert−ブチル−4−メチルフェノールの代わりに1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼンを用いた以外は実施例1と同様の方法で正極/電解質シートを作製した。これに対極として金属リチウムを貼り合わせてコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
[Example 3] Production of battery composed of positive electrode material / solid polymer electrolyte / metallic lithium 1,3,5-trimethyl-2,4 instead of 2,6-di-tert-butyl-4-methylphenol A positive electrode / electrolyte sheet was prepared in the same manner as in Example 1 except that, 6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene was used. To this, metallic lithium was bonded as a counter electrode to prepare a coin battery, and the electrochemical characteristics of the positive electrode were evaluated. The test results are shown in Table 2.

[比較例1] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
正極/電解質シート作製時に2,6−ジ−tert−ブチル−4−メチルフェノールを加えず、かつ100℃での熱処理を施さないこと以外は実施例1と同様の方法でコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
[Comparative Example 1] Production of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium No 2,6-di-tert-butyl-4-methylphenol was added at the time of production of positive electrode / electrolyte sheet and at 100 ° C. A coin battery was prepared in the same manner as in Example 1 except that the heat treatment was not performed, and the electrochemical characteristics of the positive electrode were evaluated. The test results are shown in Table 2.

[比較例2] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
正極/電解質シート作製時に100℃での熱処理を施さないこと以外は実施例1と同様の方法でコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
Comparative Example 2 Production of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium A coin battery was prepared in the same manner as in Example 1 except that no heat treatment was performed at 100 ° C. when producing the positive electrode / electrolyte sheet. It produced and evaluated the electrochemical characteristic of the positive electrode. The test results are shown in Table 2.

[比較例3] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
重合例1で得たポリエーテル共重合体の代わりに重合例3で得たポリエーテル共重合体を用いた以外は実施例1と同様の方法で正極/電解質シートを作製した。これに対極として金属リチウムを貼り合わせてコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
[Comparative Example 3] Preparation of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium Instead of the polyether copolymer obtained in Polymerization Example 1, the polyether copolymer obtained in Polymerization Example 3 was used. A positive electrode / electrolyte sheet was produced in the same manner as in Example 1 except for the above. To this, metallic lithium was bonded as a counter electrode to prepare a coin battery, and the electrochemical characteristics of the positive electrode were evaluated. The test results are shown in Table 2.

[比較例4] 正極材料/高分子固体電解質/金属リチウムで構成された電池の作製
2,6−ジ−tert−ブチル−4−メチルフェノールの代わりに4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノールを用いた以外は実施例1と同様の方法で正極/電解質シートを作製した。これに対極として金属リチウムを貼り合わせてコイン電池を作製し、正極の電気化学特性を評価した。試験結果を表2に示す。
Comparative Example 4 Fabrication of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Metal Lithium 4,4′-Butylidenebis (3-methyl-) Instead of 2,6-Di-tert-butyl-4-methylphenol A positive electrode / electrolyte sheet was prepared in the same manner as in Example 1 except that 6-t-butylphenol was used, and a coin battery was prepared by laminating metal lithium as a counter electrode, and the electrochemical characteristics of the positive electrode were evaluated. The test results are shown in Table 2.

Figure 0005934532
Figure 0005934532

[実施例4] 正極材料/高分子固体電解質/負極材料で構成された電池の作製
負極活物質には、平均粒径12μmのグラファイト粉末(多孔質構造材料)を用いた。この負極活物質10.0gに対して、導電助剤として2000℃以上で合成した炭素繊維を0.5g、バインダーとしてSBRを0.1g、増粘剤としてCMCを0.2g添加し、水を溶媒としてステンレスボールミルを用いて、1時間攪拌したのち、銅集電体上に50μmギャップのバーコーターを用いて塗布し、80℃真空状態で12時間以上乾繰後、ロールプレスして負極シートとした。
また、重合例1で得たポリエーテル共重合体1.0g、かつモル比(電解質塩化合物のモル数)/(共重合体のエーテル酸素原子の総モル数)が0.05となるようにLiTFSIをアセトニトリル10mlに溶解したものを、上記の負極シート上に500μmギャップのバーコーターを用いて塗布し、そのまま80℃に加熱して、負極シート上に高分子電解質が一体化された負極/電解質シートを作製した。
アルゴンガスで置換されたグローブボックス内において、実施例1で得られた正極/電解質シートに架橋例1で得た架橋高分子電解質膜を貼り合わせ、更に対極として負極/電解質シートを貼り合わせてコイン電池を組み立てた。電気化学特性は充放電装置を用い、4時間で所定の充電および放電が行える試験条件(C/4)にて、4.2 V上限、2.5Vを下限とし、一定電流通電により正極・負極の評価をした。試験温度は60℃環境とした。試験結果を表3に示す。
[Example 4] Production of Battery Consisting of Positive Electrode Material / Polymer Solid Electrolyte / Negative Electrode Material As a negative electrode active material, graphite powder (porous structure material) having an average particle diameter of 12 μm was used. To 10.0 g of this negative electrode active material, 0.5 g of carbon fiber synthesized at 2000 ° C. or more as a conductive auxiliary agent, 0.1 g of SBR as a binder, 0.2 g of CMC as a thickener are added, and water is added. After stirring for 1 hour using a stainless ball mill as a solvent, it was coated on a copper current collector using a 50 μm gap bar coater, dried at 80 ° C. in a vacuum state for 12 hours or more, and then roll pressed to form a negative electrode sheet did.
Further, 1.0 g of the polyether copolymer obtained in Polymerization Example 1 and a molar ratio (number of moles of electrolyte salt compound) / (total number of moles of ether oxygen atoms in the copolymer) are set to 0.05. A LiTFSI dissolved in 10 ml of acetonitrile was applied onto the above negative electrode sheet using a 500 μm gap bar coater, heated to 80 ° C. as it was, and a negative electrode / electrolyte in which a polymer electrolyte was integrated on the negative electrode sheet A sheet was produced.
In a glove box substituted with argon gas, the positive electrode / electrolyte sheet obtained in Example 1 was bonded to the cross-linked polymer electrolyte membrane obtained in Cross-Linking Example 1, and the negative electrode / electrolyte sheet was further bonded to the coin as a counter electrode. I assembled the battery. Electrochemical characteristics were charged and discharged using a charging / discharging device. Under the test conditions (C / 4) where predetermined charging and discharging can be performed in 4 hours, the upper limit was 4.2 V, the lower limit was 2.5 V, and positive and negative electrodes were applied with constant current. Was evaluated. The test temperature was 60 ° C. environment. The test results are shown in Table 3.

[比較例5] 正極材料/高分子固体電解質/負極材料で構成された電池の作製
比較例1と同様の方法で得た正極/電解質シートを用いた以外は実施例4と同様の方法でコイン電池を作製し、正極・負極の電気化学特性を評価した。試験結果を表3に示す。
[Comparative Example 5] Production of Battery Constructed by Positive Electrode Material / Polymer Solid Electrolyte / Negative Electrode Material A coin was produced in the same manner as in Example 4 except that the positive electrode / electrolyte sheet obtained in the same manner as in Comparative Example 1 was used. A battery was prepared and the electrochemical characteristics of the positive electrode and the negative electrode were evaluated. The test results are shown in Table 3.

Figure 0005934532
Figure 0005934532

本発明の非水電解質二次電池は高容量で、かつ、サイクル充放電特性に優れている。本発明の電池は定置型、ロードレベリング用電池として使用できる。   The nonaqueous electrolyte secondary battery of the present invention has a high capacity and excellent cycle charge / discharge characteristics. The battery of the present invention can be used as a stationary battery for load leveling.

Claims (7)

アルミニウムあるいはアルミニウム合金を正極の集電体とし、
(a)正極材料、および
(b)正極材料の表面を覆う高分子固体電解質の層
を有する非水電解質二次電池用正極の製造方法であって、
高分子固体電解質が、
(i)式(1):
Figure 0005934532
で示される単量体から誘導される繰り返し単位95〜5モル%、および
式(2):
Figure 0005934532
[式中、Rは炭素数1〜12のアルキル基、または−CHO(CR)である。R、R、Rは、同一または異なって、水素原子または−CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていても良い。Rは炭素数1〜12のアルキル基、置換基を有していてもよいアリール基であり、nは0〜12の整数である。]
で示される単量体から誘導される繰り返し単位5〜95モル%、および
式(3):
Figure 0005934532
[式中、R5はエチレン性不飽和基を含有する基を表す。]
で示される単量体から誘導される繰り返し単位0〜20モル%を有する重量平均分子量が10〜10の範囲内であるポリエーテル共重合体と
(ii)電解質塩化合物
を含み、
正極材料(a)および高分子固体電解質の層(b)の少なくとも一方が、
(iii)オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含有し、
製造方法が、
ポリエーテル共重合体(i)および電解質塩化合物(ii)を含む高分子固体電解質用組成物を正極材料(a)の表面に塗布し、
電位を印加する以前に正極の熱処理を行い、
高分子固体電解質の層(b)を形成することを含む、非水電解質二次電池用正極の製造方法。
Aluminum or aluminum alloy as the positive electrode current collector,
(A) a positive electrode material, and (b) a method for producing a positive electrode for a non-aqueous electrolyte secondary battery having a layer of a solid polymer electrolyte covering the surface of the positive electrode material,
The polymer solid electrolyte
(I) Formula (1):
Figure 0005934532
And 95 to 5 mol% of repeating units derived from the monomer represented by formula (2):
Figure 0005934532
[Wherein, R represents an alkyl group having 1 to 12 carbon atoms, or —CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 and R 3 are the same or different and are a hydrogen atom or —CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 are between R 1 , R 2 and R 3 . May be different. R 4 is an alkyl group having 1 to 12 carbon atoms and an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
5 to 95 mol% of repeating units derived from the monomer represented by formula (3):
Figure 0005934532
[Wherein R 5 represents a group containing an ethylenically unsaturated group. ]
A polyether copolymer having a weight average molecular weight in the range of 10 4 to 10 7 having 0 to 20 mol% of repeating units derived from the monomer represented by (ii), and (ii) an electrolyte salt compound,
At least one of the positive electrode material (a) and the polymer solid electrolyte layer (b)
(Iii) a compound having a phenol structure in which both of the ortho positions are substituted with a tert-butyl group,
Manufacturing method is
A composition for a polymer solid electrolyte containing a polyether copolymer (i) and an electrolyte salt compound (ii) is applied to the surface of the positive electrode material (a),
Before applying the potential, heat treatment of the positive electrode,
The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries including forming the layer (b) of a polymer solid electrolyte.
前記高分子固体電解質用組成物が前記化合物(iii)を含むことを特徴とする請求項1に記載の製造方法。 The process according to claim 1 wherein the solid polymer electrolyte composition is characterized by the early days containing the compound (iii). 前記オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物(iii)が、2,6−ジ−tert−ブチル−フェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,2−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレイト、またはイソオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートである請求項1または2に記載の製造方法。 Compound (iii) having a phenol structure in which both of the ortho positions are substituted with tert-butyl groups is 2,6-di-tert-butyl-phenol, 2,6-di-tert-butyl-4 -Methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2 , 4-Bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-triazine, tetrakis [methylene-3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate] methane, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ], Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnama) Mido), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl- 4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, or isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate The manufacturing method according to claim 1 or 2. 前記高分子固体電解質用組成物が非プロトン性有機溶媒をも含むことを特徴とする請求項1〜3のいずれか一つに記載の製造方法。 The said solid polymer electrolyte composition also contains an aprotic organic solvent, The manufacturing method as described in any one of Claims 1-3 characterized by the above-mentioned. 前記非プロトン性有機溶媒がエーテル類およびエステル類からなる群より選ばれることを特徴とする請求項4に記載の製造方法。   The production method according to claim 4, wherein the aprotic organic solvent is selected from the group consisting of ethers and esters. 前記熱処理を50℃以上150℃以下の温度範囲内で行うことを特徴とする請求項1〜5のいずれか一つに記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment is performed within a temperature range of 50 ° C. or more and 150 ° C. or less. アルミニウムあるいはアルミニウム合金を正極の集電体とし、
(a)正極材料、および
(b)正極材料の表面を覆う高分子固体電解質の層
を有する正極を有する非水電解質二次電池の製造方法であって、
高分子固体電解質が、
(i)式(1):
Figure 0005934532
で示される単量体から誘導される繰り返し単位95〜5モル%、および
式(2):
Figure 0005934532
[式中、Rは炭素数1〜12のアルキル基、または−CHO(CR)である。R、R、Rは、同一または異なって、水素原子または−CHO(CHCHO)であり、nおよびRはR、R、Rの間で異なっていても良い。Rは炭素数1〜12のアルキル基、置換基を有していてもよいアリール基であり、nは0〜12の整数である。]
で示される単量体から誘導される繰り返し単位5〜95モル%、および
式(3):
Figure 0005934532
[式中、R5はエチレン性不飽和基を含有する基を表す。]
で示される単量体から誘導される繰り返し単位0〜20モル%を有する重量平均分子量が10〜10の範囲内であるポリエーテル共重合体と
(ii)電解質塩化合物
を含み、
正極材料(a)および高分子固体電解質の層(b)の少なくとも一方が、
(iii)オルト位の2つともがtert−ブチル基に置換されているフェノール構造を有する化合物を含有し、
製造方法が、
ポリエーテル共重合体(i)および電解質塩化合物(ii)を含む高分子固体電解質用組成物を正極材料(a)の表面に塗布し、
電位を印加する以前に正極の熱処理を行い、
高分子固体電解質の層(b)を形成することを含む、非水電解質二次電池の製造方法。
Aluminum or aluminum alloy as the positive electrode current collector,
(A) a positive electrode material, and (b) a method for producing a nonaqueous electrolyte secondary battery having a positive electrode having a solid polymer electrolyte layer covering the surface of the positive electrode material,
The polymer solid electrolyte
(I) Formula (1):
Figure 0005934532
And 95 to 5 mol% of repeating units derived from the monomer represented by formula (2):
Figure 0005934532
[Wherein, R represents an alkyl group having 1 to 12 carbon atoms, or —CH 2 O (CR 1 R 2 R 3 ). R 1 , R 2 and R 3 are the same or different and are a hydrogen atom or —CH 2 O (CH 2 CH 2 O) n R 4 , and n and R 4 are between R 1 , R 2 and R 3 . May be different. R 4 is an alkyl group having 1 to 12 carbon atoms and an aryl group which may have a substituent, and n is an integer of 0 to 12. ]
5 to 95 mol% of repeating units derived from the monomer represented by formula (3):
Figure 0005934532
[Wherein R 5 represents a group containing an ethylenically unsaturated group. ]
A polyether copolymer having a weight average molecular weight in the range of 10 4 to 10 7 having 0 to 20 mol% of repeating units derived from the monomer represented by (ii), and (ii) an electrolyte salt compound,
At least one of the positive electrode material (a) and the polymer solid electrolyte layer (b)
(Iii) a compound having a phenol structure in which both of the ortho positions are substituted with a tert-butyl group,
Manufacturing method is
A composition for a polymer solid electrolyte containing a polyether copolymer (i) and an electrolyte salt compound (ii) is applied to the surface of the positive electrode material (a),
Before applying the potential, heat treatment of the positive electrode,
A method for producing a nonaqueous electrolyte secondary battery, comprising forming a layer (b) of a polymer solid electrolyte.
JP2012064855A 2012-03-22 2012-03-22 Nonaqueous electrolyte secondary battery Active JP5934532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064855A JP5934532B2 (en) 2012-03-22 2012-03-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064855A JP5934532B2 (en) 2012-03-22 2012-03-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013196994A JP2013196994A (en) 2013-09-30
JP5934532B2 true JP5934532B2 (en) 2016-06-15

Family

ID=49395683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064855A Active JP5934532B2 (en) 2012-03-22 2012-03-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5934532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133024A1 (en) * 2013-02-27 2014-09-04 ダイソー株式会社 Positive electrode and nonaqueous electrolyte secondary battery
WO2020203664A1 (en) * 2019-03-29 2020-10-08 宇部興産株式会社 Nonaqueous electrolyte solution for electricity storage devices, and electricity storage device using same
CN111463508A (en) * 2020-03-31 2020-07-28 珠海冠宇电池股份有限公司 Solid-state battery containing free radical quencher

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735434B2 (en) * 1997-02-03 2006-01-18 帝人ファイバー株式会社 Method for producing polyester elastic body having improved hue
JPWO2005001963A1 (en) * 2003-06-27 2006-08-10 日本ゼオン株式会社 Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
JPWO2006025601A1 (en) * 2004-09-03 2008-05-08 株式会社日本触媒 Positive electrode material composition for lithium secondary battery
JP4595061B2 (en) * 2005-03-24 2010-12-08 東レ・モノフィラメント株式会社 Polyamide staples for industrial fabrics and industrial fabrics
US8147916B2 (en) * 2008-03-07 2012-04-03 Bathium Canada Inc. Process for making electrodes for lithium based electrochemical cells
JP5439863B2 (en) * 2008-03-26 2014-03-12 日立化成株式会社 Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013196994A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6246019B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JP5904796B2 (en) Electrode for lithium secondary battery and lithium secondary battery using the same
KR100800970B1 (en) Binder of Polyvinyl Alcohol Crosslinked with Polyurethane and Lithium Secondary Battery Employed with the Same
EP3512013B1 (en) Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
JPWO2016125718A1 (en) Binder resin for electrode of lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP2012216347A (en) Nonaqueous electrolyte secondary battery
JP2012226854A (en) Nonaqueous electrolyte secondary battery
KR20170048363A (en) Lithium secondary battery electrode formation material and electrode manufacturing method
JP5517887B2 (en) Nonaqueous electrolyte secondary battery
JP5934532B2 (en) Nonaqueous electrolyte secondary battery
JP2021170442A (en) Binder for positive electrode of lithium-sulfur secondary battery
JP5934531B2 (en) Nonaqueous electrolyte secondary battery
JP5879720B2 (en) Nonaqueous electrolyte secondary battery
JP2013155318A (en) Electrolyte composition and nonaqueous electrolyte secondary battery using the same
JP6341360B2 (en) Nonaqueous electrolyte secondary battery
JP5959089B2 (en) Nonaqueous electrolyte secondary battery
JP2022155549A (en) Power storage device and coating liquid for negative electrode protective film
JP3734258B2 (en) Ion conductive electrolyte and battery using the same
WO2022107740A1 (en) Secondary battery electrode additive
US12113221B2 (en) Binder composition for secondary battery positive electrode, conductive material paste composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode for secondary battery and method of producing same, and secondary battery
US11522179B2 (en) Negative electrode and secondary battery comprising the same
JP2013175393A (en) Electrolyte composition and nonaqueous electrolyte secondary battery using the same
KR102306499B1 (en) Non-aqueous secondary battery electrode, electrode slurry and non-aqueous secondary battery
WO2024111618A1 (en) Polymer electrolyte and secondary battery
WO2024135777A1 (en) Polymer electrolyte and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5934532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250