JP5934034B2 - Control device for continuously variable transmission mechanism - Google Patents

Control device for continuously variable transmission mechanism Download PDF

Info

Publication number
JP5934034B2
JP5934034B2 JP2012139841A JP2012139841A JP5934034B2 JP 5934034 B2 JP5934034 B2 JP 5934034B2 JP 2012139841 A JP2012139841 A JP 2012139841A JP 2012139841 A JP2012139841 A JP 2012139841A JP 5934034 B2 JP5934034 B2 JP 5934034B2
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
transmission mechanism
temperature
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012139841A
Other languages
Japanese (ja)
Other versions
JP2014005843A (en
Inventor
威人 藤田
威人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012139841A priority Critical patent/JP5934034B2/en
Publication of JP2014005843A publication Critical patent/JP2014005843A/en
Application granted granted Critical
Publication of JP5934034B2 publication Critical patent/JP5934034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、トロイダル型など変速比を無段階で変更可能な無段変速機構の制御装置に関し、詳細には、無段変速機構の温度上昇の抑制を図ることができる制御装置に関する。   The present invention relates to a control device for a continuously variable transmission mechanism, such as a toroidal type, capable of changing a transmission ratio steplessly, and more particularly, to a control device capable of suppressing a temperature increase of the continuously variable transmission mechanism.

従来、入力側ディスクと出力側ディスクとの間で摩擦転動する転動体(ローラ)を備えるトロイダル型の無段変速機構や、駆動プーリと従動プーリとの間に架け渡した無端ベルトを備えるベルト式の無段変速機構など、変速比を無段階で変更可能な無段変速機構がある。このような無段変速機構では、例えばトロイダル型の無段変速機構において、動作時にローラが摩擦転動する転動面(トロイダル面)の温度や無段変速機構を流通する作動油(潤滑油)の温度が過度に上昇すると、熱エネルギーの損失が顕著となることで動力伝達効率が低下したり、各部の劣化が進み耐久性が低下したりする。そのため、動作時におけるトロイダル面など無段変速機構の各部や作動油の温度上昇を抑制することで、損失エネルギーを低減させる必要がある。   Conventionally, a toroidal-type continuously variable transmission mechanism including a rolling element (roller) that frictionally rolls between an input-side disk and an output-side disk, and a belt including an endless belt bridged between a driving pulley and a driven pulley. There is a continuously variable transmission mechanism that can change the gear ratio steplessly, such as a continuously variable transmission mechanism. In such a continuously variable transmission mechanism, for example, in a toroidal-type continuously variable transmission mechanism, the temperature of the rolling surface (toroidal surface) on which the roller frictionally rolls during operation and hydraulic oil (lubricating oil) flowing through the continuously variable transmission mechanism If the temperature rises excessively, the loss of thermal energy becomes significant, leading to a decrease in power transmission efficiency, or deterioration of each part and a decrease in durability. Therefore, it is necessary to reduce energy loss by suppressing the temperature rise of each part of the continuously variable transmission mechanism such as a toroidal surface during operation and hydraulic oil.

このことに関連して、特許文献1には、ベルト式無段変速機の温度上昇を抑制するための手段を備えた制御装置が記載されている。この制御装置は、ベルト式の無段変速機の変速比が目標変速比となるようにプライマリプーリ及びセカンダリプーリを制御する制御装置であって、変速比とプライマリプーリの回転速度との関係からベルトの温度を推定し、この推定した温度に基づいて無段変速機の目標変速比を切り換える制御を行うようになっている。   In relation to this, Patent Document 1 describes a control device including means for suppressing a temperature increase of a belt-type continuously variable transmission. This control device is a control device that controls the primary pulley and the secondary pulley so that the gear ratio of the belt-type continuously variable transmission becomes the target gear ratio, and the belt is determined from the relationship between the gear ratio and the rotation speed of the primary pulley. And controlling the target gear ratio of the continuously variable transmission based on the estimated temperature.

また、特許文献2に記載のベルト式無段変速機構の制御装置では、ベルト式無段変速機内の潤滑油の温度が、当該潤滑油がベルトに干渉する閾値以上である場合に、変速比を低速側にダウンシフトするように構成している。これにより、ベルトによる潤滑用の油の攪拌抵抗を小さくして油の温度の上昇を防止するようになっている。   In the control device for the belt-type continuously variable transmission mechanism described in Patent Document 2, when the temperature of the lubricating oil in the belt-type continuously variable transmission is equal to or higher than a threshold at which the lubricating oil interferes with the belt, the transmission ratio is set. It is configured to shift down to the low speed side. Thus, the stirring resistance of the lubricating oil by the belt is reduced to prevent the oil temperature from rising.

特許4212445号公報Japanese Patent No. 4212445 特開2006−336790号公報JP 2006-336790 A

しかしながら、特許文献1に記載のベルト式無段変速機構の制御装置では、無段変速機構の温度が高い場合に、目標変速比を切り換える制御を行うのみである。そのため、この制御では、無段変速機構の動力伝達効率や熱損失エネルギーなどを考慮した温度上昇の抑制を行うことができない。したがって、無段変速機構の温度上昇を必ずしも効果的に抑制できるとは限らないという問題がある。   However, the control device for the belt-type continuously variable transmission mechanism described in Patent Document 1 only performs control for switching the target gear ratio when the temperature of the continuously variable transmission mechanism is high. Therefore, with this control, it is not possible to suppress the temperature rise in consideration of the power transmission efficiency of the continuously variable transmission mechanism, heat loss energy, and the like. Therefore, there is a problem that the temperature increase of the continuously variable transmission mechanism cannot always be effectively suppressed.

また、特許文献2に記載のベルト式無段変速機構の制御装置では、プライマリプーリが油面に接触してハイ側のレシオを取ったときにベルトが油を撹拌することを条件として制御を行うものである。そのため、無段変速機構の温度上昇を抑制するための制御として、変速比をロー側に持ち替える制御(ダウンシフト)しか選択できない。また、この制御では、変速機内の油の攪拌抵抗に伴う温度上昇を抑制することはできるものの、無段変速機構の動力伝達要素(ローラやプーリなど)が変速機のケーシング内の油に浸っておらず当該油の撹拌抵抗を考慮する必要がない場合には、無段変速機構の温度上昇の抑制を図ることができない。   Further, in the control device for the belt type continuously variable transmission mechanism described in Patent Document 2, the control is performed on the condition that the belt stirs the oil when the primary pulley comes into contact with the oil surface and takes the high ratio. Is. Therefore, only control (downshift) for changing the gear ratio to the low side can be selected as control for suppressing the temperature increase of the continuously variable transmission mechanism. In addition, this control can suppress the temperature rise caused by the stirring resistance of the oil in the transmission, but the power transmission elements (rollers, pulleys, etc.) of the continuously variable transmission mechanism are immersed in the oil in the casing of the transmission. If it is not necessary to consider the oil agitation resistance, it is not possible to suppress the temperature increase of the continuously variable transmission mechanism.

本発明は上述の点に鑑みてなされたものであり、その目的は、簡易な制御で無段変速機構及び作動油の温度上昇を効果的に抑制できる無段変速機構の制御装置を提供することにある。   The present invention has been made in view of the above points, and an object thereof is to provide a continuously variable transmission mechanism and a control device for a continuously variable transmission mechanism that can effectively suppress the temperature rise of hydraulic oil with simple control. It is in.

上記課題を解決するため、本発明では以下のようにした。   In order to solve the above problems, the present invention is configured as follows.

本発明にかかる無段変速機構の制御装置は、入力要素(2)と出力要素(3)との間で駆動力を伝達する伝達要素(51,52,53)により無段階で速度比を変更可能な無段変速機構(5)と、無段変速機構(5)の温度を推定する温度推定手段(14)と、無段変速機構(5)の速度比と動力伝達効率との関係が予め記憶された記憶手段(14)と、温度推定手段(14)による推定温度(TS)が所定温度(T0)よりも高温である旨の判定をしたときに、無段変速機構(5)の速度比と動力伝達効率との関係に基づいて、無段変速機構(5)の目標速度比を現在よりも動力伝達効率が高い速度比に変更する目標速度比変更手段(14)と、を備えることを特徴とする。   The control device of the continuously variable transmission mechanism according to the present invention changes the speed ratio steplessly by the transmission elements (51, 52, 53) that transmit the driving force between the input element (2) and the output element (3). The relationship between the possible continuously variable transmission mechanism (5), the temperature estimation means (14) for estimating the temperature of the continuously variable transmission mechanism (5), and the speed ratio and power transmission efficiency of the continuously variable transmission mechanism (5) The speed of the continuously variable transmission mechanism (5) when it is determined that the stored temperature (TS) stored and the estimated temperature (TS) by the temperature estimating means (14) is higher than the predetermined temperature (T0). A target speed ratio changing means (14) for changing the target speed ratio of the continuously variable transmission mechanism (5) to a speed ratio having a higher power transmission efficiency than the current one based on the relationship between the ratio and the power transmission efficiency. It is characterized by.

本発明にかかる無段変速機構の制御装置によれば、温度推定手段による推定温度が所定温度よりも高温である旨の判定をしたときに、無段変速機構の速度比と動力伝達効率との関係に基づいて、無段変速機構の速度比(レシオ)をより動力伝達効率の高い速度比に変速させることで、無段変速機構による熱損失エネルギーを低減して、無段変速機構の温度上昇を抑制することができる。これにより、無段変速機構を含む変速機による動力伝達容量(伝達トルク容量)を過渡に下げる必要がなく、駆動力の低下を起こすことなく、無段変速機構の温度上昇を効果的に防止することができる。   According to the control device for a continuously variable transmission mechanism according to the present invention, when it is determined that the estimated temperature by the temperature estimation means is higher than a predetermined temperature, the speed ratio of the continuously variable transmission mechanism and the power transmission efficiency are Based on the relationship, the speed ratio (ratio) of the continuously variable transmission mechanism is changed to a speed ratio with higher power transmission efficiency, thereby reducing the heat loss energy caused by the continuously variable transmission mechanism and increasing the temperature of the continuously variable transmission mechanism. Can be suppressed. As a result, it is not necessary to transiently reduce the power transmission capacity (transmission torque capacity) of the transmission including the continuously variable transmission mechanism, and the temperature increase of the continuously variable transmission mechanism is effectively prevented without causing a decrease in driving force. be able to.

特にここでは、無段変速機構の温度が高温である旨の判定をしたときに、無段変速機構の速度比を単に持ち替えるのではなく、速度比と動力伝達効率との関係に基づいて、動力伝達効率が高くなるような速度比に持ち替えるようにしている。これにより、比較的に簡易な制御でありながら、従来技術と比較して、動作時における無段変速機構の各部や作動油の温度上昇を効果的に抑制することができ、損失エネルギーを効果的に低減させることができる。   In particular, here, when it is determined that the temperature of the continuously variable transmission mechanism is high, the speed ratio of the continuously variable transmission mechanism is not simply changed, but based on the relationship between the speed ratio and the power transmission efficiency, The speed ratio is changed so as to increase the transmission efficiency. This makes it possible to effectively suppress the temperature rise of each part of the continuously variable transmission mechanism and hydraulic oil during operation compared to the prior art, while maintaining relatively simple control, and effectively reducing the loss energy. Can be reduced.

また、上記無段変速機構の制御装置では、無段変速機構(5)は、摩擦により駆動力を伝達する伝達要素(51,52,53)を備えるトロイダル型の無段変速機構であり、温度推定手段(14)は、無段変速機構(5)に流通する作動油の温度(t)に基づいて、無段変速機構(5)の温度を推定するようにしてよい。   In the control device for a continuously variable transmission mechanism, the continuously variable transmission mechanism (5) is a toroidal continuously variable transmission mechanism including a transmission element (51, 52, 53) for transmitting a driving force by friction. The estimating means (14) may estimate the temperature of the continuously variable transmission mechanism (5) based on the temperature (t) of the hydraulic oil flowing through the continuously variable transmission mechanism (5).

トロイダル型の無段変速機構では、速度比と動力伝達効率の関係は、中間の速度比(中間レシオ)に対して差が大きくなるにつれて、動力伝達効率が次第に大きくなる領域と次第に小さくなる領域との2つの領域が存在する。そのため、トロイダル型の無段変速機構において速度比と動力伝達効率との関係に基づいて目標速度比を現在よりも動力伝達効率の高い速度比に変更する制御を行う場合、動力伝達効率の高い速度比を選択する際の速度比の自由度が高い。したがって、無段変速機構の温度上昇を抑制するための制御が行い易い。   In the toroidal type continuously variable transmission mechanism, the relationship between the speed ratio and the power transmission efficiency is such that the power transmission efficiency gradually increases and the power transmission efficiency gradually decreases as the difference with respect to the intermediate speed ratio (intermediate ratio) increases. There are two areas. For this reason, when performing control to change the target speed ratio to a speed ratio with higher power transmission efficiency than the current speed based on the relationship between the speed ratio and power transmission efficiency in the toroidal type continuously variable transmission mechanism, the speed with high power transmission efficiency High degree of freedom in speed ratio when selecting ratio. Therefore, it is easy to perform control for suppressing the temperature increase of the continuously variable transmission mechanism.

また、上記無段変速機構の制御装置では、伝達要素(51,52,53)は、入力要素(2)側の部材(51)及び出力要素(3)側の部材(52)に設けた転動面(51b,52b)と、該転動面(51b,52b)を摩擦転動することで動力を伝達する転動体(53)とを備え、記憶手段(14)には、転動面(51b,52b)の温度(T)と該転動面(51b,52b)を介して伝達可能な伝達トルク(μmax)との関係が記憶されており、所定温度(T0)は、転動面(51b,52b)の温度(T)と伝達トルク(μmax)との関係から、当該伝達トルク(μmax)が所定値(μ0)以下となる温度(T0)であってよい。   In the control device for the continuously variable transmission mechanism, the transmission elements (51, 52, 53) are provided on the input element (2) side member (51) and the output element (3) side member (52). The moving surface (51b, 52b) and a rolling element (53) for transmitting power by friction rolling the rolling surface (51b, 52b) are provided. The storage means (14) includes a rolling surface ( The relationship between the temperature (T) of 51b, 52b) and the transmission torque (μmax) that can be transmitted via the rolling surfaces (51b, 52b) is stored, and the predetermined temperature (T0) is the rolling surface ( From the relationship between the temperature (T) of 51b, 52b) and the transmission torque (μmax), it may be a temperature (T0) at which the transmission torque (μmax) is not more than a predetermined value (μ0).

この構成によれば、トロイダル型の無段変速機構において、動力伝達時に転動体の摩擦転動により高い負荷がかかる転動面の温度上昇を効果的に抑制することができる。また、この場合、上記の所定温度は、転動面に形成された作動油の油膜により伝達可能な伝達トルクの最大値が所定値以下になる温度に設定することで、転動面の温度上昇によって無段変速機構の伝達トルクが低下することを効果的に防止できる。
なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本発明の一例として示したものである。
According to this configuration, in the toroidal-type continuously variable transmission mechanism, it is possible to effectively suppress an increase in the temperature of the rolling surface to which a high load is applied due to friction rolling of the rolling elements during power transmission. Further, in this case, the predetermined temperature is set to a temperature at which the maximum value of the transmission torque that can be transmitted by the hydraulic oil film formed on the rolling surface is equal to or lower than the predetermined value, thereby increasing the temperature of the rolling surface. Therefore, it is possible to effectively prevent the transmission torque of the continuously variable transmission mechanism from being lowered.
In addition, the code | symbol in said parenthesis shows the code | symbol of the component in embodiment mentioned later as an example of this invention.

本発明にかかる無段変速機構の制御装置によれば、簡易な制御で、無段変速機構及び作動油の温度上昇を効果的に抑制することができる。   According to the control device for a continuously variable transmission mechanism according to the present invention, the temperature increase of the continuously variable transmission mechanism and the hydraulic oil can be effectively suppressed with simple control.

本発明の一実施形態にかかる無段変速機構(トロイダル型無段変速機構)を有する変速機のスケルトン図である。1 is a skeleton diagram of a transmission having a continuously variable transmission mechanism (toroidal continuously variable transmission mechanism) according to an embodiment of the present invention. FIG. 変速機の速度比とトロイダル型無段変速機構の速度比との関係を示すグラフである。It is a graph which shows the relationship between the speed ratio of a transmission, and the speed ratio of a toroidal type continuously variable transmission mechanism. トロイダル型無段変速機構の速度比(レシオ)と動力伝達効率との関係を示すグラフである。It is a graph which shows the relationship between the speed ratio (ratio) of a toroidal type continuously variable transmission mechanism, and power transmission efficiency. トロイダル型無段変速機構の温度上昇を抑制するための制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control for suppressing the temperature rise of a toroidal type continuously variable transmission mechanism. トロイダル面の温度と伝達可能なトルクの最大値との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a toroidal surface, and the maximum value of the torque which can be transmitted. 高効率レシオ算出器の概念を示す模式図である。It is a schematic diagram which shows the concept of a high efficiency ratio calculator. 変速機の通常レシオの選択に用いる目標回転数マップを示す図である。It is a figure which shows the target rotational speed map used for selection of the normal ratio of a transmission.

以下、添付図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の一実施形態にかかる変速機のスケルトン図である。本実施形態の変速機1は、駆動源としてのエンジン(内燃機関)10を備える車両に搭載される変速機であって、エンジン10の動力がフライホイール11及び発進クラッチ12を介して伝達される入力軸(入力要素)2と、入力軸2と平行に配置された出力軸(出力要素)3と、入力軸2及び出力軸3と平行に配置された中間軸4と、トロイダル型無段変速機構5と、アイドルギア列6と、差動機構としての遊星歯車機構7とを備えて構成されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a skeleton diagram of a transmission according to an embodiment of the present invention. The transmission 1 according to this embodiment is a transmission mounted on a vehicle including an engine (internal combustion engine) 10 as a drive source, and the power of the engine 10 is transmitted via a flywheel 11 and a start clutch 12. Input shaft (input element) 2, output shaft (output element) 3 disposed in parallel with input shaft 2, intermediate shaft 4 disposed in parallel with input shaft 2 and output shaft 3, and toroidal-type continuously variable transmission The mechanism 5 includes an idle gear train 6 and a planetary gear mechanism 7 as a differential mechanism.

トロイダル型無段変速機構(以下、単に「無段変速機構」と記す。)5は、入力軸2と同心であって一体に回転する一対の入力側ディスク51と、入力側ディスク51の間であって入力軸2に対して同心且つ回転自在に配置された出力側ディスク52と、入力側ディスク51と出力側ディスク52との間に配置され、入力側ディスク51と出力側ディスク52との間で動力を伝達させるパワーローラ(転動体)53とを備える。   A toroidal-type continuously variable transmission mechanism (hereinafter simply referred to as “continuously variable transmission mechanism”) 5 is formed between a pair of input side disks 51 that are concentric with the input shaft 2 and rotate together, and the input side disk 51. The output side disk 52 arranged concentrically and rotatably with respect to the input shaft 2, and disposed between the input side disk 51 and the output side disk 52, and between the input side disk 51 and the output side disk 52. And a power roller (rolling element) 53 for transmitting power.

パワーローラ53は、入力側ディスク51の内面に形成されたトロイダル面(転動面)51bと、出力側ディスク52の内面に形成されたトロイダル面(転動面)52bを転動するための回転軸53aを備えると共に、回転軸53aと直交し紙面垂直方向に延びる揺動軸53b(トラニオン)に対して揺動自在となっており、パワーローラ53を揺動軸53bの周りで揺動させて傾斜角度を変化させることで、トロイダル面51b,52bに対する接触圧(摩擦力)を変化させながら該トロイダル面51b,52bを転動する。これにより、無段変速機構5の速度比(レシオ)を無段階に変化できるように構成されている。   The power roller 53 rotates to roll a toroidal surface (rolling surface) 51b formed on the inner surface of the input side disk 51 and a toroidal surface (rolling surface) 52b formed on the inner surface of the output side disk 52. The shaft 53a includes a shaft 53a and is swingable with respect to a swing shaft 53b (trunnion) orthogonal to the rotation shaft 53a and extending in the direction perpendicular to the paper surface. The power roller 53 is swung around the swing shaft 53b. By changing the tilt angle, the toroidal surfaces 51b and 52b roll while changing the contact pressure (frictional force) against the toroidal surfaces 51b and 52b. Thus, the speed ratio (ratio) of the continuously variable transmission mechanism 5 can be changed steplessly.

出力側ディスク52の外周には、出力用の外歯52aが設けられている。この外歯52aには、中間軸4に一体回転するように固定された第1伝達ギア81が噛合している。   Output outer teeth 52 a are provided on the outer periphery of the output side disk 52. A first transmission gear 81 fixed so as to rotate integrally with the intermediate shaft 4 meshes with the external teeth 52a.

遊星歯車機構7は、中間軸4に同心に固定されたサンギア71と、リングギア72と、サンギア71及びリングギア72に噛合するピニオン73を自転及び公転自在に軸支するキャリア74との3つの要素を備える。   The planetary gear mechanism 7 includes a sun gear 71 concentrically fixed to the intermediate shaft 4, a ring gear 72, and a carrier 74 that supports the sun gear 71 and the pinion 73 meshing with the ring gear 72 so as to rotate and revolve freely. With elements.

アイドルギア列6は、入力軸2に固定された第1中間ギア61と、中間軸4と同心であってキャリア74に連結された第2中間ギア62と、第1中間ギア61と第2中間ギア62とに噛合し、図示省略した変速機1のケーシングに回転自在に軸支された第3中間ギア63とで構成される。   The idle gear train 6 includes a first intermediate gear 61 fixed to the input shaft 2, a second intermediate gear 62 concentric with the intermediate shaft 4 and connected to the carrier 74, and the first intermediate gear 61 and the second intermediate gear 61. The third intermediate gear 63 is engaged with the gear 62 and rotatably supported by the casing of the transmission 1 (not shown).

中間軸4には、第2伝達ギア82が回転自在に軸支されている。また、変速機1には、第1クラッチ91と、第2クラッチ92とが設けられている。第1クラッチ91は、第2伝達ギア82と第1伝達ギア81とを連結する連結状態と、この連結を断つ開放状態とに切換自在に構成されている。   A second transmission gear 82 is rotatably supported on the intermediate shaft 4. The transmission 1 is provided with a first clutch 91 and a second clutch 92. The first clutch 91 is configured to be switchable between a connected state in which the second transmission gear 82 and the first transmission gear 81 are connected and an open state in which the connection is broken.

第2クラッチ92は、第2伝達ギア82とリングギア72とを連結する連結状態と、この連結を断つ開放状態とに切換自在に構成されている。第1クラッチ91及び第2クラッチ92は、湿式多板クラッチで構成されている。なお、本発明の第1クラッチ及び第2クラッチは湿式多板クラッチに限らず、他のクラッチを用いてもよい。   The second clutch 92 is configured to be switchable between a connected state in which the second transmission gear 82 and the ring gear 72 are connected and an open state in which the connection is broken. The first clutch 91 and the second clutch 92 are constituted by wet multi-plate clutches. The first clutch and the second clutch of the present invention are not limited to the wet multi-plate clutch, and other clutches may be used.

第2伝達ギア82は、出力軸3に固定された第3伝達ギア83と噛合している。出力軸3には、デファレンシャルギア13と噛合する出力ギア3aが固定されている。また、出力ギア3aと第3伝達ギア83との間に位置させてパーキングギア3bが出力軸3に固定されている。   The second transmission gear 82 meshes with a third transmission gear 83 fixed to the output shaft 3. An output gear 3 a that meshes with the differential gear 13 is fixed to the output shaft 3. The parking gear 3 b is fixed to the output shaft 3 so as to be positioned between the output gear 3 a and the third transmission gear 83.

また、車両には、無段変速機構5および変速機1の動作を制御するためのECU(制御手段)14が設けられている。ECU14は、パワーローラ53の回転及び揺動を制御することで無段変速機構5による速度比(レシオ)を無段階に制御すると共に、第1クラッチ91及び第2クラッチ92を制御することで変速機1全体の速度比を制御する。なお、ECU14は、本発明にかかる温度推定手段、記憶手段、目標速度比変更手段などとして機能する。   Further, the vehicle is provided with an ECU (control means) 14 for controlling the operation of the continuously variable transmission mechanism 5 and the transmission 1. The ECU 14 controls the rotation and swing of the power roller 53 to control the speed ratio (ratio) of the continuously variable transmission mechanism 5 steplessly, and controls the first clutch 91 and the second clutch 92 to change the speed. The speed ratio of the entire machine 1 is controlled. The ECU 14 functions as temperature estimation means, storage means, target speed ratio changing means, etc. according to the present invention.

また、車両には、無段変速機構5の各部を流通(循環)した作動油が無段変速機構5から変速機1のケーシング(図示せず)内に排出される際に、該作動油の温度を検出するための油温センサ(温度検出手段)15が設けられている。また、車両には、運転者によるアクセルペダルの操作に伴うアクセル開度APを検出するアクセル開度センサ16と、車速Vを検出するための車速センサ17とが設けられている。油温センサ15、アクセル開度センサ16、車速センサ17の検出値(データ)は、ECU14に入力される。 Further, when the hydraulic fluid that has circulated (circulated) each part of the continuously variable transmission mechanism 5 is discharged from the continuously variable transmission mechanism 5 into the casing (not shown) of the transmission 1, An oil temperature sensor (temperature detection means) 15 for detecting the temperature is provided. Further, the vehicle is provided with an accelerator opening sensor 16 for detecting an accelerator opening AP associated with an accelerator pedal operation by a driver, and a vehicle speed sensor 17 for detecting a vehicle speed V. Detection values (data) of the oil temperature sensor 15, the accelerator opening sensor 16, and the vehicle speed sensor 17 are input to the ECU 14.

なお、図示は省略するが、本実施形態の無段変速機構5は、変速機1のケーシング内における比較的上方に設置されており、変速機1のケーシング内の底部に溜まる作動油の油面よりも上方に離れている。したがって、無段変速機構5の動作によってケーシング内の作動油が攪拌されることはない。そのため、無段変速機構5による作動油の攪拌は、作動油や無段変速機構5の温度上昇やエネルギー損失に対する支配的要因ではない。   Although illustration is omitted, the continuously variable transmission mechanism 5 of the present embodiment is installed relatively upward in the casing of the transmission 1, and the oil level of the hydraulic oil that accumulates at the bottom of the casing of the transmission 1. Is farther away than Therefore, the hydraulic oil in the casing is not agitated by the operation of the continuously variable transmission mechanism 5. Therefore, the stirring of the hydraulic oil by the continuously variable transmission mechanism 5 is not a dominant factor for the temperature rise or energy loss of the hydraulic oil or the continuously variable transmission mechanism 5.

図2は、本実施形態にかかる変速機1の速度比(レシオ)と無段変速機構5の速度比(レシオ)の関係を示すグラフである。本実施形態の変速機1は、速度比のモードとして、低速走行用及び後進用のローモード(低速モード)と、高速走行用のハイモード(高速モード)とを設定可能である。ローモードは、無段変速機構5の速度比が増加するにつれて変速機1の速度比が減少する関係となる状態である。また、ハイモードは、無段変速機構5の速度比が増加すると変速機1の速度比も増加する関係となる状態である。   FIG. 2 is a graph showing the relationship between the speed ratio (ratio) of the transmission 1 and the speed ratio (ratio) of the continuously variable transmission mechanism 5 according to the present embodiment. The transmission 1 according to the present embodiment can set a low-speed traveling and reverse low mode (low-speed mode) and a high-speed high mode (high-speed mode) as speed ratio modes. The low mode is a state in which the speed ratio of the transmission 1 decreases as the speed ratio of the continuously variable transmission mechanism 5 increases. The high mode is a state in which the speed ratio of the transmission 1 increases as the speed ratio of the continuously variable transmission mechanism 5 increases.

ローモードとハイモードは、第1クラッチ91及び第2クラッチ92で切り換えられる。ローモードは、第1クラッチ91を開放状態とし、第2クラッチ92を連結状態とすることにより確立される。ハイモードは、第1クラッチ91を連結状態とし、第2クラッチ92を開放状態とすることにより確立される。   The low mode and the high mode are switched by the first clutch 91 and the second clutch 92. The low mode is established by bringing the first clutch 91 into an open state and bringing the second clutch 92 into a connected state. The high mode is established by bringing the first clutch 91 into a connected state and bringing the second clutch 92 into a released state.

上記のローモードでは、遊星歯車機構のサンギア71、リングギア72、およびキャリア74のピニオン73の三者間のギア比は、サンギア71およびキャリア26が回転駆動されたときに、変速機1の速度比を所定の速度比に設定すると、サンギア71およびキャリア74の回転のバランスによって、リングギア72およびこれに連結された出力軸3が中立の回転停止状態(ギアドニュートラル(GN)状態)になるように設定されている。   In the low mode, the gear ratio between the sun gear 71 of the planetary gear mechanism, the ring gear 72, and the pinion 73 of the carrier 74 is such that the speed of the transmission 1 is increased when the sun gear 71 and the carrier 26 are driven to rotate. When the ratio is set to a predetermined speed ratio, the ring gear 72 and the output shaft 3 connected to the ring gear 72 and the output shaft 3 connected thereto are in a neutral rotation stopped state (geared neutral (GN) state) due to the rotation balance of the sun gear 71 and the carrier 74. Is set to

そして、ローモードでは、変速機1の速度比が上記のギアドニュートラル状態となる所定の速度比よりも小さい領域では、出力軸3が逆転方向に回転して車両が後進する一方、変速機1の速度比が当該所定の速度比よりも小さい状態では、出力軸3が正転方向に回転して車両が前進(低速走行で前進)する。すなわちローモードでは、ギアドニュートラル状態を境として、変速機1の速度比に応じて車両の後進状態と前進状態とが切り替わるようになっている。   In the low mode, in a region where the speed ratio of the transmission 1 is smaller than the predetermined speed ratio at which the geared neutral state is set, the output shaft 3 rotates in the reverse direction and the vehicle moves backward, while the transmission 1 When the speed ratio is smaller than the predetermined speed ratio, the output shaft 3 rotates in the forward rotation direction and the vehicle moves forward (moves forward at low speed). That is, in the low mode, the vehicle reverse state and forward state are switched according to the speed ratio of the transmission 1 with the geared neutral state as a boundary.

図3は、無段変速機構5の速度比(以下では、「レシオ」と記す。)λと伝達効率(動力伝達効率)との関係を示すグラフである。同図のグラフに示すように、本実施形態の無段変速機構5では、レシオλが低い値から高い値へ変化する際に、所定の中間レシオλmを通過する。そしてこの中間レシオλmにおいて無段変速機構5の動力伝達効率が最も低くなる特性を有している。すなわち、無段変速機構5のレシオλが中間レシオλmよりも低い領域では、無段変速機構5のレシオλが高くなるにつれて動力伝達効率は次第に低くなる(熱損失エネルギーは次第に高くなる)。その一方で、レシオλが中間レシオλmよりも高い領域では、無段変速機構5のレシオλが高くなるにつれて動力伝達効率も次第に高くなる(熱損失エネルギーは次第に低くなる)。このように、無段変速機構5において動力伝達効率が高くなるレシオλは、中間レシオλmから離れる方向でシフトアップ(高速)側のレシオとシフトダウン(低速)側のレシオとの両方が存在する。   FIG. 3 is a graph showing the relationship between the speed ratio (hereinafter referred to as “ratio”) λ of the continuously variable transmission mechanism 5 and the transmission efficiency (power transmission efficiency). As shown in the graph of the figure, in the continuously variable transmission mechanism 5 of the present embodiment, when the ratio λ changes from a low value to a high value, it passes a predetermined intermediate ratio λm. At the intermediate ratio λm, the power transmission efficiency of the continuously variable transmission mechanism 5 is lowest. That is, in the region where the ratio λ of the continuously variable transmission mechanism 5 is lower than the intermediate ratio λm, the power transmission efficiency gradually decreases (the heat loss energy gradually increases) as the ratio λ of the continuously variable transmission mechanism 5 increases. On the other hand, in a region where the ratio λ is higher than the intermediate ratio λm, the power transmission efficiency gradually increases as the ratio λ of the continuously variable transmission mechanism 5 increases (the heat loss energy gradually decreases). Thus, the ratio λ at which the power transmission efficiency is increased in the continuously variable transmission mechanism 5 has both a shift-up (high-speed) ratio and a shift-down (low-speed) ratio in the direction away from the intermediate ratio λm. .

なお、図3に示す無段変速機構5のレシオと動力伝達効率との関係は、ECU14が内蔵する図示しないメモリなどの記憶手段に予め記憶されている。   The relationship between the ratio of the continuously variable transmission mechanism 5 shown in FIG. 3 and the power transmission efficiency is stored in advance in storage means such as a memory (not shown) built in the ECU 14.

そして、本実施形態の無段変速機構5の制御では、無段変速機構5及び変速機1の温度上昇を抑制するための制御として、下記の制御を行うようになっている。以下、この制御の手順を説明する。図4は、当該制御の手順を示すフローチャートである。同図のフローチャートでは、まず、無段変速機構5の温度を推定してなる推定温度TSを算出する(ST1−1)。ここでの推定温度TSとしては、無段変速機構5の各部を流通(循環)する作動油(潤滑油)の温度(ドレン温度)を計測し、当該計測した作動用の温度に基づいて、例えばトロイダル面51b,52bなど無段変速機構5の各部の温度を推定することができる。なお、無段変速機構5の各部を循環する作動油(潤滑油)の温度としては、油温センサ15(図1参照)にて検出した無段変速機構5から変速機1のケーシング内に排出される作動油(ドレン油)の排出温度(ドレン温度)を用いることができる。   In the control of the continuously variable transmission mechanism 5 of the present embodiment, the following control is performed as control for suppressing the temperature increase of the continuously variable transmission mechanism 5 and the transmission 1. The control procedure will be described below. FIG. 4 is a flowchart showing the control procedure. In the flowchart of FIG. 6, first, an estimated temperature TS obtained by estimating the temperature of the continuously variable transmission mechanism 5 is calculated (ST1-1). As the estimated temperature TS here, the temperature (drain temperature) of hydraulic oil (lubricating oil) that circulates (circulates) each part of the continuously variable transmission mechanism 5 is measured, and based on the measured operating temperature, for example, The temperature of each part of the continuously variable transmission mechanism 5 such as the toroidal surfaces 51b and 52b can be estimated. The temperature of the hydraulic oil (lubricating oil) circulating through each part of the continuously variable transmission mechanism 5 is discharged from the continuously variable transmission mechanism 5 detected by the oil temperature sensor 15 (see FIG. 1) into the casing of the transmission 1. The discharge temperature (drain temperature) of the hydraulic oil (drain oil) to be used can be used.

次に、上記の推定温度TSが閾値温度(所定温度)T0よりも高いか否かを判断する(ST1−2)。ここでの閾値温度T0は、無段変速機構5のトロイダル面51b,52bの温度と伝達トルクとの関係に基づいて設定された温度である。図5は、トロイダル面51b,52bの温度Tと伝達トルクの最大値μmaxとの関係を示すグラフである。このグラフに示すように、トロイダル面51b,52bの伝達トルクの最大値μmaxは、トロイダル面51b,52bの温度Tに対して一定の関係(反比例の関係)がある。そして、上記の閾値温度T0は、トロイダル面51b,52bの伝達トルク(トロイダル面51b,52bに形成された作動油の油膜によって伝達可能な伝達トルク)の最大値μmaxが所定値μ0以下(μmax≦μ0)となる温度である。   Next, it is determined whether or not the estimated temperature TS is higher than a threshold temperature (predetermined temperature) T0 (ST1-2). The threshold temperature T0 here is a temperature set based on the relationship between the temperature of the toroidal surfaces 51b and 52b of the continuously variable transmission mechanism 5 and the transmission torque. FIG. 5 is a graph showing the relationship between the temperature T of the toroidal surfaces 51b and 52b and the maximum value μmax of the transmission torque. As shown in this graph, the maximum value μmax of the transmission torque of the toroidal surfaces 51b and 52b has a fixed relationship (inversely proportional relationship) with respect to the temperature T of the toroidal surfaces 51b and 52b. The threshold temperature T0 is such that the maximum value μmax of the transmission torque of the toroidal surfaces 51b, 52b (the transmission torque that can be transmitted by the hydraulic oil film formed on the toroidal surfaces 51b, 52b) is not more than a predetermined value μ0 (μmax ≦ μ0).

図4のフローに戻り、上記の推定温度TSと閾値温度T0を比較した結果、推定温度TSが閾値温度T0よりも高い場合(高温の場合)には(ST1−2でYES)、無段変速機構5のレシオとして、動力伝達効率が現在よりも高い(良い)効率となるレシオ(高効率レシオ)を選択する(ST1−3)。   Returning to the flow of FIG. 4, if the estimated temperature TS is higher than the threshold temperature T0 as a result of comparing the estimated temperature TS and the threshold temperature T0 (in the case of high temperature) (YES in ST1-2), continuously variable transmission As the ratio of the mechanism 5, a ratio (high efficiency ratio) at which the power transmission efficiency is higher (good) than the current efficiency is selected (ST1-3).

図6は、上記の高効率レシオを算出するための高効率レシオ算出器の概念を示す模式図である。同図に示すように、高効率レシオの算出では、無段変速機構5を循環する作動油(潤滑油)の温度(油温)Tとアクセル開度APと車速Vとを高効率レシオ算出器100に入力し、これら油温T、アクセル開度AP、車速Vに基づいて、目標レシオとして無段変速機構5の動力伝達効率がより高い効率となる高効率レシオを算出する。なお、ここでの高効率レシオ算出器100は概念的なものであり、高効率レシオの算出は、実際にはECU14の一機能として行われる。   FIG. 6 is a schematic diagram showing the concept of a high efficiency ratio calculator for calculating the above high efficiency ratio. As shown in the figure, in the calculation of the high efficiency ratio, the temperature (oil temperature) T of the hydraulic oil (lubricating oil) circulating through the continuously variable transmission mechanism 5, the accelerator opening AP, and the vehicle speed V are calculated with a high efficiency ratio calculator. Based on the oil temperature T, the accelerator pedal opening AP, and the vehicle speed V, a high efficiency ratio at which the power transmission efficiency of the continuously variable transmission mechanism 5 becomes higher is calculated as a target ratio. Note that the high efficiency ratio calculator 100 here is conceptual, and the calculation of the high efficiency ratio is actually performed as a function of the ECU 14.

具体的には、先の図3のグラフにおいて、無段変速機構5の現在のレシオλが中間レシオλmよりも低い値(例えばλa)の場合には、レシオλがより低い値(例えばλb(<λa))となるように無段変速機構5を変速させる。これにより、無段変速機構5の伝達効率がより高い効率となる。また、現在のレシオλが中間レシオλmよりも高い値(例えばλc)の場合には、レシオλがより高い値(例えばλd(>λc))となるように無段変速機構5を変速させる。これにより、無段変速機構5の動力伝達効率がより高い効率となる。   Specifically, in the graph of FIG. 3, when the current ratio λ of the continuously variable transmission mechanism 5 is a value lower than the intermediate ratio λm (for example, λa), the ratio λ is a lower value (for example, λb ( The continuously variable transmission mechanism 5 is shifted so that <λa)). Thereby, the transmission efficiency of the continuously variable transmission mechanism 5 becomes higher. When the current ratio λ is higher than the intermediate ratio λm (for example, λc), the continuously variable transmission mechanism 5 is shifted so that the ratio λ becomes a higher value (for example, λd (> λc)). Thereby, the power transmission efficiency of the continuously variable transmission mechanism 5 becomes higher.

このように、無段変速機構5のレシオと動力伝達効率との関係に基づいて、無段変速機構5のレシオを現在よりも動力伝達効率の高いレシオに変速させることで、無段変速機構5による熱損失エネルギーを低減させることができ、無段変速機構5の温度上昇を抑制することができる。これにより、無段変速機構5を含む変速機1による動力伝達容量(伝達トルク容量)を過渡に下げることなく、車両の駆動力の低下を招くことなく、無段変速機構5及び変速機1の温度上昇を効果的に防止できる。   Thus, based on the relationship between the ratio of the continuously variable transmission mechanism 5 and the power transmission efficiency, the ratio of the continuously variable transmission mechanism 5 is changed to a ratio having a higher power transmission efficiency than the present, thereby providing the continuously variable transmission mechanism 5. The heat loss energy due to can be reduced, and the temperature increase of the continuously variable transmission mechanism 5 can be suppressed. As a result, the power transmission capacity (transmission torque capacity) of the transmission 1 including the continuously variable transmission mechanism 5 is not decreased transiently, and the driving force of the vehicle is not decreased. The temperature rise can be effectively prevented.

一方、先のST1−2で推定温度TSが閾値温度T0より低い場合(高温でない場合)には(NO)、変速機1の速度比(レシオ)として、通常の場合に選択される速度比(通常レシオ)を選択する(ST1−4)。図7は、この通常レシオの選択に用いる目標回転数マップの一例を示す図である。上記の通常レシオを選択する際には、図7のマップに従い、車速V及びアクセル開度APに応じて変速機1の目標(出力)回転数Nを設定する。図7に示す目標回転数Nのマップには、所定範囲内のアクセル開度APごとに設定された目標回転数のデータを含まれる。このマップにおけるアクセル開度AP及び車速Vに基づいて、目標回転数Nが算出されるようになっている。当該マップ上のデータでは、目標回転数Nは、車速Vが大きいほど、およびアクセル開度APが大きいほど大きな値に設定されている。なお、アクセル開度APが図7に示すマップ上のデータの中間値を示す場合には、目標回転数Nは補間演算によって求められる。   On the other hand, when the estimated temperature TS is lower than the threshold temperature T0 in the previous ST1-2 (when the temperature is not high) (NO), the speed ratio (ratio) of the transmission 1 is selected as a normal speed ratio (ratio). Normal ratio) is selected (ST1-4). FIG. 7 is a diagram showing an example of a target rotational speed map used for selecting the normal ratio. When selecting the normal ratio, the target (output) speed N of the transmission 1 is set according to the vehicle speed V and the accelerator pedal opening AP according to the map of FIG. The map of the target rotational speed N shown in FIG. 7 includes data on the target rotational speed set for each accelerator opening AP within a predetermined range. Based on the accelerator opening AP and the vehicle speed V in this map, the target rotational speed N is calculated. In the data on the map, the target rotational speed N is set to a larger value as the vehicle speed V is larger and the accelerator pedal opening AP is larger. When the accelerator pedal opening AP indicates an intermediate value of the data on the map shown in FIG. 7, the target rotational speed N is obtained by interpolation calculation.

このようにして、車速V及びアクセル開度APに応じて目標回転数Nが設定される。そして、エンジン10の回転数が目標回転数Nと等しくなるように変速機1及び無段変速機構5の変速制御が行われることで、変速機1のレシオが無段階に設定される。こうして、アクセル開度AP及び車速Vから変速機1の最適な目標レシオを選択することができる。   In this way, the target rotational speed N is set according to the vehicle speed V and the accelerator pedal opening AP. Then, the transmission 1 and the continuously variable transmission mechanism 5 are controlled so that the rotational speed of the engine 10 becomes equal to the target rotational speed N, so that the ratio of the transmission 1 is set in a stepless manner. Thus, the optimum target ratio of the transmission 1 can be selected from the accelerator opening AP and the vehicle speed V.

以上説明したように、本実施形態の無段変速機構の制御装置によれば、無段変速機構5の温度を推定してなる推定温度TSが閾値温度T0よりも高温である旨の判定をしたときに、予め定めた無段変速機構5のレシオと動力伝達効率との関係に基づいて、無段変速機構5のレシオをより動力伝達効率の高いレシオに持ち替えるようにした。これにより、簡易な制御で、無段変速機構5による熱損失エネルギーを低減させることができ、無段変速機構5の温度上昇を抑制することができる。したがって、無段変速機構5を有する変速機1による動力伝達容量(伝達トルク容量)を過渡に下げることなく、駆動力の低下を招くことなく、無段変速機構5及び変速機1の温度上昇を効果的に防止することができる。   As described above, according to the control device for the continuously variable transmission mechanism of the present embodiment, it is determined that the estimated temperature TS obtained by estimating the temperature of the continuously variable transmission mechanism 5 is higher than the threshold temperature T0. In some cases, the ratio of the continuously variable transmission mechanism 5 is changed to a ratio with higher power transmission efficiency based on a predetermined relationship between the ratio of the continuously variable transmission mechanism 5 and the power transmission efficiency. Thereby, the heat loss energy by the continuously variable transmission mechanism 5 can be reduced by simple control, and the temperature rise of the continuously variable transmission mechanism 5 can be suppressed. Therefore, the power transmission capacity (transmission torque capacity) of the transmission 1 having the continuously variable transmission mechanism 5 is not lowered transiently, and the temperature of the continuously variable transmission mechanism 5 and the transmission 1 is increased without causing a decrease in driving force. It can be effectively prevented.

特に、本実施形態では、無段変速機構5の温度が高温である旨の判定をしたときに、無段変速機構5のレシオを単に持ち替えるのではなく、無段変速機構5のレシオと動力伝達効率との関係に基づいて、動力伝達効率が高くなるようなレシオに持ち替えるようにしている。これにより、比較的に簡易な制御でありながら、従来技術と比較して、動作時における無段変速機構5の各部や作動油の温度上昇を効果的に抑制することができ、損失エネルギーを効果的に低減させることができる。   In particular, in this embodiment, when it is determined that the temperature of the continuously variable transmission mechanism 5 is high, the ratio of the continuously variable transmission mechanism 5 and the power transmission are not simply changed. Based on the relationship with efficiency, the ratio is changed to a ratio that increases power transmission efficiency. Thereby, compared with the prior art, it is possible to effectively suppress the temperature rise of each part of the continuously variable transmission mechanism 5 and the hydraulic oil during operation, while the control is relatively simple. Can be reduced.

また、本実施形態の変速機1が備える無段変速機構5では、レシオλと動力伝達効率の関係は、レシオλが中間レシオλmから離れるにつれて動力伝達効率が次第に大きくなる領域と、次第に小さくなる領域との2つの領域が存在する。そのため、トロイダル型の無段変速機構5においてレシオと動力伝達効率との関係に基づいて、目標レシオを現在よりも動力伝達効率が高いレシオに変更する制御を行う場合、レシオの選択の自由度が高くなる。したがって、トロイダル型の無段変速機構5を備えた変速機1に対して本発明にかかる上記の温度上昇を抑制するための制御を行う場合、当該制御が行い易くなる。   Further, in the continuously variable transmission mechanism 5 provided in the transmission 1 of the present embodiment, the relationship between the ratio λ and the power transmission efficiency gradually decreases with the region where the power transmission efficiency gradually increases as the ratio λ increases from the intermediate ratio λm. There are two areas, the area. Therefore, when the toroidal-type continuously variable transmission mechanism 5 performs control to change the target ratio to a ratio having a higher power transmission efficiency than the current ratio based on the relationship between the ratio and the power transmission efficiency, the degree of freedom in selecting the ratio is increased. Get higher. Therefore, when the control for suppressing the above-described temperature rise according to the present invention is performed on the transmission 1 including the toroidal-type continuously variable transmission mechanism 5, the control becomes easy.

また、本実施形態では、上記推定温度TSの閾値温度T0は、トロイダル面51b,52bの温度と該トロイダル面51b,52bを介して伝達可能な伝達トルクの最大値μmaxとの関係から、当該伝達トルクの最大値μmaxが所定値μ0以下となる温度としている。   In the present embodiment, the threshold temperature T0 of the estimated temperature TS is determined based on the relationship between the temperature of the toroidal surfaces 51b and 52b and the maximum value μmax of the transmission torque that can be transmitted via the toroidal surfaces 51b and 52b. The temperature is such that the maximum value μmax of the torque becomes a predetermined value μ0 or less.

この構成によれば、トロイダル型の無段変速機構5において、動力伝達時にパワーローラ53の摩擦転動により高い負荷がかかるトロイダル面51b,52bの温度上昇を効果的に抑制できる。またこの場合、上記の閾値温度T0は、トロイダル面51b,52bに形成された作動油の油膜により伝達可能なトルク最大値μmaxが所定値μ0以下になる温度に設定していることで、トロイダル面51b,52bの温度上昇によって無段変速機構5の伝達トルクが低下することを効果的に防止できる。   According to this configuration, in the toroidal-type continuously variable transmission mechanism 5, it is possible to effectively suppress the temperature rise of the toroidal surfaces 51 b and 52 b to which a high load is applied due to the frictional rolling of the power roller 53 during power transmission. In this case, the threshold temperature T0 is set to a temperature at which the maximum torque value μmax that can be transmitted by the oil film of the hydraulic oil formed on the toroidal surfaces 51b and 52b becomes a predetermined value μ0 or less. It is possible to effectively prevent the transmission torque of the continuously variable transmission mechanism 5 from being lowered due to the temperature rise of 51b and 52b.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施形態では、本発明にかかる無段変速機構の一例として、トロイダル型の無段変速機構5を示したが、本発明にかかる無段変速機構は、トロイダル型の無段変速機構には限らず、駆動プーリと従動プーリとの間に架け渡した無端ベルトを備えるベルト式の無段変速機構などであってもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Deformation is possible. For example, in the above embodiment, the toroidal continuously variable transmission mechanism 5 is shown as an example of the continuously variable transmission mechanism according to the present invention. However, the continuously variable transmission mechanism according to the present invention is a toroidal continuously variable transmission mechanism. Not limited to this, a belt-type continuously variable transmission mechanism including an endless belt spanned between the driving pulley and the driven pulley may be used.

1 変速機
2 入力軸
3 出力軸
3a 出力ギア
4 中間軸
5 トロイダル型無段変速機構
6 アイドルギア列
7 遊星歯車機構
11 フライホイール
12 発進クラッチ
13 デファレンシャルギア
51 入力側ディスク
51b 転動面(トロイダル面)
52 出力側ディスク
52b 転動面(トロイダル面)
53 パワーローラ(転動体)
53a 回転軸
53b 揺動軸
91 第1クラッチ
92 第2クラッチ
TS 推定温度
T0 所定温度(閾値温度)
λ レシオ(速度比)
λm 中間レシオ(中間速度比)
DESCRIPTION OF SYMBOLS 1 Transmission 2 Input shaft 3 Output shaft 3a Output gear 4 Intermediate shaft 5 Toroidal type continuously variable transmission mechanism 6 Idle gear train 7 Planetary gear mechanism 11 Flywheel 12 Start clutch 13 Differential gear 51 Input side disk 51b Rolling surface (toroidal surface) )
52 Output side disk 52b Rolling surface (toroidal surface)
53 Power roller (rolling element)
53a Rotating shaft 53b Oscillating shaft 91 First clutch 92 Second clutch TS Estimated temperature T0 Predetermined temperature (threshold temperature)
λ ratio (speed ratio)
λm Intermediate ratio (Intermediate speed ratio)

Claims (1)

入力要素側の部材及び出力要素側の部材に設けた転動面と、該転動面を摩擦転動することで動力を伝達する転動体とを備える伝達要素によって、前記入力要素と前記出力要素との間で摩擦により駆動力を伝達することで、無段階で速度比を変更可能なトロイダル型の無段変速機構と、
前記無段変速機構に流通する作動油の温度に基づいて、前記無段変速機構の温度を推定する温度推定手段と、
前記無段変速機構の速度比と動力伝達効率との関係として、前記転動面の温度と該転動面を介して伝達可能な伝達トルクとの関係が予め記憶された記憶手段と、
前記温度推定手段による推定温度が、前記転動面の温度と伝達トルクとの関係から当該伝達トルクが所定値以下となる温度よりも高温である旨の判定をしたときに、前記無段変速機構の速度比と動力伝達効率との関係に基づいて、前記無段変速機構の目標速度比を現在よりも動力伝達効率が高い速度比に変更する目標速度比変更手段と、
を備えることを特徴とする無段変速機構の制御装置。
A rolling surface provided on the input element side of the member and the output element side of the member, the transfer element and a rolling element that transmits power by frictional rolling said transfer dynamic surface, the output element and the input element by friction by transmitting a driving force, the continuously variable transmission mechanism capable of changing the toroidal speed ratio steplessly between,
Temperature estimating means for estimating the temperature of the continuously variable transmission mechanism based on the temperature of the hydraulic oil flowing through the continuously variable transmission mechanism;
Storage means for storing in advance a relationship between the temperature of the rolling surface and the transmission torque that can be transmitted through the rolling surface as a relationship between the speed ratio of the continuously variable transmission mechanism and power transmission efficiency;
When the temperature estimated by the temperature estimation means is determined to be higher than the temperature at which the transmission torque is a predetermined value or less from the relationship between the temperature of the rolling surface and the transmission torque, the continuously variable transmission mechanism Target speed ratio changing means for changing the target speed ratio of the continuously variable transmission mechanism to a speed ratio having higher power transmission efficiency than the present, based on the relationship between the speed ratio and the power transmission efficiency of
A control device for a continuously variable transmission mechanism.
JP2012139841A 2012-06-21 2012-06-21 Control device for continuously variable transmission mechanism Expired - Fee Related JP5934034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139841A JP5934034B2 (en) 2012-06-21 2012-06-21 Control device for continuously variable transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139841A JP5934034B2 (en) 2012-06-21 2012-06-21 Control device for continuously variable transmission mechanism

Publications (2)

Publication Number Publication Date
JP2014005843A JP2014005843A (en) 2014-01-16
JP5934034B2 true JP5934034B2 (en) 2016-06-15

Family

ID=50103760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139841A Expired - Fee Related JP5934034B2 (en) 2012-06-21 2012-06-21 Control device for continuously variable transmission mechanism

Country Status (1)

Country Link
JP (1) JP5934034B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270855A (en) * 1986-05-15 1987-11-25 Daihatsu Motor Co Ltd Controlling method for v-belt type continuously variable transmission
JP2003097684A (en) * 2001-09-27 2003-04-03 Jatco Ltd Slip preventing device for toroidal stepless speed change gear
JP2004036804A (en) * 2002-07-05 2004-02-05 Nsk Ltd Toroidal type stepless transmission gear
JP2009234293A (en) * 2008-03-25 2009-10-15 Toyota Motor Corp Controller for vehicular driving device
JP2010036694A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Control device for vehicle driving device

Also Published As

Publication number Publication date
JP2014005843A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP3622689B2 (en) Hydraulic oil temperature control device for power transmission
US9568098B2 (en) Controller for vehicle transmission
KR20150002785A (en) Vehicle power transmission device
JP5462800B2 (en) Power transmission device
JP2018105495A (en) Control device of power transmission device for vehicle
JP4212445B2 (en) Control device for V-belt type continuously variable transmission
JP5934034B2 (en) Control device for continuously variable transmission mechanism
JP5934035B2 (en) Control device for continuously variable transmission mechanism
JP4931364B2 (en) Control device for continuously variable transmission for vehicle
JP2010053939A (en) Belt-type continuously variable transmission
JP2019120265A (en) Engagement element control device and calorific energy calculation device
JP2004044757A (en) Control device for vehicle driving mechanism
JP4946940B2 (en) Power transmission device
JP2008075838A (en) Start friction element control device
JP4389462B2 (en) Slip detection device for continuously variable transmission
JP6913258B2 (en) Control device and control method for continuously variable transmission
JP6930430B2 (en) Transmission controller
JP2010107006A (en) Vehicle control device and control method
JP6763795B2 (en) Control device for continuously variable transmission
JP2014224562A (en) Control device for automatic transmission
JP6447065B2 (en) Continuously variable transmission
JP2000074193A (en) Lubricating device of v-belt type continuously variable transmission
JP2019108100A (en) Vehicle control apparatus and vehicle control method
JP2021092305A (en) Control unit of vehicle power transmission device
JP2020197187A (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees