JP5928983B2 - UV lamp for sterilization - Google Patents

UV lamp for sterilization Download PDF

Info

Publication number
JP5928983B2
JP5928983B2 JP2012068569A JP2012068569A JP5928983B2 JP 5928983 B2 JP5928983 B2 JP 5928983B2 JP 2012068569 A JP2012068569 A JP 2012068569A JP 2012068569 A JP2012068569 A JP 2012068569A JP 5928983 B2 JP5928983 B2 JP 5928983B2
Authority
JP
Japan
Prior art keywords
transmittance
wavelength
bulb
quartz glass
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012068569A
Other languages
Japanese (ja)
Other versions
JP2013201026A (en
Inventor
憲紀 鹿又
憲紀 鹿又
日出海 折戸
日出海 折戸
大野 正之
正之 大野
野口 幸男
幸男 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iwasakidenki
Original Assignee
iwasakidenki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by iwasakidenki filed Critical iwasakidenki
Priority to JP2012068569A priority Critical patent/JP5928983B2/en
Publication of JP2013201026A publication Critical patent/JP2013201026A/en
Application granted granted Critical
Publication of JP5928983B2 publication Critical patent/JP5928983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に波長254nmの紫外線を利用した食品包装材料・容器の表面殺菌等に用いられる紫外線ランプに関する。   The present invention relates to an ultraviolet lamp mainly used for sterilizing food packaging materials and containers using ultraviolet rays having a wavelength of 254 nm.

波長254nm(殺菌線)の紫外線を利用する殺菌方法は、有害物質が発生する危険性が無く、安全性の高い殺菌手段として近年特に利用が進んでいる。   The sterilization method using ultraviolet rays having a wavelength of 254 nm (sterilization line) has not been in danger of generating harmful substances, and has recently been particularly used as a highly safe sterilization means.

しかし、発光管バルブの材料として普通石英を使用した紫外線ランプは、殺菌線の他に波長185nmの紫外線も放射される為、空気中の酸素分子を解離して酸素原子を生成し、さらにこの酸素原子が酸素分子と結合してオゾンを生成する。オゾンは殺菌作用があるため、使用条件によっては有用であるが、紫外線処理装置の近くに人がいるような場合はその毒性が問題となる。さらに、オゾン濃度が0.1ppm以上になると、人体に有害となるので、オゾン濃度を0.1ppm以下に抑制する必要がある。   However, an ultraviolet lamp using quartz as a material for the arc tube bulb emits ultraviolet light having a wavelength of 185 nm in addition to the germicidal line. Therefore, oxygen molecules in the air are dissociated to generate oxygen atoms. Atoms combine with oxygen molecules to produce ozone. Since ozone has a bactericidal action, it is useful depending on the conditions of use, but its toxicity becomes a problem when a person is near the ultraviolet treatment apparatus. Furthermore, when the ozone concentration is 0.1 ppm or more, it is harmful to the human body, so it is necessary to suppress the ozone concentration to 0.1 ppm or less.

オゾン生成を防止する方法として、従来は発光管バルブにオゾンレス石英を使用したランプを用いる方法、あるいは発光管は普通石英を採用し、紫外線ランプを組み込んだ紫外線照射器の前面ガラスに酸化チタンがドープされたオゾンレス石英を用いる方法が挙げられる。この種の技術に関して記載された文献としては、例えば特許文献1がある。   As a method for preventing ozone generation, conventionally, a lamp using ozone-less quartz is used for the arc tube bulb, or the arc tube adopts ordinary quartz, and the front glass of the UV irradiator incorporating the UV lamp is doped with titanium oxide. The method using the ozone-less quartz made is mentioned. For example, Japanese Patent Application Laid-Open No. H10-293826 is a document that describes this type of technology.

しかし、オゾンレス石英を発光管バルブに採用した場合、点灯時の高温で該石英の透過率吸収端が長波長側にシフトする為、殺菌線周辺の波長領域、すなわち、波長250〜270nmの領域における光透過率が低下するという問題がある。特に高圧放電ランプの場合、発光管外表面は動作時に約800℃の高温になることが知られている。図3中の破線は、酸化チタンがドープされた従来のオゾンレス石英ガラスの800℃における分光透過率曲線である。   However, when ozone-less quartz is adopted for the arc tube bulb, the transmittance absorption edge of the quartz shifts to the long wavelength side at a high temperature during lighting, so that in the wavelength region around the germicidal line, that is, in the wavelength range of 250 to 270 nm. There is a problem that the light transmittance decreases. Particularly in the case of a high-pressure discharge lamp, it is known that the outer surface of the arc tube becomes a high temperature of about 800 ° C. during operation. The broken line in FIG. 3 is a spectral transmittance curve at 800 ° C. of a conventional ozone-less quartz glass doped with titanium oxide.

一方、波長200〜300nmの領域の光透過率を調整する手法として、発光管バルブ表面に薄膜コーティングを形成する方法もある。例えば特許文献2に記載の方法によれば、タンタル(Ta)、ニオブ(Nb)等の金属の酸化物とケイ素(Si)酸化物との複合酸化物から成る薄膜コーティングを、ディップ法、蒸着法、CVD法等を用いて表面に形成した基材は、この波長領域の光透過率を高い自由度で調整できるフィルターとして用いることができるとされている。   On the other hand, as a method for adjusting the light transmittance in the wavelength region of 200 to 300 nm, there is a method of forming a thin film coating on the surface of the arc tube bulb. For example, according to the method described in Patent Document 2, a thin film coating made of a composite oxide of a metal oxide such as tantalum (Ta) or niobium (Nb) and silicon (Si) oxide is formed by a dipping method or a vapor deposition method. The base material formed on the surface using a CVD method or the like can be used as a filter that can adjust the light transmittance in this wavelength region with a high degree of freedom.

また、薄膜コーティングの場合は、光透過率の温度に対する波長シフト特性が物質がドープされた石英ガラスの場合と逆で、高温下では短波長側にシフトする特性を有する。この為、薄膜コーティングを構成する物質の組成を適宜選択すれば、波長250〜270nmの領域における高い光透過率を確保できる可能性がある。   In the case of thin film coating, the wavelength shift characteristic of light transmittance with respect to temperature is opposite to that of quartz glass doped with a substance, and has a characteristic of shifting to the short wavelength side at high temperatures. For this reason, if the composition of the substance constituting the thin film coating is appropriately selected, there is a possibility that a high light transmittance can be secured in the wavelength region of 250 to 270 nm.

しかしながら、薄膜コーティングは、確かに、石英ガラス平板を基材に採用して形成される場合は高い耐熱衝撃性、耐磨耗性を示すが、ランプ発光管バルブのように、基材が単純でない形状を有する場合には、耐熱衝撃性、耐磨耗性が乏しいという問題があった。発光管バルブ11の両端の湾曲した部位や、発光管封止の痕跡であるチップオフ部21の周辺においては(図1参照)、どのコーティング手法を用いても、薄膜コーティングのクラックや剥離が起こり易い。また、ランプ製造時に、薄膜コーティングという余分な工程が加わる不利な側面もあった。   However, the thin film coating certainly shows high thermal shock resistance and wear resistance when formed using a quartz glass flat plate as the base material, but the base material is not as simple as a lamp arc tube bulb. When it has a shape, there is a problem that the thermal shock resistance and the wear resistance are poor. In the curved portions at both ends of the arc tube bulb 11 and the periphery of the tip-off portion 21 that is a trace of arc tube sealing (see FIG. 1), cracking or peeling of the thin film coating occurs regardless of which coating method is used. easy. In addition, there is a disadvantage in that an extra step of thin film coating is added when manufacturing the lamp.

特開2003−115281号公報JP 2003-115281 A 特開平9−184903号公報JP-A-9-184903

本発明の目的は、上記課題を解決し、オゾン生成の抑制と、波長250〜270nmの領域の高い紫外線強度、の両立が可能であり、しかも長時間使用の場合でも高い紫外線強度が維持される殺菌用紫外線ランプを提供することにある。   The object of the present invention is to solve the above-mentioned problems, and to achieve both suppression of ozone generation and high UV intensity in the wavelength region of 250 to 270 nm, and high UV intensity is maintained even when used for a long time. It is to provide an ultraviolet lamp for sterilization.

上記の課題を解決するために、本発明者らは、高圧放電ランプの動作時に発光管バルブ表面が800℃前後の高温になることを考慮して、このような高温下でも透過率吸収端が、殺菌線のある波長250〜270nmの領域に掛からない特性を有するドープド石英ガラスを、高圧放電ランプの発光管バルブに用いることを想起した。ドープ物質には、この特性条件を満足する、酸化チタン以外の物質を材料として着目した。   In order to solve the above problems, the present inventors consider that the surface of the arc tube bulb becomes a high temperature of about 800 ° C. during the operation of the high-pressure discharge lamp, and the transmittance absorption edge is maintained even at such a high temperature. It was recalled that doped quartz glass having characteristics that do not fall within the wavelength range of 250 to 270 nm with germicidal lines is used for the arc tube bulb of a high-pressure discharge lamp. As a doped material, attention was paid to a material other than titanium oxide that satisfies this characteristic condition.

そこで、請求項1記載の本発明の殺菌用紫外線ランプは、内部に希ガス及び水銀が封入され、内部両端にそれぞれ電極を備えた直管型発光管バルブから構成されると共に、該発光管バルブは、酸素欠損型欠陥を有する二酸化ケイ素から成り、その欠陥含有率が0.1重量%以上1重量%以下であり、透過率吸収端が、常温下では波長210nm以上220nm以下であり、高温下では長波長側へシフトする性質を持ち、800℃では波長230nm以下である特性を有するドープド石英ガラスを用いることを特徴とする。

Therefore, germicidal ultraviolet lamp of the present invention according to claim 1, therein a rare gas and mercury are enclosed, together with the comprised straight-tube luminous tube valve with the respective electrodes inside both ends, the light emitting bulb Is composed of silicon dioxide having oxygen-deficient defects, the defect content is 0.1 wt% or more and 1 wt% or less, and the transmittance absorption edge is a wavelength of 210 nm or more and 220 nm or less at room temperature, Is characterized by using a doped quartz glass having the property of shifting to the long wavelength side and having a characteristic of a wavelength of 230 nm or less at 800 ° C.

ここで、「透過率吸収端」とは、分光透過率曲線において紫外域の吸収帯の最も長波長側の傾斜の光透過率が50%となる波長を指す。   Here, the “transmittance absorption edge” refers to a wavelength at which the light transmittance of the slope on the longest wavelength side of the absorption band in the ultraviolet region is 50% in the spectral transmittance curve.

請求項1記載の本発明によれば、発光管バルブ材料のドープド石英ガラスは、透過率吸収端が常温下では210nm以上220nm以下、800℃の高温下で230nm以下であり、波長185nm付近の紫外線を殆ど透過しないので、オゾン発生量を規定範囲内に抑制され、かつ殺菌に必要な波長254nmの紫外線は800℃の高温下でも従来よりも大幅に透過率が高い為、紫外線強度を10000時間点灯後も確保することが可能な殺菌用紫外線ランプを提供することができる。   According to the first aspect of the present invention, the doped quartz glass of the arc tube bulb material has a transmittance absorption edge of 210 nm or more and 220 nm or less at room temperature, 230 nm or less at a high temperature of 800 ° C., and an ultraviolet ray having a wavelength of about 185 nm. Because the amount of ozone generated is suppressed within the specified range, and UV light with a wavelength of 254 nm necessary for sterilization has a significantly higher transmittance than conventional ones even at a high temperature of 800 ° C., the UV intensity is lit for 10,000 hours. An ultraviolet lamp for sterilization that can be secured later can be provided.

本発明の一実施形態の殺菌用紫外線ランプの外観概要図である。1 is a schematic external view of a sterilizing ultraviolet lamp according to an embodiment of the present invention. 発光管バルブ試料の常温下における分光透過率を示す図である。It is a figure which shows the spectral transmission factor in the normal temperature of an arc_tube | light_emitting_tube valve | bulb sample. 発光管バルブ試料の800℃における分光透過率を示す図である。It is a figure which shows the spectral transmission factor in 800 degreeC of an arc_tube | light_emitting_tube valve | bulb sample. 各仕様の発光管バルブを用いた紫外線ランプの分光スペクトルを示す図である。It is a figure which shows the spectrum of the ultraviolet lamp using the arc tube bulb of each specification.

以下、この発明の実施形態について、図面を参照しながら詳細に説明する。
図1はこの発明の殺菌用紫外線ランプの一実施形態について説明する為の外観概要図である。図1において、11は、外径23.3mmのドープド石英ガラス製の発光管バルブである。このバルブ11の両端には、先端がコイル状に巻回された構造を有する電極121と122をそれぞれバルブ内側に突出させ互いに対向配置する。電極121,122は、材料としてタングステン(W)を使用する。このうち少なくとも一方の電極には、タングステンに電子放射性物質を含有させる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic external view for explaining an embodiment of the sterilizing ultraviolet lamp of the present invention. In FIG. 1, 11 is an arc tube bulb made of doped quartz glass having an outer diameter of 23.3 mm. At both ends of the bulb 11, electrodes 121 and 122 each having a structure in which the tip is wound in a coil shape are protruded inward of the bulb, and are arranged opposite to each other. The electrodes 121 and 122 use tungsten (W) as a material. At least one of these electrodes contains tungsten in an electron emitting substance.

電極121,122は、それぞれ金属箔141,142の一端に溶着される。金属箔141,142の他端は、例えばモリブデン製の引出し線151,152の一端と電気的に接続する。電極121,122の溶接部から引出し線151,152の一端まで、シール管13を加熱して溶融封止する。金属箔141,142は、シール管13を形成する石英ガラスの熱膨張率に近い材料であれば何でもよいが、この条件に適ったものとして、例えば、モリブデンを使用する。バルブ11内部には、例えば、1.3μg/mmの水銀と2.7kPaの圧力のアルゴンガスが封入される。 The electrodes 121 and 122 are welded to one end of the metal foils 141 and 142, respectively. The other ends of the metal foils 141 and 142 are electrically connected to one ends of lead wires 151 and 152 made of, for example, molybdenum. The seal tube 13 is heated and melt-sealed from the welded portion of the electrodes 121 and 122 to one end of the lead wires 151 and 152. The metal foils 141 and 142 may be any material that has a thermal expansion coefficient close to that of the quartz glass that forms the seal tube 13, but molybdenum, for example, is used as a material that satisfies this condition. For example, 1.3 μg / mm 3 mercury and argon gas having a pressure of 2.7 kPa are enclosed in the bulb 11.

引出し線151,152の他端は、例えば、セラミック製の口金161,162の内部で電気的に接続された耐紫外線を有する、例えば、フッ素樹脂で被覆された電線171,172を介して図示しない電源回路に接続される。
こうして高圧水銀ランプである殺菌用紫外線ランプ100が作製される。
The other ends of the lead wires 151 and 152 are not illustrated via, for example, electric wires 171 and 172 having ultraviolet resistance electrically connected inside the ceramic bases 161 and 162, for example, coated with a fluorine resin. Connected to the power circuit.
Thus, the sterilizing ultraviolet lamp 100 which is a high-pressure mercury lamp is produced.

ここで、発光管バルブの材質が、酸化チタンがドープされた従来のオゾンレス石英である以外は前記殺菌用紫外線ランプ100と同じ仕様である、比較用の殺菌用紫外線ランプを別途用意し、紫外線ランプにおける発光管バルブ材質の違いによる、殺菌線付近の紫外線の発光強度の比較評価実験を行なった。   Here, a comparative sterilizing ultraviolet lamp having the same specifications as the sterilizing ultraviolet lamp 100 except that the material of the arc tube bulb is conventional ozoneless quartz doped with titanium oxide is prepared separately, and the ultraviolet lamp A comparative evaluation experiment was conducted on the emission intensity of ultraviolet light near the germicidal line due to the difference in arc tube bulb material.

バルブ11の仕様(材質)は次の2通りである。仕様1は本発明の実施例のドープド石英ガラス、仕様2は石英ガラスに酸化チタンを数%ドープさせた従来のオゾンレス石英ガラスである。仕様1のドープド石英ガラスは、純粋な石英ガラスの構成成分である二酸化ケイ素(SiO)におけるSi−Oネットワークの一部に、酸素原子が欠損した状態(いわゆる酸素欠損型欠陥)を生成させた材料を用いる。その欠陥の含有率は、0.1重量%以上1重量%以下が好ましい。酸素欠損型欠陥を有する石英ガラスは、真空紫外域の紫外線により誘発される、いわゆるEプライムセンターの構造の生成により、波長200〜250nmの紫外線を吸収するとされている。欠陥含有率を調整することで、この波長域での光透過率を所望の値となるようにすることができる。 The specification (material) of the valve 11 is as follows. Specification 1 is a doped quartz glass according to an embodiment of the present invention, and specification 2 is a conventional ozoneless quartz glass in which quartz glass is doped with several percent of titanium oxide. The doped quartz glass of specification 1 produced a state in which oxygen atoms were deficient (so-called oxygen deficiency type defect) in a part of the Si—O network in silicon dioxide (SiO 2 ), which is a component of pure quartz glass. Use materials. The defect content is preferably 0.1% by weight or more and 1% by weight or less. Quartz glass having an oxygen deficiency type defect is supposed to absorb ultraviolet rays having a wavelength of 200 to 250 nm due to generation of a so-called E prime center structure induced by ultraviolet rays in the vacuum ultraviolet region. By adjusting the defect content rate, the light transmittance in this wavelength region can be set to a desired value.

本実験における各仕様のバルブの分光透過率曲線を、20℃前後の常温については図2に、800℃の高温については図3にそれぞれ示す。分光透過率曲線は、各バルブ試料の光透過率を分光光度計で測定して得られたものである。ここで、バルブ試料の光透過率とは、円筒状バルブを管軸に沿って切り出した半円筒状試料片について、バルブ表面に垂直に光を入射させて測定された光透過率を指す。光透過率の測定は、バルブ表面の塵、汚れ物質等の異物が除去された状態で行なった。   The spectral transmittance curves of the valves of each specification in this experiment are shown in FIG. 2 for the room temperature around 20 ° C. and in FIG. 3 for the high temperature of 800 ° C. The spectral transmittance curve is obtained by measuring the light transmittance of each valve sample with a spectrophotometer. Here, the light transmittance of the bulb sample refers to the light transmittance measured by allowing light to enter the bulb surface perpendicularly to a semicylindrical sample piece obtained by cutting a cylindrical bulb along the tube axis. The light transmittance was measured in a state where foreign matters such as dust and dirt on the bulb surface were removed.

まず、図2に示す常温下での分光透過率曲線について見ると、仕様2のバルブは、光透過率は、250〜260nmの波長領域でおよそ80〜85%、260nm以上の波長領域で85%以上であるが、250nm以下では短波長側へ向かうにつれて急激に透過率が低下し、波長220nm付近で透過率が0%となっている。透過率吸収端は233nmである。   First, looking at the spectral transmittance curve at room temperature shown in FIG. 2, the light transmittance of the specification 2 bulb is approximately 80 to 85% in the wavelength region of 250 to 260 nm, and 85% in the wavelength region of 260 nm or more. As described above, when the wavelength is 250 nm or less, the transmittance sharply decreases toward the short wavelength side, and the transmittance is 0% near the wavelength of 220 nm. The transmittance absorption edge is 233 nm.

これに対して、仕様1のバルブは、250〜260nmの波長領域でおよそ87〜90%、260nm以上の波長領域で90%以上であり、室温下でも従来のオゾンレス石英ガラスよりも光透過率が高く、また、250nm以下では短波長側へ向かうにつれて透過率が低下するが、従来のオゾンレス石英ガラスよりも光透過率が10〜数10%程度高くなっている。透過率吸収端は215nmである。   On the other hand, the bulb of the specification 1 is approximately 87 to 90% in the wavelength region of 250 to 260 nm, 90% or more in the wavelength region of 260 nm or more, and has a light transmittance higher than that of the conventional ozoneless quartz glass even at room temperature. In addition, the transmittance decreases as it goes to the short wavelength side at 250 nm or less, but the light transmittance is about 10 to several tens of percent higher than that of the conventional ozone-less quartz glass. The transmittance absorption edge is 215 nm.

次に、図3に示す800℃の高温下での分光透過率曲線について見ると、まず、仕様1、仕様2とも、室温下に比べて長波長側にシフトを起こしている。仕様2は、250〜260nmの波長領域で、短波長側へ向かうにつれて光透過率がおよそ50%からおよそ20%へと低下していき、260nm以上の波長領域でも、300nm以上にならないと光透過率が90%以上に達しない。250nm以下の波長領域でも、短波長側へ向かうにつれて、220nmにおける0%に向けて光透過率が低下していく。透過率吸収端は260nmである。   Next, looking at the spectral transmittance curve at a high temperature of 800 ° C. shown in FIG. 3, first, both specifications 1 and 2 are shifted to the longer wavelength side than at room temperature. Specification 2 is a wavelength region of 250 to 260 nm, and the light transmittance decreases from about 50% to about 20% toward the short wavelength side. Even in the wavelength region of 260 nm or more, the light transmission is not increased to 300 nm or more. The rate does not reach 90% or more. Even in the wavelength region of 250 nm or less, the light transmittance decreases toward 0% at 220 nm toward the short wavelength side. The transmittance absorption edge is 260 nm.

これに対して、仕様1のバルブは、250〜260nmの波長領域で77〜83%、殺菌線(254nm)付近で80%、300nm以上で88%以上の高い光透過率を有している。また、250nm以下の波長領域でも、短波長側へ向けた光透過率の低下も仕様2に比べて緩やかである。透過率吸収端は225nmである。   On the other hand, the bulb of specification 1 has a high light transmittance of 77 to 83% in the wavelength region of 250 to 260 nm, 80% near the sterilization line (254 nm), and 88% or more at 300 nm or more. Further, even in the wavelength region of 250 nm or less, the decrease in light transmittance toward the short wavelength side is moderate as compared with the specification 2. The transmittance absorption edge is 225 nm.

次に、これら仕様1及び2の各バルブを用いて作製した紫外線ランプの評価結果について説明する。
図4は、各仕様のバルブを用いた紫外線ランプを専用点灯容器内でランプ電力1.6kWにて点灯した時の、紫外域から可視域にかけての分光スペクトルを比較したものである。なお、発光強度は、純粋石英ガラス製バルブを用いて作製した紫外線ランプの、波長365nmにおける発光強度を100とした相対値で示している。
Next, the evaluation result of the ultraviolet lamp produced using each bulb of the specifications 1 and 2 will be described.
FIG. 4 compares spectral spectra from the ultraviolet region to the visible region when an ultraviolet lamp using a bulb of each specification is lit at a lamp power of 1.6 kW in a dedicated lighting vessel. The emission intensity is shown as a relative value with the emission intensity at a wavelength of 365 nm of an ultraviolet lamp manufactured using a pure quartz glass bulb as 100.

図4からも分かる通り、仕様1と2の分光スペクトルは300nm以下の波長領域において相違が現われ、特に殺菌線付近においては、幅20〜30nmの広い波長範囲にわたって仕様1のランプの発光強度が仕様2より高く、波長254nmにおいてはおよそ20数倍も高かった。   As can be seen from FIG. 4, the spectroscopic spectra of specifications 1 and 2 show a difference in the wavelength region of 300 nm or less, and particularly in the vicinity of the germicidal line, the emission intensity of the lamp of specification 1 is specified over a wide wavelength range of 20 to 30 nm. It was higher than 2 and about 20 times higher at the wavelength of 254 nm.

分光スペクトルにおけるこうした差異は、両仕様による紫外線ランプの殺菌性能にも表われている。仕様1、2それぞれ紫外線ランプを搭載した紫外線殺菌試験装置を用いて、プラスチック容器表面に紫外線照射を行い、照射後の指標菌の生存数を測定する殺菌試験を行なったところ、菌の生存数を照射前の10−6に減少させる殺菌効果を得るのに、仕様2のランプではおよそ20分の紫外線照射が必要であったが、仕様1のランプの場合は、4分の照射で十分であった。なお、オゾン発生濃度について比較すると、仕様1、2の紫外線ランプをそれぞれ搭載した紫外線照射装置の筐体内でのオゾン濃度を測定したところ、いずれも0.1ppm以下であり、問題のない濃度レベルであった。また、波長254nmにおける照度維持率の推移を比較したが、仕様1、2の紫外線ランプのいずれも、点灯時間10000時間において照度維持率が90%以上であった。 These differences in the spectrum are also reflected in the sterilization performance of the UV lamps according to both specifications. Using a UV sterilization test device equipped with UV lamps for specifications 1 and 2, respectively, the surface of the plastic container was irradiated with UV light, and a sterilization test was performed to measure the number of surviving indicator bacteria after irradiation. In order to obtain the sterilizing effect reduced to 10 −6 before irradiation, the specification 2 lamp required about 20 minutes of UV irradiation, but for the specification 1 lamp, irradiation for 4 minutes was sufficient. It was. When comparing the ozone generation concentration, the ozone concentration in the case of the ultraviolet irradiation device equipped with the ultraviolet lamps of specifications 1 and 2 was measured. there were. Moreover, although the transition of the illumination intensity maintenance factor in wavelength 254nm was compared, the illumination intensity maintenance factor was 90% or more in the lighting time of 10000 hours of all the ultraviolet lamps of specification 1 and 2.

上記説明では、ドープド石英ガラスは、石英ガラス中に酸素欠損型欠陥を生成させた材料である例を挙げたが、本発明ではこれに限定される訳ではなく、ドープド石英ガラスの材料としてこの他に、純粋な石英ガラスの成分である二酸化ケイ素の一部を、透過率吸収端が室温下では波長210nm以上220nm以下であり、800℃の高温下でも波長230nmより長波長側に存在しない物質、例えば、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化二オブ(Nb)等から成る金属酸化物の群から選択した少なくとも1種類に置き換えて作製した材料であってもよい。この金属酸化物の含有率は、0.1重量%〜1重量%が好ましい。或いは、石英ガラス中のOH基含有率やフッ素含有率を適宜調整した材料を用いてもよい。 In the above description, an example in which doped quartz glass is a material in which oxygen-deficient defects are generated in quartz glass has been described. However, the present invention is not limited to this, and other materials may be used as doped quartz glass. In addition, a part of silicon dioxide, which is a component of pure quartz glass, is a substance whose transmittance absorption edge is a wavelength of 210 nm or more and 220 nm or less at room temperature and does not exist on the longer wavelength side than wavelength 230 nm even at a high temperature of 800 ° C. For example, it may be a material produced by replacing at least one selected from the group of metal oxides consisting of zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), niobium oxide (Nb 2 O 3 ), and the like. . The content of the metal oxide is preferably 0.1% by weight to 1% by weight. Or you may use the material which adjusted OH group content rate and fluorine content rate in quartz glass suitably.

なお、酸化チタンは、近紫外域に強い吸収帯を有しており、含有率の制御による透過率の調整が難しく、石英ガラスに含有させる微量成分としては用いないのが好ましい。   Titanium oxide has a strong absorption band in the near ultraviolet region, and it is difficult to adjust the transmittance by controlling the content rate, and it is preferable not to use it as a trace component to be contained in quartz glass.

要するに、本発明では、透過率吸収端が、常温下では210nm以上220nm以下であり、高温下では長波長側へシフトする性質を持ち、800℃では230nm以下であるドープド石英ガラスを材料に用いた発光管バルブにより作製した紫外線ランプであれば同様の効果がある。   In short, in the present invention, doped quartz glass having a property that the transmittance absorption edge is 210 nm or more and 220 nm or less at room temperature, shifts to a long wavelength side at high temperature, and is 230 nm or less at 800 ° C. is used as a material. The same effect can be obtained with an ultraviolet lamp manufactured using a light-emitting tube bulb.

800℃の高温下での透過率吸収端の好ましい範囲の下限値を示していないのは、次の理由による。すなわち、高温下での長波長シフトの幅は、多くの場合、10nm程度であるが、高温下での透過率吸収端の挙動は独立に規定される訳ではなく、室温下でのそれに影響されており、ドープド石英ガラスの材料に含まれる物質の種類や比率によって、5〜15nmと幅が多少異なり、また分光透過率曲線の傾斜の形態も多少異なるからである。   The lower limit value of the preferable range of the transmittance absorption edge at a high temperature of 800 ° C. is not shown for the following reason. In other words, the width of the long wavelength shift at high temperature is about 10 nm in many cases, but the behavior of the transmittance absorption edge at high temperature is not independently defined, and is influenced by that at room temperature. This is because the width is slightly different from 5 to 15 nm depending on the kind and ratio of the substance contained in the material of the doped quartz glass, and the slope of the spectral transmittance curve is also slightly different.

透過率吸収端が、常温下で210nm未満の場合は、185nmにおける光透過率が無視できない大きさとなり、オゾン生成が起こる為好ましくない。また、透過率吸収端が常温下で220nm超の場合は、800℃の高温下で透過率吸収端が230nmを超えることとなり、殺菌線(254nm)付近の透過率が70%程度ないしはそれ以下に低下し、従って、殺菌線の発光強度が十分でなくなり好ましくない。
なお、本発明では、高温下でのドープド石英ガラスの分光透過率特性は、800℃で規定したが、これは、次の理由による。すなわち、当該ドープド石英ガラスを発光管材料とする紫外線ランプには、点灯時に800℃を超える発光管表面温度に達するものもあるが、測定に使用する分光光度計の高温側の使用限界が900℃程度であるためである。
If the transmittance absorption edge is less than 210 nm at room temperature, the light transmittance at 185 nm is not negligible, and ozone generation occurs, which is not preferable. Further, when the transmittance absorption edge is over 220 nm at room temperature, the transmittance absorption edge exceeds 230 nm at a high temperature of 800 ° C., and the transmittance near the sterilization line (254 nm) is about 70% or less. Therefore, the emission intensity of the germicidal line is not sufficient, which is not preferable.
In the present invention, the spectral transmittance characteristic of the doped quartz glass at a high temperature is specified at 800 ° C., for the following reason. That is, some ultraviolet lamps using the doped quartz glass as the arc tube material reach an arc tube surface temperature exceeding 800 ° C. when turned on, but the use limit on the high temperature side of the spectrophotometer used for measurement is 900 ° C. It is because it is a grade.

以上説明したように、本発明によれば、生成するオゾンの濃度を規定内に押さえながら波長254nmの紫外線強度を従来よりも飛躍的に高めることのできる紫外線ランプを提供することができる。また、発光管バルブ自体に光透過率調整機能がある材料からランプを製造できるので、薄膜コーティングのように、ランプ製造時に別途コーティング工程を設ける必要がない利点がある。   As described above, according to the present invention, it is possible to provide an ultraviolet lamp capable of dramatically increasing the ultraviolet intensity at a wavelength of 254 nm while keeping the concentration of generated ozone within the specified range. Further, since the lamp can be manufactured from a material having a light transmittance adjusting function in the arc tube bulb itself, there is an advantage that it is not necessary to provide a separate coating process at the time of manufacturing the lamp as in the case of thin film coating.

本発明は、食品包装材料・容器の表面殺菌等に用いる紫外線ランプに利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an ultraviolet lamp used for sterilizing the surface of food packaging materials and containers.

100…紫外線ランプ
11…発光管バルブ
121、122…電極
13…シール管
141、142…金属箔
151、152…引出し線
161、162…口金
171、172…電線
21…チップオフ部
DESCRIPTION OF SYMBOLS 100 ... Ultraviolet lamp 11 ... Light-emitting tube bulb 121, 122 ... Electrode 13 ... Sealing tube 141, 142 ... Metal foil 151, 152 ... Lead wire 161, 162 ... Base 171, 172 ... Electric wire 21 ... Chip-off part

Claims (1)

内部に希ガス及び水銀が封入され、内部両端にそれぞれ電極を備えた直管型発光管バルブから構成されると共に、該発光管バルブは、酸素欠損型欠陥を有する二酸化ケイ素から成り、その欠陥含有率が0.1重量%以上1重量%以下であり、透過率吸収端が、常温下では波長210nm以上220nm以下であり、高温下では長波長側へシフトする性質を持ち、800℃では波長230nm以下である特性を有するドープド石英ガラスを用いることを特徴とする殺菌用紫外線ランプ。 The arc tube bulb is composed of a straight tube type arc tube bulb in which rare gas and mercury are enclosed, and electrodes are respectively provided at both ends of the inside, and the arc tube bulb is composed of silicon dioxide having an oxygen deficiency type defect and contains the defect. The transmittance is 0.1% by weight or more and 1% by weight or less, the transmittance absorption edge has a wavelength of 210 nm or more and 220 nm or less at room temperature, and shifts to a long wavelength side at high temperature. A sterilizing ultraviolet lamp characterized by using doped quartz glass having the following characteristics.
JP2012068569A 2012-03-26 2012-03-26 UV lamp for sterilization Expired - Fee Related JP5928983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068569A JP5928983B2 (en) 2012-03-26 2012-03-26 UV lamp for sterilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068569A JP5928983B2 (en) 2012-03-26 2012-03-26 UV lamp for sterilization

Publications (2)

Publication Number Publication Date
JP2013201026A JP2013201026A (en) 2013-10-03
JP5928983B2 true JP5928983B2 (en) 2016-06-01

Family

ID=49521120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068569A Expired - Fee Related JP5928983B2 (en) 2012-03-26 2012-03-26 UV lamp for sterilization

Country Status (1)

Country Link
JP (1) JP5928983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210002953A (en) 2019-07-01 2021-01-11 한국화학연구원 Catalysts for Fischer―Tropsch Synthesis Reaction and Preparing Method Thereof
KR20210043334A (en) 2019-10-11 2021-04-21 한국화학연구원 Method of Preparing Catalysts for Fischer―Tropsch Synthesis Reaction and Method of Preparing Liquid Fuel Using the Catalysts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210015959A1 (en) * 2018-03-29 2021-01-21 Sun Energy Corporation Ultraviolet irradiation device, ultraviolet irradiation method, illumination device, and ultraviolet irradiation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736900B2 (en) * 2006-03-30 2011-07-27 ウシオ電機株式会社 Short arc type mercury lamp
JP5366303B2 (en) * 2008-05-12 2013-12-11 信越石英株式会社 Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP2011023253A (en) * 2009-07-17 2011-02-03 Iwasaki Electric Co Ltd Ultraviolet lamp for sterilization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210002953A (en) 2019-07-01 2021-01-11 한국화학연구원 Catalysts for Fischer―Tropsch Synthesis Reaction and Preparing Method Thereof
KR20210043334A (en) 2019-10-11 2021-04-21 한국화학연구원 Method of Preparing Catalysts for Fischer―Tropsch Synthesis Reaction and Method of Preparing Liquid Fuel Using the Catalysts

Also Published As

Publication number Publication date
JP2013201026A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5671520B2 (en) Optical filter material made of gallium-doped quartz glass, filter component, and method of irradiation using UV radiation source
US9901653B2 (en) UV lamp and method for irradiating a surface, a liquid or a gas with UV radiation
JP5928983B2 (en) UV lamp for sterilization
KR20070057923A (en) Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation
JP2012522274A5 (en)
JP5857435B2 (en) Ultraviolet irradiation device, ultraviolet irradiation method, and method of manufacturing ultraviolet irradiation device
HU193860B (en) Electric lamp with interference filter
JP4228378B2 (en) Low pressure mercury vapor discharge lamp
JP4736900B2 (en) Short arc type mercury lamp
JP2011023253A (en) Ultraviolet lamp for sterilization
KR100687946B1 (en) A flash discharge lamp and a light energy irradiation apparatus
JP6660594B2 (en) Discharge lamp
JP4865965B2 (en) Liquid treatment apparatus and method using ultraviolet rays
US20070040509A1 (en) Electric lamp with an optical interference film
DK2739894T3 (en) DEVICE FOR CURRENCY OF COATINGS OR ARTIFICIAL SURFACES ON THE INSIDE WALL OF LONG-TERM SPACES
TWI399785B (en) Discharge lamp
JP4048998B2 (en) Lamp and ultraviolet light irradiation device
JP6972657B2 (en) Optical processing equipment and its manufacturing method
JP2006092800A (en) Ultraviolet lamp and air cleaner
RU2176117C1 (en) Ozone-free quartz lamp
JP2023066627A (en) Excimer lamp and ultraviolet light irradiation device
JP4835885B2 (en) Excimer lamp
JP2005310455A (en) Ultraviolet lamp
JP2021136186A (en) Barrier discharge lamp, barrier discharge lamp unit, and liquid processing device
RU2208875C1 (en) Ultraviolet quartz lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160417

R150 Certificate of patent or registration of utility model

Ref document number: 5928983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees