JP5924515B2 - Manufacturing method of nano / micro protrusions - Google Patents
Manufacturing method of nano / micro protrusions Download PDFInfo
- Publication number
- JP5924515B2 JP5924515B2 JP2011091972A JP2011091972A JP5924515B2 JP 5924515 B2 JP5924515 B2 JP 5924515B2 JP 2011091972 A JP2011091972 A JP 2011091972A JP 2011091972 A JP2011091972 A JP 2011091972A JP 5924515 B2 JP5924515 B2 JP 5924515B2
- Authority
- JP
- Japan
- Prior art keywords
- nano
- energy
- protrusion
- micro
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000004544 sputter deposition Methods 0.000 claims description 22
- 238000009792 diffusion process Methods 0.000 claims description 21
- 150000002500 ions Chemical class 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 11
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000010884 ion-beam technique Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
- Cold Cathode And The Manufacture (AREA)
- Inert Electrodes (AREA)
Description
本発明は、低真空下でArイオンビームなどの高エネルギービームを照射して原子の励起反応で形成される新規なナノ・マイクロ突起体の製造方法に関する。 The present invention relates to a novel process for producing nano-micro protrusions which are formed by irradiating a high energy beam excitation reaction atoms such as Ar ion beam under low vacuum.
発明者らは2005年以来、金属板にArイオンビームを照射すると、ナノ・マイクロ突起体(以下、突起体ともいう)が形成されることを明らかにしてきた。Cu板ではCu、CuO、Cu2Oからなる突起体が形成され(特許文献1)、Zn板ではZnOからなる突起体が形成され、Cu−Zn合金板ではα及びβCu−Znからなる突起体が形成される。図1には、Cu2Oからなる突起体の例を示す。 Since 2005, the inventors have clarified that when a metal plate is irradiated with an Ar ion beam, nano / micro protrusions (hereinafter also referred to as protrusions) are formed. A protrusion made of Cu, CuO, Cu 2 O is formed on the Cu plate (Patent Document 1), a protrusion made of ZnO is formed on the Zn plate, and a protrusion made of α and βCu—Zn on the Cu—Zn alloy plate. Is formed. FIG. 1 shows an example of a protrusion made of Cu 2 O.
突起体の形状、Aspect Ratio、先鋭度、最大高さなどは下地材料の種類と照射条件によって異なり、それに応じた突起体特性と応用が考えられる。Arイオン照射による突起体の成長機構は、スパッタされた原子の表面拡散によりイオン源方向にボトムアップ型で成長するので(図2)、速度論的取り扱いが可能である。図2に示すように、小さい針状のロッドを核としてスパッタされた原子が表面拡散によって移動しつつ、真空中の残留酸素を補足しながら突起体は成長する。また、照射するArイオンの加速電圧と照射時間により突起体の元素濃度が変化することなどが分った。 The shape, Aspect Ratio, sharpness, maximum height, etc. of the protrusions vary depending on the type of the base material and the irradiation conditions, and the protrusion characteristics and applications can be considered accordingly. The protrusion growth mechanism by Ar ion irradiation grows bottom-up in the direction of the ion source due to surface diffusion of the sputtered atoms (FIG. 2), and can be handled kinetically. As shown in FIG. 2, the atoms sputtered with a small needle-like rod as a nucleus move by surface diffusion, and the protrusion grows while capturing residual oxygen in the vacuum. Further, it has been found that the element concentration of the protrusion changes depending on the acceleration voltage and irradiation time of Ar ions to be irradiated.
これらナノ・マイクロ突起体の応用範囲を拡大するためには、従来と異なる新規な突起体が求められている。 In order to expand the application range of these nano / micro protrusions, new protrusions different from the conventional ones are required.
本発明は、触媒や各種の電子的用途への応用が期待できる新規なナノ・マイクロ突起体の製造方法を提供することを課題とする。 It is an object of the present invention to provide a novel method for producing nano / micro protrusions that can be expected to be applied to catalysts and various electronic uses.
上記の課題を解決するためになされた本発明に関連するナノ・マイクロ突起体は、Arイオンスパッタリングの閾値エネルギーが25eV以下で、表面拡散の活性化エネルギーが1.6eV以下の、PdまたはPtからなる板に、10-2〜10-5Paの真空下で2〜20kVのArイオンビームを照射して、スパッタされた金属原子のエネルギー源方向への表面拡散により形成・成長されたことを特徴とするものである。 In order to solve the above problems, the nano / micro protrusions related to the present invention are made of Pd or Pt having a threshold energy of Ar ion sputtering of 25 eV or less and an activation energy of surface diffusion of 1.6 eV or less. It is formed and grown by irradiating a 2 to 20 kV Ar ion beam under a vacuum of 10 −2 to 10 −5 Pa on the resulting plate, and by surface diffusion of the sputtered metal atoms toward the energy source. It is what.
上記した発明において、ナノ・マイクロ突起体は、複数の小突起体が合体されてなる大突起体であることを特徴とするものであり、貴金属は、Au、Ag、Pd、Ptのうちの何れか1種であることを特徴とする。 In the above-described invention, the nano / micro protrusion is a large protrusion formed by combining a plurality of small protrusions, and the noble metal is any one of Au, Ag, Pd, and Pt. Or 1 type.
また、本発明のナノ・マイクロ突起体の製造方法は、Arイオンスパッタリングの閾値エネルギーが25eV以下で、表面拡散の活性化エネルギーが1.6eV以下のPdまたはPtからなる板に、10-2〜10-5Paの真空下で2〜20kVのArイオンビームを照射して、金属原子のエネルギー源方向への表面拡散により複数の小突起体が合体されてなる大突起体を形成することを特徴とするものである。 A method of manufacturing a nano-micro protrusions of the present invention, the threshold energy of the Ar ion sputtering is not more than 25 eV, the plate activation energy of surface diffusion is made from the following Pd or Pt 1.6 eV, 10 -2 ~ Irradiation with an Ar ion beam of 2 to 20 kV under a vacuum of 10 −5 Pa forms a large protrusion formed by combining a plurality of small protrusions by surface diffusion of metal atoms in the direction of the energy source. It is what.
本発明のナノ・マイクロ突起体は、スパッタリングの閾値エネルギーが小さくかつ表面拡散の活性化エネルギーの小さい貴金属板に高エネルギービームを照射して形成される。よって、スパッタリングして飛ばした多数の原子を移動のバリアを低くして容易に表面拡散させるので、ナノ・マイクロ突起体を大きい成長速度でもって成長させることができる。その結果形成されたナノ・マイクロ突起体は、針状の先端鋭利な小突起体が多数合体して形成された大突起体であるので、活性点が多く触媒に好適である。また、活性点が多く、電子エミッターとして大電流を出力することができる。Au、Ag、Pd、Ptである貴金属は、表面に酸化物が形成されにくく、突起体の形成が酸化物によって邪魔されないため、α―Ti、Nb等と比べてナノ・マイクロ突起体が形成されやすいものと考えられる。 The nano / micro protrusion of the present invention is formed by irradiating a noble metal plate having a low sputtering threshold energy and a small surface diffusion activation energy with a high energy beam. Therefore, a large number of atoms sputtered and scattered can be easily diffused on the surface by lowering the barrier of movement, so that nano / micro protrusions can be grown at a high growth rate. The nano / micro projections formed as a result are large projections formed by combining a large number of needle-like sharp projections, and thus have many active sites and are suitable for the catalyst. In addition, there are many active points, and a large current can be output as an electron emitter. Noble metals such as Au, Ag, Pd, and Pt are difficult to form oxides on the surface, and the formation of protrusions is not hindered by oxides. It is considered easy.
また、本発明のナノ・マイクロ突起体の製造方法は、上記したような特徴を有するナノ・マイクロ突起体を効果的に製造することができる。 Moreover, the method for producing a nano / micro protrusion of the present invention can effectively produce a nano / micro protrusion having the above-described characteristics.
以下に、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
初めに、金属板の表面にナノ・マイクロ突起体を形成する方法について説明する。 First, a method for forming nano / micro protrusions on the surface of a metal plate will be described.
本発明においては、金属板の表面に低真空下でArイオンビームを照射して、ナノ・マイクロ突起体を形成する。金属板として、鋳造材、熱間鍛造材、熱間圧延材、冷間圧延材を用いることができる。金属板は希塩酸等で酸洗して表面を活性化させておくことも有効である。 In the present invention, the surface of the metal plate is irradiated with an Ar ion beam under a low vacuum to form nano / micro projections. As the metal plate, a cast material, a hot forged material, a hot rolled material, or a cold rolled material can be used. It is also effective to activate the surface of the metal plate by pickling with diluted hydrochloric acid or the like.
次に、金属板に真空下でArイオンビームを照射して励起した原子の表面拡散で突起を成長させる。本発明におけるナノ・マイクロ突起体の形成機構は、自己組織化ではなくスパッタにより励起された原子の表面拡散によるものである。真空度は10−2〜10−5Pa程度のいわゆる低真空とする。10−2Paより真空度が低いとArイオンの照射によって金属原子をスパッタリングさせるのが困難になるからであり、10−5Paより真空度が高いとArイオンビームの照射が困難となるからである。 Next, protrusions are grown by surface diffusion of atoms excited by irradiating a metal plate with an Ar ion beam under vacuum. The formation mechanism of the nano / micro protrusions in the present invention is based on the surface diffusion of atoms excited by sputtering rather than self-organization. The degree of vacuum is a so-called low vacuum of about 10 −2 to 10 −5 Pa. If the degree of vacuum is lower than 10 −2 Pa, it will be difficult to sputter metal atoms by irradiation with Ar ions, and if the degree of vacuum is higher than 10 −5 Pa, irradiation of Ar ion beams will be difficult. is there.
さらに、Arイオンビームの照射角度を、板面に対して10〜90°とし、加速電圧は、2−20kV(keV)とするのが望ましい。照射角度が10°未満では、効率よくArイオンビームのエネルギーを供給するのが難しいからであり、90°を超えて照射を行う必要がないからである。また、加速電圧(照射エネルギー)を2−20kV(2−20keV)としたのは、高エネルギービームであるArイオンビームを照射する場合には、点欠陥などの照射欠陥や注入イオンが導入されにくい20kV以下の低電圧とするのが望ましく、一方2kV未満では電圧が弱すぎてスパッタリングが起きにくいからである。また、照射時間は10〜100分が望ましく、Arイオンビームの電流は、0.5〜1.5mAが望ましい。なお、望ましくは加速電圧を5kV以上とするのが、高いスパッタリングが得られて望ましい。 Further, it is desirable that the irradiation angle of the Ar ion beam is 10 to 90 ° with respect to the plate surface, and the acceleration voltage is 2 to 20 kV (keV). This is because if the irradiation angle is less than 10 °, it is difficult to efficiently supply the energy of the Ar ion beam, and it is not necessary to perform irradiation beyond 90 °. The acceleration voltage (irradiation energy) is set to 2-20 kV (2-20 keV). Irradiation defects such as point defects and implanted ions are not easily introduced when an Ar ion beam which is a high energy beam is irradiated. A low voltage of 20 kV or less is desirable. On the other hand, if it is less than 2 kV, the voltage is too weak to cause sputtering. The irradiation time is preferably 10 to 100 minutes, and the Ar ion beam current is preferably 0.5 to 1.5 mA. Note that it is desirable that the acceleration voltage is 5 kV or more because high sputtering is obtained.
なお、本発明において照射せしめられるビームは、Arイオンビームに限定されるものではなく、ナノ・マイクロ突起体を成長させうる高エネルギービームであればよく、Arイオンビームのほかに電子線、レーザービーム、X線、γ線、中性子線、粒子ビーム等を用いることができる。 The beam irradiated in the present invention is not limited to the Ar ion beam, but may be any high energy beam capable of growing the nano / micro protrusions. In addition to the Ar ion beam, an electron beam or a laser beam may be used. X-ray, γ-ray, neutron beam, particle beam, etc. can be used.
図3には、イオンの入射エネルギーに対する金属との相互作用の変化を模式的に示す。(c)図に示すように、イオンの入射エネルギーが10keV〜数MeVと大きい領域では照射イオンが金属内に注入される現象(イオン注入)が生ずる。入射エネルギーが数100eV〜数10keVの中間領域では金属原子を飛び出させるスパッタリング現象が起こり、数eV〜数100eVの小さい領域では照射イオンは金属内部に深く潜り込むことはできず、金属表面に単に付着・結合するだけである。 FIG. 3 schematically shows a change in interaction with a metal with respect to incident energy of ions. (c) As shown in the figure, in a region where the incident energy of ions is as large as 10 keV to several MeV, a phenomenon (ion implantation) in which irradiated ions are implanted into the metal occurs. In the intermediate region where the incident energy is several hundred eV to several tens keV, a sputtering phenomenon that causes metal atoms to jump out occurs. Just join.
本発明においてスパッタリング率は、以下のyamamuraの式、〔数1〕によって計算される。Yamamuraの式によりスパッタ源となるArイオンなどによる各種金属のスパッタ率を計算することができる。この式から計算される各金属のスパッタ率は高エネルギービームによる低次元構造体創成における材料選択に重要な指針を与えるものであり、構造体の形状制御や組成制御に大きく寄与するものである。 In the present invention, the sputtering rate is calculated by the following yamamura equation: [Equation 1]. The sputtering rate of various metals due to Ar ions as a sputtering source can be calculated by the Yamamura equation. The sputtering rate of each metal calculated from this equation gives an important guideline for material selection in creating a low-dimensional structure using a high-energy beam, and greatly contributes to shape control and composition control of the structure.
上記した式において、α*、Kは経験値、QはFitting parameter、Sn(ε)はLindhardの規格化された核阻止能、Se(ε)はLindhardの規格化された電子阻止能、Usは昇華エネルギー(表面結合エネルギー)、Ethはスパッタの閾値エネルギー、Eは高エネルギービームの入射エネルギー[eV]である。 In the above formula, α *, K are empirical values, Q is a fitting parameter, Sn (ε) is Lindhard's standardized nuclear stopping power, Se (ε) is Lindhard's standardized electronic stopping power, Us is Sublimation energy (surface binding energy), Eth is the threshold energy of sputtering, and E is the incident energy [eV] of the high energy beam.
図4にArイオンビームを各種の金属表面に照射したときの、yamamuraの式から計算したスパッタ率を示す。Arイオンビーム照射による低次元構造体の創成には、Arイオンビームによる基板金属のスパッタ効果と原子の表面拡散を促す意味での運動エネルギーの授受が非常に大きな役割を担っている。他の金属に対して比較的スパッタ率が大きいAu、Agはスパッタリングに必要なエネルギーの閾値が低く、表面構造が変化しやすいと考えられ、低次元構造体創成の為の基板材料となりうる可能性が高い。また、その電気的、化学的特性からナノ材料としての応用分野も広いと考えられる。 FIG. 4 shows the sputtering rate calculated from the yamamura equation when various metal surfaces are irradiated with an Ar ion beam. In the creation of a low-dimensional structure by irradiation with an Ar ion beam, the transfer of kinetic energy in the sense of promoting the sputtering effect of the substrate metal by the Ar ion beam and the surface diffusion of atoms plays a very important role. Au and Ag, which have a relatively high sputtering rate compared to other metals, have a low threshold of energy required for sputtering, and the surface structure is likely to change, and may be a substrate material for creating low-dimensional structures. Is expensive. In addition, due to its electrical and chemical properties, it can be considered to have a wide range of applications as nanomaterials.
本発明に用いる金属は、Arイオンスパッタリングの閾値エネルギーが25eV以下であると効果的に原子をスパッタできる。スパッタリングの閾値エネルギーが25eVを超えると、より高い入射エネルギーが必要となるからである。 The metal used in the present invention can effectively sputter atoms when the threshold energy of Ar ion sputtering is 25 eV or less. This is because when the threshold energy of sputtering exceeds 25 eV, higher incident energy is required.
また、本発明において用いる金属は、表面拡散の活性化エネルギーが1.6eV以下のものとする。活性化エネルギーが1.6eVを超える金属では、Arイオンビーム照射で金属の表面拡散が起こりにくくなってナノ・マイクロ突起体の成長が困難になるからである。 The metal used in the present invention has a surface diffusion activation energy of 1.6 eV or less. This is because, when the activation energy exceeds 1.6 eV, the surface diffusion of the metal is difficult to occur by Ar ion beam irradiation, and it becomes difficult to grow the nano / micro protrusions.
通常、金属の体拡散係数Dvolは、以下の〔数2〕式で表される。 Usually, the metal body diffusion coefficient Dvol is expressed by the following [Equation 2].
ここで、D0は振動数因子、Evolは体拡散の活性化エネルギー、kはボルツマン定数、Tは絶対温度である。
Here, D0 is a frequency factor, Evol is an activation energy for body diffusion, k is a Boltzmann constant, and T is an absolute temperature.
そして、金属の表面拡散係数Dsurfaceは以下の〔数3〕式で表される。 The surface diffusion coefficient Dsurface of the metal is expressed by the following [Equation 3].
ここで、Esurfaceは表面拡散の活性化エネルギーであり、Esurface=Evol/2である。
Here, Esurface is the activation energy of surface diffusion, and Esurface = Evol / 2.
表1に各種金属のEsurfaceとEthの値を掲げる。貴金属の中でもAg、Auは、Esurfaceが1.0eV以下、Ethが15eV以下であって、酸化されにくく本発明に好適な金属である。 Table 1 lists the Esurface and Eth values for various metals. Among precious metals, Ag and Au are metals that have an Esurface of 1.0 eV or less and an Eth of 15 eV or less and are not easily oxidized and are suitable for the present invention.
図14に、金属の表面拡散における活性化エネルギーEsurfaceとスパッタリングの閾値エネルギーの散布図を示す。Arイオンビームを9kV、照射角度30°、20分照射したときのナノ・マイクロ突起体の形成の有無を併せて示した。活性化エネルギーEsurfaceが1.6eV以下、閾値エネルギーが25eV以下の領域において、ナノ・マイクロ突起体の形成が認められた。特に、表面に酸化物の形成されにくいAu、Ag、Pd、Ptである貴金属においては、Ni、α−Ti、Nbに比べてナノ・マイクロ突起体が形成されやすい傾向が認められた。 FIG. 14 is a scatter diagram of the activation energy Esurface in the surface diffusion of metal and the threshold energy of sputtering. The presence / absence of formation of nano / micro protrusions when irradiated with an Ar ion beam at 9 kV, an irradiation angle of 30 ° for 20 minutes is also shown. In the region where the activation energy Esurface is 1.6 eV or less and the threshold energy is 25 eV or less, formation of nano / micro protrusions was observed. In particular, in the noble metals such as Au, Ag, Pd, and Pt in which oxides are not easily formed on the surface, it was recognized that nano / micro protrusions tend to be formed more easily than Ni, α-Ti, and Nb.
冷間圧延したAg板から矩形の試料を切り出して基板を作成した。この基板の表面を洗浄したのちに直ちに真空室に装入して、真空度10−3Paに保持するとともに、Arイオンビームを照射角度30°、加速電圧9kV、電流0.5mAの条件下で、10〜90分照射した。照射後に照射面のナノ・マイクロ突起の形状を走査電子顕微鏡にて観察した。 A rectangular sample was cut out from the cold-rolled Ag plate to prepare a substrate. After cleaning the surface of this substrate, it was immediately inserted into a vacuum chamber and maintained at a vacuum degree of 10 −3 Pa, and an Ar ion beam was irradiated at an irradiation angle of 30 °, an acceleration voltage of 9 kV, and a current of 0.5 mA. For 10 to 90 minutes. After irradiation, the shape of the nano / micro protrusions on the irradiated surface was observed with a scanning electron microscope.
図6−12には、照射時間10−90分のAg板の表面の走査電子顕微鏡写真を示す。10分照射で表面に隆起が現れた。その後20分〜90分と照射時間が長くなるにつれて多数のナノ・マイクロ突起体が成長していくことが認められた。 FIG. 6-12 shows a scanning electron micrograph of the surface of the Ag plate with an irradiation time of 10 to 90 minutes. A bump appeared on the surface after 10 minutes of irradiation. Thereafter, it was observed that a large number of nano / micro protrusions grew as the irradiation time increased from 20 minutes to 90 minutes.
図13には、20分照射材のナノ・マイクロ突起体についての拡大写真を示すが、多数の小さいナノ・マイクロ突起体が一つに合体されて、大きなナノ・マイクロ突起体を構成しているのが認められる。すなわち、一つの大きなナノ・マイクロ突起体は多数の先端鋭利な活性点を有する。 FIG. 13 shows an enlarged photograph of the nano / micro protrusions of the 20-minute irradiation material. A large number of small nano / micro protrusions are combined into one to form a large nano / micro protrusion. Is allowed. That is, one large nano / micro protrusion has a large number of sharp active sites.
Au、Pd、Ptについても同様にArイオンビームを照射したが、ナノ・マイクロ突起体が形成されるのを確認した。 Au, Pd, and Pt were similarly irradiated with an Ar ion beam, and it was confirmed that nano / micro protrusions were formed.
本発明のナノ・マイクロ突起体は、先端鋭利な多数の活性点を有するので、エタノールや水からのH2生成、排ガス浄化の触媒、燃料電池電極の用途のほか、その特異な形態に基づき、光学材料、電子放出材料、半導体材料、電気接点材料等の多岐に渡る用途が期待される。 Since the nano / micro protrusions of the present invention have a large number of sharp active sites, based on their unique forms, besides the use of H 2 production from ethanol and water, exhaust gas purification catalysts, fuel cell electrodes, A wide variety of applications such as optical materials, electron emission materials, semiconductor materials, and electrical contact materials are expected.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091972A JP5924515B2 (en) | 2011-04-18 | 2011-04-18 | Manufacturing method of nano / micro protrusions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091972A JP5924515B2 (en) | 2011-04-18 | 2011-04-18 | Manufacturing method of nano / micro protrusions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012223842A JP2012223842A (en) | 2012-11-15 |
JP5924515B2 true JP5924515B2 (en) | 2016-05-25 |
Family
ID=47274604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011091972A Active JP5924515B2 (en) | 2011-04-18 | 2011-04-18 | Manufacturing method of nano / micro protrusions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5924515B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326209A (en) * | 2017-07-05 | 2017-11-07 | 北京科技大学 | The preparation method of noble metal and magnesium-yttrium-transition metal nano wire and mesh nanometer material |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013173112A (en) * | 2012-02-27 | 2013-09-05 | Tohoku Univ | Exhaust gas cleaning catalyst |
JP6131437B2 (en) * | 2012-08-29 | 2017-05-24 | 国立大学法人東北大学 | Manufacturing method of nano / micro protrusions |
JP5983274B2 (en) | 2012-10-09 | 2016-08-31 | 富士電機株式会社 | Gate drive circuit having failure detection circuit of semiconductor switch element |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262373A (en) * | 2004-03-18 | 2005-09-29 | Nagoya Kogyo Univ | Micro-nano projection structure, and its manufacturing method |
JP4734573B2 (en) * | 2006-10-16 | 2011-07-27 | 国立大学法人東北大学 | Manufacturing method of micro / nanostructure and micro / nanostructure |
JP2011056638A (en) * | 2009-09-14 | 2011-03-24 | Tohoku Univ | Micronano-projection structure and method for producing the same |
-
2011
- 2011-04-18 JP JP2011091972A patent/JP5924515B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326209A (en) * | 2017-07-05 | 2017-11-07 | 北京科技大学 | The preparation method of noble metal and magnesium-yttrium-transition metal nano wire and mesh nanometer material |
CN107326209B (en) * | 2017-07-05 | 2018-11-27 | 北京科技大学 | The preparation method of noble metal and magnesium-yttrium-transition metal nano wire and mesh nanometer material |
Also Published As
Publication number | Publication date |
---|---|
JP2012223842A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3785543B2 (en) | Manufacturing method of manganese oxide nanostructure and oxygen reduction electrode using the manganese oxide nanostructure | |
JP5924515B2 (en) | Manufacturing method of nano / micro protrusions | |
US7553513B2 (en) | Electrochemical electrode using nickel-containing nanostructured material having dendritic structure as active layer, and method for producing the same | |
Low et al. | A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes | |
JP2008006513A (en) | Method for manufacturing nanosize wire and nanosize wire | |
US7566438B2 (en) | Method for manufacturing nanostructured manganese oxide having dendritic structure, and oxygen reduction electrode comprising nanostructured transition metal oxide having dendritic structure | |
US7666385B2 (en) | Nanostructured zinc oxide photocatalyst for visible light and manufacturing method of the same | |
Rosen et al. | Microwave heating of nanocrystals for rapid, low-aggregation intermetallic phase transformations | |
Wu et al. | A general method for large-scale fabrication of metal nanoparticles embedded N-doped carbon fiber cloth with highly efficient hydrogen production in all pH range | |
KR102471909B1 (en) | Water splitting catalyst | |
Huang et al. | Recent Progress in the Application of Ion Beam Technology in the Modification and Fabrication of Nanostructured Energy Materials | |
KR20210038106A (en) | Manufacturing method for metal foam | |
JP2009255013A (en) | Photocatalyst | |
Jamali-Sheini et al. | Influence of chemical routes on optical and field emission properties of Au–ZnO nanowire films | |
JP2011056638A (en) | Micronano-projection structure and method for producing the same | |
JP2014145105A (en) | Nanopillar and formation method thereof, and bonding material, battery, carbon dioxide recovery/storage device and module for power conversion apparatus using nanopillar | |
Ting et al. | In situ manipulation of E-beam irradiation-induced nanopore formation on molybdenum oxide nanowires | |
JP5028620B2 (en) | Nanoprotrusion structure and manufacturing method thereof | |
Wang et al. | Synthesis of Cu xO (x= 1, 2)/amorphous compounds by dealloying and spontaneous oxidation method | |
Sreekantan et al. | Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb (II) heavy metal ions removal | |
JP7480939B2 (en) | Manufacturing method of Fe-based nano-micro protrusions | |
JP5527664B2 (en) | Manufacturing method of fuel cell | |
JP2017128458A (en) | Oxynitride fine particle, photocatalyst for water decomposition, photocatalyst electrode for generating hydrogen and oxygen, photocatalyst module for generating hydrogen and oxygen and manufacturing method of oxynitride fine particle | |
JP2009187739A (en) | Field emission type electron source and its manufacturing method | |
JP6131437B2 (en) | Manufacturing method of nano / micro protrusions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150427 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151228 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5924515 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |