JP5923816B2 - High refractive index thermoplastic optical material and manufacturing method thereof - Google Patents

High refractive index thermoplastic optical material and manufacturing method thereof Download PDF

Info

Publication number
JP5923816B2
JP5923816B2 JP2011285427A JP2011285427A JP5923816B2 JP 5923816 B2 JP5923816 B2 JP 5923816B2 JP 2011285427 A JP2011285427 A JP 2011285427A JP 2011285427 A JP2011285427 A JP 2011285427A JP 5923816 B2 JP5923816 B2 JP 5923816B2
Authority
JP
Japan
Prior art keywords
metal
chelate compound
refractive index
optical material
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011285427A
Other languages
Japanese (ja)
Other versions
JP2013133430A (en
Inventor
広光 幸塚
広光 幸塚
弘章 内山
弘章 内山
進也 小田
進也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2011285427A priority Critical patent/JP5923816B2/en
Publication of JP2013133430A publication Critical patent/JP2013133430A/en
Application granted granted Critical
Publication of JP5923816B2 publication Critical patent/JP5923816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

この発明は、高屈折率熱可塑性光学材料とその製造方法に関する。この高屈折率熱可塑性光学材料は、発光デバイス、光学デバイス、電子デバイスなどの分野で好適に利用されうる。 The present invention relates to a high refractive index thermoplastic optical material and a method for producing the same. This high refractive index thermoplastic optical material can be suitably used in the fields of light emitting devices, optical devices, electronic devices and the like.

前記の各デバイス分野では光路を制御するために、高い屈折率と、キャスティング(鋳造)による成形を可能とする熱可塑性を兼ね備えた材料が望まれている。そのような材料の実現を目指して従来より、有機高分子をマトリックスあるいはバインダーとし、チタニアやジルコニアなどの高屈折率の金属酸化物の微粒子を分散させる(特許文献1)、有機高分子と、高屈折率のメタロキサンポリマーあるいは金属酸化物ナノ粒子を複合化させる(非特許文献1、2)などの技術が知られている。   In each of the above device fields, in order to control the optical path, a material having a high refractive index and thermoplasticity that enables molding by casting is desired. Aiming to realize such a material, conventionally, organic polymer is used as a matrix or binder, and fine particles of metal oxide having a high refractive index such as titania and zirconia are dispersed (Patent Document 1). Techniques are known in which a metalloxane polymer having a refractive index or metal oxide nanoparticles are combined (Non-Patent Documents 1 and 2).

特開2005−213410JP-A-2005-213410

C.C. Chang, W.C. Chen, "High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials," J. Polym. Sci. Pt. A - Polym. Chem., 39, 3419 (2001)C.C. Chang, W.C. Chen, "High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials," J. Polym. Sci. Pt. A-Polym. Chem., 39, 3419 (2001) H.W. Su, W.C. Chen, "High refractive index polyimide-nanocrystalline-titania hybrid optical materials," J. Mater. Chem., 18, 1139 (2008)H.W.Su, W.C.Chen, "High refractive index polyimide-nanocrystalline-titania hybrid optical materials," J. Mater. Chem., 18, 1139 (2008)

しかし、従来の材料においては、有機高分子成分が熱可塑性を担い、金属酸化物あるいはメタロキサンポリマーが高屈折率を担っている。そのため、熱可塑性を高めるために有機高分子成分の含有比率を上げると高屈折率が実現できず、屈折率を高めるために金属酸化物あるいはメタロキサンポリマーの含有比率を上げると熱可塑性が実現できない。
それ故、この発明の課題は、高屈折率と熱可塑性を兼ね備えた有機・無機ハイブリッドの光学材料を提供することにある。
However, in conventional materials, the organic polymer component is responsible for thermoplasticity, and the metal oxide or metalloxane polymer is responsible for high refractive index. Therefore, if the content ratio of the organic polymer component is increased to increase the thermoplasticity, a high refractive index cannot be realized, and if the content ratio of the metal oxide or metalloxane polymer is increased to increase the refractive index, the thermoplasticity cannot be realized. .
Therefore, an object of the present invention is to provide an organic / inorganic hybrid optical material having both a high refractive index and thermoplasticity.

その課題を解決するために、この発明の有機・無機ハイブリッドの光学材料は、
メタロキサンポリマーと、このメタロキサンポリマー中の金属原子に対して配位可能なキレート化合物とを備え、メタロキサンポリマーの金属原子に前記キレート化合物が配位しており、配位前の前記キレート化合物が25℃で固体であることを特徴とする。
In order to solve the problem, the organic / inorganic hybrid optical material of the present invention is
A metalloxane polymer and a chelate compound capable of coordinating with a metal atom in the metalloxane polymer, wherein the chelate compound is coordinated with the metal atom of the metalloxane polymer, and the chelate compound before coordination Is solid at 25 ° C.

メタロキサンポリマーは、繰り返し単位[金属原子−酸素原子]を骨格とする無機高分子である。このハイブリッド材料においてはメタロキサンポリマーの各金属原子にキレート化合物がほぼ均一に配位しており、メタロキサンポリマー中の金属−酸素結合部分が金属酸化物と同様に高屈折率を担う。一方、このハイブリッド材料の熱可塑性のメカニズムは、ハイブリッド材料中のキレート化合物同士のファンデアヴァールス結合に起因していると推定される。前記キレート化合物として25℃で液体であるものを用いたハイブリッド材料は、熱可塑性を有しない。   The metalloxane polymer is an inorganic polymer having a repeating unit [metal atom-oxygen atom] as a skeleton. In this hybrid material, the chelate compound is almost uniformly coordinated to each metal atom of the metalloxane polymer, and the metal-oxygen bond portion in the metalloxane polymer bears a high refractive index as with the metal oxide. On the other hand, it is presumed that the thermoplastic mechanism of the hybrid material is caused by van der Waals bonds between chelate compounds in the hybrid material. A hybrid material using a chelate compound that is liquid at 25 ° C. does not have thermoplasticity.

前記金属原子は、好ましくはチタン、ジルコニウム及び亜鉛のうちから選ばれる一種以上である。これらの金属の酸化物は、高屈折率であることが知られているからである。前記キレート化合物は、好ましくはβジケトン、カルボン酸、またはエチレンジアミン誘導体である。これらの化合物は容易に入手可能だからである。   The metal atom is preferably one or more selected from titanium, zirconium and zinc. This is because these metal oxides are known to have a high refractive index. The chelate compound is preferably a β diketone, a carboxylic acid, or an ethylenediamine derivative. This is because these compounds are readily available.

この発明の有機・無機ハイブリッドの光学材料を製造する適切な方法は、
金属塩、有機溶剤、25℃で固体であるキレート化合物及び水を含む有機・無機ハイブリッド材料前駆体溶液を準備し、この前駆体溶液を成形可能な程度に粘性が上がるまで濃縮し、前記キレート化合物の融点よりも高く沸点よりも低い温度で加熱することを特徴とする。そして、濃縮後、加熱前に所望の形状に成形する。この方法により、加熱時に溶液中の有機溶剤が蒸発するとともに、金属塩の重合と金属に対するキレート化とが進行し、熱可塑性材料が得られる。前記キレート化合物として25℃で液体であるものを用いたハイブリッド材料が熱可塑性を有しないのは、加熱中にキレート化合物が蒸発してしまうからであると推定される。
A suitable method for producing the organic / inorganic hybrid optical material of this invention is:
An organic / inorganic hybrid material precursor solution containing a metal salt, an organic solvent, a chelate compound that is solid at 25 ° C., and water is prepared, and the precursor solution is concentrated until the viscosity is increased to a degree that can be molded. It is characterized by heating at a temperature higher than the melting point and lower than the boiling point. And it concentrates and shape | molds in a desired shape before a heating . By this method, the organic solvent in the solution evaporates at the time of heating, and polymerization of the metal salt and chelation with respect to the metal proceed to obtain a thermoplastic material. The reason why the hybrid material using the chelate compound that is liquid at 25 ° C. does not have thermoplasticity is presumably because the chelate compound evaporates during heating.

金属塩として、好ましい一つは金属アルコキシドであり、他の一つは金属硝酸塩、金属塩化物塩、金属酢酸塩等の金属カルボン酸塩又はそれらの組み合わせである。いずれも加水分解により容易に酸化物を生じうるからである。また、前記キレート化合物がβジケトンまたはエチレンジアミン誘導体であるときは、そのカルボニル基の炭素及びアミノ基の窒素が環状構造の構成要素ではないものが好ましい。官能基の原子が環状構造の構成要素であると、金属原子に配位することが極めて困難だからである。前記金属塩とキレート化合物の好ましいモル比は1:1.0〜2.5である。モル比がこの範囲にあるとき、キレート化合物が金属塩の周囲に過不足無くほぼ均等に配位すると想定できるからである。   As a metal salt, one preferred is a metal alkoxide, and the other is a metal carboxylate such as a metal nitrate, metal chloride, metal acetate, or a combination thereof. This is because any of them can easily generate an oxide by hydrolysis. Further, when the chelate compound is a β diketone or an ethylenediamine derivative, it is preferable that the carbon of the carbonyl group and the nitrogen of the amino group are not constituents of the cyclic structure. This is because it is extremely difficult to coordinate to a metal atom when the functional group atom is a component of a cyclic structure. A preferred molar ratio of the metal salt to the chelate compound is 1: 1.0 to 2.5. This is because when the molar ratio is within this range, it can be assumed that the chelate compound coordinates almost uniformly around the metal salt without excess or deficiency.

以上のように、この発明の有機・無機ハイブリッド材料は、高屈折率と熱可塑性を兼ね備えているので、これを所望の形状に成形することにより、様々な光路を実現することができる。   As described above, since the organic / inorganic hybrid material of the present invention has both a high refractive index and thermoplasticity, various optical paths can be realized by molding it into a desired shape.

実施例1の試料hの光吸収スペクトルである。2 is a light absorption spectrum of the sample h of Example 1. 実施例2の試料の光吸収スペクトルである。2 is a light absorption spectrum of the sample of Example 2.

―実施例1―
金属アルコキシドとしてチタンテトラノルマルブトキシドTi(O−nC494及びジルコニウムテトラノルマルプロポキシドZr(O−nC374を準備した。アセトン中に表1に記載のβジケトンのうち1種または2種、いずれかのアルコキシド及び脱イオン水を、モル比でアルコキシド:βジケトン:水:アセトンが1:2:1:20となるように加えることにより、前駆体溶液を調製した。2種のβジケトンを加えるときはそれらが互いに等モルとなるように調製した。
—Example 1—
Titanium tetranormal butoxide Ti (O—nC 4 H 9 ) 4 and zirconium tetranormal propoxide Zr (O—nC 3 H 7 ) 4 were prepared as metal alkoxides. One or two of the β diketones listed in Table 1 in acetone and either alkoxide and deionized water are in a molar ratio of alkoxide: β diketone: water: acetone 1: 2: 1: 20. To prepare a precursor solution. When the two β diketones were added, they were prepared so that they were equimolar to each other.

Figure 0005923816
Figure 0005923816

溶液を室温で1時間撹拌した後、80℃で表2に示す種々の時間濃縮したところ、粘りけのある樹脂状になった。この粘りけのある溶液をシリコン(100)基板の上に滴下し、オーブンで10分間表2に示す種々の温度で乾燥することにより、厚さ700μmの試料を製造した。室温まで放置した後、ピンセットで触れることにより、試料が硬いか軟らかいかを評価した。次に、同じ温度で再度3分間加熱して冷却前に硬さを評価した後、冷却して試料をポリエチレンの袋に1日間封入し、室温で再び硬さを評価した。   The solution was stirred at room temperature for 1 hour and then concentrated at 80 ° C. for various times as shown in Table 2 to obtain a sticky resin. This sticky solution was dropped on a silicon (100) substrate and dried in an oven at various temperatures shown in Table 2 for 10 minutes to produce 700 μm thick samples. After leaving to room temperature, it was evaluated whether the sample was hard or soft by touching with tweezers. Next, after heating again for 3 minutes at the same temperature and evaluating the hardness before cooling, the sample was cooled and sealed in a polyethylene bag for one day, and the hardness was evaluated again at room temperature.

また、各段階における試料の光学的透明度を評価するために、前記シリコン(100)基板に代えて清浄なシリカガラス基板の上で試料を製造し、同じシリカガラス基板を対照とし、分光測光計(ジャスコ社製型式V−570)を用いて光吸収スペクトルを測定した。試料の厚さは、5μm及び200μmであった。評価結果を表2に併記する。一例として試料hのスペクトルを図1に示す。   In addition, in order to evaluate the optical transparency of the sample at each stage, a sample was produced on a clean silica glass substrate instead of the silicon (100) substrate, and the spectrophotometer ( The optical absorption spectrum was measured using a Jusco model V-570). Sample thicknesses were 5 μm and 200 μm. The evaluation results are also shown in Table 2. As an example, the spectrum of sample h is shown in FIG.

Figure 0005923816
Figure 0005923816

試料の屈折率を、屈折率1.9648のプリズムを備えるプリズムカップラー(メトリコン コーポレーション社製型式2010)を用いて測定した。測定結果を表3に示す。   The refractive index of the sample was measured using a prism coupler (Model 2010 manufactured by Metricon Corporation) having a prism with a refractive index of 1.9648. Table 3 shows the measurement results.

Figure 0005923816
Figure 0005923816

表2に示すように、常温で固体のβジケトンを少なくとも1種用いた試料d、f−o、p−rは、試料pを除く全てが熱可塑性を有し、クラックの無い、黄みがかった透明であった。いずれの試料もβジケトンの融点よりも高い温度で可塑性を示していること、及びβジケトンによるキレート環の存在を示す黄みがかっていることから、試料の熱可塑性はβジケトンの融点に起因するものではないと認められる。即ち、試料の熱可塑性は、試料中で金属に配位したキレート化合物同士のファンデアヴァールス結合に起因するものと推定される。   As shown in Table 2, samples d, fo, and pr using at least one kind of β-diketone that is solid at room temperature are all thermoplastic except sample p, have no cracks, and are yellowish. It was transparent. Both samples show plasticity at a temperature higher than the melting point of β-diketone and are yellowish indicating the presence of a chelate ring by β-diketone, so the thermoplasticity of the sample is due to the melting point of β-diketone It is recognized that it is not a thing. In other words, the thermoplasticity of the sample is presumed to be due to van der Waals bonds between chelate compounds coordinated to metals in the sample.

一方、常温で液体のβジケトンのみを用いた試料a−c、eは、いずれも加熱時でさえ硬く、熱可塑性を有さず、しかも加熱時もしくは濃縮時の段階で不透明であった。これらの試料においては、βジケトンが濃縮時に蒸発してしまい、アルコキシドの重縮合反応が促進されたために、試料が硬化したものと推定される。尚、試料pは、βジケトンを用いているが、アルコキシドとβジケトンとのモル比が1:1であったので、加水分解と重縮合を抑制するのに十分にキレート化しなかったものと推定される。
表3に示すように、屈折率は1.65〜1.73の範囲であった。
On the other hand, the samples ac, e using only the β-diketone which is liquid at room temperature were both hard even when heated, had no thermoplasticity, and were opaque at the stage of heating or concentration. In these samples, it is presumed that the samples were cured because the β-diketone evaporated during concentration and the polycondensation reaction of the alkoxide was promoted. Sample p uses β-diketone, but since the molar ratio of alkoxide to β-diketone was 1: 1, it was estimated that it was not chelated sufficiently to suppress hydrolysis and polycondensation. Is done.
As shown in Table 3, the refractive index was in the range of 1.65 to 1.73.

―実施例2―
エタノールに酢酸亜鉛Zn(CH3COOH)2・2H2O及び1−フェニルブタン−1,3−ジオンを、モル比で順に酢酸亜鉛:βジケトン:エタノール=1:1:30となるように加えることにより、白色沈殿を含む前駆体溶液を調製した。
—Example 2—
Zinc acetate Zn (CH 3 COOH) 2 .2H 2 O and 1-phenylbutane-1,3-dione are added to ethanol in this order in a molar ratio of zinc acetate: β-diketone: ethanol = 1: 1: 30. Thus, a precursor solution containing a white precipitate was prepared.

溶液を遠心分離し、上澄み液を80℃で1時間濃縮したところ、粘りけのある樹脂状になった。再度遠心分離したところ、上澄み液の粘りけが増した。この粘りけのある溶液をシリコン(100)基板の上に滴下し、オーブンで10分間120℃で乾燥することにより、厚さ270μmの試料を製造した。室温まで放置した後、ピンセットで触れたところ、試料は硬くなっていた。次に、同じ温度で再度3分間加熱して冷却前にピンセットで触れたところ、軟らかかった。   The solution was centrifuged, and the supernatant was concentrated at 80 ° C. for 1 hour. As a result, it became a sticky resin. When it was centrifuged again, the viscosity of the supernatant liquid increased. This sticky solution was dropped on a silicon (100) substrate and dried in an oven at 120 ° C. for 10 minutes to produce a sample having a thickness of 270 μm. After leaving to room temperature, when touched with tweezers, the sample was hard. Next, after heating again at the same temperature for 3 minutes and touching with tweezers before cooling, it was soft.

試料の屈折率は、1.66であった。前記シリコン(100)基板に代えて清浄なシリカガラス基板の上で試料を製造し、実施例1と同様に光吸収スペクトルを測定した。測定結果を図2に示す。
試料を熱分析したところ、温度が1000℃に達しても重量が0にならなかった。従って、試料中に酸化亜鉛のメタロキサンポリマーが含まれていると認められた。
The refractive index of the sample was 1.66. A sample was produced on a clean silica glass substrate instead of the silicon (100) substrate, and the light absorption spectrum was measured in the same manner as in Example 1. The measurement results are shown in FIG.
As a result of thermal analysis of the sample, the weight did not become zero even when the temperature reached 1000 ° C. Therefore, it was confirmed that the metal oxide polymer of zinc oxide was contained in the sample.

Claims (10)

メタロキサンポリマーと、このメタロキサンポリマー中の金属原子に対して配位可能なキレート化合物とを備え、メタロキサンポリマーの金属原子に前記キレート化合物が配位しており、配位前の前記キレート化合物が25℃で固体であることを特徴とする高屈折率熱可塑性光学材料。 A metalloxane polymer and a chelate compound capable of coordinating with a metal atom in the metalloxane polymer, wherein the chelate compound is coordinated with the metal atom of the metalloxane polymer, and the chelate compound before coordination A high refractive index thermoplastic optical material characterized in that is a solid at 25 ° C. 前記金属原子がチタン、ジルコニウム及び亜鉛のうちから選ばれる一種以上である請求項1に記載の光学材料。 The optical material according to claim 1, wherein the metal atom is one or more selected from titanium, zirconium, and zinc. 前記キレート化合物がβジケトン、カルボン酸、またはエチレンジアミン誘導体である請求項1に記載の光学材料。 The optical material according to claim 1, wherein the chelate compound is a β-diketone, a carboxylic acid, or an ethylenediamine derivative. 金属塩、有機溶剤、25℃で固体であるキレート化合物及び水を含む溶液からなる高屈折率熱可塑性光学材料前駆体溶液。 A high refractive index thermoplastic optical material precursor solution comprising a solution containing a metal salt, an organic solvent, a chelate compound that is solid at 25 ° C., and water. 前記金属塩が金属アルコキシド、金属硝酸塩、金属塩化物塩、金属カルボン酸塩又はそれらの組み合わせである請求項4に記載の溶液。   The solution according to claim 4, wherein the metal salt is a metal alkoxide, a metal nitrate, a metal chloride salt, a metal carboxylate, or a combination thereof. 前記金属塩が金属アルコキシドまたは金属酢酸塩である請求項4に記載の溶液。   The solution according to claim 4, wherein the metal salt is a metal alkoxide or a metal acetate. 前記キレート化合物がβジケトン、カルボン酸、またはエチレンジアミン誘導体である請求項4に記載の溶液。   The solution according to claim 4, wherein the chelate compound is a β-diketone, a carboxylic acid, or an ethylenediamine derivative. 前記キレート化合物がβジケトンまたはエチレンジアミン誘導体であって、そのカルボニル基の炭素及びアミノ基の窒素が環状構造の構成要素ではない請求項4に記載の溶液。   The solution according to claim 4, wherein the chelate compound is a β diketone or an ethylenediamine derivative, and the carbon of the carbonyl group and the nitrogen of the amino group are not constituents of the cyclic structure. 前記金属塩とキレート化合物のモル比が1:1.0〜2.5である請求項4に記載の溶液。   The solution according to claim 4, wherein the molar ratio of the metal salt to the chelate compound is 1: 1.0 to 2.5. 請求項4に記載の溶液を濃縮することにより粘性を上げ、成形した後、前記キレート化合物の融点よりも高く沸点よりも低い温度で加熱することを特徴とする高屈折率熱可塑性光学材料の製造方法。 5. The production of a high refractive index thermoplastic optical material characterized by increasing the viscosity by concentrating the solution according to claim 4 and molding , followed by heating at a temperature higher than the melting point of the chelate compound and lower than the boiling point. Method.
JP2011285427A 2011-12-27 2011-12-27 High refractive index thermoplastic optical material and manufacturing method thereof Expired - Fee Related JP5923816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285427A JP5923816B2 (en) 2011-12-27 2011-12-27 High refractive index thermoplastic optical material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285427A JP5923816B2 (en) 2011-12-27 2011-12-27 High refractive index thermoplastic optical material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013133430A JP2013133430A (en) 2013-07-08
JP5923816B2 true JP5923816B2 (en) 2016-05-25

Family

ID=48910349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285427A Expired - Fee Related JP5923816B2 (en) 2011-12-27 2011-12-27 High refractive index thermoplastic optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5923816B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203546A1 (en) * 1982-02-03 1983-08-11 Dynamit Nobel Ag, 5210 Troisdorf BINDERS CONTAINING TITANIC ACID ESTERS FOR COATING MEASURES AND FIRE-RESISTANT MOLDED BODIES, AND METHOD FOR THE PRODUCTION OF THESE BINDERS
JPS60104132A (en) * 1983-11-12 1985-06-08 Toyobo Co Ltd Preparation of polymer
JP4840179B2 (en) * 2007-02-09 2011-12-21 Tdk株式会社 Hologram recording material, method for producing the same, and hologram recording medium
JP5149602B2 (en) * 2007-11-05 2013-02-20 マツモトファインケミカル株式会社 Water-soluble titanium oligomer composition
JP5172499B2 (en) * 2008-06-28 2013-03-27 マツモトファインケミカル株式会社 Inorganic particle binder composition

Also Published As

Publication number Publication date
JP2013133430A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
Schottner Hybrid sol− gel-derived polymers: applications of multifunctional materials
Yao et al. Three‐layered hollow nanospheres based coatings with ultrahigh‐performance of energy‐saving, antireflection, and self‐cleaning for smart windows
TW201016760A (en) Cured organopolysiloxane resin film having gas barrier properties and method of producing the same
TW200842159A (en) Metal oxide nano-particles, their production process, nano-particles-dispersed resin and its production process
KR20100125339A (en) Nanoparticle sol-gel composite hybride transparent coating materials
Rosero-Navarro et al. Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel coatings
KR20060134173A (en) Article with silica coating formed and process for producing the same
TWI621644B (en) Organic-inorganic hybrid pre-polymer, organic-inorganic hybrid material and element sealing structure
KR20050120626A (en) Hybrid organic-inorganic polymer coatings with high refractive indices
CN108137385B (en) Low-melting-point composition, sealing material, and electronic component
Kobayashi et al. Epoxy‐based hybrids using TiO2 nanoparticles prepared via a non‐hydrolytic sol–gel route
CN101830715A (en) Preparation method of CaO refractory and crucible for titanium alloy smelting
JP5923816B2 (en) High refractive index thermoplastic optical material and manufacturing method thereof
KR20130017057A (en) Transparent optical hybrid material
JP5248071B2 (en) Resin composition for optical semiconductor encapsulation
JP5546341B2 (en) Colored transparent film, heat-absorbing transparent film and method for producing the same
TW201323487A (en) Method for making high thermo-resistant and transparent resin
TWI636828B (en) Use of polysilsesquioxane encapsulating material composition for UV-LED and acetonitrile acetone catalyst used therefor
TW201406883A (en) Primer composition and photo-semiconductor device using the same
WO1998054094A1 (en) PROCESS FOR PREPARING In2O3-SnO2 PRECURSOR SOL AND PROCESS FOR PREPARING THIN FILM OF In2O3-SnO¿2?
JP2013514392A (en) Process for producing encapsulated metal colloids as inorganic colored pigments
TWI639654B (en) Use of polysilsesquioxane encapsulating material composition for UV-LED and metal alkoxide used therefor
Park et al. Triethylene glycol–titanium oxide hydrate hybrid films with high refractive index and surface evenness
JPS59195504A (en) Composite metallic solution
TWI439509B (en) Polyimidethioethers-inorganic nanoparticle hybrid material, intermediate thereof and their preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5923816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees