JP5923431B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5923431B2
JP5923431B2 JP2012230678A JP2012230678A JP5923431B2 JP 5923431 B2 JP5923431 B2 JP 5923431B2 JP 2012230678 A JP2012230678 A JP 2012230678A JP 2012230678 A JP2012230678 A JP 2012230678A JP 5923431 B2 JP5923431 B2 JP 5923431B2
Authority
JP
Japan
Prior art keywords
electrode
electrode group
battery
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012230678A
Other languages
Japanese (ja)
Other versions
JP2014082157A (en
Inventor
有島 康夫
康夫 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012230678A priority Critical patent/JP5923431B2/en
Publication of JP2014082157A publication Critical patent/JP2014082157A/en
Application granted granted Critical
Publication of JP5923431B2 publication Critical patent/JP5923431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明はリチウムイオン二次電池に関し、例えば車両等に搭載されるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery, for example, a lithium ion secondary battery mounted on a vehicle or the like.

リチウムイオン二次電池は、他の二次電池と比較してエネルギー密度が高いため、従来から、主にデジタルカメラやノート型パソコン、携帯電話等といったポータブル電子機器に使用されてきた。   Lithium ion secondary batteries have a higher energy density than other secondary batteries, and so far have been used mainly in portable electronic devices such as digital cameras, notebook computers, and mobile phones.

また、近年では、環境問題に対応するべく、電気自動車用や電力貯蔵用等の大型のリチウムイオン二次電池の研究開発が活発に進められている。例えば、自動車分野においては、リチウムイオン二次電池を動力源として駆動するモータを用いた電気自動車や内燃機関とモータの双方を用いたハイブリッド方式の電気自動車の研究開発が進められており、そのような電気自動車の一部は既に実用化されている。   In recent years, research and development of large-sized lithium ion secondary batteries for electric vehicles and power storage have been actively promoted in order to cope with environmental problems. For example, in the automobile field, research and development of an electric vehicle using a motor driven by a lithium ion secondary battery as a power source and a hybrid electric vehicle using both an internal combustion engine and a motor are underway. Some electric vehicles have already been put into practical use.

ところで、リチウムイオン二次電池はエネルギー密度が高い反面、例えば車両に搭載される大型のリチウムイオン二次電池は、内在するエネルギーが非常に大きいために、高い信頼性と安全性が要求されている。ここで、信頼性と安全性を低下させる要因としては、例えば電池膨れが挙げられる。この電池膨れは、主に初充電時やサイクル時のガスの発生や、充放電に伴う電極の膨張、収縮、特に負極の膨張、収縮による捲回電極群の撓みの発生に起因することが知られている。   By the way, while the lithium ion secondary battery has a high energy density, for example, a large-sized lithium ion secondary battery mounted on a vehicle has a very large energy, and thus high reliability and safety are required. . Here, as a factor that lowers reliability and safety, for example, battery swelling may be mentioned. It is known that this battery swelling is mainly caused by the generation of gas during initial charging and cycling, and the expansion and contraction of the electrode accompanying charging and discharging, in particular, the bending of the wound electrode group due to the expansion and contraction of the negative electrode. It has been.

図7(a)に示すように、従来のリチウムイオン二次電池では、放電時に正極と負極がセパレータを介して扁平状に捲回された電極群Pと電池缶Kの内壁面Kaとの間、特に電極群Pの平面部Paと電池缶Kの内壁面Kaとの間に隙間Gが設けられている。そのため、充電時に膨張する電極群Pは、電池缶Kに接触するまで外部から拘束力が作用せず、電極群P、特に電極の捲回時に張力が付与され難い電極群Pの平面部Paに膨張による撓みが発生する。そして、充放電を繰り返した後は、図7(b)に示すように、電極群P、特に電極群Pの平面部Paに撓みが残存してしまう。   As shown in FIG. 7 (a), in a conventional lithium ion secondary battery, between the electrode group P in which the positive electrode and the negative electrode are wound in a flat shape via a separator during discharge and the inner wall surface Ka of the battery can K In particular, a gap G is provided between the flat portion Pa of the electrode group P and the inner wall surface Ka of the battery can K. Therefore, the electrode group P that expands at the time of charging does not have a binding force from the outside until it contacts the battery can K, and the electrode group P, particularly the flat portion Pa of the electrode group P that is difficult to apply tension when the electrode is wound. Deflection due to expansion occurs. And after repeating charging / discharging, as shown in FIG.7 (b), bending will remain in the electrode group P, especially the plane part Pa of the electrode group P. FIG.

初充電時やサイクル時にガスが発生すると、例えば電極間にガスが介在して抵抗が上昇したり電解液が枯渇し、電池のサイクル特性が低下する可能性がある。また、電極群に撓みが発生すると、当該撓み部分で電極間の距離が増大し、円滑な電池反応が阻害されて電池のサイクル特性が低下する可能性がある。さらに、電極群の撓みの発生によって電極間の距離が不均一となり、局所的に充電過多となる部分では、金属リチウムの析出に至る可能性があり、電池の安全性に影響を及ぼし得るといった問題もある。   If gas is generated at the time of initial charge or at the time of cycling, for example, the gas may be interposed between the electrodes, resulting in an increase in resistance or depletion of the electrolyte, which may deteriorate the cycle characteristics of the battery. In addition, when the electrode group is bent, the distance between the electrodes is increased at the bent portion, and the smooth battery reaction may be hindered, thereby reducing the cycle characteristics of the battery. Furthermore, the distance between the electrodes becomes non-uniform due to the occurrence of bending of the electrode group, and there is a possibility that metal lithium may be deposited in a part where the charge is locally excessive, which may affect the safety of the battery. There is also.

このような問題に対し、二次電池の信頼性や安全性を高める技術が特許文献1〜4に開示されている。   For such problems, Patent Documents 1 to 4 disclose techniques for improving the reliability and safety of secondary batteries.

特開2006−107742号公報JP 2006-107742 A 特許第4789584号公報Japanese Patent No. 4789854 国際公開第2010/086911号公報International Publication No. 2010/086911 特開2004−259485号公報JP 2004-259485 A

特許文献1、2に開示されている二次電池によれば、電極群のコーナー部の電極間に隙間やゆるみを設けることによって、電極群の膨張時の撓みを抑制することができ、電池の膨れを抑制してサイクル特性の低下を抑制することができる。   According to the secondary batteries disclosed in Patent Documents 1 and 2, by providing a gap or a looseness between the electrodes at the corners of the electrode group, the deflection of the electrode group during expansion can be suppressed. Swelling can be suppressed and deterioration of cycle characteristics can be suppressed.

また、特許文献3に開示されている二次電池によれば、電極群の長径方向端部(コーナー部端部)と電池容器の短辺側の内側面との隙間を、電極群の長径方向の長さと正極の破断時の伸び率との関係で規定することによって、膨張した電極群が電池容器の内側面と当接することを抑制することができ、負極の膨張、収縮に伴う電極群の座屈発生を抑制してサイクル特性の低下を抑制することができる。   Moreover, according to the secondary battery disclosed in Patent Document 3, the gap between the end portion in the major axis direction (corner end portion) of the electrode group and the inner side surface on the short side of the battery container is set in the major axis direction of the electrode group. By defining the relationship between the length of the electrode and the elongation at break of the positive electrode, the expanded electrode group can be prevented from coming into contact with the inner surface of the battery container, and the electrode group accompanying the expansion and contraction of the negative electrode can be suppressed. Generation | occurrence | production of buckling can be suppressed and the fall of cycling characteristics can be suppressed.

また、特許文献4に開示されている二次電池によれば、電極群の短径に対応する電池容器の内側の寸法と満充電状態における電極群の短径との関係を規定することによって、電池容器に電極群を収容して充電した際のセパレータの圧縮力を低減することができ、電極間の短絡を抑制することができるとともに、高い体積エネルギーを確保することができる。   Further, according to the secondary battery disclosed in Patent Document 4, by defining the relationship between the inner dimension of the battery container corresponding to the minor axis of the electrode group and the minor axis of the electrode group in a fully charged state, The compressive force of the separator when the electrode group is accommodated in the battery container and charged can be reduced, a short circuit between the electrodes can be suppressed, and high volume energy can be secured.

しかしながら、特許文献1、2に開示されている二次電池においては、電極群の膨張時の撓みをコーナー部の電極間に設けた隙間のみで抑制することが困難であるといった問題や、電極群のコーナー部の電極間に対し精緻に隙間を設けることが困難であるといった問題がある。   However, in the secondary batteries disclosed in Patent Documents 1 and 2, there is a problem that it is difficult to suppress the bending at the time of expansion of the electrode group only by a gap provided between the electrodes of the corner portion, There is a problem in that it is difficult to provide a precise gap between the electrodes at the corners.

また、特許文献3に開示されている二次電池においては、負極の膨張や電極群の撓み、特に電極群の平面部における負極の膨張や電極群の撓みを電極群のコーナー部端部と電池容器の短辺側の内側面との隙間のみで抑制することは困難であるといった問題がある。   Further, in the secondary battery disclosed in Patent Document 3, the negative electrode expansion and the electrode group deflection, particularly the negative electrode expansion and the electrode group deflection in the flat portion of the electrode group, the corner end portion of the electrode group and the battery There is a problem that it is difficult to suppress only by a gap with the inner side surface on the short side of the container.

さらに、特許文献4に開示されている二次電池においては、放電時に生じる電極の収縮が考慮されておらず、充放電を繰り返した際の電極群の撓みを十分に抑制することができない可能性があるといった問題がある。   Furthermore, in the secondary battery disclosed in Patent Document 4, the contraction of the electrode that occurs at the time of discharge is not considered, and the bending of the electrode group when charging and discharging are repeated may not be sufficiently suppressed. There is a problem that there is.

本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、電池膨れやサイクル劣化の要因となる充放電に伴う電極の膨張、収縮、特に負極の膨張、収縮による電極群の撓みを抑制し、サイクル特性の低下や金属リチウムの析出を抑制し、高い信頼性と安全性を有するリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to expand and contract electrodes due to charge and discharge that cause battery expansion and cycle deterioration, in particular, electrodes due to expansion and contraction of the negative electrode. An object of the present invention is to provide a lithium ion secondary battery having high reliability and safety by suppressing bending of the group, suppressing deterioration of cycle characteristics and precipitation of metallic lithium.

上記する課題を解決するために、本発明に係るリチウムイオン二次電池は、正極と負極がセパレータを介して扁平状に捲回された電極群と、該電極群を収納する電池容器と、該電池容器内に注入される非水電解液と、を有するリチウムイオン二次電池であって、前記電極群の平面部の対向する表面同士へ向かう方向を該電極群の厚み方向とした際に、前記電極群を収容する前の前記電池容器の厚み方向における内寸に対する前記電池容器に収容された前記電極群の放電時の厚み方向における外寸の比率が1.01から1.03の範囲内であり、かつ、前記電池容器に収容された前記電極群の放電時に対する満充電時の厚み方向における膨張率が1.01から1.04の範囲内であるものである。   In order to solve the above-described problems, a lithium ion secondary battery according to the present invention includes an electrode group in which a positive electrode and a negative electrode are wound in a flat shape through a separator, a battery container that stores the electrode group, A lithium ion secondary battery having a non-aqueous electrolyte injected into the battery container, and when the direction toward the opposing surfaces of the planar portion of the electrode group is the thickness direction of the electrode group, The ratio of the outer dimension in the thickness direction during discharge of the electrode group housed in the battery container to the inner dimension in the thickness direction of the battery container before housing the electrode group is in the range of 1.01 to 1.03, and The expansion coefficient in the thickness direction at the time of full charge with respect to the time of discharge of the electrode group accommodated in the battery container is in the range of 1.01 to 1.04.

本発明によれば、充放電に伴う電極の膨張、収縮、特に負極の膨張、収縮による電極群の撓みを抑制することができ、サイクル特性の低下や金属リチウムの析出を抑制することができ、高い信頼性と安全性を確保することができる。   According to the present invention, it is possible to suppress the expansion and contraction of the electrode accompanying charging and discharging, in particular the expansion and contraction of the negative electrode, the deflection of the electrode group, it is possible to suppress the deterioration of the cycle characteristics and the deposition of metallic lithium, High reliability and safety can be ensured.

上記した以外の課題、手段及び効果は、以下の実施形態の説明により明らかにされる。   Problems, means, and effects other than those described above will become apparent from the following description of embodiments.

本発明に係るリチウムイオン二次電池の一実施の形態の外観を示す全体斜視図。1 is an overall perspective view showing the appearance of an embodiment of a lithium ion secondary battery according to the present invention. 図1に示すリチウムイオン二次電池を分解して示す分解斜視図。The disassembled perspective view which decomposes | disassembles and shows the lithium ion secondary battery shown in FIG. 図2に示す電極群を一部を展開した状態で示す分解斜視図。The disassembled perspective view which shows the electrode group shown in FIG. 2 in the state which expand | deployed one part. 図1に示すリチウムイオン二次電池の作製工程を説明したフローチャート。The flowchart explaining the preparation process of the lithium ion secondary battery shown in FIG. 図1に示すリチウムイオン二次電池の内部構成を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the internal structure of the lithium ion secondary battery shown in FIG. 各試験体の電極群膨張率と電極群厚み比率を示す図。The figure which shows the electrode group expansion coefficient and electrode group thickness ratio of each test body. 従来のリチウムイオン二次電池の内部構成を模式的に示す断面図であって、(a)は放電時の内部構成を示す図、(b)は充放電を繰り返した後の内部構成を示す図。It is sectional drawing which shows typically the internal structure of the conventional lithium ion secondary battery, (a) is a figure which shows the internal structure at the time of discharge, (b) is a figure which shows the internal structure after repeating charging / discharging. .

以下、本発明に係るリチウムイオン二次電池の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of a lithium ion secondary battery according to the present invention will be described with reference to the drawings.

図1は、本発明に係るリチウムイオン二次電池の一実施の形態の外観を示したものである。   FIG. 1 shows the appearance of an embodiment of a lithium ion secondary battery according to the present invention.

図示するリチウムイオン二次電池20は、電池缶11と電池蓋9を備えていて、電池缶11の内部に、発電体である電極群19(図2参照)が収納され、電池缶11の上部開口が電池蓋9によって封止されて密閉されている。なお、電池缶11と電池蓋9はレーザ溶接によって接合され、電池缶11と電池蓋9によって角形の電池容器12が構成されている。   The illustrated lithium ion secondary battery 20 includes a battery can 11 and a battery lid 9, and an electrode group 19 (see FIG. 2) that is a power generator is housed inside the battery can 11, and an upper portion of the battery can 11. The opening is sealed and sealed with a battery lid 9. The battery can 11 and the battery lid 9 are joined by laser welding, and the battery can 11 and the battery lid 9 constitute a rectangular battery container 12.

また、電池蓋9には、負極外部端子7と正極外部端子8と注液孔10が設けられていて、注液孔10は、レーザ溶接によって不図示の注液栓が接合されて封止されている。   The battery lid 9 is provided with a negative electrode external terminal 7, a positive electrode external terminal 8, and a liquid injection hole 10. The liquid injection hole 10 is sealed by joining a liquid injection stopper (not shown) by laser welding. ing.

図2は、図1に示すリチウムイオン二次電池を分解して示したものである。   FIG. 2 is an exploded view of the lithium ion secondary battery shown in FIG.

図示するように、注液孔10を配設した電池蓋9には負極外部端子7と正極外部端子8が予め接続され、負極外部端子7と正極外部端子8のそれぞれに負極集電板5と正極集電板6が接続され、負極外部端子7と負極集電板5が電気的に導通され、正極外部端子8と正極集電板6が電気的に導通されている。   As shown in the figure, a negative electrode external terminal 7 and a positive electrode external terminal 8 are connected in advance to a battery lid 9 provided with a liquid injection hole 10, and a negative electrode current collector plate 5 is connected to each of the negative electrode external terminal 7 and the positive electrode external terminal 8. The positive electrode current collector plate 6 is connected, the negative electrode external terminal 7 and the negative electrode current collector plate 5 are electrically connected, and the positive electrode external terminal 8 and the positive electrode current collector plate 6 are electrically connected.

また、電極群19は、正極1と負極2がセパレータ3、4を介して捲回軸L周りで扁平状に捲回されて形成されており(図3参照)、断面が略半円形状の互いに対向する一対の湾曲部19a、19bと、湾曲部19a、19bの間に形成される平面部19cと、を有している。電極群19は、捲回軸L方向の端部に金属箔が露出した負極箔露出部(負極未塗工部)2aと正極箔露出部(正極未塗工部)1aを有していて、負極未塗工部2aが負極集電板5と超音波溶接によって接合され、正極未塗工部1aが正極集電板6と超音波溶接によって接合されている。このように負極集電板5や正極集電板6を介して電池蓋9などが取り付けられた電極群19は、一方の湾曲部19b側から電池缶11内に挿入され、他方の湾曲部19a側が電池缶11の上部開口側となるように電池缶11内に収納される。   Further, the electrode group 19 is formed by winding the positive electrode 1 and the negative electrode 2 in a flat shape around the winding axis L via the separators 3 and 4 (see FIG. 3), and the cross section is substantially semicircular. It has a pair of curved parts 19a and 19b which oppose each other, and a flat part 19c formed between the curved parts 19a and 19b. The electrode group 19 has a negative foil exposed portion (negative electrode uncoated portion) 2a and a positive foil exposed portion (positive electrode uncoated portion) 1a in which the metal foil is exposed at the end in the winding axis L direction, The negative electrode uncoated portion 2a is joined to the negative electrode current collector plate 5 by ultrasonic welding, and the positive electrode uncoated portion 1a is joined to the positive electrode current collector plate 6 by ultrasonic welding. Thus, the electrode group 19 to which the battery lid 9 and the like are attached via the negative electrode current collector plate 5 and the positive electrode current collector plate 6 is inserted into the battery can 11 from the one curved portion 19b side, and the other curved portion 19a. The battery can 11 is housed in the battery can 11 so that the side is the upper opening side of the battery can 11.

なお、角形の電池容器12内には、注液孔10を介して電極群19全体を浸潤可能な量の非水電解液が注入され、その注液孔10が不図示の注液栓で封止されることによって電池容器12が密閉される。   A non-aqueous electrolyte in an amount capable of infiltrating the entire electrode group 19 is injected into the rectangular battery container 12 through the injection hole 10, and the injection hole 10 is sealed with an injection stopper (not shown). The battery case 12 is sealed by being stopped.

図3は、図2に示す電極群を一部を展開した状態で示したものである。なお、図3は、正極及び負極の未塗工部を負極集電板5や正極集電板6に接合する前の状態を示している。   FIG. 3 shows the electrode group shown in FIG. 2 in a partially expanded state. FIG. 3 shows a state before joining the uncoated portions of the positive electrode and the negative electrode to the negative electrode current collector plate 5 and the positive electrode current collector plate 6.

図示するように、電極群19は、正極箔の表面に活物質層が形成された正極塗工部1bとその正極箔の捲回軸L方向の一方の端部に一定幅の正極箔が露出する正極未塗工部1aを有する正極1と、負極箔の表面に活物質層が形成された負極塗工部2bとその負極箔の捲回軸L方向の他方の端部に一定幅の負極箔が露出する負極未塗工部2aを有する負極2と、を有している。電極群19は、正極未塗工部1aと負極未塗工部2aが捲回軸L方向で反対側に配置されるように、正極1と負極2をセパレータ3、4を介して捲回軸L周りで扁平状に捲回して形成される。   As shown in the drawing, the electrode group 19 has a positive electrode coating portion 1b having an active material layer formed on the surface of the positive electrode foil and a positive electrode foil having a constant width exposed at one end of the positive electrode foil in the winding axis L direction. A positive electrode 1 having a positive electrode uncoated portion 1a, a negative electrode coated portion 2b having an active material layer formed on the surface of the negative electrode foil, and a negative electrode having a constant width at the other end in the winding axis L direction of the negative electrode foil A negative electrode 2 having a negative electrode uncoated portion 2a from which the foil is exposed. In the electrode group 19, the positive electrode 1 and the negative electrode 2 are wound through the separators 3 and 4 so that the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a are arranged on the opposite sides in the winding axis L direction. It is formed by winding around L in a flat shape.

図4は、図1に示すリチウムイオン二次電池の作製工程を説明したものである。図示するリチウムイオン二次電池の作製工程は、主として電極の作製工程(S1)と電池の組立工程(S2)とから構成されている。   FIG. 4 illustrates a manufacturing process of the lithium ion secondary battery shown in FIG. The manufacturing process of the lithium ion secondary battery shown in the figure mainly includes an electrode manufacturing process (S1) and a battery assembly process (S2).

電極の作製工程(S1)は、主として混練工程(S11)と塗工工程(S12)とプレス工程(S13)とスリット工程(S14)とから構成されている。混練工程(S11)では、活物質と導電助剤と結着剤を所定の重量比で混合し、これに分散溶媒を添加して混練することによって、所定の固形分濃度や粘度に調整されたスラリを作製する。塗工工程(S12)では、所定の厚さの金属箔の両面に前記スラリを所定の幅および所定の重量だけ塗工し、その後に乾燥により溶媒のみを除去することによって、塗工後電極を作製する。プレス工程(S13)では、前記塗工後電極を所定の厚さまでロールプレスにより圧縮することによって、所定の電極密度を有するプレス後電極を作製する。スリット工程(S14)では、前記プレス後電極を所定の塗工部の幅および所定の未塗工部の幅となるように裁断することによって、電極原反を作製する。   The electrode manufacturing step (S1) mainly comprises a kneading step (S11), a coating step (S12), a pressing step (S13), and a slitting step (S14). In the kneading step (S11), the active material, the conductive auxiliary agent and the binder were mixed at a predetermined weight ratio, and a dispersion solvent was added thereto and kneaded to adjust to a predetermined solid content concentration and viscosity. Make a slurry. In the coating step (S12), the slurry is applied on both sides of a metal foil having a predetermined thickness by a predetermined width and a predetermined weight, and then only the solvent is removed by drying, whereby the electrode after coating is formed. Make it. In the pressing step (S13), the post-coating electrode having a predetermined electrode density is produced by compressing the post-coating electrode to a predetermined thickness by a roll press. In the slitting step (S14), the post-press electrode is cut so as to have a predetermined coated part width and a predetermined uncoated part width, thereby producing an original electrode fabric.

具体的には、正極1では、正極活物質としてのリチウム遷移金属複合酸化物と、導電助剤としての鱗片状黒鉛と、結着剤としてのポリフッ化ビニリデン(PVDF:PolyVinylidene DiFluoride)とを重量比85:10:5で混合し、これに分散溶媒としてのN−メチルピロリドン(NMP:N-methylpyrrolidone)を添加して混練してスラリを作製し、このスラリを厚さ20μmのアルミニウム箔の両面に塗工する。その後、乾燥、プレス、裁断することによって、正極塗工部1bの幅が80mm、塗工量が130g/m2、電極長が4mの正極原反を作製する。ここで、正極原反のアルミニウム箔の長尺方向の片側端部には、アルミニウム箔が露出した正極未塗工部1aを連続して形成し、その正極未塗工部1aを正極集電板6と接続する正極リードとする。 Specifically, in the positive electrode 1, a lithium transition metal composite oxide as a positive electrode active material, scaly graphite as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder are in a weight ratio. 85: 10: 5 was mixed, and N-methylpyrrolidone (NMP) as a dispersion solvent was added thereto and kneaded to prepare a slurry. The slurry was applied to both sides of an aluminum foil having a thickness of 20 μm. Apply. Thereafter, by drying, pressing, and cutting, a positive electrode raw material having a positive electrode coating portion 1b width of 80 mm, a coating amount of 130 g / m 2 , and an electrode length of 4 m is produced. Here, the positive electrode uncoated part 1a where the aluminum foil is exposed is continuously formed at one end portion in the longitudinal direction of the aluminum foil of the positive electrode original fabric, and the positive electrode uncoated part 1a is formed as the positive electrode current collector plate. The positive lead connected to 6 is used.

また、負極2では、負極活物質としての黒鉛系炭素粉末と結着剤としてのPVDFを混合し、これに分散溶媒としてのNMPを添加して混練してスラリを作製し、このスラリを厚さ10μmの銅箔の両面に塗工する。その後、乾燥、プレス、裁断することによって、負極塗工部2bの幅が84mm、塗工量が70g/m2、電極長が4.4mの負極原反を作製する。ここで、負極原反の銅箔の長尺方向の片側端部には、銅箔が露出した負極未塗工部2aを連続して形成し、その負極未塗工部2aを負極集電板5と接続する負極リードとする。 Further, in the negative electrode 2, graphite carbon powder as a negative electrode active material and PVDF as a binder are mixed, and NMP as a dispersion solvent is added thereto and kneaded to prepare a slurry. Apply to both sides of 10μm copper foil. Thereafter, by drying, pressing and cutting, a negative electrode raw material having a negative electrode coating portion 2b width of 84 mm, a coating amount of 70 g / m 2 and an electrode length of 4.4 m is produced. Here, the negative electrode uncoated part 2a where the copper foil is exposed is continuously formed on one end in the longitudinal direction of the copper foil of the negative electrode original fabric, and the negative electrode uncoated part 2a is formed as the negative electrode current collector plate. 5 is a negative electrode lead connected to 5.

電池の組立工程(S2)は、主として捲回工程(S21)と集電板溶接工程(S22)と缶挿入工程(S23)と缶溶接工程(S24)と注液工程(S25)とから構成されている。捲回工程(S21)では、電極の作製工程(S1)で作製した正極原反と負極原反を、両極が直接接触しないようにセパレータを介して、場合により板状の捲回軸芯を用いて捲回して扁平状の電極群を作製する。ここで、電極の端面とセパレータの端面が所定位置となるように蛇行制御しながら、正極未塗工部1aと負極未塗工部2aとが電極群の捲回軸L方向で反対側の端部に配置されるように正極原反と負極原反を捲回する。集電板溶接工程(S22)では、電極群の捲回軸L方向で反対側の端部に配置された正極未塗工部1aと負極未塗工部2aのそれぞれに、正極集電板6と負極集電板5を超音波溶接によって接合する。なお、正極集電板6と負極集電板5はそれぞれ、予め電池蓋9の部分で正極外部端子8と負極外部端子7に接続されている。缶挿入工程(S23)と缶溶接工程(S24)では、正極集電板6や負極集電板5を介して電池蓋9などが取り付けられた電極群19を電池缶11内に挿入し、電池蓋9と電池缶11をレーザ溶接によって接合する。注液工程(S25)では、電池蓋9に設けられた注液孔10を介して、電池蓋9と電池缶11から構成される電池容器12内に所定量の非水電解液を注入し、レーザ溶接によってその注液孔10に不図示の注液栓を接合して電池容器12を密閉する。   The battery assembly process (S2) mainly includes a winding process (S21), a current collector plate welding process (S22), a can insertion process (S23), a can welding process (S24), and a liquid injection process (S25). ing. In the winding step (S21), the positive electrode raw material and the negative electrode original material manufactured in the electrode manufacturing step (S1) are used with a plate-shaped winding shaft core through a separator so that the two electrodes do not directly contact each other. To produce a flat electrode group. Here, the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a are opposite ends in the winding axis L direction of the electrode group while controlling meandering so that the end surface of the electrode and the end surface of the separator are in a predetermined position. The positive electrode raw material and the negative electrode original material are wound so as to be arranged in the part. In the current collector plate welding step (S22), each of the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a disposed at the opposite ends in the winding axis L direction of the electrode group is provided with the positive electrode current collector plate 6 And the negative electrode current collector plate 5 are joined by ultrasonic welding. Note that the positive electrode current collector plate 6 and the negative electrode current collector plate 5 are respectively connected to the positive electrode external terminal 8 and the negative electrode external terminal 7 in advance at the portion of the battery lid 9. In the can insertion step (S23) and the can welding step (S24), the electrode group 19 to which the battery lid 9 and the like are attached is inserted into the battery can 11 via the positive electrode current collector plate 6 and the negative electrode current collector plate 5, and the battery The lid 9 and the battery can 11 are joined by laser welding. In the liquid injection step (S25), a predetermined amount of non-aqueous electrolyte is injected into the battery container 12 including the battery cover 9 and the battery can 11 through the liquid injection hole 10 provided in the battery cover 9. A battery stopper 12 (not shown) is joined to the liquid injection hole 10 by laser welding to seal the battery container 12.

具体的には、正極1と負極2を、両極が直接接触しないように幅が90mm、厚さが30μmのポリエチレン製微多孔性セパレータ3、4を介して捲回して扁平状の電極群を作製する。ここで、正極1と負極2とセパレータ3、4をともに長尺方向に10Nの荷重をかけて伸展しつつ、正極1と負極2の端面とセパレータ3、4の端面が所定位置となるように蛇行制御しながら正極1と負極2を捲回するとともに、電極群の中心には、ポリプロピレン製微多孔性セパレータ3、4を一層以上配設する。また、正極未塗工部1aと負極未塗工部2aとが電極群の捲回軸L方向で反対側の端部に配置されるように正極1と負極2を捲回する。次いで、正極未塗工部1aと負極未塗工部2aのそれぞれに、正極集電板6と負極集電板5を超音波溶接によって接合し、正極集電板6や負極集電板5を介して電池蓋9などが取り付けられた電極群19をアルミニウム製で板厚が約1mmの電池缶11内に挿入し、電池蓋9と電池缶11をレーザ溶接によって接合する。その後、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比で1:2の割合で混合した混合溶液に六フッ化リン酸リチウム(LiPF)を1mol/lの濃度で溶解した非水電解液を注液孔10を介して電池容器12内に注入して角形のリチウムイオン二次電池を作製する。 Specifically, a flat electrode group is produced by winding the positive electrode 1 and the negative electrode 2 through a polyethylene microporous separator 3 and 4 having a width of 90 mm and a thickness of 30 μm so that the two electrodes are not in direct contact with each other. To do. Here, the positive electrode 1, the negative electrode 2, and the separators 3, 4 are all extended by applying a load of 10 N in the longitudinal direction so that the end surfaces of the positive electrode 1, the negative electrode 2 and the end surfaces of the separators 3, 4 are in a predetermined position. The positive electrode 1 and the negative electrode 2 are wound while controlling meandering, and one or more polypropylene microporous separators 3 and 4 are disposed in the center of the electrode group. Further, the positive electrode 1 and the negative electrode 2 are wound so that the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a are arranged at opposite ends in the winding axis L direction of the electrode group. Next, the positive electrode current collector plate 6 and the negative electrode current collector plate 5 are joined to each of the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a by ultrasonic welding. The electrode group 19 to which the battery lid 9 and the like are attached is inserted into a battery can 11 made of aluminum and having a plate thickness of about 1 mm, and the battery lid 9 and the battery can 11 are joined by laser welding. Thereafter, nonaqueous electrolysis in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / l in a mixed solution in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2. The liquid is injected into the battery container 12 through the injection hole 10 to produce a rectangular lithium ion secondary battery.

図5は、図1に示すリチウムイオン二次電池の内部構成を模式的に示したものである。なお、図5では、電池缶11の側面に拘束力を付与する拘束冶具13を併せて示している。   FIG. 5 schematically shows the internal configuration of the lithium ion secondary battery shown in FIG. In FIG. 5, a restraining jig 13 that imparts a restraining force to the side surface of the battery can 11 is also shown.

図示するように、角形の電池容器12内に収納された扁平状の電極群19は、リチウムイオン二次電池20の放電時および充電時において、その平面部19cの外側表面19ca、19cbが、電池缶11の内壁面、より具体的には電池缶11の内壁面のうち電極群19の平面部19cの対向する外側表面19ca、19cb同士へ向かう方向(電極群19の厚み方向、図中、矢印D方向)の内壁面11a、11bと当接する。すなわち、電極群19、特に電極群19の平面部19cは、電池缶11などによって常に外部からその厚み方向で押圧されて拘束力が付与されており、充放電に伴う電極の膨張、収縮による電極群19の厚み方向における膨張や収縮が抑制され、電極群19の撓みの発生が抑制されるようになっている。また、電極群19の放電時に対する満充電時の電極群の厚み方向における膨張率が所定の範囲内に規定されており、充電に伴う電極の膨張による電極群19の撓みや電池容器12の膨れの発生が抑制されるようになっている。なお、電極群19の湾曲部19a、19bの外側表面19aa、19baと電池缶11の内壁面との間には空隙Gが設けられており、仮に充電に伴って電極が大きく膨張しても、電極群19はその湾曲部19a、19b方向へ変形し、電極群19の応力増加や電池容器12の厚み方向の膨れが緩和されるようになっている。   As shown in the figure, the flat electrode group 19 housed in the rectangular battery case 12 has an outer surface 19ca, 19cb of the flat surface portion 19c when the lithium ion secondary battery 20 is discharged and charged. The direction of the inner wall surface of the can 11, more specifically, of the inner wall surface of the battery can 11 toward the outer surfaces 19 ca and 19 cb facing each other of the flat portion 19 c of the electrode group 19 (thickness direction of the electrode group 19, arrow in the figure) The inner wall surfaces 11a and 11b in the (D direction) contact. That is, the electrode group 19, particularly the planar portion 19 c of the electrode group 19, is always pressed from the outside in the thickness direction by the battery can 11 or the like and is given a restraining force. Expansion and contraction in the thickness direction of the group 19 are suppressed, and occurrence of bending of the electrode group 19 is suppressed. Further, the expansion rate in the thickness direction of the electrode group at the time of full charge with respect to the discharge of the electrode group 19 is defined within a predetermined range. The occurrence of is suppressed. Note that a gap G is provided between the outer surfaces 19aa, 19ba of the curved portions 19a, 19b of the electrode group 19 and the inner wall surface of the battery can 11, and even if the electrode expands greatly with charging, The electrode group 19 is deformed in the direction of the curved portions 19a and 19b, and the increase in stress of the electrode group 19 and the swelling in the thickness direction of the battery container 12 are alleviated.

なお、本実施の形態では、正極1と負極2における結着剤としてPVDFを使用する場合について説明したが、例えばポリテトラフルオロエチレン、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用してもよい。   In the present embodiment, the case where PVDF is used as the binder in the positive electrode 1 and the negative electrode 2 has been described. For example, polytetrafluoroethylene, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, Polymers such as polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.

また、本実施の形態では、非水電解液としてECとDMCの混合溶液にLiPFを溶解した液を使用する場合について説明したが、一般的なリチウム塩を電解質としてこれを有機溶媒に溶解した非水電解液を使用してもよい。ここで、電解質としては、例えばLiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物などが挙げられ、有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等やこれらの2種以上を適宜の混合配合比で混合した混合溶媒などが挙げられる。 In the present embodiment, the case where a liquid obtained by dissolving LiPF 6 in a mixed solution of EC and DMC is used as a nonaqueous electrolytic solution. However, a general lithium salt is dissolved in an organic solvent as an electrolyte. A non-aqueous electrolyte may be used. Here, examples of the electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li and the like, and mixtures thereof. Is, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane , Methyl sulfolane, acetonitrile, propiontonyl and the like, and mixed solvents in which two or more of these are mixed at an appropriate mixing ratio.

[試験体によるリチウムイオン二次電池の電池膨れとサイクル容量維持率を測定した実験とその結果]
本発明者等は、電極群膨張率と電極群厚み比率を変更した12種類の試験体(実施例1〜8、比較例1〜4)を作製し、それぞれの試験体に対して初充電前後の電池膨れ測定と1000サイクル後のサイクル容量維持率測定を実施した。なお、各試験体は、上記する実施の形態の角形リチウムイオン二次電池に基づいて作製した。
[Experiment and results of measuring the battery swelling and cycle capacity retention rate of a lithium ion secondary battery using a test specimen]
The present inventors produced 12 types of test bodies (Examples 1 to 8 and Comparative Examples 1 to 4) in which the electrode group expansion coefficient and the electrode group thickness ratio were changed, and before and after the initial charge for each test body. The battery swelling and the cycle capacity retention rate after 1000 cycles were measured. In addition, each test body was produced based on the square lithium ion secondary battery of embodiment mentioned above.

また、各試験体の電池膨れは、初充電前後における電池容器の厚み方向(図5中、矢印D方向)の外寸をマイクロメータで測定し、初充電前における電池容器の厚み方向の外寸に対する初充電後における電池容器の厚み方向の外寸の増加率を測定した。なお、電池容器がその厚み方向で湾曲して変形している場合には、電池容器の厚み方向の外寸の最大値を測定した。また、各試験体のサイクル容量維持率は、所定の環境下で充放電を1000サイクル繰り返し、初期放電容量と1000サイクル後の放電容量を測定し、初期放電容量に対する1000サイクル後の放電容量の比率を測定した。   In addition, the battery swelling of each specimen is measured by measuring the outer dimension of the battery container in the thickness direction (in the direction of arrow D in FIG. 5) before and after the initial charging with a micrometer, and the outer dimension of the battery container in the thickness direction before the initial charging. The increase rate of the outer dimension in the thickness direction of the battery container after the initial charge was measured. When the battery container was curved and deformed in the thickness direction, the maximum value of the outer dimension in the thickness direction of the battery container was measured. In addition, the cycle capacity maintenance rate of each specimen is the ratio of the discharge capacity after 1000 cycles to the initial discharge capacity by measuring the initial discharge capacity and the discharge capacity after 1000 cycles by repeating charge and discharge in a predetermined environment for 1000 cycles. Was measured.

ここで、電極群膨張率とは、電池容器に収容された電極群の放電時に対する満充電時の電極群の厚み方向における膨張率であり、電極群厚み比率とは、電極群を収容する前の電池容器の厚み方向における内寸(内寸の設計値)に対する電池容器に収容された電極群の放電時の厚み方向における外寸の比率である。なお、電極群膨張率や電極群厚み比率を算出するための電池容器に収容された電極群の放電時や満充電時の厚み方向における外寸は、放電時や満充電時の各試験体にX線を透過させて計測した。   Here, the electrode group expansion coefficient is an expansion coefficient in the thickness direction of the electrode group at the time of full charge with respect to the discharge time of the electrode group housed in the battery container, and the electrode group thickness ratio is before the electrode group is housed. It is the ratio of the outer dimension in the thickness direction at the time of discharge of the electrode group accommodated in the battery container with respect to the inner dimension (design value of the inner dimension) in the thickness direction of the battery container. In addition, the outer dimensions in the thickness direction at the time of discharge or full charge of the electrode group accommodated in the battery container for calculating the electrode group expansion rate and the electrode group thickness ratio are determined for each test body at the time of discharge and full charge. X-rays were transmitted and measured.

[試験体によるリチウムイオン二次電池の電池膨れとサイクル容量維持率を測定した結果]
表1は、各試験体(実施例1〜8、比較例1〜4)の電極群膨張率と電極群厚み比率と電池膨れとサイクル容量維持率の測定結果を示したものである。また、図6は、各試験体(実施例1〜8、比較例1〜4)の電極群膨張率と電極群厚み比率を示したものである。ここで、電池膨れの判定基準は、充放電に伴う二次電池の厚み方向における拘束力の制限や初充電後の電池容器の厚み方向の外寸の制限などから7.5%以下とし、サイクル容量維持率の判定基準は、信頼性の観点などから90%以上とした。
[Results of measuring the battery swelling and cycle capacity retention rate of the lithium ion secondary battery with the test specimen]
Table 1 shows the measurement results of the electrode group expansion coefficient, the electrode group thickness ratio, the battery expansion, and the cycle capacity retention ratio of each test body (Examples 1 to 8, Comparative Examples 1 to 4). Moreover, FIG. 6 shows the electrode group expansion coefficient and the electrode group thickness ratio of each test body (Examples 1 to 8, Comparative Examples 1 to 4). Here, the criterion for battery swelling is 7.5% or less due to restrictions on the binding force in the thickness direction of the secondary battery due to charge / discharge and restrictions on the outer dimension in the thickness direction of the battery container after the initial charge, etc. The criterion for rate was 90% or more from the viewpoint of reliability.

[表1]

Figure 0005923431
[Table 1]
Figure 0005923431

表1および図6に示すように、比較例1、3(電極群厚み比率(電極群を収容する前の電池容器の厚み方向における内寸に対する電池容器に収容された電極群の放電時の厚み方向における外寸の比率)が1.01よりも小さい)では、電池容器に収容された電極群、特に放電時の電極群に対して十分な拘束力を付与することができず、電極群が撓んでサイクル容量維持率が低下することが確認された。また、比較例2(電極群厚み比率が1.03よりも大きい)は、放電時の電極群に対する電池容器の寸法が小さくなり、電極群が撓んで電池膨れが大きくなることが確認された。   As shown in Table 1 and FIG. 6, Comparative Examples 1 and 3 (electrode group thickness ratio (thickness at the time of discharge of the electrode group housed in the battery container relative to the inner dimension in the thickness direction of the battery container before housing the electrode group) If the ratio of the outer dimensions in the direction is smaller than 1.01, the electrode group housed in the battery container, in particular, the electrode group during discharge cannot be given sufficient restraint force, and the electrode group is bent. It was confirmed that the cycle capacity retention rate decreased. In Comparative Example 2 (electrode group thickness ratio is greater than 1.03), it was confirmed that the size of the battery container relative to the electrode group during discharge was reduced, the electrode group was bent, and the battery swollen.

また、負極の電極密度を大きくすると、電極群膨張率(電池容器に収容された電極群の放電時に対する満充電時の電極群の厚み方向における膨張率)が大きくなり、比較例4(電極群膨張率が1.04よりも大きい)では、満充電時の電極群に対する電池容器の寸法が小さくなり、電極群が撓んで電池膨れが大きくなることが確認された。   Further, when the electrode density of the negative electrode is increased, the electrode group expansion coefficient (expansion coefficient in the thickness direction of the electrode group at the time of full charge with respect to the discharge of the electrode group accommodated in the battery container) increases, and Comparative Example 4 (electrode group) When the expansion coefficient is larger than 1.04), it was confirmed that the size of the battery container with respect to the electrode group at the time of full charge is reduced, the electrode group is bent, and the battery swelling is increased.

一方で、実施例1〜8(電極群厚み比率が1.01から1.03の範囲内であり、かつ電極群膨張率が1.01から1.04の範囲内である)では、電池容器に収容された放電時や満充電時の電極群に対して適正な押圧力(拘束力)を付与することができるとともに、電池膨れを抑制することができ、電池膨れが7.5%以下であり、かつサイクル容量維持率が90%以上であることが確認された。   On the other hand, in Examples 1 to 8 (the electrode group thickness ratio is in the range of 1.01 to 1.03 and the electrode group expansion coefficient is in the range of 1.01 to 1.04), the discharge is accommodated in the battery case or is fully charged. Appropriate pressing force (binding force) can be applied to the electrode group during charging, battery swelling can be suppressed, battery swelling is 7.5% or less, and cycle capacity maintenance rate is 90%. That was confirmed.

この実験結果より、上記する実施の形態の角形リチウムイオン二次電池では、電極群厚み比率が1.01から1.03の範囲内であり、かつ電極群膨張率が1.01から1.04の範囲内である場合に、電池膨れが抑制され、かつ高いサイクル容量維持率を確保し得ることが実証された。   From this experimental result, in the prismatic lithium ion secondary battery of the above-described embodiment, when the electrode group thickness ratio is in the range of 1.01 to 1.03 and the electrode group expansion coefficient is in the range of 1.01 to 1.04, It has been demonstrated that battery swelling is suppressed and a high cycle capacity maintenance rate can be secured.

[試験体によるリチウムイオン二次電池の負極の電極密度を測定した結果]
本発明者等は、上記する実施例1〜8の各試験体の負極の電極密度測定を実施した。その結果、実施例1〜8の各試験体の負極の電極密度は、1.30g/cm3から1.45g/cm3の範囲内であることが確認された。よって、負極の電極密度が1.30g/cm3よりも低い場合には、電池容量が減少してエネルギー密度が低くなると共に、放電時や充電時の電極群に対して十分な拘束力を付与することができず、電極群が撓んでサイクル容量維持率が低下する可能性があることが確認された。また、負極の電極密度が1.45g/cm3よりも高い場合には、満充電時の電極群に対する電池容器の寸法が小さくなり、電極群が撓んで電池膨れが大きくなる可能性があることが確認された。
[Results of measuring the electrode density of the negative electrode of the lithium ion secondary battery using the specimen]
The present inventors performed electrode density measurement of the negative electrode of each test body of Examples 1 to 8 described above. As a result, it was confirmed that the electrode density of the negative electrode of each test body of Examples 1 to 8 was in the range of 1.30 g / cm 3 to 1.45 g / cm 3 . Therefore, when the electrode density of the negative electrode is lower than 1.30 g / cm 3 , the battery capacity is reduced and the energy density is lowered, and sufficient binding force is applied to the electrode group during discharge or charge. It was confirmed that the electrode capacity could be bent and the cycle capacity retention rate could be reduced. In addition, when the electrode density of the negative electrode is higher than 1.45 g / cm 3 , the size of the battery container relative to the electrode group at the time of full charge may be reduced, and the electrode group may be bent and the battery swelling may increase. confirmed.

また、本発明者等は、電極群を収容する前の電池容器の厚み方向における内寸に対する電極群の電極作製時の厚み方向における外寸の比率を0.98から1.00の範囲内とすることによって、上記する実施例1〜8の各試験体を作製し得ることを確認している。   In addition, the present inventors set the ratio of the outer dimension in the thickness direction at the time of electrode preparation of the electrode group to the inner dimension in the thickness direction of the battery container before housing the electrode group within the range of 0.98 to 1.00, It has been confirmed that each of the specimens of Examples 1 to 8 described above can be produced.

すなわち、負極の電極密度を1.30g/cm3から1.45g/cm3の範囲内とし、電極群を収容する前の電池容器の厚み方向における内寸に対する電極群の電極作製時の厚み方向における外寸の比率を0.98から1.00の範囲内とすることによって、電極群膨張率を1.01から1.04の範囲内とし、電極群厚み比率を1.01から1.03の範囲内とし得ることを本発明者等は確認している。 That is, the electrode density of the negative electrode is within the range of 1.30 g / cm 3 to 1.45 g / cm 3 , and the outer electrode in the thickness direction at the time of electrode preparation of the electrode group with respect to the inner dimension in the thickness direction of the battery container before housing the electrode group The present inventors confirmed that the electrode group expansion ratio can be in the range of 1.01 to 1.04 and the electrode group thickness ratio can be in the range of 1.01 to 1.03 by setting the size ratio in the range of 0.98 to 1.00. ing.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to above-described embodiment, Various deformation | transformation forms are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 正極
1a 正極未塗工部(正極箔露出部)
1b 正極塗工部
2 負極
2a 負極未塗工部(負極箔露出部)
2b 負極塗工部
3、4 セパレータ
5 負極集電板
6 正極集電板
7 負極外部端子
8 正極外部端子
9 電池蓋
10 注液孔
11 電池缶
12 電池容器
13 拘束冶具
19 電極群
20 リチウムイオン二次電池
G 電極群と電池缶の間隙
L 捲回軸
1 Positive electrode 1a Positive electrode uncoated part (positive foil exposed part)
1b Positive electrode coated part 2 Negative electrode 2a Negative electrode uncoated part (negative foil exposed part)
2b Negative electrode coating part 3, 4 Separator 5 Negative electrode current collector plate 6 Positive electrode current collector plate 7 Negative electrode external terminal 8 Positive electrode external terminal 9 Battery lid 10 Injection hole 11 Battery can 12 Battery container 13 Restraint jig 19 Electrode group 20 Lithium ion 2 Secondary battery G Electrode group and battery can gap L Winding axis

Claims (2)

正極と負極がセパレータを介して扁平状に捲回された電極群と、該電極群を収納する電池容器と、該電池容器に注入される非水電解液と、を有するリチウムイオン二次電池であって、
前記負極が負極活物質としての黒鉛系炭素粉末から構成され、前記負極の電極密度が1.30g/cm 3 から1.45g/cm 3 の範囲内であり、前記電極群の平面部の対向する表面同士へ向かう方向を該電極群の厚み方向とした際に、前記電極群を収容する前の前記電池容器の厚み方向における内寸に対する前記電池容器に収容された前記電極群の放電時の厚み方向における外寸の比率が1.01から1.03の範囲内であり、かつ、前記電池容器に収容された前記電極群の放電時に対する満充電時の厚み方向における膨張率が1.01から1.04の範囲内であることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having an electrode group in which a positive electrode and a negative electrode are wound in a flat shape with a separator interposed therebetween, a battery container containing the electrode group, and a non-aqueous electrolyte injected into the battery container There,
The negative electrode is composed of graphite-based carbon powder as a negative electrode active material, the electrode density of the negative electrode is in the range of 1.30 g / cm 3 to 1.45 g / cm 3 , and the opposing surfaces of the planar portion of the electrode group In the thickness direction at the time of discharge of the electrode group accommodated in the battery container with respect to the inner dimension in the thickness direction of the battery container before accommodating the electrode group when the direction toward the electrode group is the thickness direction of the electrode group The ratio of the outer dimensions is in the range of 1.01 to 1.03, and the expansion coefficient in the thickness direction at the time of full charge with respect to the discharge time of the electrode group accommodated in the battery container is in the range of 1.01 to 1.04. A featured lithium ion secondary battery.
前記電極群は、使用時に前記電池容器によって前記厚み方向で押圧されていることを特徴とする、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrode group is pressed in the thickness direction by the battery container during use.
JP2012230678A 2012-10-18 2012-10-18 Lithium ion secondary battery Expired - Fee Related JP5923431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230678A JP5923431B2 (en) 2012-10-18 2012-10-18 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230678A JP5923431B2 (en) 2012-10-18 2012-10-18 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014082157A JP2014082157A (en) 2014-05-08
JP5923431B2 true JP5923431B2 (en) 2016-05-24

Family

ID=50786152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230678A Expired - Fee Related JP5923431B2 (en) 2012-10-18 2012-10-18 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5923431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171394B2 (en) 2016-08-26 2021-11-09 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and battery pack

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748401B2 (en) 2014-08-18 2020-09-02 株式会社Gsユアサ Storage element
KR101950859B1 (en) 2016-02-15 2019-02-22 주식회사 엘지화학 Method for manufacturing of negative electrode and negative electrode
WO2017142261A1 (en) * 2016-02-15 2017-08-24 주식회사 엘지화학 Negative electrode manufacturing method and negative electrode
WO2021065128A1 (en) 2019-09-30 2021-04-08 三洋電機株式会社 Method for producing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2024503416A (en) * 2021-10-12 2024-01-25 エルジー エナジー ソリューション リミテッド Lithium secondary battery and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329529A (en) * 2000-09-06 2002-11-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310662A (en) * 2004-04-23 2005-11-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP5261869B2 (en) * 2005-10-07 2013-08-14 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2012117473A1 (en) * 2011-02-28 2012-09-07 パナソニック株式会社 Nonaqueous electrolyte rechargeable battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171394B2 (en) 2016-08-26 2021-11-09 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and battery pack

Also Published As

Publication number Publication date
JP2014082157A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5329310B2 (en) Lithium secondary battery using ionic liquid
JP5046352B2 (en) Method for producing lithium ion secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
JP5923431B2 (en) Lithium ion secondary battery
KR101676408B1 (en) Method for preparing a electrode-separator complex, electrode-separator complex manufactured by the same and a lithium secondary battery including the same
JP5702362B2 (en) Lithium secondary battery using ionic liquid
JP5726707B2 (en) Lithium secondary battery
EP3007264A1 (en) Lithium ion secondary battery
JPWO2013065187A1 (en) Sealed lithium secondary battery and manufacturing method thereof
JP2012074287A (en) Rectangular secondary battery
KR101275677B1 (en) lithium secondary battery
JP6208560B2 (en) Lithium secondary battery
US20120164523A1 (en) Lithium ion secondary battery
RU2644590C1 (en) Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte
CN109119629B (en) Non-aqueous electrolyte secondary battery
JP2013073809A (en) Lithium ion secondary battery
JP5869354B2 (en) Exterior can for prismatic lithium ion secondary battery and prismatic lithium ion secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP5720411B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP4333103B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5589948B2 (en) Battery manufacturing method
JP3624793B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5923431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees