JP5923226B1 - Concentration apparatus and concentration method - Google Patents

Concentration apparatus and concentration method Download PDF

Info

Publication number
JP5923226B1
JP5923226B1 JP2016016510A JP2016016510A JP5923226B1 JP 5923226 B1 JP5923226 B1 JP 5923226B1 JP 2016016510 A JP2016016510 A JP 2016016510A JP 2016016510 A JP2016016510 A JP 2016016510A JP 5923226 B1 JP5923226 B1 JP 5923226B1
Authority
JP
Japan
Prior art keywords
chamber
stock solution
concentration
amount
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016016510A
Other languages
Japanese (ja)
Other versions
JP2017131876A (en
Inventor
圭史 和田
圭史 和田
和博 秦
和博 秦
秀昭 黒川
秀昭 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016016510A priority Critical patent/JP5923226B1/en
Application granted granted Critical
Publication of JP5923226B1 publication Critical patent/JP5923226B1/en
Priority to PCT/JP2016/085215 priority patent/WO2017130554A1/en
Publication of JP2017131876A publication Critical patent/JP2017131876A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • A23L2/08Concentrating or drying of juices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

【課題】所定の濃縮率の濃縮液を低コスト且つ安定的に得ることができる濃縮装置及び濃縮方法を提供する。【解決手段】濃縮装置1は、原液が流される第1室10aと、蒸気を選択的に透過する多孔質膜11によって第1室10aから隔てられた第2室10bと、を有する膜蒸留セル10と、原液を加熱する加熱器20と、第2室10bの冷却を行う冷却器40と、第1室10a又は第2室10bの圧力を変化させて第1室10aと第2室10bとの間の圧力差を調整する圧力調整手段70と、制御部80とを備え、制御部80は、加熱器20と冷却器40とを所定の温度範囲に制御し、第2室10bの凝縮液の量が所定量となるように圧力調整手段70を制御する。濃縮方法は、膜蒸留セルにおいて、多孔質膜の第1室側と第2室側とを所定の温度差に調温し、凝縮液の量が所定量となるように第1室と第2室との間の圧力差を調整する。【選択図】図1The present invention provides a concentration apparatus and a concentration method capable of stably obtaining a concentrated liquid having a predetermined concentration rate at low cost. A concentrating apparatus (1) includes a membrane distillation cell having a first chamber (10a) through which a stock solution is flowed and a second chamber (10b) separated from the first chamber (10a) by a porous membrane (11) that selectively transmits vapor. 10, the heater 20 for heating the stock solution, the cooler 40 for cooling the second chamber 10b, and the first chamber 10a and the second chamber 10b by changing the pressure in the first chamber 10a or the second chamber 10b The pressure adjustment means 70 which adjusts the pressure difference between them, and the control part 80, the control part 80 controls the heater 20 and the cooler 40 to a predetermined temperature range, and the condensate of the 2nd chamber 10b The pressure adjusting means 70 is controlled so that the amount of the pressure becomes a predetermined amount. In the concentration method, in the membrane distillation cell, the first chamber side and the second chamber side of the porous membrane are adjusted to a predetermined temperature difference so that the amount of condensate becomes a predetermined amount. Adjust the pressure difference with the chamber. [Selection] Figure 1

Description

本発明は、膜蒸留の原理による濃縮装置及び濃縮方法に関する。   The present invention relates to a concentration apparatus and a concentration method based on the principle of membrane distillation.

飲食品の製造、廃液処理、淡水化処理、化学工業等の各種分野において、液体を濃縮する操作が行われている。濃縮の方法としては、一般に、蒸発缶や加熱プレート等を用いる蒸発濃縮法が利用されている。また、その他の方法として、逆浸透膜(Reverse Osmosis;RO膜)を用いる膜濃縮法や、凍結濃縮法等も利用されている。   In various fields such as production of food and drink, waste liquid treatment, desalination treatment, and chemical industry, operations for concentrating liquids are performed. As a concentration method, an evaporation concentration method using an evaporator or a heating plate is generally used. As other methods, a membrane concentration method using a reverse osmosis (RO membrane), a freeze concentration method, and the like are also used.

蒸発濃縮法は、高い濃縮率を容易に実現し得る方法ではあるものの、液体を蒸発させるのに多大な加熱コストが掛かるという欠点を有している。また、蒸発濃縮法は、香気成分等の低沸点成分を加熱に伴って揮散させてしまうため、飲食品の製造等には適していない。一方、凍結濃縮法も、高吸熱量の冷凍能力を必要とするし、装置・操作が複雑であったり、懸濁液の濃縮が難しいといった課題を抱えている。   Although the evaporative concentration method is a method that can easily realize a high concentration rate, it has a disadvantage that it takes a large heating cost to evaporate the liquid. Further, the evaporation concentration method volatilizes low-boiling components such as aroma components with heating, and thus is not suitable for the production of food and drink. On the other hand, the freeze-concentration method also requires a high endothermic refrigeration capacity, and has problems such as complicated apparatus and operation and difficulty in concentrating the suspension.

このような状況の下、蒸発濃縮法等に代わる代替技術として、膜濃縮法の利用が拡大している。膜濃縮法では、分離膜を利用した濾過や透析の原理により濃縮が行われる。低分子以上が濃縮対象である場合の分離膜としては、逆浸透膜(Reverse Osmosis;RO膜)が一般的である。従来、特許文献1に開示されるように、逆浸透膜装置やナノ濾過膜装置を利用して糖化液を濃縮する技術等が知られている。   Under such circumstances, the use of the membrane concentration method is expanding as an alternative technology to replace the evaporation concentration method and the like. In the membrane concentration method, concentration is performed according to the principle of filtration or dialysis using a separation membrane. A reverse osmosis membrane (Reverse Osmosis; RO membrane) is generally used as a separation membrane when low molecules or more are to be concentrated. Conventionally, as disclosed in Patent Document 1, a technique for concentrating a saccharified solution using a reverse osmosis membrane device or a nanofiltration membrane device is known.

逆浸透法は、比較的低いコストで行うことができるし、低沸点成分を揮散させないで済むため、濃縮液の品質を損ない難いといった利点を持つ。しかしながら、逆浸透法では、操作圧力と耐圧の関係から濃縮率に限界がある。また、逆浸透膜は、特許文献1に記載されるように前処理を行ったとしても、依然としてファウリングを生じ易い。また、殺菌剤によって容易に劣化する材質であることが少なくない。そのため、装置の運用や維持管理を考慮すると、必ずしも最良の方法とはなっていない。   The reverse osmosis method can be carried out at a relatively low cost and has the advantage that the quality of the concentrated liquid is hardly impaired because it is not necessary to volatilize low boiling components. However, in the reverse osmosis method, the concentration rate is limited due to the relationship between the operating pressure and the pressure resistance. Further, even if the reverse osmosis membrane is pretreated as described in Patent Document 1, fouling is still likely to occur. In addition, the material is often easily deteriorated by the bactericidal agent. Therefore, it is not always the best method in consideration of operation and maintenance of the apparatus.

分離膜を利用する方法としては、膜蒸留法(Membrane Distillation;MD法)も知られている。膜蒸留法においては、液体を透過しない一方で気体を透過する性質を持つ疎水性多孔質膜が用いられる。膜蒸留の原理による濃縮では、液体が気体への相転移を伴って分離されて、元の液体が濃縮されることになる。膜蒸留法は、殺菌処理等を考慮しても装置の運用や維持管理を行い易いことから、溶質や濁質を含んだ液体を濃縮する方法としても優位性がある。   A membrane distillation method (MD method) is also known as a method using a separation membrane. In the membrane distillation method, a hydrophobic porous membrane is used that does not permeate liquid but permeates gas. In the concentration by the principle of membrane distillation, the liquid is separated with a phase transition to a gas, and the original liquid is concentrated. The membrane distillation method is advantageous as a method for concentrating liquids containing solutes and turbids because it is easy to operate and maintain the apparatus even in consideration of sterilization treatment and the like.

膜蒸留における物質移動は、膜の両側に掛かる蒸気圧差によって駆動される。そのため、濃縮操作は、原液を接触させる膜の片側と、蒸気を出させる膜の反対側との間に温度差を与え、飽和蒸気圧を異ならしめることにより行われる。膜蒸留法の具体的な形態としては、膜を透過した蒸気を、膜の反対側に離れた冷却面上で冷却する間接接触法と、膜を透過した蒸気を、膜の反対側を流れる冷却液に吸収させる直接接触法とがある。   Mass transfer in membrane distillation is driven by the vapor pressure differential across the membrane. For this reason, the concentration operation is performed by giving a temperature difference between one side of the membrane with which the stock solution is brought into contact and the opposite side of the membrane with which the vapor is emitted, and making the saturated vapor pressure different. Specific forms of the membrane distillation method include the indirect contact method in which the vapor that has permeated the membrane is cooled on a cooling surface remote from the membrane, and the cooling that has passed through the membrane on the opposite side of the membrane. There is a direct contact method in which the liquid is absorbed.

特開2014−128213号公報JP 2014-128213 A

膜蒸留の原理による濃縮において、原液を目標どおりの濃縮率に濃縮できることが望まれる。しかしながら、濃縮しようとする原液の溶質濃度は、常に一定であるとは限らない。例えば、果汁を濃縮して濃縮果汁を得ようとするとき、果汁の糖分濃度が、品質、品種、保存条件等の違いから、ロット間で一律に揃っていない場合があり得る。また、当初の糖分濃度が同じであっても、果汁を膜に接触させるまでの間に比重差によって濃度むらを生じる場合等があり得る。   In the concentration based on the principle of membrane distillation, it is desired that the stock solution can be concentrated to a target concentration rate. However, the solute concentration of the stock solution to be concentrated is not always constant. For example, when concentrating fruit juice to obtain concentrated fruit juice, the sugar concentration of the fruit juice may not be uniform among lots due to differences in quality, variety, storage conditions, and the like. Moreover, even if the initial sugar concentration is the same, there may be a case where the concentration unevenness occurs due to the difference in specific gravity before the fruit juice is brought into contact with the membrane.

膜に接触する原液の溶質濃度が上下すると、蒸気圧降下によって膜の透過流束も変化する。そのため、得られる濃縮液の濃縮率が一定に安定せず、原液の溶質濃度に応じて濃縮率にばらつきを生じてしまうことが少なくない。その一方で、原液の溶質濃度を予め揃えておくには、前処理についての設備コストや工数が掛かる。すなわち、膜蒸留の原理による濃縮において、所定の濃縮率の濃縮液を低コストで安定的に得るのは難しい現状がある。   As the solute concentration in the stock solution in contact with the membrane rises and falls, the permeation flux of the membrane also changes due to the vapor pressure drop. For this reason, the concentration rate of the resulting concentrated solution is not stable, and the concentration rate often varies depending on the solute concentration of the stock solution. On the other hand, in order to prepare the solute concentration of the stock solution in advance, the equipment cost and man-hours for pretreatment are required. That is, in the concentration based on the principle of membrane distillation, it is difficult to stably obtain a concentrate having a predetermined concentration rate at a low cost.

また、膜蒸留の原理による濃縮において、原液の品質や濃縮液の用途に応じて目標濃縮率を自在に設定したいという要求がある。例えば、果汁飲料の用途に用いる濃縮果汁については、果汁の糖度乃至酸度を4〜7倍程度以上まで濃縮する必要がある。その一方で、ワインのような発酵飲料の用途に用いる果汁については、アルコール発酵に適した比較的低い濃縮率で足りる。   Further, in the concentration based on the principle of membrane distillation, there is a demand for setting the target concentration rate freely according to the quality of the stock solution and the use of the concentrated solution. For example, for concentrated fruit juice used for fruit juice beverages, it is necessary to concentrate the sugar content or acidity of the fruit juice to about 4 to 7 times or more. On the other hand, for fruit juice used for fermented beverages such as wine, a relatively low concentration rate suitable for alcohol fermentation is sufficient.

膜蒸留における物質移動は蒸気圧差によって駆動されるため、従来は、濃縮操作毎に目標濃縮率の設定を変えるのに、加熱温度を逐次変更する必要があった。しかしながら、加熱温度に応じて加熱機器自体を切り替えるにはコストが掛かる。また、大幅に加熱温度を変更すると、原液中の成分が熱の影響を受け易い場合に、濃縮液の成分品質にばらつきを生じてしまう。そのため、目標とする濃縮率の濃縮液を、コストを掛けず、成分品質も安定させて自在に得ることができる手段が求められている。   Since mass transfer in membrane distillation is driven by a difference in vapor pressure, conventionally, it has been necessary to sequentially change the heating temperature in order to change the setting of the target concentration rate for each concentration operation. However, switching the heating device itself according to the heating temperature is costly. In addition, if the heating temperature is changed significantly, the component quality of the concentrate will vary if the components in the stock solution are susceptible to heat. Therefore, there is a demand for means that can obtain a concentrated solution having a target concentration rate freely without cost and with stable component quality.

そこで、本発明は、所定の濃縮率の濃縮液を低コスト且つ安定的に得ることができる濃縮装置及び濃縮方法を提供することを目的とする。   Then, an object of this invention is to provide the concentration apparatus and concentration method which can obtain the concentrate of the predetermined concentration rate stably at low cost.

前記課題を解決するために本発明に係る濃縮装置は、原液が流される第1室と、蒸気を選択的に透過する多孔質膜によって前記第1室から隔てられた第2室と、を有する膜蒸留セルと、前記原液を加熱する加熱器と、前記第2室の冷却を行う冷却器と、前記第1室又は前記第2室の圧力を変化させて前記第1室と前記第2室との間の圧力差を調整する圧力調整手段と、前記加熱器、前記冷却器及び前記圧力調整手段を制御する制御部と、を備え、前記制御部は、前記加熱器と前記冷却器とを所定の温度範囲に制御し、前記第2室に生じる前記蒸気が凝縮して作られる凝縮液の量が所定量となるように前記圧力調整手段を制御することを特徴とする。   In order to solve the above problems, a concentrating device according to the present invention has a first chamber through which a stock solution is flowed, and a second chamber separated from the first chamber by a porous membrane that selectively transmits vapor. A membrane distillation cell, a heater for heating the stock solution, a cooler for cooling the second chamber, and the first chamber and the second chamber by changing the pressure in the first chamber or the second chamber. A pressure adjusting means for adjusting a pressure difference between the heater, the cooler, and the pressure adjusting means, and the control section includes the heater and the cooler. The pressure adjusting means is controlled to a predetermined temperature range so that the amount of condensate produced by condensing the vapor generated in the second chamber becomes a predetermined amount.

また、本発明に係る濃縮方法は、原液が流される第1室と、蒸気を選択的に透過する多孔質膜によって前記第1室から隔てられた第2室と、を有する膜蒸留セルにおいて、前記多孔質膜の前記第1室側と前記第2室側とを所定の温度差となるように調温すると共に、前記第2室に生じる前記蒸気が凝縮して作られる凝縮液の量が所定量となるように前記第1室と前記第2室との間の圧力差を調整することを特徴とする。   Further, the concentration method according to the present invention is a membrane distillation cell having a first chamber in which a stock solution is flowed, and a second chamber separated from the first chamber by a porous membrane that selectively permeates vapor. The temperature of the first chamber side and the second chamber side of the porous membrane is adjusted so as to have a predetermined temperature difference, and the amount of condensate produced by condensing the vapor generated in the second chamber is The pressure difference between the first chamber and the second chamber is adjusted to be a predetermined amount.

本発明によれば、所定の濃縮率の濃縮液を低コスト且つ安定的に得ることができる濃縮装置及び濃縮方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the concentrating apparatus and the concentration method which can obtain the concentrate of a predetermined | prescribed concentration rate stably stably at low cost can be provided.

本発明の一実施形態に係る濃縮装置の概略構成を示す図である。It is a figure which shows schematic structure of the concentration apparatus which concerns on one Embodiment of this invention. 本発明の第1変形例に係る濃縮装置の概略構成を示す図である。It is a figure which shows schematic structure of the concentration apparatus which concerns on the 1st modification of this invention. 本発明の第2変形例に係る濃縮装置の概略構成を示す図である。It is a figure which shows schematic structure of the concentration apparatus which concerns on the 2nd modification of this invention. 本発明の第3変形例に係る濃縮装置の概略構成を示す図である。It is a figure which shows schematic structure of the concentration apparatus which concerns on the 3rd modification of this invention. 飲料製造システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a drink manufacturing system.

以下、本発明の一実施形態に係る濃縮装置及び濃縮方法について説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。   Hereinafter, a concentration apparatus and a concentration method according to an embodiment of the present invention will be described. In addition, about the structure which is common in each following figure, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態に係る濃縮装置の概略構成を示す図である。
図1に示すように、本実施形態に係る濃縮装置1は、膜蒸留セル10と、加熱器20と、濃縮液槽30と、原液ポンプP1と、第1温度センサT1と、冷却器40と、冷却液槽50と、冷却液ポンプP2と、第2温度センサT2と、流量センサ(液量計測手段)F1と、凝縮液槽60と、減圧器(圧力調整手段)70と、制御器(制御部)80と、原液流路110と、冷却液流路120とを備えている。
FIG. 1 is a diagram showing a schematic configuration of a concentrating device according to an embodiment of the present invention.
As shown in FIG. 1, the concentration apparatus 1 according to the present embodiment includes a membrane distillation cell 10, a heater 20, a concentrated liquid tank 30, a stock solution pump P1, a first temperature sensor T1, and a cooler 40. , Coolant tank 50, coolant pump P2, second temperature sensor T2, flow rate sensor (liquid amount measuring means) F1, condensate tank 60, decompressor (pressure adjusting means) 70, controller ( (Control part) 80, the undiluted | stock solution flow path 110, and the cooling fluid flow path 120 are provided.

濃縮装置1は、液体の濃度を高める濃縮操作を膜蒸留の原理によって行う装置である。濃縮装置1では、被処理液としての原液が、膜蒸留セル10において膜蒸留される。膜蒸留セル10においては、原液に含まれている低沸点成分が分離される一方で、元の原液が濃縮された濃縮液が生成される。例えば、果汁、野菜汁等を原液として膜蒸留を行うことによって、飲食品の原料として用い得る濃縮果汁、濃縮野菜汁等の濃縮液が得られる。   The concentration apparatus 1 is an apparatus that performs a concentration operation for increasing the concentration of a liquid based on the principle of membrane distillation. In the concentrating device 1, the stock solution as the liquid to be treated is subjected to membrane distillation in the membrane distillation cell 10. In the membrane distillation cell 10, a low-boiling component contained in the stock solution is separated, while a concentrated solution in which the original stock solution is concentrated is generated. For example, by performing membrane distillation using fruit juice, vegetable juice or the like as an undiluted solution, concentrated liquids such as concentrated fruit juice or concentrated vegetable juice that can be used as a raw material for foods and drinks are obtained.

膜蒸留セル10は、多孔質膜11と、冷却板(伝熱壁)12と、原液室(第1室)10aと、凝縮室(第2室)10bと、冷却室(第3室)10cとを有している。図1に示すように、膜蒸留セル10の内部は、多孔質膜11と冷却板12によって、原液室10aと凝縮室10bと冷却室10cとに仕切られている。   The membrane distillation cell 10 includes a porous membrane 11, a cooling plate (heat transfer wall) 12, a stock solution chamber (first chamber) 10a, a condensation chamber (second chamber) 10b, and a cooling chamber (third chamber) 10c. And have. As shown in FIG. 1, the inside of the membrane distillation cell 10 is partitioned into a stock solution chamber 10a, a condensing chamber 10b, and a cooling chamber 10c by a porous membrane 11 and a cooling plate 12.

多孔質膜11は、多孔質の材料によって形成されており、原液室10aの壁部の一部分を成している。多孔質膜11は、液体を透過しない一方で気体を透過する性質を有しており、接触した原液中の蒸気を選択的に透過する作用を示す。すなわち、原液から蒸発した蒸気は、多孔質膜11を透過して、原液室10a側から凝縮室10b側に移動することができる。一方、蒸気が離脱した元の原液は、多孔質膜11を透過すること無く、原液室10aに濃縮される。   The porous membrane 11 is made of a porous material and forms part of the wall portion of the stock solution chamber 10a. The porous membrane 11 has a property of transmitting gas while not transmitting liquid, and exhibits an action of selectively transmitting vapor in the contacted stock solution. That is, the vapor evaporated from the stock solution can pass through the porous membrane 11 and move from the stock solution chamber 10a side to the condensation chamber 10b side. On the other hand, the original stock solution from which the vapor is released is concentrated in the stock solution chamber 10a without passing through the porous membrane 11.

多孔質膜11としては、平膜、中空糸膜、管状膜等の各種の形態が適用される。また、多孔質膜11の組み付け方は、特に制限されるものでは無く、円管型、スパイラル型等の各種の形態を採ることができる。多孔質膜11の一例は、平均孔径が0.2μm、開口率が60%以上80%以下、厚さが50μm以上200μm以下である。   As the porous membrane 11, various forms such as a flat membrane, a hollow fiber membrane, and a tubular membrane are applied. The method of assembling the porous membrane 11 is not particularly limited, and various forms such as a circular tube type and a spiral type can be adopted. An example of the porous membrane 11 has an average pore diameter of 0.2 μm, an aperture ratio of 60% to 80%, and a thickness of 50 μm to 200 μm.

多孔質膜11の好ましい材料は、高い疎水性を有する材料である。有機材料としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素化ポリオレフィンや、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンを用いることができる。また、無機材料としては、例えば、疎水性のゼオライト、シリカ、カーボン等を用いることができる。   A preferred material for the porous membrane 11 is a material having high hydrophobicity. As the organic material, for example, a fluorinated polyolefin such as polytetrafluoroethylene (PTFE), or a polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. Moreover, as an inorganic material, hydrophobic zeolite, silica, carbon, etc. can be used, for example.

冷却板12は、熱伝導率が高い材料によって形成されており、凝縮室10b及び冷却室10cのそれぞれの壁部の一部分を成している。冷却板12は、冷却室10c側から冷却液によって冷却されるようになっており、多孔質膜11を透過してきた蒸気を凝縮室10b側の表面で凝縮させる。   The cooling plate 12 is made of a material having a high thermal conductivity, and forms part of each wall portion of the condensing chamber 10b and the cooling chamber 10c. The cooling plate 12 is cooled by the coolant from the cooling chamber 10c side, and condenses the vapor that has passed through the porous film 11 on the surface on the condensation chamber 10b side.

冷却板12の好ましい材料は、ステンレス鋼、アルミニウム、チタン、銅、これらの合金、高熱伝導率の合成樹脂等である。より好ましい材料は、ステンレス鋼、チタン等のように高い熱伝導率と耐腐食性とを兼ね備えた材料である。   Preferred materials for the cooling plate 12 are stainless steel, aluminum, titanium, copper, alloys thereof, synthetic resin with high thermal conductivity, and the like. A more preferable material is a material having both high thermal conductivity and corrosion resistance, such as stainless steel and titanium.

原液室10aは、原液が流される区画である。原液室10aの出口から入口までは、配管等を介して室外で連通しており、原液を原液室10aに循環させるための原液流路110が形成されている。原液流路110上には、加熱器20と、濃縮液槽30と、原液を循環させる原液ポンプP1と、原液の代表温度を計測する原液温度センサT1とが設置されている。原液流路110は、原液室10aの出口と入口との間を加熱器20、濃縮液槽30等を介して接続しており、原液室10aで膜蒸留された濃縮液を原液室10aに再流入させる。   The stock solution chamber 10a is a compartment through which the stock solution flows. From the outlet of the stock solution chamber 10a to the inlet, it communicates with the outside through piping or the like, and a stock solution flow path 110 for circulating the stock solution to the stock solution chamber 10a is formed. On the stock solution flow path 110, a heater 20, a concentrate tank 30, a stock solution pump P1 for circulating the stock solution, and a stock solution temperature sensor T1 for measuring a representative temperature of the stock solution are installed. The stock solution flow path 110 connects the outlet and the inlet of the stock solution chamber 10a via the heater 20, the concentrate tank 30 and the like, and the concentrate obtained by membrane distillation in the stock solution chamber 10a is recycled to the stock solution chamber 10a. Let it flow.

加熱器20は、管中を流れる原液を熱交換によって加熱する。多孔質膜11における物質移動は、原液と多孔質膜11の界面と、冷却板12の冷却面との間に生じる蒸気圧差によって駆動される。原液は高温であるほど飽和蒸気圧が増大し、飽和蒸気圧が増大するほど多孔質膜11の透過流束が大きくなり、また、顕熱に対する潜熱の移動比率が高くなって熱損失が小さくなる。そのため、原液は、所定温度まで加熱器20によって加熱されて原液室10aに導入される。   The heater 20 heats the stock solution flowing in the pipe by heat exchange. Mass transfer in the porous membrane 11 is driven by a vapor pressure difference generated between the interface between the stock solution and the porous membrane 11 and the cooling surface of the cooling plate 12. The higher the temperature of the stock solution, the higher the saturated vapor pressure, and the higher the saturated vapor pressure, the larger the permeation flux of the porous membrane 11, and the higher the ratio of latent heat to sensible heat, and the smaller the heat loss. . Therefore, the stock solution is heated by the heater 20 to a predetermined temperature and introduced into the stock solution chamber 10a.

冷却室10cは、冷却液が流される区画である。冷却室10cは、冷却板12によって凝縮室10bから隔てられている。冷却室10cの出口から入口までは、室外で配管等を介して連通しており、冷却室10cに冷却液を循環させるための冷却液流路120が形成されている。冷却液流路120上には、冷却器40と、冷却液槽50と、冷却液を循環させる冷却液ポンプP2と、冷却液の代表温度を計測する冷却液温度センサT2とが設置されている。冷却液流路120は、冷却室10cの出口と入口との間を冷却器40、冷却液槽50等を介して接続しており、冷却液を冷却室10cに循環的に流す。   The cooling chamber 10c is a section through which the coolant flows. The cooling chamber 10 c is separated from the condensing chamber 10 b by the cooling plate 12. From the outlet to the inlet of the cooling chamber 10c communicates with the outside through a pipe or the like, and a coolant channel 120 for circulating the coolant in the cooling chamber 10c is formed. On the coolant flow path 120, a cooler 40, a coolant tank 50, a coolant pump P2 for circulating the coolant, and a coolant temperature sensor T2 for measuring a representative temperature of the coolant are installed. . The coolant channel 120 connects the outlet and the inlet of the cooling chamber 10c via the cooler 40, the coolant tank 50, etc., and circulates the coolant cyclically into the cooling chamber 10c.

冷却液としては、熱容量や潜熱が高く、適度な粘度や相転移温度を有する適宜の流体が適用される。例えば、水溶液、水懸濁液等の水性の原液を濃縮対象とする場合には、純水、水道水、工水等の冷却水を用いることができる。   As the cooling liquid, an appropriate fluid having a high heat capacity and latent heat and having an appropriate viscosity and phase transition temperature is applied. For example, when an aqueous stock solution such as an aqueous solution or a water suspension is to be concentrated, cooling water such as pure water, tap water, or industrial water can be used.

冷却器40は、管中を流れる冷却液を冷却するインライン型の装置となっている。冷却液は、凝縮室10bの蒸気が凝縮可能な温度まで冷却器40によって冷却されて冷却室10cに導入される。   The cooler 40 is an in-line type device that cools the coolant flowing in the pipe. The cooling liquid is cooled by the cooler 40 to a temperature at which the vapor in the condensing chamber 10b can be condensed and introduced into the cooling chamber 10c.

凝縮室10bは、蒸気を凝縮させる区画である。凝縮室10bは、多孔質膜11によって原液室10aから隔てられており、内気圧を調圧可能な密閉系とされている。原液室10aにおいて原液から蒸発した蒸気は、多孔質膜11を透過した後、多孔質膜11から冷却板12までを自然対流や拡散によって移動する。そして、冷却液流路120に流されている冷却液によって冷やされた冷却板12が、凝縮室10bの冷却を行い、凝縮室10bの蒸気を凝縮させる。   The condensation chamber 10b is a compartment for condensing steam. The condensation chamber 10b is separated from the stock solution chamber 10a by the porous membrane 11, and is a closed system capable of adjusting the internal pressure. The vapor evaporated from the stock solution in the stock solution chamber 10a passes through the porous membrane 11, and then moves from the porous membrane 11 to the cooling plate 12 by natural convection or diffusion. Then, the cooling plate 12 cooled by the coolant flowing in the coolant flow path 120 cools the condensation chamber 10b and condenses the vapor in the condensation chamber 10b.

凝縮室10bには、凝縮液をセル外に排出する排液路と、蒸気を排気する排気路とが接続されている。排気路には、減圧器70が設置されている。一方、排液路には、凝縮液の量を計測する流量センサ(液量計測手段)F1と、凝縮液槽60とが設置されている。   The condensing chamber 10b is connected to a drain path for discharging the condensate outside the cell and an exhaust path for exhausting the steam. A decompressor 70 is installed in the exhaust path. On the other hand, a flow rate sensor (liquid amount measuring means) F1 for measuring the amount of condensate and a condensate tank 60 are installed in the drainage passage.

減圧器70は、インバータ制御等によって気体の吸引力を調節することができる減圧ポンプであり、凝縮室10bの内気圧を所定圧力に自在に減圧させて、原液室10aと凝縮室10bとの間の圧力差を所定気圧差に調整する。多孔質膜11の透過流束を大きくする観点からは、凝縮室10b側の内気圧が原液室10a側よりも低いほど有利である。このとき、膜に温度差を与えて蒸気圧差を大きく採ろうとすると、膜を介した熱伝導を含め顕熱の移動量が増大するため熱損失が大きくなりかねない。減圧器70によると、温度差を変えること無く蒸気圧差を生じさせることができるので、良好な透過流束と熱的効率とを両立することができる。   The decompressor 70 is a decompression pump that can adjust the suction force of the gas by inverter control or the like, and freely reduces the internal pressure of the condensing chamber 10b to a predetermined pressure so that it is between the stock solution chamber 10a and the condensing chamber 10b. Is adjusted to a predetermined atmospheric pressure difference. From the viewpoint of increasing the permeation flux of the porous membrane 11, it is more advantageous that the internal pressure on the condensation chamber 10b side is lower than that on the stock solution chamber 10a side. At this time, if an attempt is made to increase the vapor pressure difference by giving a temperature difference to the film, the amount of sensible heat transfer including heat conduction through the film increases, which may increase heat loss. According to the decompressor 70, the vapor pressure difference can be generated without changing the temperature difference, so that both good permeation flux and thermal efficiency can be achieved.

制御器80は、加熱器20や冷却器40を制御する機能を有する。制御器80は、例えば、原液温度センサT1によって計測される原液の代表温度、すなわち原液室10aの入口温度や、冷却液温度センサT2によって計測される冷却液の代表温度、すなわち冷却室10cの入口温度が、予め設定した目標温度となるように、加熱器20や冷却器40による伝熱量を制御する。   The controller 80 has a function of controlling the heater 20 and the cooler 40. The controller 80 is, for example, the representative temperature of the stock solution measured by the stock solution temperature sensor T1, that is, the inlet temperature of the stock solution chamber 10a, or the representative temperature of the coolant measured by the coolant temperature sensor T2, that is, the inlet of the cooling chamber 10c. The amount of heat transferred by the heater 20 or the cooler 40 is controlled so that the temperature becomes a preset target temperature.

制御器80は、また、減圧器70を制御する機能を有する。制御器80は、例えば、所定期間内に凝縮室10bから排出される凝縮液の総量が、予め設定した目標量となるように減圧器70による凝縮室10bの調節圧力を制御する。凝縮液の総量は、例えば、流量センサF1によって計測される凝縮液の流量を任意の所定期間について積算することにより求めることができる。   The controller 80 also has a function of controlling the decompressor 70. For example, the controller 80 controls the adjustment pressure of the condensing chamber 10b by the decompressor 70 so that the total amount of condensate discharged from the condensing chamber 10b within a predetermined period becomes a preset target amount. The total amount of the condensate can be obtained, for example, by integrating the flow rate of the condensate measured by the flow rate sensor F1 for an arbitrary predetermined period.

次に、濃縮装置1の具体的な運転方法に基いて、本実施形態に係る濃縮方法について説明する。   Next, the concentration method according to the present embodiment will be described based on a specific operation method of the concentration device 1.

本実施形態に係る濃縮方法は、原液が流される原液室(第1室)と、蒸気を選択的に透過する多孔質膜によって原液室から隔てられた凝縮室(第2室)と、を有する膜蒸留セルにおいて、原液室側と凝縮室側とを所定の温度差となるように調温し、且つ、凝縮室に生じる蒸気が凝縮して作られる凝縮液の量が所定量となるように原液室と凝縮室との間の圧力差、すなわち気圧差を調整する方法である。   The concentration method according to the present embodiment includes a stock solution chamber (first chamber) through which the stock solution flows and a condensation chamber (second chamber) separated from the stock solution chamber by a porous membrane that selectively permeates vapor. In the membrane distillation cell, the temperature of the stock solution chamber side and the condensation chamber side is adjusted so as to have a predetermined temperature difference, and the amount of condensate produced by condensation of the vapor generated in the condensation chamber is set to a predetermined amount. This is a method of adjusting the pressure difference between the stock solution chamber and the condensing chamber, that is, the atmospheric pressure difference.

本実施形態に係る濃縮方法では、所定の濃縮率の濃縮液を生成するために、多孔質膜を透過して凝縮室に生じる凝縮液の量が所定量となるように運転を行う。凝縮液の量は、濃縮液の用途毎に定められる目標量に一致するように調節される。これによって、原液の溶質濃度、品質、種類、保存条件、前処理条件等にかかわらず、目標どおりの濃縮率に濃縮された濃縮液が生成される。   In the concentration method according to the present embodiment, in order to generate a concentrated liquid having a predetermined concentration rate, the operation is performed so that the amount of the condensed liquid that passes through the porous membrane and is generated in the condensation chamber becomes a predetermined amount. The amount of the condensate is adjusted to match the target amount determined for each use of the concentrate. As a result, a concentrated solution concentrated to the target concentration rate is generated regardless of the solute concentration, quality, type, storage conditions, pretreatment conditions, etc. of the stock solution.

原液から蒸気として分離されて多孔質膜を透過する透過量は、凝縮室に生じる凝縮液の量と同等であると見做せる。そのため、濃縮液の濃縮率(C)は、原液の量をQ、凝縮液の量をQとしたとき、膜蒸留セルにおける物質収支から、次の式(1)のように表すことができる。
=Q/(Q−Q)・・・(1)
The permeation amount separated from the stock solution as vapor and permeating through the porous membrane can be regarded as being equivalent to the amount of condensate produced in the condensation chamber. Therefore, the concentration ratio (C f ) of the concentrate is expressed as the following formula (1) from the mass balance in the membrane distillation cell, where Q f is the amount of the stock solution and Q p is the amount of the condensate. Can do.
/ C f = Q f (Q f -Q p) ··· (1)

原液の量(Q)については、膜蒸留セルへの導入量等として容易に把握することができる。例えば、濃縮装置1においては、原液流路110に流量センサを設置したり、濃縮液槽30にレベルセンサや重量センサを設置したりして計測することができる。したがって、所定の濃縮率の濃縮液を生成するために凝縮室に生じさせるべき凝縮液の目標量(Q)は、予め設定される目標濃縮率(C)と、既知の原液の量(Q)とに基いて式(1)から求めることができる。 The amount (Q f ) of the stock solution can be easily grasped as the amount introduced into the membrane distillation cell. For example, in the concentration apparatus 1, measurement can be performed by installing a flow sensor in the stock solution flow path 110 or installing a level sensor or a weight sensor in the concentrate tank 30. Therefore, the target amount (Q p ) of the condensate to be generated in the condensing chamber in order to produce a concentrate having a predetermined concentration rate is determined by the target concentration rate (C f ) set in advance and the amount of known stock solution ( Q f ) and can be determined from equation (1).

濃縮装置1において、原液は、膜蒸留セル10に循環されて膜蒸留を繰り返されることにより、所定の目標濃縮率まで濃縮される。そのため、制御器80には、中間濃縮率に相当する目標濃縮率(C)が予め設定される。そして、これに対応する中間的な目標凝縮液量(Q)が、参照可能な制御目標値として制御器80に記憶される。中間的な目標凝縮液量(Q)は、中間濃縮率に相当する目標濃縮率(C)と、これに対応する中間的な既知の原液量(Q)、すなわち回分処理液量とに基いて式(1)から求められる。 In the concentrating device 1, the stock solution is circulated to the membrane distillation cell 10 and repeated membrane distillation, whereby the stock solution is concentrated to a predetermined target concentration rate. Therefore, a target concentration rate (C f ) corresponding to the intermediate concentration rate is preset in the controller 80. The intermediate target condensate amount (Q p ) corresponding to this is stored in the controller 80 as a control target value that can be referred to. The intermediate target condensate amount (Q p ) includes the target concentration rate (C f ) corresponding to the intermediate concentration rate and the corresponding intermediate known stock solution amount (Q f ), that is, the batch processing solution amount From the formula (1) based on

濃縮装置1において、原液は、第1バルブV10が開放されることにより、系外から原液流路110に導入される。そして、第1バルブV10が閉鎖された後、原液ポンプP1によって原液流路110を循環的に流され、原液室10aに循環供給される。また、冷却液は、冷却液ポンプP2によって冷却液流路120を循環的に流され、冷却室10cに循環供給される。このとき、原液の代表温度は、原液温度センサT1によって経時的に計測され、各時点における計測値は、制御器80に出力される。また、冷却液の代表温度は、冷却液温度センサT2によって経時的に計測され、各時点における計測値は、制御器80に出力される。   In the concentrating device 1, the stock solution is introduced into the stock solution channel 110 from outside the system by opening the first valve V <b> 10. And after the 1st valve | bulb V10 is closed, it is made to circulate through the stock solution flow path 110 by the stock solution pump P1, and is circulated and supplied to the stock solution chamber 10a. Further, the coolant is circulated through the coolant flow path 120 by the coolant pump P2 and is circulated and supplied to the cooling chamber 10c. At this time, the representative temperature of the stock solution is measured over time by the stock solution temperature sensor T <b> 1, and the measured value at each time point is output to the controller 80. In addition, the representative temperature of the coolant is measured over time by the coolant temperature sensor T <b> 2, and the measured value at each time point is output to the controller 80.

制御器80は、原液と冷却液が循環供給されている間に、原液室10aを流れる原液と凝縮室10bの冷却板12との温度差が一定となるように、加熱器20と冷却器40とを所定の温度範囲にそれぞれ定温制御する。例えば、制御器80は、計測温度に基いて加熱器20と冷却器40とをフィードバック制御し、原液の液温と冷却液の液温とを既定の一定温度となるようにそれぞれ調温する。   The controller 80 includes the heater 20 and the cooler 40 so that the temperature difference between the stock solution flowing through the stock solution chamber 10a and the cooling plate 12 of the condensing chamber 10b is constant while the stock solution and the coolant are being circulated. Are controlled at a constant temperature within a predetermined temperature range. For example, the controller 80 feedback-controls the heater 20 and the cooler 40 based on the measured temperature, and adjusts the liquid temperature of the stock solution and the liquid temperature of the cooling liquid so as to be a predetermined constant temperature.

原液側と冷却側との温度差は、目標濃縮率(C)に応じて、多孔質膜11について適切な蒸気圧差が確保される温度に設定される。加熱器20による加熱の目標温度は、水性の原液を濃縮対象とする場合には90℃未満とすることができる。一方、冷却器40による冷却の目標温度は、顕熱や潜熱の移動量を加味して設定すればよい。濃縮装置1においては調温と共に調圧も行われるので、過大な温度差を生じさせる必要が無く、顕熱の移動による熱損失を少なくすることができる。 The temperature difference between the stock solution side and the cooling side is set to a temperature at which an appropriate vapor pressure difference is secured for the porous membrane 11 according to the target concentration rate (C f ). The target temperature for heating by the heater 20 can be less than 90 ° C. when an aqueous stock solution is to be concentrated. On the other hand, the target temperature for cooling by the cooler 40 may be set in consideration of the amount of movement of sensible heat or latent heat. In the concentrating device 1, pressure adjustment is performed together with temperature adjustment, so that it is not necessary to cause an excessive temperature difference, and heat loss due to the movement of sensible heat can be reduced.

膜蒸留セル10の原液室10aでは、加熱された原液から低沸点成分が蒸発し、蒸気は、多孔質膜11を透過して冷却板12上で冷却されて凝縮液となり、凝縮液が、凝縮室10bから排出される。排出される凝縮液の流量は、流量センサF1によって経時的に計測され、各時点における計測値は、制御器80に出力される。   In the stock solution chamber 10a of the membrane distillation cell 10, the low boiling point components evaporate from the heated stock solution, and the vapor passes through the porous membrane 11 and is cooled on the cooling plate 12 to become a condensate. It is discharged from the chamber 10b. The flow rate of the discharged condensate is measured over time by the flow rate sensor F <b> 1, and the measured value at each time point is output to the controller 80.

制御器80は、原液が循環供給されている間に、凝縮室10bに生じる蒸気が凝縮して作られる凝縮液の量が、その目標量(Q)となるように減圧器70を制御する。例えば、目標濃縮率(C)と既知の原液の量(Q)とに基いて求められる目標凝縮液量(Q)を参照し、その目標凝縮液量(Q)を流量センサF1によって計測された流量の所定期間についての積算値と比較する。これによって、制御器80は、減圧器70をフィードバック制御し、凝縮室10bに生じる凝縮液の量を目標凝縮液量(Q)に一致させる。 The controller 80 controls the decompressor 70 so that the amount of the condensate produced by condensing the steam generated in the condensing chamber 10b becomes the target amount (Q p ) while the stock solution is circulated and supplied. . For example, the target concentration factor (C f) with the amount of known stock (Q f) to the target condensate weight determined on the basis of the reference to the (Q p), the target condensate amount (Q p) of the flow rate sensor F1 Is compared with the integrated value of the flow rate measured by the predetermined period. As a result, the controller 80 feedback-controls the decompressor 70 to make the amount of condensate generated in the condensing chamber 10b coincide with the target condensate amount (Q p ).

減圧器70が目標とする調節圧力は、蒸気が冷却板12上で凝縮できる範囲に調節される。目標濃縮率(C)に応じて原液側と冷却側との温度差が設定され、温度差によって凡その蒸気圧差が確保されるので、原液に蒸気圧降下が生じていたとしても即応性良く且つ精密に濃縮率を調節することができる。 The adjustment pressure targeted by the decompressor 70 is adjusted to a range in which steam can be condensed on the cooling plate 12. The temperature difference between the stock solution side and the cooling side is set according to the target concentration rate (C f ), and an approximate vapor pressure difference is ensured by the temperature difference. Therefore, even if a vapor pressure drop occurs in the stock solution, it is highly responsive. And the concentration rate can be adjusted precisely.

膜蒸留セル10において、中間濃縮率に相当する目標濃縮率(C)まで濃縮された濃縮液は、原液流路110を通って再び原液室10aに再流入して更に濃縮される。そして、濃縮液は、最終濃縮率に達するまで原液室10aに循環供給される。その後、原液ポンプP1が停止され、閉鎖されていた第2バルブV20と第3バルブV30とが開放されて、目標の濃縮率に濃縮された濃縮液が回収される。 In the membrane distillation cell 10, the concentrated solution concentrated to the target concentration rate (C f ) corresponding to the intermediate concentration rate passes through the stock solution flow path 110 and flows again into the stock solution chamber 10 a to be further concentrated. The concentrated solution is circulated and supplied to the stock solution chamber 10a until the final concentration rate is reached. Thereafter, the stock solution pump P1 is stopped, the closed second valve V20 and third valve V30 are opened, and the concentrated solution concentrated to the target concentration rate is recovered.

以上の実施形態に係る濃縮装置及び濃縮方法によると、多孔質膜を透過して凝縮室に生じる凝縮液の量を自在に調節することができるので、所定の濃縮率に濃縮された濃縮液を安定的に得ることができる。具体的には、加熱温度や冷却温度、或いは、原液の溶質濃度について不測の変動が生じたとしても、目標濃縮率どおりに濃縮された濃縮液を確実に得ることができる。   According to the concentrating device and the concentrating method according to the above embodiment, the amount of condensate that permeates through the porous membrane and is generated in the condensing chamber can be freely adjusted. It can be obtained stably. Specifically, even if an unexpected change occurs in the heating temperature, the cooling temperature, or the solute concentration of the stock solution, a concentrated solution that is concentrated according to the target concentration rate can be obtained reliably.

また、以上の実施形態に係る濃縮装置及び濃縮方法によると、原液の溶質濃度を予め揃えておくための前処理を必ずしも必要としないし、また、目標濃縮率が異なる原液毎に装置・機器を切り替えることも必要としないので、所定の濃縮率に濃縮された濃縮液を低コストで得ることができる。   Moreover, according to the concentration apparatus and the concentration method according to the above embodiment, pretreatment for preparing the solute concentration of the stock solution in advance is not necessarily required, and the apparatus / equipment is provided for each stock solution having a different target concentration rate. Since switching is not required, a concentrated solution concentrated to a predetermined concentration rate can be obtained at low cost.

また、以上の実施形態に係る濃縮装置及び濃縮方法によると、所定の濃縮率に濃縮された濃縮液を得る上で原液室と凝縮室とを一定の定温に調温すれば足りるため、濃縮液に与えられる熱履歴を、ロット間について容易に揃えることができる。すなわち、濃縮操作毎については、原液の加熱温度が一定に保たれることになるため、異なる濃縮操作同士についても、加熱温度値と加熱時間値とを管理しさえすれば、各濃縮液に与えられる熱履歴を一律に揃えることができる。よって、原液中の成分が熱の影響を受け易い場合においても、同一の濃縮率の濃縮液や、互いに異なる濃縮率の濃縮液を、成分品質を一定に安定させて、ばらつき少なく得ることが可能である。   Further, according to the concentrating device and the concentrating method according to the above-described embodiment, it is sufficient to adjust the temperature of the stock solution chamber and the condensing chamber to a constant temperature in order to obtain a concentrated solution concentrated to a predetermined concentration rate. The heat history given to can be easily aligned between lots. In other words, since the heating temperature of the stock solution is kept constant for each concentration operation, the different concentrated operations can be given to each concentrated solution as long as the heating temperature value and the heating time value are managed. The heat history can be made uniform. Therefore, even when the components in the stock solution are easily affected by heat, it is possible to obtain concentrates with the same concentration ratio or concentrates with different concentration ratios with a constant component quality and less variation. It is.

次に、第1変形例に係る濃縮装置及び濃縮方法について説明する。   Next, the concentration apparatus and concentration method according to the first modification will be described.

図2は、本発明の第1変形例に係る濃縮装置の概略構成を示す図である。
前記の実施形態に係る濃縮装置は、外部熱源に付随して設けられた形態の濃縮装置(第1変形例に係る濃縮装置)とすることができる。
FIG. 2 is a diagram showing a schematic configuration of the concentrating device according to the first modified example of the present invention.
The concentrating device according to the embodiment may be a concentrating device (concentrating device according to a first modification) of a form provided in association with an external heat source.

図2に示すように、第1変形例に係る濃縮装置2は、前記の濃縮装置1と同様に、膜蒸留セル10と、加熱器20と、濃縮液槽30と、原液ポンプP1と、第1温度センサT1と、冷却器40と、冷却液槽50と、冷却液ポンプP2と、第2温度センサT2と、流量センサ(液量計測手段)F1と、凝縮液槽60と、減圧器(圧力調整手段)70と、制御器(制御部)80と、原液流路110と、冷却液流路120とを備えている。   As shown in FIG. 2, the concentration device 2 according to the first modified example is similar to the concentration device 1 described above, the membrane distillation cell 10, the heater 20, the concentrated liquid tank 30, the stock solution pump P <b> 1, 1 temperature sensor T1, cooler 40, coolant tank 50, coolant pump P2, second temperature sensor T2, flow rate sensor (liquid amount measuring means) F1, condensate tank 60, decompressor ( (Pressure adjusting means) 70, a controller (control unit) 80, a stock solution channel 110, and a coolant channel 120.

また、濃縮装置2は、前記の濃縮装置1と同様の構成に加えて、外部熱源(熱源)(H1,H2,・・・Hn)と、熱媒管130と、開閉弁(熱源切替手段)(V1,V2,・・・Vn)と、熱媒ポンプ(流量調整手段)P3と、熱交換器90とをさらに備えている。第1変形例に係る濃縮装置2は、前記の濃縮装置1と同様に、液体の濃度を高める濃縮操作を膜蒸留の原理によって行う装置である。   Further, the concentrating device 2 has the same configuration as the concentrating device 1 described above, an external heat source (heat source) (H1, H2,... Hn), a heat medium pipe 130, and an on-off valve (heat source switching means). (V1, V2,... Vn), a heat medium pump (flow rate adjusting means) P3, and a heat exchanger 90 are further provided. The concentration apparatus 2 according to the first modification is an apparatus that performs a concentration operation for increasing the concentration of a liquid based on the principle of membrane distillation in the same manner as the concentration apparatus 1 described above.

外部熱源(H1,H2,・・・Hn)は、原液の加熱に利用可能な熱エネルギを有している。外部熱源(H1,H2,・・・Hn)は、複数あり、それぞれに熱媒管130が接続されている。外部熱源(H1,H2,・・・Hn)のそれぞれは、互いに独立して熱エネルギを有しており、個々の熱エネルギを、熱媒管130を流れる熱媒に与えるようになっている。   The external heat sources (H1, H2,... Hn) have heat energy that can be used for heating the stock solution. There are a plurality of external heat sources (H1, H2,... Hn), and a heat medium pipe 130 is connected to each. Each of the external heat sources (H1, H2,... Hn) has heat energy independently of each other, and each heat energy is applied to the heat medium flowing through the heat medium pipe.

外部熱源(H1,H2,・・・Hn)は、図2に示すように、加熱器20に熱エネルギを供給可能な状態とされている。すなわち、複数の熱媒管130が、外部熱源(H1,H2,・・・Hn)と加熱器20との間を接続しており、外部熱源(H1,H2,・・・Hn)から加熱器20に向けて熱媒が通流可能とされている。なお、外部熱源(H1,H2,・・・Hn)と加熱器20との間には、熱交換器90が設置されており、熱交換器90によって熱エネルギが中継されるようになっている。   The external heat sources (H1, H2,... Hn) can supply heat energy to the heater 20 as shown in FIG. That is, the plurality of heat medium tubes 130 connect between the external heat sources (H1, H2,... Hn) and the heater 20, and the heaters are connected from the external heat sources (H1, H2,... Hn). A heat medium can flow toward 20. A heat exchanger 90 is installed between the external heat source (H1, H2,... Hn) and the heater 20, and heat energy is relayed by the heat exchanger 90. .

外部熱源(H1,H2,・・・Hn)としては、適宜の種類の熱源が利用される。但し、好ましい形態は、例えば、工場、事業所、発電所、焼却施設等からの排熱や、地熱源や、温泉源泉等を利用する廃熱源である。加熱器20の加熱性能は、原液の液温を既定の一定温度に調温する程度で足り、可変的な温度制御を行う必要が無い。そのため、外部熱源(H1,H2,・・・Hn)としては、排熱熱量が不安定な廃熱源等を含め、適宜の種類の熱源を利用することができる。   As the external heat sources (H1, H2,... Hn), appropriate types of heat sources are used. However, a preferable form is a waste heat source using, for example, exhaust heat from factories, business establishments, power plants, incineration facilities, etc., geothermal sources, hot spring sources, or the like. The heating performance of the heater 20 is sufficient to adjust the temperature of the stock solution to a predetermined constant temperature, and there is no need to perform variable temperature control. For this reason, as the external heat sources (H1, H2,... Hn), appropriate types of heat sources can be used, including waste heat sources and the like having an unstable amount of exhaust heat.

外部熱源(H1,H2,・・・Hn)に接続されている各熱媒管130のそれぞれには、開閉弁(V1,V2,・・・Vn)が設置されている。複数の開閉弁(V1,V2,・・・Vn)のそれぞれは、熱媒管130を独立して開閉し、加熱器20に熱エネルギを与える熱源を、複数の外部熱源(H1,H2,・・・Hn)のうちで選択的に切り替えることができる。   Open / close valves (V1, V2,... Vn) are installed in the respective heat medium tubes 130 connected to the external heat sources (H1, H2,... Hn). Each of the plurality of on-off valves (V1, V2,... Vn) independently opens and closes the heat medium pipe 130 and supplies a heat source that gives thermal energy to the heater 20 as a plurality of external heat sources (H1, H2,. .. can be selectively switched among Hn).

外部熱源(H1,H2,・・・Hn)に接続されている熱媒管130には、熱媒ポンプP3が設置されている。熱媒ポンプP3は、熱媒を外部熱源(H1,H2,・・・Hn)から加熱器20に向けて流し、熱媒管130を流れる熱媒の流量を適宜の量に調整する。   A heat medium pump P3 is installed in the heat medium pipe 130 connected to the external heat sources (H1, H2,... Hn). The heat medium pump P3 causes the heat medium to flow from the external heat sources (H1, H2,... Hn) toward the heater 20, and adjusts the flow rate of the heat medium flowing through the heat medium pipe 130 to an appropriate amount.

次に、濃縮装置2の運転方法に基いて、第1変形例に係る濃縮方法について説明する。   Next, based on the operation method of the concentration apparatus 2, the concentration method according to the first modification will be described.

第1変形例に係る濃縮方法は、原液が流される原液室(第1室)と、蒸気を選択的に透過する多孔質膜によって原液室から隔てられた凝縮室(第2室)と、を有する膜蒸留セルにおいて、原液に与えられる熱量を、複数の熱源のうちで熱源を切り替えると共に熱源からの熱媒の流量を調整して一定熱量とし、原液室側と凝縮室側とを所定の温度差となるように調温し、且つ、凝縮室に生じる蒸気が凝縮して作られる凝縮液の量が所定量となるように原液室と凝縮室との間の圧力差、すなわち気圧差を調整する方法である。   The concentration method according to the first modification includes a stock solution chamber (first chamber) through which a stock solution is flowed, and a condensing chamber (second chamber) separated from the stock solution chamber by a porous membrane that selectively transmits vapor. In the membrane distillation cell, the amount of heat given to the stock solution is changed to a constant heat amount by switching the heat source among the plurality of heat sources and adjusting the flow rate of the heat medium from the heat source, and the stock solution chamber side and the condensation chamber side are set to a predetermined temperature. Adjust the temperature difference so that there is a difference, and adjust the pressure difference between the stock solution chamber and the condensing chamber, that is, the atmospheric pressure difference, so that the amount of condensate produced by condensing the vapor generated in the condensing chamber becomes a predetermined amount It is a method to do.

濃縮装置2においては、前記の濃縮装置1と同様に、目標濃縮率(C)が予め設定され、凝縮室に生じさせるべき目標凝縮液量(Q)が、参照可能な制御目標値として制御器80に記憶される。また、加熱器20において必要とされる目標交換熱量が、原液の加熱の目標温度に基いて求められ、参照可能な制御目標値として制御器80に記憶される。そして、原液は、原液流路110を循環的に流され、冷却液は、冷却液流路120を循環的に流される。 In the concentrator 2, as with the concentrator 1, the target concentration rate (C f ) is set in advance, and the target condensate amount (Q p ) to be generated in the condensing chamber is a control target value that can be referred to. It is stored in the controller 80. Moreover, the target exchange heat amount required in the heater 20 is calculated | required based on the target temperature of the heating of stock solution, and is memorize | stored in the controller 80 as a control target value which can be referred. Then, the stock solution is circulated through the stock solution channel 110, and the coolant is circulated through the coolant channel 120.

制御器80は、原液が循環供給されている間に、外部熱源(H1,H2,・・・Hn)のそれぞれにおける交換熱量を把握する。交換熱量は、例えば、各外部熱源(H1,H2,・・・Hn)に、熱媒流量を計測する流量センサを設置したり、温度センサを設置したりすることで、温度や熱媒流量に基いて把握することができる。   The controller 80 grasps the exchange heat quantity in each of the external heat sources (H1, H2,... Hn) while the stock solution is circulated and supplied. The amount of exchange heat can be adjusted to the temperature and heat medium flow rate by installing a flow sensor for measuring the heat medium flow rate or installing a temperature sensor in each external heat source (H1, H2,... Hn), for example. It can be grasped on the basis.

制御器80は、原液が循環供給されている間に、加熱器20が原液に与える熱量を、複数の外部熱源(H1,H2,・・・Hn)のうちで熱源を切り替えて制御する。例えば、外部熱源(H1,H2,・・・Hn)のそれぞれにおける計測による交換熱量に基いて、加熱器20に熱を与える最適な熱源を選び、それに対応した開閉弁(V1,V2,・・・Vn)のみを開放する。   The controller 80 controls the amount of heat that the heater 20 gives to the stock solution while the stock solution is being circulated by switching the heat source among the plurality of external heat sources (H1, H2,... Hn). For example, on the basis of the exchange heat quantity measured in each of the external heat sources (H1, H2,... Hn), an optimal heat source that gives heat to the heater 20 is selected, and the corresponding on-off valves (V1, V2,. Open only Vn).

開閉弁(V1,V2,・・・Vn)を開放する熱源としては、加熱器20において必要とされる目標交換熱量を超えるものであれば、単一の熱源のみが選ばれるようにしてもよいし、複数の熱源の組み合わせが選ばれるようにしてもよい。加熱器20が原液に与える交換熱量が、加熱器20において必要とされる目標交換熱量を超え、且つ、最小となる熱源が選ばれるようにすると、無用の排熱を削減できる点で好ましい。   As a heat source for opening the on-off valves (V1, V2,... Vn), only a single heat source may be selected as long as it exceeds the target exchange heat amount required in the heater 20. However, a combination of a plurality of heat sources may be selected. It is preferable in that the waste heat can be reduced if the heat exchange that the heater 20 gives to the undiluted solution exceeds the target exchange heat amount required by the heater 20 and the heat source that becomes the minimum is selected.

制御器80は、開閉弁(V1,V2,・・・Vn)が開放された後、加熱器20が原液に与える熱量を、熱媒の流量を調整して制御する。例えば、外部熱源(H1,H2,・・・Hn)のそれぞれにおける計測による交換熱量と、加熱器20において必要とされる目標交換熱量とに基いて、これらの熱量差が無くなるように、熱媒管130を流れる熱媒の流量を減少させる。そして、加熱器20によって定温に調節された原液が、原液室10aと凝縮室10bとの間の圧力差を調整されながら濃縮される。   After the opening / closing valves (V1, V2,... Vn) are opened, the controller 80 controls the amount of heat that the heater 20 gives to the stock solution by adjusting the flow rate of the heating medium. For example, based on the exchange heat quantity measured by each of the external heat sources (H1, H2,... Hn) and the target exchange heat quantity required in the heater 20, the heat medium is eliminated so that the difference between these heat quantities is eliminated. The flow rate of the heat medium flowing through the tube 130 is decreased. Then, the stock solution adjusted to a constant temperature by the heater 20 is concentrated while adjusting the pressure difference between the stock solution chamber 10a and the condensing chamber 10b.

以上の第1変形例に係る濃縮装置及び濃縮方法によると、原液を加熱する加熱器に熱エネルギを供給する熱源が、複数の熱源のうちで切り替えられるため、原液の加熱を持続性良く安定的に行うことができる。例えば、加熱器の熱源として熱エネルギの供給が持続しない熱源を用いたとしても、その熱源が熱エネルギの供給を中断している間に他の熱源を利用することが可能であるため、原液の濃縮操作を継続的に行うことができる。   According to the concentrating apparatus and the concentrating method according to the first modification described above, the heat source that supplies thermal energy to the heater that heats the stock solution can be switched among the plurality of heat sources, so that the heating of the stock solution can be performed stably and stably. Can be done. For example, even if a heat source that does not sustain the supply of heat energy is used as the heat source of the heater, it is possible to use other heat sources while the supply of heat energy is interrupted. The concentration operation can be performed continuously.

また、以上の第1変形例に係る濃縮装置及び濃縮方法によると、加熱器に供給される熱源からの熱媒の流量が調整されるため、原液を加熱するにあたってのエネルギ効率を向上させることができる。例えば、加熱器の熱源として熱エネルギが過剰な熱源を用いる場合であっても、加熱器に対する一定の交換熱量を確保する一方、余剰の熱エネルギを排熱して回収し、他の用途に利用することが可能になる。   Moreover, according to the concentration apparatus and concentration method which concern on the above 1st modification, since the flow volume of the heat medium from the heat source supplied to a heater is adjusted, the energy efficiency at the time of heating a undiluted | stock solution can be improved. it can. For example, even when a heat source with excessive heat energy is used as a heat source for the heater, a certain amount of exchange heat for the heater is ensured, while excess heat energy is exhausted and recovered for use in other applications. It becomes possible.

なお、以上の第1変形例に係る濃縮装置2においては、原液に与えられる熱量を、複数の熱源のうちで熱源を切り替えると共に熱源からの熱媒の流量を調整して一定熱量とするものとされている。しかしながら、これに代えて、熱源の切り替えのみ、又は、熱媒の流量の調整のみを行うようにしてもよい。すなわち、流量調整手段及び熱源切替手段のうちの一方のみを設けて、膜蒸留による濃縮を行うようにしてもよい。熱源の切り替えを行わない場合は、熱源は単一であってよい。また、流量調整手段や熱源切替手段としては、開閉弁、ポンプ等の各種の機器を適宜に利用してよい。   In addition, in the concentration apparatus 2 according to the first modified example described above, the amount of heat given to the stock solution is changed to a constant heat amount by switching the heat source among a plurality of heat sources and adjusting the flow rate of the heat medium from the heat source. Has been. However, instead of this, only switching of the heat source or adjustment of the flow rate of the heat medium may be performed. That is, only one of the flow rate adjusting unit and the heat source switching unit may be provided to perform concentration by membrane distillation. When the heat source is not switched, the heat source may be single. Various devices such as on-off valves and pumps may be used as appropriate as the flow rate adjusting means and the heat source switching means.

次に、第2変形例に係る濃縮装置及び濃縮方法について説明する。   Next, a concentration apparatus and a concentration method according to the second modification will be described.

図3は、本発明の第2変形例に係る濃縮装置の概略構成を示す図である。
前記の実施形態に係る濃縮装置は、原液室の内気圧を加圧する形態の濃縮装置(第2変形例に係る濃縮装置)とすることができる。
FIG. 3 is a diagram showing a schematic configuration of a concentrating device according to a second modification of the present invention.
The concentrating device according to the above embodiment can be a concentrating device (concentrating device according to the second modified example) configured to pressurize the internal pressure of the stock solution chamber.

図3に示すように、第2変形例に係る濃縮装置3は、前記の濃縮装置1と同様に、膜蒸留セル10と、加熱器20と、濃縮液槽30と、原液ポンプP1と、第1温度センサT1と、冷却器40と、冷却液槽50と、冷却液ポンプP2と、第2温度センサT2と、流量センサ(液量計測手段)F1と、凝縮液槽60と、制御器(制御部)80と、原液流路110と、冷却液流路120とを備えている。   As shown in FIG. 3, the concentration device 3 according to the second modified example is similar to the concentration device 1 described above, the membrane distillation cell 10, the heater 20, the concentrated liquid tank 30, the stock solution pump P <b> 1, 1 temperature sensor T1, cooler 40, coolant tank 50, coolant pump P2, second temperature sensor T2, flow rate sensor (liquid amount measuring means) F1, condensate tank 60, controller ( (Control part) 80, the undiluted | stock solution flow path 110, and the cooling fluid flow path 120 are provided.

濃縮装置3が、前記の濃縮装置1と異なる点は、減圧器(圧力調整手段)70に代えて、加圧器(圧力調整手段)V40と、逃がし弁(圧力調整手段)V50とを備えている点である。第2変形例に係る濃縮装置3は、前記の濃縮装置1と同様に、液体の濃度を高める濃縮操作を膜蒸留の原理によって行う装置である。   The concentrator 3 is different from the concentrator 1 in that a concentrator 3 (pressure adjusting means) V40 and a relief valve (pressure adjusting means) V50 are provided instead of the decompressor (pressure adjusting means) 70. Is a point. The concentration apparatus 3 according to the second modification is an apparatus that performs a concentration operation for increasing the concentration of a liquid based on the principle of membrane distillation in the same manner as the concentration apparatus 1 described above.

加圧器V40は、原液室10aの出口の原液流路110上に設置されている。加圧器V40は、原液流路110を開閉する圧力調整弁であり、原液流路110を閉塞させて、原液室10aの内気圧を所定圧力に自在に加圧させる。濃縮装置3において、原液流路110は、内気圧を調圧可能な密閉系とされている。   The pressurizer V40 is installed on the stock solution flow path 110 at the exit of the stock solution chamber 10a. The pressurizer V40 is a pressure adjusting valve that opens and closes the stock solution flow path 110, closes the stock solution flow path 110, and freely pressurizes the internal pressure of the stock solution chamber 10a to a predetermined pressure. In the concentrating device 3, the stock solution flow path 110 is a closed system capable of adjusting the internal pressure.

逃がし弁V50は、凝縮室10bに接続される排気路上に設置されている。逃がし弁V50は、一次側の内気圧を調節することができる背圧弁であり、凝縮室10bの内気圧を所定圧力に自在に減圧させる。そのため、加圧器V40と逃がし弁V50とによって、原液室10aと凝縮室10bとの間の圧力差が所定値に調整されるようになっている。   The relief valve V50 is installed on the exhaust path connected to the condensation chamber 10b. The relief valve V50 is a back pressure valve that can adjust the internal pressure on the primary side, and freely reduces the internal pressure in the condensing chamber 10b to a predetermined pressure. Therefore, the pressure difference between the stock solution chamber 10a and the condensing chamber 10b is adjusted to a predetermined value by the pressurizer V40 and the relief valve V50.

次に、濃縮装置3の運転方法に基いて、第2変形例に係る濃縮方法について説明する。   Next, based on the operation method of the concentration apparatus 3, the concentration method according to the second modification will be described.

第2変形例に係る濃縮方法は、原液が流される原液室(第1室)と、蒸気を選択的に透過する多孔質膜によって原液室から隔てられた凝縮室(第2室)と、を有する膜蒸留セルにおいて、原液室側と凝縮室側とを所定の温度差となるように調温し、且つ、凝縮室に生じる蒸気が凝縮して作られる凝縮液の量が所定量となるように原液室を加圧すると共に凝縮室を減圧して、原液室と凝縮室との間の圧力差、すなわち気圧差を調整する方法である。   The concentration method according to the second modification includes a stock solution chamber (first chamber) through which a stock solution is flowed, and a condensing chamber (second chamber) separated from the stock solution chamber by a porous membrane that selectively transmits vapor. In the membrane distillation cell, the temperature of the stock solution chamber side and the condensation chamber side is adjusted so as to have a predetermined temperature difference, and the amount of condensate produced by condensation of the vapor generated in the condensation chamber is set to a predetermined amount. In this method, the stock solution chamber is pressurized and the condensing chamber is decompressed to adjust the pressure difference between the stock solution chamber and the condensing chamber, that is, the atmospheric pressure difference.

濃縮装置3において、原液は、回分的に膜蒸留されて濃縮される。原液は、第1バルブV10が開放されることにより、系外から原液流路110に導入され、第1バルブV10が閉鎖された後、原液ポンプP1によって加圧されて原液室10aに導入される。また、冷却液は、冷却液ポンプP2によって冷却液流路120を流される。   In the concentrating device 3, the stock solution is concentrated by membrane distillation batchwise. The stock solution is introduced from outside the system into the stock solution flow path 110 by opening the first valve V10, and after the first valve V10 is closed, the stock solution is pressurized by the stock solution pump P1 and introduced into the stock solution chamber 10a. . Further, the coolant is caused to flow through the coolant channel 120 by the coolant pump P2.

制御器80は、原液が膜蒸留セル10に供給されているときに、原液室10aを流れる原液と凝縮室10bの冷却板12との温度差が一定となるように、加熱器20と冷却器40とを所定の温度範囲にそれぞれ定温制御する。例えば、制御器80は、計測温度に基いて加熱器20と冷却器40とをフィードバック制御し、原液の液温と冷却液の液温とを既定の一定温度となるようにそれぞれ調温する。   When the undiluted solution is supplied to the membrane distillation cell 10, the controller 80 is configured so that the temperature difference between the undiluted solution flowing in the undiluted solution chamber 10a and the cooling plate 12 of the condensing chamber 10b is constant. 40 is controlled at a constant temperature within a predetermined temperature range. For example, the controller 80 feedback-controls the heater 20 and the cooler 40 based on the measured temperature, and adjusts the liquid temperature of the stock solution and the liquid temperature of the cooling liquid so as to be a predetermined constant temperature.

制御器80は、原液が所定の目標加熱温度に達したときに、加圧器V40を閉じる。原液は、加圧器V40が閉鎖された状態で、蒸気を生じながら原液室10aに流入し、原液室10aの内気圧が加圧される。   The controller 80 closes the pressurizer V40 when the stock solution reaches a predetermined target heating temperature. The stock solution flows into the stock solution chamber 10a while generating steam in a state where the pressurizer V40 is closed, and the internal pressure of the stock solution chamber 10a is pressurized.

制御器80は、凝縮室10bに生じる凝縮液の量が、その目標量(Q)となるように加圧器V40と逃がし弁V50とを制御する。例えば、目標濃縮率(C)と既知の原液の量(Q)とに基いて求められる目標凝縮液量(Q)を参照し、凝縮室10bに生じる凝縮液の量が、その目標凝縮液量(Q)となるように加圧器V40と逃がし弁V50の開度を制御し、凝縮室10bに生じる凝縮液の量を目標凝縮液量(Q)に一致させる。そして、目標濃縮率(C)まで濃縮された濃縮液は、閉鎖されていた第2バルブV20と第3バルブV30とが開放されて回収される。 The controller 80 controls the pressurizer V40 and the relief valve V50 so that the amount of condensate generated in the condensation chamber 10b becomes the target amount (Q p ). For example, referring to the target condensate amount (Q p ) obtained based on the target concentration rate (C f ) and the known stock solution amount (Q f ), the amount of condensate generated in the condensing chamber 10 b is the target condensate amount. condensate amount (Q p) and so as to control the opening of the pressurizer V40 and relief valve V50, to match the amount of condensate produced in condensing chamber 10b to the target condensate amount (Q p). Then, the concentrated liquid concentrated to the target concentration rate (C f ) is collected by opening the closed second valve V20 and third valve V30.

以上の第2変形例に係る濃縮装置及び濃縮方法によると、原液室が加圧されて原液が膜蒸留されるので、凝縮室を減圧するだけの場合と比較して、濃縮率を高く設定することができる。また、原液が回分的に膜蒸留されるので、多孔質膜を透過する蒸気の量を安定させ易く、より正確な濃縮率の濃縮液を得ることができる。   According to the concentrating apparatus and the concentrating method according to the second modification described above, since the stock solution chamber is pressurized and the stock solution is subjected to membrane distillation, the concentration rate is set higher than in the case where only the decompression chamber is decompressed. be able to. In addition, since the stock solution is batch-distilled, it is easy to stabilize the amount of vapor that permeates the porous membrane, and a concentrated solution having a more accurate concentration rate can be obtained.

次に、第3変形例に係る濃縮装置及び濃縮方法について説明する。   Next, a concentration apparatus and a concentration method according to the third modification will be described.

図4は、本発明の第3変形例に係る濃縮装置の概略構成を示す図である。
前記の実施形態に係る濃縮装置は、原液を膜蒸留セルに単投入する1パス式の濃縮装置(第3変形例に係る濃縮装置)とすることができる。
FIG. 4 is a diagram showing a schematic configuration of a concentrating device according to a third modification of the present invention.
The concentration device according to the above embodiment can be a one-pass type concentration device (concentration device according to the third modification) in which the stock solution is simply charged into the membrane distillation cell.

図4に示すように、第3変形例に係る濃縮装置4は、前記の濃縮装置1と同様に、膜蒸留セル10と、加熱器20と、原液ポンプP1と、第1温度センサT1と、冷却器40と、冷却液槽50と、冷却液ポンプP2と、第2温度センサT2と、流量センサ(液量計測手段)F1と、凝縮液槽60と、減圧器(圧力調整手段)70と、制御器(制御部)80と、冷却液流路120とを備えている。   As shown in FIG. 4, the concentrating device 4 according to the third modified example, like the concentrating device 1, includes a membrane distillation cell 10, a heater 20, a stock solution pump P <b> 1, a first temperature sensor T <b> 1, A cooler 40, a coolant tank 50, a coolant pump P 2, a second temperature sensor T 2, a flow rate sensor (liquid amount measuring means) F 1, a condensate tank 60, and a decompressor (pressure adjusting means) 70 , A controller (control unit) 80 and a coolant flow path 120 are provided.

濃縮装置4が、前記の濃縮装置1と異なる点は、原液室10aで膜蒸留された濃縮液を原液室10aに再流入させる原液流路110に代えて、原液を単投入するために用いられる原液投入路150と、濃縮液をセル外に排出するための濃縮液回収路160とを備えている点である。第3変形例に係る濃縮装置4は、前記の濃縮装置1と同様に、液体の濃度を高める濃縮操作を膜蒸留の原理によって行う装置である。   The concentrating device 4 is different from the concentrating device 1 described above in that the concentrating liquid obtained by membrane distillation in the concentrating liquid chamber 10a is used instead of the concentrating liquid flow path 110 for re-inflowing into the concentrating liquid chamber 10a. It is the point provided with the concentrate feeding path 150 and the concentrated liquid collection path 160 for discharging the concentrated liquid out of the cell. The concentration apparatus 4 according to the third modification is an apparatus that performs a concentration operation for increasing the concentration of a liquid based on the principle of membrane distillation in the same manner as the concentration apparatus 1 described above.

原液投入路150は、原液室10aの入口に接続している。原液投入路150は、配管等によって構成されており、系外から原液室10aに原液を投入するための流路を形成している。原液投入路150上には、加熱器20と、原液ポンプP1と、原液温度センサT1とが設置されており、加熱器20によって加熱された原液が原液室10aに投入されるようになっている。   The stock solution input path 150 is connected to the inlet of the stock solution chamber 10a. The undiluted solution introduction path 150 is constituted by piping or the like, and forms a flow path for introducing undiluted solution from outside the system into the undiluted solution chamber 10a. A heater 20, a stock solution pump P1, and a stock solution temperature sensor T1 are installed on the stock solution feeding path 150, and the stock solution heated by the heater 20 is fed into the stock solution chamber 10a. .

濃縮液回収路160は、原液室10aの出口に接続している。濃縮液回収路160は、配管等によって構成されており、濃縮液を原液室10aから系外に排出して回収するための流路を形成している。濃縮液回収路160上には、原液室10aにおいて濃縮された濃縮液を受ける濃縮液槽31が設置されている。   The concentrated liquid recovery path 160 is connected to the outlet of the stock solution chamber 10a. The concentrated liquid recovery path 160 is constituted by piping or the like, and forms a flow path for discharging and recovering the concentrated liquid from the stock solution chamber 10a to the outside of the system. On the concentrate recovery path 160, a concentrate tank 31 for receiving the concentrate concentrated in the stock solution chamber 10a is installed.

次に、濃縮装置4の具体的な運転方法について説明する。   Next, a specific operation method of the concentrating device 4 will be described.

濃縮装置4において、原液は、回分的に膜蒸留されて濃縮される。すなわち、最終濃縮率に相当する目標濃縮率(C)が予め設定され、これに対応して凝縮室に生じさせるべき目標凝縮液量(Q)が、参照可能な制御目標値として制御器80に記憶される。原液は、加熱器20によって所定温度に加熱され、原液投入路150を通じて原液室10aに導入される。また、冷却液は、冷却液流路120を流される。 In the concentrator 4, the stock solution is concentrated by membrane distillation batchwise. That is, the target concentration rate (C f ) corresponding to the final concentration rate is preset, and the target condensate amount (Q p ) to be generated in the condensing chamber corresponding to this is set as a control target value that can be referred to. 80. The stock solution is heated to a predetermined temperature by the heater 20 and is introduced into the stock solution chamber 10 a through the stock solution charging path 150. In addition, the coolant flows through the coolant channel 120.

制御器80は、原液が膜蒸留セル10に供給されているときに、前記の濃縮装置1においてと同様に、加熱器20と冷却器40とを所定の温度範囲にそれぞれ定温制御する。また、これと併せて、凝縮室10bに生じる蒸気が凝縮して作られる凝縮液の量が、その目標量(Q)となるように減圧器70を制御する。そして、目標濃縮率(C)まで濃縮された濃縮液は、濃縮液回収路160を通じて系外に排出されて回収される。 When the undiluted solution is supplied to the membrane distillation cell 10, the controller 80 controls the heater 20 and the cooler 40 at a constant temperature within a predetermined temperature range in the same manner as in the concentration device 1 described above. At the same time, the decompressor 70 is controlled so that the amount of the condensate produced by condensing the vapor generated in the condensing chamber 10b becomes the target amount (Q p ). Then, the concentrated liquid concentrated to the target concentration rate (C f ) is discharged out of the system through the concentrated liquid recovery path 160 and recovered.

以上の第3変形例に係る濃縮装置によると、原液を回分的に濃縮することができる。原液を循環させて濃縮する場合と比較して、蒸気圧の変動が動的になったり、膜蒸留セルの寸法、多孔質膜の膜面積等の仕様や、原液流量等が制約されたりする傾向がある一方、加熱及び冷却を定温にする制御や、装置構成部材等を単純化することができる。   According to the concentration apparatus according to the third modified example, the stock solution can be concentrated batchwise. Compared to the case where the concentrate is circulated and concentrated, fluctuations in vapor pressure become more dynamic, and specifications such as membrane distillation cell dimensions, porous membrane area, and the flow rate of the concentrate tend to be restricted. On the other hand, it is possible to simplify the control for heating and cooling to a constant temperature, the apparatus constituent members, and the like.

なお、前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、第2変形例に係る濃縮装置3、及び、第3変形例に係る濃縮装置4は、次のような形態とすることもできる。   The concentration device 1 according to the embodiment, the concentration device 2 according to the first modification, the concentration device 3 according to the second modification, and the concentration device 4 according to the third modification are as follows. It can also be.

例えば、前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、第2変形例に係る濃縮装置3、及び、第3変形例に係る濃縮装置4においては、加熱器20が膜蒸留セル10の外部に設けられており、原液流路110や原液投入路150を流れる原液が加熱されるものとされている。しかしながら、これに代えて、加熱器20を原液室10aに設置し、原液室10aの内部において原液を加熱する形態としてもよい。   For example, in the concentration apparatus 1 according to the above-described embodiment, the concentration apparatus 2 according to the first modification, the concentration apparatus 3 according to the second modification, and the concentration apparatus 4 according to the third modification, the heater 20 is It is provided outside the membrane distillation cell 10, and the stock solution flowing through the stock solution channel 110 and the stock solution input channel 150 is heated. However, instead of this, the heater 20 may be installed in the stock solution chamber 10a and the stock solution may be heated inside the stock solution chamber 10a.

また、前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、第2変形例に係る濃縮装置3、及び、第3変形例に係る濃縮装置4においては、膜蒸留セル10が、多孔質膜11を透過した蒸気を、多孔質膜11の反対側に離れた冷却板12上で冷却する間接接触型とされている。しかしながら、これに代えて、多孔質膜11を透過した蒸気を、多孔質膜11の反対側を流れる冷却液に吸収させる直接接触型としてもよい。すなわち、膜蒸留セルを原液室(第1室)と凝縮室(第2室)の2室の構成とし、原液室と凝縮室とを多孔質膜によって隔てると共に、凝縮室の出口と凝縮室の入口との間を接続する冷却液流路を配管等によって設けてもよい。つまり、冷却液流路が凝縮室に冷却液を循環し、凝縮室を流れる冷却液が凝縮室に生じる蒸気を冷却するように構成することもできる。直接接触型においては、冷却液が流される凝縮室を密閉系として調圧し、膜蒸留後の冷却液量から当初の冷却液量を減算して凝縮液量を把握すればよい。   Further, in the concentration apparatus 1 according to the above-described embodiment, the concentration apparatus 2 according to the first modification, the concentration apparatus 3 according to the second modification, and the concentration apparatus 4 according to the third modification, the membrane distillation cell 10 However, it is an indirect contact type that cools the vapor that has permeated through the porous film 11 on the cooling plate 12 that is separated to the opposite side of the porous film 11. However, instead of this, it is also possible to adopt a direct contact type in which the vapor that has permeated through the porous membrane 11 is absorbed by the coolant flowing on the opposite side of the porous membrane 11. That is, the membrane distillation cell has a two-part configuration of a stock solution chamber (first chamber) and a condensing chamber (second chamber), and the stock solution chamber and the condensing chamber are separated by a porous membrane, and the outlet of the condensing chamber and the condensing chamber You may provide the cooling fluid flow path which connects between inlets by piping etc. In other words, the coolant channel can circulate the coolant in the condensation chamber, and the coolant flowing in the condensation chamber can cool the vapor generated in the condensation chamber. In the direct contact type, the pressure of the condensate may be determined by adjusting the pressure in the condensing chamber through which the coolant flows, and subtracting the initial amount of coolant from the amount of coolant after film distillation.

また、前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、第2変形例に係る濃縮装置3、及び、第3変形例に係る濃縮装置4においては、凝縮室10bに接続された排液路に、凝縮液の量を計測する流量センサF1が設置されている。しかしながら、凝縮液の量は、流量の他、液位や液重量の変化に基いて計測してもよい。また、排液路と共に排気路に、凝縮液の量を計測する液量計測手段を設置し、排気路から排気された蒸気を凝縮させて液量を計測し、排液路から排出される凝縮液の量と排気路から排出される量とを合算して凝縮液の総量を把握するようにしてもよい。   Further, in the concentrating device 1 according to the embodiment, the concentrating device 2 according to the first modified example, the concentrating device 3 according to the second modified example, and the concentrating device 4 according to the third modified example, the condensing chamber 10b includes A flow rate sensor F1 for measuring the amount of condensate is installed in the connected drainage path. However, the amount of condensate may be measured based on changes in liquid level and liquid weight in addition to the flow rate. In addition to the drainage path, a liquid level measuring means for measuring the amount of condensate is installed in the exhaust path, the vapor exhausted from the exhaust path is condensed to measure the liquid level, and the condensation discharged from the drainage path You may make it grasp | ascertain the total amount of condensate by adding the quantity of liquid and the quantity discharged | emitted from an exhaust passage.

また、前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、及び、第3変形例に係る濃縮装置4においては、原液室10aと凝縮室10bとの圧力差を調整するために、減圧器70として減圧ポンプが備えられている。しかしながら、これに代えて、排気側に真空減圧系を設けると共に、圧力を調節可能な背圧弁を設置して用いてもよい。   Further, in the concentrating device 1 according to the embodiment, the concentrating device 2 according to the first modified example, and the concentrating device 4 according to the third modified example, the pressure difference between the stock solution chamber 10a and the condensing chamber 10b is adjusted. Therefore, a decompression pump is provided as the decompressor 70. However, instead of this, a vacuum pressure reducing system may be provided on the exhaust side, and a back pressure valve capable of adjusting the pressure may be installed and used.

また、前記の第2変形例に係る濃縮装置3においては、原液側と冷却側との圧力差を調整するために、加圧器V40と逃がし弁V50とが備えられている。しかしながら、これに代えて、原液室の圧力を加圧自在な加圧器V40のみを設置し、加圧器V40のみを制御することによって、原液室10aと凝縮室10bとの圧力差を調整してもよい。また、圧力調整弁による加圧器V40や、逃がし弁V50に代えて、圧力調整ポンプを用いてもよい。   In addition, the concentrating device 3 according to the second modification includes a pressurizer V40 and a relief valve V50 in order to adjust the pressure difference between the stock solution side and the cooling side. However, instead of this, even if the pressure difference between the stock solution chamber 10a and the condensing chamber 10b is adjusted by installing only the pressurizer V40 capable of pressurizing the pressure of the stock solution chamber and controlling only the pressurizer V40. Good. Further, a pressure adjusting pump may be used in place of the pressurizer V40 using the pressure adjusting valve and the relief valve V50.

また、前記の第3変形例に係る濃縮装置4においては、単一の膜蒸留セル10が備えられ、濃縮液回収路160を通じて濃縮液を系外に排出するものとされている。しかしながら、これに代えて、複数の膜蒸留セル10を直列状に連結し、濃縮液回収路160を次の装置の原液投入路150に接続した構成とすることも可能である。この場合、各凝縮室10bは、個別に調圧してよい。   Further, in the concentrating device 4 according to the third modified example, the single membrane distillation cell 10 is provided, and the concentrated liquid is discharged out of the system through the concentrated liquid recovery path 160. However, instead of this, it is also possible to connect a plurality of membrane distillation cells 10 in series and connect the concentrate recovery path 160 to the stock solution input path 150 of the next apparatus. In this case, each condensing chamber 10b may be individually regulated.

次に、濃縮装置を用いた飲料製造システムについて説明する。   Next, a beverage production system using a concentrating device will be described.

前記の実施形態に係る濃縮装置1、第1変形例に係る濃縮装置2、第2変形例に係る濃縮装置3、及び、第3変形例に係る濃縮装置4は、飲料製造用の他の装置・機器と組織化することによって、果実を原料として濃縮果汁や発酵飲料を製造する飲料製造システムとすることができる。   The concentration apparatus 1 according to the above embodiment, the concentration apparatus 2 according to the first modification, the concentration apparatus 3 according to the second modification, and the concentration apparatus 4 according to the third modification are other apparatuses for beverage production. -It can be set as the drink manufacturing system which manufactures concentrated fruit juice and fermented drinks using fruit as a raw material by organizing with an apparatus.

図5は、飲料製造システムの概略構成を示すブロック図である。
図5に示すように、飲料製造システム200は、圧搾機201と、プレフィルタ202と、濃縮装置203と、温水調整器204と、熱交換器205と、熱源206と、殺菌器207と、発酵槽208と、濾過器209と、貯蔵槽210と、濾過器211と、充填機212とを備えている。
FIG. 5 is a block diagram showing a schematic configuration of the beverage production system.
As shown in FIG. 5, the beverage production system 200 includes a press machine 201, a pre-filter 202, a concentrator 203, a hot water regulator 204, a heat exchanger 205, a heat source 206, a sterilizer 207, and a fermentation A tank 208, a filter 209, a storage tank 210, a filter 211, and a filling machine 212 are provided.

飲料製造システム200においては、ぶどう、りんご等の果実が圧搾機201によって圧搾され、濃縮果汁や発酵飲料の原料となる果汁が圧汁される。そして、果汁は、プレフィルタ202によって、果皮、果肉、その他の異物等を除去された後、濃縮装置203に投入される。なお、プレフィルタ202は、濃縮装置の膜を通過したり目詰まりを起こす虞のある2ミクロン(μm)以下の粒子を除去するフィルタと組み合わせることができる。   In the beverage production system 200, fruits such as grapes and apples are squeezed by a squeezing machine 201, and juice that is a raw material for concentrated fruit juice and fermented beverages is squeezed. The fruit juice is then removed from the skin, flesh, and other foreign matters by the pre-filter 202, and then fed into the concentrator 203. The pre-filter 202 can be combined with a filter that removes particles of 2 microns (μm) or less that may pass through the membrane of the concentrator or cause clogging.

濃縮装置203は、水分を除去して果汁の濃度を高めるために備えられている。濃縮装置203としては、前記の実施形態に係る濃縮装置や変形例に係る濃縮装置が適用される。濃縮装置203は、果汁中の水分を蒸発させて膜蒸留するために、温水を利用して90℃未満の所定温度に果汁を加熱する。温水は、熱源206から供給される熱エネルギを利用して熱交換器205において加温され、温水調整器204から濃縮装置203の加熱器(20)に供給される。   The concentrator 203 is provided to remove moisture and increase the concentration of fruit juice. As the concentrating device 203, the concentrating device according to the above-described embodiment or the concentrating device according to the modification is applied. The concentrator 203 heats the fruit juice to a predetermined temperature of less than 90 ° C. using warm water in order to evaporate the water in the fruit juice and perform film distillation. The hot water is heated in the heat exchanger 205 using the thermal energy supplied from the heat source 206, and is supplied from the hot water regulator 204 to the heater (20) of the concentrating device 203.

濃縮果汁を製造するときには、果汁は、糖度や酸度が規定以上となるように目標濃縮率が設定されて、その濃縮率まで濃縮される。濃縮装置203において濃縮された果汁は、殺菌器207によって低温殺菌された後、各種の容器に充填される。このようにして製造される濃縮果汁は、運搬、貯蔵等された後に水で希釈還元されて果実飲料となる。   When producing concentrated fruit juice, the fruit juice is concentrated to the concentration ratio with a target concentration ratio set so that the sugar content and acidity are not less than specified. The fruit juice concentrated in the concentrator 203 is pasteurized by the sterilizer 207 and then filled into various containers. The concentrated fruit juice produced in this way is transported, stored, etc., and then diluted and reduced with water to become a fruit drink.

一方、発酵飲料を製造するときには、果汁は、アルコール発酵に適した糖度となるように目標濃縮率が設定されて、その濃縮率まで濃縮される。例えば、ぶどう果汁については、糖度を15〜30程度の範囲内に濃縮する。濃縮装置203において濃縮された果汁は、発酵槽208において酵母等によりアルコール発酵される。そして、発酵後に濾過器209によって殿が取り除かれ、貯蔵槽210において更に貯酒・熟成される。その後、濾過器211によって清澄化され、充填機212によって瓶詰めされることで、ワイン等の発酵飲料が得られる。   On the other hand, when producing a fermented beverage, the fruit juice is concentrated to the concentration rate with a target concentration rate set so as to have a sugar content suitable for alcohol fermentation. For example, for grape juice, the sugar content is concentrated in the range of about 15-30. The fruit juice concentrated in the concentrator 203 is subjected to alcohol fermentation with yeast or the like in the fermenter 208. After the fermentation, the filter is removed by the filter 209, and the storage tank 210 further stores and matures the liquor. Then, it is clarified by the filter 211 and bottled by the filling machine 212 to obtain a fermented beverage such as wine.

以上の飲料製造システムによると、濃縮装置203が備えられているため、果実の品質、品種、収穫後の保存条件等にかかわらず、所定の濃縮率に濃縮された濃縮果汁や、所定の糖度で発酵された発酵飲料を得ることができる。すなわち、濃縮された果汁の用途が、濃縮還元用の濃縮果汁、発酵飲料等のいずれであっても、目標どおりの濃縮率に安定的に濃縮された果汁を、単一の濃縮装置203において得ることができる。   According to the above beverage production system, since the concentrating device 203 is provided, the concentrated fruit juice concentrated to a predetermined concentration rate or a predetermined sugar content is obtained regardless of the quality of fruit, variety, storage conditions after harvesting, etc. A fermented fermented beverage can be obtained. That is, even if the use of the concentrated fruit juice is any of concentrated fruit juice for concentration and reduction, fermented beverages, etc., the fruit juice stably concentrated to the target concentration rate is obtained in the single concentrator 203. be able to.

なお、以上の飲料製造システム200においては、濃縮装置203が発酵槽208の前段に備えられ、果汁の水分を除去するものとされている。しかしながら、濃縮装置203を発酵槽208の後段に備え、発酵後液のアルコール分を除去するものとしてもよい。濃縮装置203においては、アルコール度数を所定の濃縮率に濃縮することができるので、ノンアルコールの飲料や、高アルコール度数の飲料を自在に製造することも可能である。   In the beverage manufacturing system 200 described above, the concentrating device 203 is provided in the front stage of the fermenter 208 to remove moisture from the fruit juice. However, the concentrator 203 may be provided in the subsequent stage of the fermenter 208 to remove the alcohol content of the post-fermentation liquid. In the concentrator 203, the alcohol content can be concentrated to a predetermined concentration rate, and therefore, a non-alcoholic beverage or a beverage with a high alcohol content can be produced freely.

1 濃縮装置
2 濃縮装置
3 濃縮装置
4 濃縮装置
10 膜蒸留セル
10a 原液室(第1室)
10b 凝縮室(第2室)
10c 冷却室(第3室)
11 多孔質膜
12 冷却板(伝熱壁)
20 加熱器
30 濃縮液槽
40 冷却器
50 冷却液槽
60 凝縮液槽
70 減圧器(圧力調整手段)
80 制御器(制御部)
90 熱交換器
110 原液流路
120 冷却液流路
130 熱媒管
150 原液投入路
160 濃縮液回収路
F1 流量センサ
H1,H2,・・・Hn 熱源
P1 原液ポンプ
P2 冷却液ポンプ
P3 熱媒ポンプ(流量調整手段)
T1 原液温度センサ
T2 冷却液温度センサ
V1,V2,・・・Vn 開閉弁(熱源切替手段)
V10 第1バルブ
V20 第2バルブ
V30 第3バルブ
V40 加圧器(圧力調整手段)
V50 逃がし弁(圧力調整手段)
DESCRIPTION OF SYMBOLS 1 Concentrator 2 Concentrator 3 Concentrator 4 Concentrator 10 Membrane distillation cell 10a Stock solution chamber (first chamber)
10b Condensing chamber (second chamber)
10c Cooling room (third room)
11 Porous membrane 12 Cooling plate (heat transfer wall)
20 Heater 30 Concentrated liquid tank 40 Cooler 50 Cooling liquid tank 60 Condensed liquid tank 70 Depressurizer (pressure adjusting means)
80 Controller (control unit)
90 heat exchanger 110 undiluted liquid flow path 120 cooling liquid flow path 130 heat medium pipe 150 undiluted liquid input path 160 concentrated liquid recovery path F1 flow rate sensors H1, H2,... Hn heat source P1 undiluted liquid pump P2 cooling liquid pump P3 heat medium pump ( Flow rate adjustment means)
T1 Stock solution temperature sensor T2 Coolant temperature sensors V1, V2,... Vn On-off valve (heat source switching means)
V10 1st valve V20 2nd valve V30 3rd valve V40 Pressurizer (pressure adjusting means)
V50 Relief valve (pressure adjusting means)

Claims (10)

原液が流される第1室と、蒸気を選択的に透過する多孔質膜によって前記第1室から隔てられた第2室と、を有する膜蒸留セルと、
前記原液を加熱する加熱器と、
前記第2室の冷却を行う冷却器と、
前記第1室又は前記第2室の圧力を変化させて前記第1室と前記第2室との間の圧力差を調整する圧力調整手段と、
前記加熱器、前記冷却器及び前記圧力調整手段を制御する制御部と、を備え、
前記制御部は、前記加熱器と前記冷却器とを所定の温度範囲に制御し、前記第2室に生じる前記蒸気が凝縮して作られる凝縮液の量が所定量となるように前記圧力調整手段を制御することを特徴とする濃縮装置。
A membrane distillation cell having a first chamber through which the stock solution is flowed, and a second chamber separated from the first chamber by a porous membrane that selectively permeates vapor;
A heater for heating the stock solution;
A cooler for cooling the second chamber;
Pressure adjusting means for adjusting the pressure difference between the first chamber and the second chamber by changing the pressure of the first chamber or the second chamber;
A controller that controls the heater, the cooler, and the pressure adjusting means,
The control unit controls the heater and the cooler to a predetermined temperature range, and adjusts the pressure so that the amount of condensate produced by condensing the vapor generated in the second chamber becomes a predetermined amount. A concentrating device characterized by controlling the means.
前記制御部は、予め設定されている目標濃縮率と前記第1室に流される前記原液の量とに基いて求められる前記凝縮液の目標量を参照し、前記第2室に生じる凝縮液の量が前記目標量となるように前記圧力調整手段を制御することを特徴とする請求項1に記載の濃縮装置。   The control unit refers to a target amount of the condensate obtained based on a preset target concentration rate and the amount of the stock solution flowing into the first chamber, and the condensate generated in the second chamber The concentration apparatus according to claim 1, wherein the pressure adjusting unit is controlled so that the amount becomes the target amount. 伝熱壁によって前記第2室から隔てられた第3室と、
前記第3室の出口と前記第3室の入口との間を接続し、前記第3室に冷却液を循環させる冷却液流路と、をさらに備え、
前記冷却器は、前記冷却液流路に流されている前記冷却液を冷却し、
前記第3室を流れる前記冷却液によって冷やされた前記伝熱壁が、前記第2室に生じる前記蒸気を冷却することを特徴とする請求項1又は請求項2に記載の濃縮装置。
A third chamber separated from the second chamber by a heat transfer wall;
A cooling liquid flow path connecting the outlet of the third chamber and the inlet of the third chamber and circulating a cooling liquid in the third chamber;
The cooler cools the coolant flowing through the coolant flow path;
The concentrator according to claim 1 or 2, wherein the heat transfer wall cooled by the coolant flowing through the third chamber cools the steam generated in the second chamber.
前記第2室の出口と前記第2室の入口との間を接続し、前記第2室に冷却液を循環させる冷却液流路をさらに備え、
前記冷却器は、前記冷却液流路に流される前記冷却液を冷却し、
前記第2室を流れる前記冷却液が、前記第2室に生じる前記蒸気を冷却することを特徴とする請求項1又は請求項2に記載の濃縮装置。
A cooling liquid flow path for connecting the outlet of the second chamber and the inlet of the second chamber and circulating the cooling liquid in the second chamber;
The cooler cools the coolant flowing through the coolant flow path;
The concentrating apparatus according to claim 1 or 2, wherein the cooling liquid flowing through the second chamber cools the vapor generated in the second chamber.
前記圧力調整手段が、前記第2室の圧力を減圧自在な減圧器、前記第1室の圧力を加圧自在な加圧器、又は、前記減圧器と前記加圧器の両方であることを特徴とする請求項1から請求項4のいずれか一項に記載の濃縮装置。   The pressure adjusting means is a decompressor capable of depressurizing the pressure in the second chamber, a pressurizer capable of depressurizing the pressure in the first chamber, or both the depressurizer and the pressurizer. The concentration apparatus according to any one of claims 1 to 4. 前記第1室の出口と前記第1室の入口との間を接続し、前記原液が濃縮された濃縮液を前記第1室に再流入させる原液流路をさらに備えることを特徴とする請求項1から請求項5のいずれか一項に記載の濃縮装置。   The apparatus further comprises a concentrate flow path that connects between the outlet of the first chamber and the inlet of the first chamber and reflows the concentrated solution in which the concentrate is concentrated into the first chamber. The concentrating device according to any one of claims 1 to 5. 前記加熱器に熱エネルギを供給可能な熱源と、
前記熱エネルギを媒介する熱媒の流量を調整する流量調整手段と、をさらに備え、
前記制御部は、前記加熱器が前記原液に与える熱量を、前記熱媒の流量を調整して制御することを特徴とする請求項1から請求項6のいずれか一項に記載の濃縮装置。
A heat source capable of supplying thermal energy to the heater;
A flow rate adjusting means for adjusting a flow rate of the heat medium that mediates the thermal energy, and
The concentrator according to any one of claims 1 to 6, wherein the controller controls the amount of heat given to the stock solution by the heater by adjusting a flow rate of the heat medium.
前記加熱器に熱エネルギを供給可能な複数の熱源と、
前記加熱器に前記熱エネルギを与える熱源を前記複数の熱源のうちで切り替える熱源切替手段と、をさらに備え、
前記制御部は、前記加熱器が前記原液に与える熱量を、前記複数の熱源のうちで熱源を切り替えて制御することを特徴とする請求項1から請求項7のいずれか一項に記載の濃縮装置。
A plurality of heat sources capable of supplying thermal energy to the heater;
Heat source switching means for switching a heat source that gives the heat energy to the heater among the plurality of heat sources, and
The concentration according to any one of claims 1 to 7, wherein the control unit controls the amount of heat given to the stock solution by the heater by switching the heat source among the plurality of heat sources. apparatus.
原液が流される第1室と、蒸気を選択的に透過する多孔質膜によって前記第1室から隔てられた第2室と、前記多孔質膜を透過した蒸気を凝縮する伝熱壁によって前記第2室から隔てられ、冷却液が流される第3室と、を有する膜蒸留セルと、
前記原液を加熱する加熱器と、
前記冷却液を冷却する冷却器と、
前記第2室の圧力を減少させて前記第1室と前記第2室との間の圧力差を調整する圧力調整手段と、
前記加熱器、前記冷却器及び前記圧力調整手段を制御する制御部と、を備え、
前記制御部は、前記加熱器と前記冷却器とを所定の温度範囲に制御し、前記第2室に生じる前記蒸気が凝縮して作られる凝縮液の量が所定量となるように前記圧力調整手段を制御することを特徴とする濃縮装置。
The first chamber through which the stock solution flows, the second chamber separated from the first chamber by a porous membrane that selectively permeates vapor, and the heat transfer wall that condenses the vapor that has permeated the porous membrane. A membrane distillation cell having a third chamber, which is separated from the two chambers and into which the cooling liquid is allowed to flow;
A heater for heating the stock solution;
A cooler for cooling the coolant;
Pressure adjusting means for adjusting the pressure difference between the first chamber and the second chamber by reducing the pressure in the second chamber;
A controller that controls the heater, the cooler, and the pressure adjusting means,
The control unit controls the heater and the cooler to a predetermined temperature range, and adjusts the pressure so that the amount of condensate produced by condensing the vapor generated in the second chamber becomes a predetermined amount. A concentrating device characterized by controlling the means.
原液が流される第1室と、蒸気を選択的に透過する多孔質膜によって前記第1室から隔てられた第2室と、を有する膜蒸留セルにおいて、
前記多孔質膜の前記第1室側と前記第2室側とを所定の温度差となるように調温すると共に、前記第2室に生じる前記蒸気が凝縮して作られる凝縮液の量が所定量となるように前記第1室と前記第2室との間の圧力差を調整することを特徴とする濃縮方法。
In a membrane distillation cell having a first chamber through which a stock solution is flowed and a second chamber separated from the first chamber by a porous membrane that selectively transmits vapor,
The temperature of the first chamber side and the second chamber side of the porous membrane is adjusted so as to have a predetermined temperature difference, and the amount of condensate produced by condensing the vapor generated in the second chamber is A concentration method comprising adjusting a pressure difference between the first chamber and the second chamber so as to be a predetermined amount.
JP2016016510A 2016-01-29 2016-01-29 Concentration apparatus and concentration method Expired - Fee Related JP5923226B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016016510A JP5923226B1 (en) 2016-01-29 2016-01-29 Concentration apparatus and concentration method
PCT/JP2016/085215 WO2017130554A1 (en) 2016-01-29 2016-11-28 Concentration device and concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016510A JP5923226B1 (en) 2016-01-29 2016-01-29 Concentration apparatus and concentration method

Publications (2)

Publication Number Publication Date
JP5923226B1 true JP5923226B1 (en) 2016-05-24
JP2017131876A JP2017131876A (en) 2017-08-03

Family

ID=56015221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016510A Expired - Fee Related JP5923226B1 (en) 2016-01-29 2016-01-29 Concentration apparatus and concentration method

Country Status (2)

Country Link
JP (1) JP5923226B1 (en)
WO (1) WO2017130554A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156269A (en) * 2019-06-06 2019-08-23 复旦大学 A kind of water supply plant charcoal sand combination filter tank
CN110342600A (en) * 2019-07-04 2019-10-18 浙江大学 A kind of membrane distillation purified water preparation system of injector driving
KR102038324B1 (en) * 2019-08-07 2019-10-30 앵스트롬스 주식회사 A dehydration system for mixture of water and organic solvent
CN110860208A (en) * 2019-12-19 2020-03-06 北京清核朝华科技有限公司 Concentrating system and method for uranyl nitrate solution
CN111964993B (en) * 2020-08-21 2022-08-05 水利部交通运输部国家能源局南京水利科学研究院 Deep water sediment flow culture system for simulating in-situ water pressure
US20240003800A1 (en) * 2020-08-21 2024-01-04 Nanjing Hydraulic Research Institute System for Deep Sediment Flow Culture Simulating In-situ Water Pressure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216704A (en) * 1982-05-14 1983-12-16 アクゾ・エヌ・ヴエ− Method and apparatus for at least partially separating one kind of liquid component of solution
JPS63137705A (en) * 1986-12-01 1988-06-09 Hitachi Ltd Membrane distillation device
JPH07251002A (en) * 1994-03-16 1995-10-03 Toshiba Corp Binary system vacuum evaporator device and operating method thereof
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
US20100065496A1 (en) * 2008-09-12 2010-03-18 Milton Roy Company Membrane distillation pressure control system and method
WO2014058305A1 (en) * 2012-10-11 2014-04-17 Aquaver B.V. Membrane distillation system, method of starting such a system and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216704A (en) * 1982-05-14 1983-12-16 アクゾ・エヌ・ヴエ− Method and apparatus for at least partially separating one kind of liquid component of solution
JPS63137705A (en) * 1986-12-01 1988-06-09 Hitachi Ltd Membrane distillation device
JPH07251002A (en) * 1994-03-16 1995-10-03 Toshiba Corp Binary system vacuum evaporator device and operating method thereof
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
US20100065496A1 (en) * 2008-09-12 2010-03-18 Milton Roy Company Membrane distillation pressure control system and method
WO2014058305A1 (en) * 2012-10-11 2014-04-17 Aquaver B.V. Membrane distillation system, method of starting such a system and use thereof

Also Published As

Publication number Publication date
JP2017131876A (en) 2017-08-03
WO2017130554A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP5923226B1 (en) Concentration apparatus and concentration method
Alkhudhiri et al. Membrane distillation—Principles, applications, configurations, design, and implementation
US20100300946A1 (en) Apparatus and Method for Concentrating A Fluid
Vaillant et al. Concentration of passion fruit juice on an industrial pilot scale using osmotic evaporation
KR101936159B1 (en) Seawater desalination system using air gap membrane distillation (agmd) module of hollow fiber type, and method for the same
US5729987A (en) Desalinization method and apparatus
US9416031B2 (en) Desalination system and method for desalination
US20170151507A1 (en) Combination multi-effect distillation and multi-stage flash evaporation system
EP2906331B1 (en) Membrane distillation system and method of starting such a system
EP2606953B1 (en) Membrane distillation system, method of starting such a system and use thereof
Onsekizoglu Bagci Potential of membrane distillation for production of high quality fruit juice concentrate
KR101675417B1 (en) Multi-stage vacuum membrane distillation system for producing desalinated water for maritime ship, and method for the same
Xing et al. Performance study of a pilot-scale multi-effect vacuum membrane distillation desalination plant
Lee et al. A pilot study of spiral-wound air gap membrane distillation process and its energy efficiency analysis
CN201587871U (en) Multi-stage vacuum distillation sea water desalinating device
KR102068530B1 (en) Combination of Multiple Effect Distillation and Multistage Flash Evaporation Systems
Gautam et al. Performance investigation of humidification dehumidification desalination with mass extraction and recirculation of rejected water
US11135527B2 (en) Combined heat source and vacuum source for low-cost distillation and desalination
CN111111451A (en) Reduced pressure multi-effect membrane distillation method and device thereof
Van Gassel et al. An energy-efficient membrane distillation process
TW201023960A (en) System for separation of volatile components from solution and process thereof
WO2014205430A1 (en) Waste-heat water distillation system
JP2017203558A (en) Concentration drying apparatus and concentration drying method
JP6417826B2 (en) Concentration system and concentration method
US11505476B1 (en) Sub-ambient solar desalination system

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160415

R150 Certificate of patent or registration of utility model

Ref document number: 5923226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees