JP5921892B2 - A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load - Google Patents

A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load Download PDF

Info

Publication number
JP5921892B2
JP5921892B2 JP2012009093A JP2012009093A JP5921892B2 JP 5921892 B2 JP5921892 B2 JP 5921892B2 JP 2012009093 A JP2012009093 A JP 2012009093A JP 2012009093 A JP2012009093 A JP 2012009093A JP 5921892 B2 JP5921892 B2 JP 5921892B2
Authority
JP
Japan
Prior art keywords
gravity
center
cop
cog
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012009093A
Other languages
Japanese (ja)
Other versions
JP2013146401A (en
Inventor
博 田里
博 田里
Original Assignee
株式会社ユニメック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニメック filed Critical 株式会社ユニメック
Priority to JP2012009093A priority Critical patent/JP5921892B2/en
Publication of JP2013146401A publication Critical patent/JP2013146401A/en
Application granted granted Critical
Publication of JP5921892B2 publication Critical patent/JP5921892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rehabilitation Tools (AREA)

Description

本発明は重心計を用いて身体重心に作用する力と身体重心位置の近似値を求める技術に関する。   The present invention relates to a technique for obtaining an approximate value of a force acting on a body center of gravity and a body center of gravity position using a center of gravity meter.

身体重心とその点に作用する力(直交する3方向成分:Fz、Fx、Fy)を計測する方法としては、現在複数台のCCDカメラで三次元位置計測装置(以下モーションキャプチャという)と人間モデル(年齢、性別、身長、体重と各体節の重心位置及び質量と慣性モーメント等のデータベース)から演算する方法が広く用いられているが、据え置き型で場所の制約をうけること、校正に手間がかかること、非常に高価であることなどがあり、研究機関や大病院でのみ用いられているのが現状である。
そこで立位状態において重心計を使い簡便に身体重心位置とFz、Fx、Fyを計測可能にする方法を開発することを指向した。重心計は安価であり病院に普及しているので重心計でFz、Fx、Fy及び身体重心が計測できれば多くの患者に有益になると考えられるからである。
As a method of measuring the center of gravity of the body and the force acting on the point (three orthogonal components: Fz, Fx, Fy), a 3D position measurement device (hereinafter referred to as motion capture) and a human model using multiple CCD cameras. (A database of age, gender, height, weight, center of gravity and mass and moment of inertia of each body segment, etc.) is widely used. This is very expensive and is used only in research institutions and large hospitals.
Therefore, we aimed to develop a method that makes it possible to easily measure the body center of gravity and Fz, Fx, and Fy using a centroid meter in a standing position. This is because centroid meters are inexpensive and are widely used in hospitals, so if it is possible to measure Fz, Fx, Fy, and body centroid with a centroid, it will be beneficial to many patients.

現在重心計で算出するプレート上の力の作用点(COP:center of pressure)は下記の方法で求められる。
図6の様に点Pの荷重Wにより、支点A、BにW、Wの荷重がかかる場合、点Pを中心とするモーメント(回転力)は、P、A間の距離をxとしA、B間の距離をLとすると
x・W=(L−x)・W
の関係となるから、xは次式(1)で表せる。
x=L・W/(W+W) ‥‥‥‥‥‥‥‥(1)
従って、点A、Bでのそれぞれの垂直荷重を検出すれば、A、B間の距離Lを用いて支点Pの位置を示すxを求めることができる。
ただし、重心計の算出する点Pの位置は身体の重心(COG:Center Of Gravity)の位置ではなく、プレート上の力の作用点であるCOPの位置であり、このCOPと身体重心の位置は近似するが一致しない。
The point of action of the force on the plate (COP: center of pressure) currently calculated by the centroid is obtained by the following method.
As shown in FIG. 6, when the loads W A and W B are applied to the fulcrums A and B by the load W at the point P, the moment (rotational force) around the point P is the distance between P and A as x. When the distance between A and B is L, x · W A = (L−x) · W B
Therefore, x can be expressed by the following equation (1).
x = L · W B / (W A + W B ) (1)
Accordingly, if the respective vertical loads at points A and B are detected, x indicating the position of the fulcrum P can be obtained using the distance L between A and B.
However, the position of the point P calculated by the barometer is not the position of the center of gravity (COG) of the body, but the position of the COP that is the point of action of the force on the plate. Approximate but not consistent.

COPと身体重心COGとの関係については、トロント大学の政二慶氏らは、非特許文献1において「COPは身体重心の動揺と強く相関するものの、同一ではない。静止立位時の身体を1リンクの倒立振子で近似すると、倒立振子の運動方程式は
と表され、ここでI は倒立振子の慣性モーメント、θ は身体重心変位角、m は身体質量、h は重心高、g は重力加速度、そしてT は足関節トルクである。身体重心COG の挙動を表すθ はトルクTによって制御され、トルクT は神経中枢系により制御される筋収縮および足関節周りの粘弾性により供給される。ここで、COP 変位と足関節トルクの間にT≒mgu が成り立つ(uは足関節を基点としたCOP変位)。」としている。
Regarding the relationship between COP and body center-of-gravity COG, Mr. Seiji Kei and others of the University of Toronto stated in “Non-patent document 1“ COP strongly correlates with fluctuation of body center of gravity, but it is not the same. When approximated by an inverted pendulum with one link, the equation of motion of the inverted pendulum is
Where I is the moment of inertia of the inverted pendulum, θ is the body center of gravity displacement angle, m is the body mass, h is the center of gravity height, g is the gravitational acceleration, and T is the ankle joint torque. Θ representing the behavior of the body center of gravity COG is controlled by torque T, which is supplied by muscle contraction and viscoelasticity around the ankle joint controlled by the nervous system. Here, T≈mgu holds between the COP displacement and the ankle joint torque (u is the COP displacement with the ankle joint as the base point). "

政二 慶・他「高齢者の立体制御モデル」日本バイオメカニクス学会誌 Vol.11 No.4 2007年Seiji Kei, et al. "Stereoscopic control model for the elderly" Journal of Japanese Society of Biomechanics Vol.11 No.4 2007

上記の政二論文等から、COPは足関節トルクつまり足関節の力のモーメントの係数であり、COPの変位によって身体体重が左右されることを意味し、身体重心COGの変位はCOPの変位及び、足関節モーメントの変位に比例し、足関節モーメントは床反力の変位に相関することが明らかにされた。しかし、重心計のCOP値と身体重心COGの一義的な対応関係は明らかにされていない。
本発明の目的は重心計を用いて重心に作用する仮想の力Fx、Fyを求める方法と、本来は、三次元位置計測装置と人間モデル(年齢、性別、身長、体重と各体節の重心位置及び質量と慣性モーメント等のデータベース)を基に演算する身体重心の近似値を垂直荷重からCOPを計測する重心計を用いて求める方法を提供することにある。
From the above-mentioned Seiji paper, etc., COP is the coefficient of ankle torque, that is, the moment of force of the ankle joint, which means that the body weight is influenced by the displacement of COP, and the displacement of body center of gravity COG is the displacement of COP and It was clarified that the ankle moment is correlated with the displacement of the ground reaction force in proportion to the displacement of the ankle moment. However, the unambiguous correspondence between the COP value of the center of gravity meter and the body center of gravity COG has not been clarified.
The purpose of the present invention is to obtain a virtual force Fx, Fy acting on the center of gravity using a center of gravity meter, originally a three-dimensional position measuring device and a human model (age, gender, height, weight and the center of gravity of each body segment The object of the present invention is to provide a method for obtaining an approximate value of a body centroid calculated based on a database of position, mass, and moment of inertia using a centimeter that measures COP from a vertical load.

本発明の重心計を用いて身体重心に作用する仮想の力(三次元成分:Fxt,Fyt,Fzt)を求める方法は、垂直荷重からCOPを計測する重心計を用い、Δt間(微小時間)の立位状態における重心計上の力の作用点(COP)の変位量ΔCOPを測定するステップと、重心位置の移動速度(VCOP)をVCOP=ΔCOP/Δtで、重心移動加速度(αCOP)をαCOP=ΔVCOP/Δtで算出するステップと、t時の重心に作用する仮想の力Fx,FyとFzを次式で求めるステップとから成るものとした。
ただし、Gは重力加速度、Fは時刻tの荷重である。
また、左右の足をそれぞれに載せる二枚のプレートからなる重心計を用いて身体重心に作用する力を求める方法は、左足を載せるプレートL、右足を載せるプレートRに対して先の方法によってそれぞれ仮想床反力を求めるステップと、左右のプレートP,L上の力の作用点(COP)PとPを結ぶ線分を左右のプレートの荷重比で内分して合成COPを算出するステップと、前記求めた左右の仮想床反力を前記の線分に対する合成COPの位置比率でX,Y成分ごとに算出するステップとからなる重心計を用いて身体重心に作用する力を求めるものとした。
A method for obtaining a virtual force (three-dimensional components: F xt , F yt , F zt ) acting on the body center of gravity using the center of gravity of the present invention uses a center of gravity meter that measures COP from a vertical load, between Δt ( The step of measuring the displacement amount ΔCOP of the force application point (COP) of the center-of-gravity counting in the standing state for a short time) and the center-of-gravity position moving speed (V COP ) as V COP = ΔCOP / Δt, α COP ) is calculated by α COP = ΔV COP / Δt, and virtual forces Fx t , Fy t and Fz t acting on the center of gravity at time t are obtained by the following equations.
However, G is a gravitational acceleration and Ft is a load at time t.
In addition, the method of obtaining the force acting on the body center of gravity using a centroid consisting of two plates on which the left and right feet are placed, respectively, is applied to the plate L on which the left foot is placed and the plate R on which the right foot is placed according to the previous method. determining a virtual ground reaction force, the left and right plate P, by internally dividing a line segment connecting the point of application of force on L a (COP) P L and P R at a load ratio of the left and right plates calculates the synthetic COP Calculating a force acting on the body center of gravity using a center of gravity meter comprising a step and a step of calculating the obtained left and right virtual floor reaction forces for each X and Y component in the position ratio of the synthetic COP to the line segment It was.

本発明の重心計を用いて身体重心位置の近似値を求める方法は、人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S]及び慣性モーメントを参照し、立位状態を振り子モデルとして演算するステップと、体重を W,時刻t の垂直力成分を F,時刻t の前後力成分をFy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求めるステップと、同様の手法でCOGの空間の座標値z、xを求めるステップと、からなるものとした。
The method for obtaining an approximate value of the position of the center of gravity of the body using the center of gravity meter of the present invention is as follows: the height l from the floor of the body center of gravity (COG) from the human model and the viscous friction coefficient of the shaft (ankle joint) C = [kgm 2 / S] and moment of inertia, the step of calculating the standing state as a pendulum model, weight W, vertical force component at time t F t , longitudinal force component at time t Fy, left-right force component Fx And calculating the value of θ from the following pendulum equation, obtaining the virtual force acting on the center of gravity of the body from the polar coordinates (l, θ) and the coordinate values z and y of the COG space, And obtaining the coordinate values z and x of the space.

重心計上でしゃがみ込んだ状態でのCOGの三次元空間位置(x、y、z)の近似値を得る本発明の方法は、人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S]及び慣性モーメントを参照し、立位状態からしゃがみ込んだ状態を振り子モデルとして演算するステップと、体重を W,時刻t のしゃがみ込み時にかかる垂直力成分を F’,時刻tの前後力成分を Fy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求めるステップと、同様の手法でCOGの空間の座標値z、xを求めるステップとからなるものとした。
The method of the present invention for obtaining an approximate value of the three-dimensional spatial position (x, y, z) of the COG in a state of being crouched by centroid counting is obtained by calculating the height l of the body centroid (COG) from the floor surface from the human model. Referring to the viscous friction coefficient C = [kgm 2 / S] of the shaft (ankle joint) and the moment of inertia, the step of calculating the state of squatting from the standing position as a pendulum model, and squatting of weight W and time t Fy and longitudinal force component in the vertical force component F t ', the time t according to the time, a side force component as Fx, calculates the value of theta from the formula for a pendulum, acting from polar coordinates (l, theta) to the body center of gravity And the step of obtaining the coordinate values z and y of the COG space and the step of obtaining the coordinate values z and x of the COG space by the same method.

本発明の重心計を用いて身体重心位置の近似値を求めるシステムは、左足を載せるプレートLと右足を載せるプレートRを隣接させた重心計と、該重心計が検出したデータを基に人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S] 及び慣性モーメントを参照し、立位状態を振り子モデルとして演算する手段と、体重をW,時刻t の垂直力成分を F,時刻t の前後力成分を Fy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求める手段と、同様の手法でCOGの空間の座標値z、xを求める手段とからなる。
A system for obtaining an approximate value of a body center of gravity position using the center of gravity of the present invention is a human model based on a center of gravity that has a plate L on which a left foot is placed and a plate R on which a right foot is placed adjacent to each other, and data detected by the center of gravity. Means for calculating the standing state as a pendulum model with reference to the height l of the body center of gravity (COG) from the floor and the viscous friction coefficient C = [kgm 2 / S] of the shaft (ankle joint) and the moment of inertia , Weight is W, vertical force component at time t is F t , longitudinal force component at time t is Fy, left and right force component is Fx, and the value of θ is calculated from the following pendulum equation, and polar coordinates (l, θ) To the virtual force acting on the center of gravity of the body and the means for determining the COG space coordinate values z and y, and the same method for determining the COG space coordinate values z and x.

本発明の重心計を用いて身体重心に作用する力と身体重心位置の近似値を求める方法は、重心計と所定の演算処理を行う装置(PC)とから、モーションキャプチャを用いて求めた計測値と同様な三次元情報を得ることができるものである。したがって、モーションキャプチャを備えていない所でも容易に身体重心に作用する力と身体重心(COG)の近似値を得ることができる。   The method for obtaining an approximate value of the force acting on the body center of gravity and the position of the center of gravity of the body using the center of gravity meter of the present invention is a measurement obtained using a motion capture from the center of gravity meter and a device (PC) that performs predetermined arithmetic processing. Three-dimensional information similar to the value can be obtained. Therefore, it is possible to easily obtain an approximate value of the force acting on the body center of gravity and the body center of gravity (COG) even in a place without motion capture.

本発明の重心計を用いて身体重心に作用する力と身体重心位置の近似値を求めるシステムは、高価で大がかりなモーションキャプチャを用いることなく、単に重心計と所定の演算処理を行う装置(PC)とからなる簡素なシステムを備えるだけで、モーションキャプチャを用いて求めた計測値と同様なデータを得ることができるものである。   The system for obtaining an approximate value of the force acting on the body center of gravity and the position of the body center of gravity using the center of gravity of the present invention is a device that simply performs a predetermined calculation process with the center of gravity (PC) without using an expensive and large-scale motion capture It is possible to obtain data similar to the measurement values obtained using the motion capture.

一枚の三角プレートの場合の床反力演算を説明する図である。It is a figure explaining the floor reaction force calculation in the case of one triangular plate. 点PLと点P間の距離のX成分をRxm、Y成分をRxm、点PRと点P間の距離のX成分をRxn、Y成分をRxnとして求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the X component of the distance between the point PL and the point P as Rxm, the Y component as Rxm, the X component of the distance between the point PR and the point P as Rxn, and the Y component as Rxn. 立位状態を振り子モデルとして演算することを説明する図である。It is a figure explaining computing a standing position as a pendulum model. 本発明の方法を搭載したシステムのディスプレイ表示画面である。It is a display display screen of the system carrying the method of this invention. 従来の重心計システムでの可能な表示を比較例として示した図である。It is the figure which showed the display in the conventional centroid system as a comparative example. バーの支点A,B間に荷重Wがかかると、支点A、BにW、Wの分荷重がかかるることを説明する図である。Bar fulcrum A, when a load W is applied between the B, fulcrum A, B to W A, min load W B is a diagram illustrating the Kakaruru. 一枚の三角プレート上のCOP演算を説明する図である。It is a figure explaining the COP calculation on one triangular plate. 二枚の三角プレート上のCOP演算を説明する図である。It is a figure explaining the COP calculation on two triangular plates.

三角プレート1枚形態の重心計のCOP演算について考察する。図7に示すように正三角形のプレートの各頂点近傍には3つの荷重センサー(P、P、P)が配置されている。プレートの各頂点から底辺に下ろした垂線の交点Cを原点としたプレート上の点P(x,y)に荷重Wの物体が存在するとき、3つの荷重センサー(P、P、P)が、それぞれ荷重W、W、W(W=W+W+W)を示した場合、原点Cを中心にX方向のモーメントとY方向のモーメントの釣り合い式は
W・x=m(W−W) ‥‥‥‥‥‥‥‥(3)
W・y=n・W−n(W+W) ‥‥‥‥‥‥‥‥(4)
となる。点Pの座標(x,y)は、次式(5)(6)によって求めることができる。すなわち、
x=m(W−W)/W ‥‥‥‥‥‥‥‥(5)
y={n−n(W−W)}/W ‥‥‥‥‥‥‥‥(6)
ここで、mはP、Pの中間点をQとしたときP、Q間の長さ、nはC点からQ点までの距離、nはC点からP点までの距離を示している。
Consider the COP calculation of a centimeter with a single triangular plate. As shown in FIG. 7, three load sensors (P 1 , P 2 , P 3 ) are arranged in the vicinity of each vertex of the equilateral triangle plate. When an object with a load W is present at a point P (x, y) on the plate with the origin at the intersection C of the perpendicular line extending from each vertex of the plate to the bottom, three load sensors (P 1 , P 2 , P 3 ) Indicate the loads W 1 , W 2 , and W 3 (W = W 1 + W 2 + W 3 ), respectively, the balance formula between the moment in the X direction and the moment in the Y direction around the origin C is W · x = m (W 1 -W 2 ) (3)
W · y = n 2 · W 3 −n 1 (W 1 + W 2 ) (4)
It becomes. The coordinates (x, y) of the point P can be obtained by the following equations (5) and (6). That is,
x = m (W 1 −W 2 ) / W (5)
y = {n 2 W 3 −n 1 (W 1 −W 2 )} / W (6)
Here, m is the length between P 1 and Q when Q is an intermediate point between P 1 and P 2 , n 1 is the distance from C point to Q point, and n 2 is from C point to P 3 point. Shows the distance.

三角プレートを2枚使用した場合のCOP演算について考察する。上記の三角プレートを、互いの1辺を図8に示すように中央で突き合わせて配置し、中央の点Cを原点とする。左プレートのCOPであるPと右プレートのCOPであるPとの合成COPであるP(X,Y)の座標値はPとPを結ぶ線分を各プレートの荷重比で内分し、次式(7)(8)のように表現できる。
X=(X・W−X・W)/W ‥‥‥‥‥‥‥‥(7)
Y=(Y・W−Y・W)/W ‥‥‥‥‥‥‥‥(8)
そして荷重Wは左右の荷重の和(W= W+W)となる。
また、プレートが四角形でも同様に荷重比でCOPを求められることは容易に理解されよう。
Consider the COP calculation when using two triangular plates. The above triangular plates are arranged such that one side of each other is abutted at the center as shown in FIG. 8, and the center point C is the origin. Inner is a synthetic COP and P R is the COP of the P L and the right plate is COP of the left plate P (X, Y) coordinates of the line segment connecting the P L and P R at a load ratio of each plate And can be expressed as the following equations (7) and (8).
X = (X L · W L -X R · W R) / W ‥‥‥‥‥‥‥‥ (7)
Y = (Y L · W L -Y R · W R ) / W (8)
The load W is the sum of the left and right loads (W = W L + W R ).
It will be easily understood that COP can be obtained by load ratio even when the plate is square.

上記の要領で得られた重力計のCOP値を用いて、重心に作用する仮想の力Fx、Fyを求める計算方法を検討する。
まず、プレート一枚の場合(図1参照)をベクトルによる床反力演算手法によって解析する。現在の時刻tの重心位置をCOP 、荷重をF とし、時刻t−Δt の重心位置をCOPt−Δt、荷重をFt−Δt とすると、重心位置の移動量ΔCOP は以下の式で表される。
ΔCOP=COP−COPt−Δt
=(COP・x−COPt−Δt・x,COP・y−COPt−Δt・y)‥‥(9)
この時の重心位置移動速度VCOP と重心移動加速度αCOPは、以下の式(10)(11)で表される。
COP=ΔCOP/Δt ‥‥‥‥‥‥‥‥(10)
αCOP=ΔVCOP/Δt ‥‥‥‥‥‥‥‥(11)
これにより、質量m の物体が、COPt−ΔtからCOPまで移動するのに必要な力fCOPは、以下の式(13)で表すことができる。
ここで、質量mは m=F/Gなる関係にある。ただし、G は重力加速度である。
この力fCOPをプレートにかかるx、y 方向の力とすると、仮想床反力f は以下の式(14)で表すことができる。
ここで、ΔVCOP・x は重心位置移動速度VCOPのX方向成分を、ΔVCOP・yは重心位置移動速度VCOPのY方向成分を表わしている。このfをプレート1枚のときの仮想床反力と定義し、そのX,Y,Z方向成分をFXt,FYt,FZtとすれば明示的に次式のように
で示されることになる。
Using the COP value of the gravimeter obtained as described above, a calculation method for obtaining virtual forces Fx and Fy acting on the center of gravity will be examined.
First, the case of a single plate (see FIG. 1) is analyzed by a floor reaction force calculation method using vectors. Assuming that the center of gravity at the current time t is COP t , the load is F t , the center of gravity at the time t−Δt is COP t−Δt , and the load is F t−Δt , the movement amount ΔCOP of the center of gravity is expressed.
ΔCOP = COP t −COP t−Δt
= (COP t · x-COP t-Δt · x, COP t · y-COP t-Δt · y) ‥‥ (9)
The center-of-gravity position moving speed V COP and the center-of-gravity movement acceleration α COP at this time are expressed by the following equations (10) and (11).
V COP = ΔCOP / Δt (10)
α COP = ΔV COP / Δt (11)
Thereby, the force f COP required for the object of mass m to move from COP t−Δt to COP t can be expressed by the following equation (13).
Here, the mass m has a relationship of m = F t / G. Where G is the acceleration of gravity.
When this force f COP is a force in the x and y directions applied to the plate, the virtual floor reaction force f can be expressed by the following equation (14).
Here, ΔV COP · x represents the X direction component of the gravity center position moving speed V COP , and ΔV COP · y represents the Y direction component of the gravity center position moving speed V COP . If f is defined as a virtual floor reaction force with one plate, and its X, Y, and Z direction components are F Xt , F Yt , and F Zt , then explicitly
Will be shown.

プレート二枚の場合も一枚と同様に左プレートL、右プレートRでそれぞれ仮想床反力を求め明示的に
FL=(FLxt ×RatioL1,FLyt ×RatioL2,FLzt ×Ratio)
FR=(FRxt ×RatioR1,FRyt ×RatioR2,FRzt ×Ratio)
と置く。
RatioL1,RatioL2,RatioR1,RatioR2は、図8の点Pと点Pで構成する直線を内分する点Pの比率で成分X,Yごとに求める。図2に示すように点PLと点P間の距離のX成分をRxm、Y成分をRxm、点PRと点P間の距離のX成分をRxn、Y成分をRxnとすると次のようになる。
RatioL1=Rxn/(Rxm+Rxn)
RatioL2=Ryn/(Rym+Ryn)
RatioR1=Rxm/(Rxm+Rxn)
RatioR2=Rym/(Rym+Ryn)
Ratio は計測対象が立位状態であることから、Ratio=1とする。当然ながら立位状態ではない歩行などの動作の場合は1とはならない。
In the case of two plates, the virtual floor reaction force is obtained for each of the left plate L and the right plate R in the same way as one plate, and explicitly FL = (FLx t × RatioL1, FLy t × RatioL2, FLz t × Ratio)
FR = (FRx t × RatioR1, FRy t × RatioR2, FRz t × Ratio)
Put it.
RatioL1, RatioL2, RatioR1, RatioR2, the components in the ratio of P points internally dividing a straight line constituted by the point P L and the point P R in FIG. 8 X, determined for each Y. As shown in FIG. 2, when the X component of the distance between the points PL and P is Rxm, the Y component is Rxm, the X component of the distance between the points PR and P is Rxn, and the Y component is Rxn, the following is obtained. .
RatioL1 = Rxn / (Rxm + Rxn)
RatioL2 = Ryn / (Rym + Ryn)
RatioR1 = Rxm / (Rxm + Rxn)
RatioR2 = Rym / (Rym + Ryn)
Ratio is set to Ratio = 1 because the object to be measured is standing. Naturally, it is not 1 in the case of an action such as walking that is not in a standing position.

次に、上記の解析を基に身体重心の求め方を提示する。従来は、三次元位置計測装置(モーションキャプチャ)と人間モデル(年齢、性別、身長、体重と各体節の重心位置と質量及び慣性モーメント等のデータベース)から演算していた身体重心を近似値として以下の方法で求める。
人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S] 及び慣性モーメント参照し、図3に示すように立位状態を振り子モデルとして演算する。(立位状態でしか使えない。)
Next, how to find the body center of gravity is presented based on the above analysis. Conventionally, the body centroid calculated from a three-dimensional position measurement device (motion capture) and a human model (age, gender, height, weight, centroid position, mass, and moment of inertia of each body segment) is used as an approximate value. The following method is used.
From the human model, refer to the height l of the body center of gravity (COG) from the floor and the viscous friction coefficient C = [kgm 2 / S] of the shaft (ankle joint) and the moment of inertia. Operate as a pendulum model. (Can only be used in the standing position.)

振り子の式は
上記式でGは重力加速度である。この上記式を解き、θの値を算出し、(l,θ)からCOGの空間の座標値z、yを求める。
Fxについても同様に解くことができCOGの三次元空間位置(x、y、z)が得られる。
The pendulum formula is
In the above equation, G is the gravitational acceleration. The above equation is solved, the value of θ is calculated, and the coordinate values z and y of the space of COG are obtained from (l, θ).
Fx can be similarly solved, and the three-dimensional spatial position (x, y, z) of COG is obtained.

体重を W,時刻t のしゃがみ込み時にかかる垂直力成分をF’,時刻t の前後力成分を Fy として
Fz=W−F’ ‥‥‥‥‥‥‥‥(17)
この式(17)により立位状態からのしゃがみ込みにも対応し身体重心COGの座標位置が計算できる。
上記式を解き、θの値を算出し、(l,θ)からCOGの空間の座標値z、yを求める。
Fxについても同様に解くことができしゃがみ込んだ状態でのCOGの三次元空間位置(x、y、z)が得られる。
The weight is W, the vertical force component applied when squatting at time t is F t ′, and the longitudinal force component at time t is Fy
Fz = WF t '(17)
By this equation (17), the coordinate position of the body center of gravity COG can be calculated corresponding to the squatting from the standing position.
The above equation is solved, the value of θ is calculated, and the coordinate values z and y of the COG space are obtained from (l, θ).
Fx can be similarly solved, and the three-dimensional spatial position (x, y, z) of the COG in a crouched state can be obtained.

本発明の重心計を用いて身体重心に作用する力及び身体重心位置の近似値を求める方法を組込んだシステムによって、従来複数台のCCDカメラからなる三次元位置計測装置(モーションキャプチャ)と人間モデル(年齢、性別、身長、体重と各体節の重心位置及び質量と慣性モーメント等のデータベース)から演算する方法によって得られたデータと同様な鉛直方向(Z方向)位置を含んだ三次元データが得られたことを示す。   A system incorporating a method for obtaining an approximate value of the force acting on the body center of gravity and the position of the body center of gravity using the center of gravity meter of the present invention, and a conventional three-dimensional position measuring device (motion capture) and human being comprising a plurality of CCD cameras Three-dimensional data including vertical (Z direction) position similar to the data obtained by the method calculated from the model (database of age, gender, height, weight, center of gravity and mass and moment of inertia of each segment) Is obtained.

図4は本発明の方法を搭載したシステムのディスプレイ表示画面である。重心計には三角プレートのものを二枚左右に隣接させ、それぞれに左右の足を乗せて立位状態で25秒間計測し、そのデータをディスプレイ上に表示させた。
左側のメインの表示はプレートの上方からの画面ではなく斜視図形態として身体重心位置を立体感覚で表示されるようにしている。プレート上には左右のCOPの軌跡と合成COPの軌跡及び左右のプレートが検出した身体重心変位角θの瞬時値がベクトル表示される。この左右のベクトル値を合成したものがその時点の身体重心となって、表示されている。画面右側上段のグラフは荷重のデータであり、左右のプレートの検出値が振幅の大きな振動波形として重なり、その上方に合成荷重が示されている。画面右側中段の表示は左右のプレートのCOPの軌跡と合成COPが水平面(XY平面)で表示されている。画面右側下段の表示は計測した基礎データの表表示である。荷重と、COPが総合値、左足、右足情報として表示されている。なお、荷重欄は被検者の体重であるが、直接表示することが個人情報として嫌がられるため、一般にある値を体重で割って%表示することが当業界では慣用されている。
FIG. 4 shows a display screen of a system equipped with the method of the present invention. Two centroid plates were placed adjacent to each other on the left and right, and the left and right feet were placed on each of the centroids, and measured for 25 seconds in a standing position. The data was displayed on the display.
The main display on the left side is not a screen from above the plate, but a perspective view, so that the position of the center of gravity of the body is displayed in a stereoscopic sense. On the plate, the trajectory of the left and right COPs, the trajectory of the combined COP, and the instantaneous value of the body center-of-gravity displacement angle θ detected by the left and right plates are displayed as vectors. A combination of the left and right vector values is displayed as the body center of gravity at that time. The graph on the upper right side of the screen is load data. The detected values of the left and right plates overlap as a vibration waveform having a large amplitude, and the combined load is shown above. In the middle display on the right side of the screen, the COP trajectory and composite COP of the left and right plates are displayed in a horizontal plane (XY plane). The display on the lower right side of the screen is a table display of measured basic data. The load and COP are displayed as total values, left foot, and right foot information. Although the load column is the body weight of the subject, since direct display is disliked as personal information, it is generally used in the industry to display a certain value divided by the body weight in%.

従来の重心計システムでは鉛直方向(Z方向)を含む三次元データを得ることはできないので、可能なシステム表示は図5に示すようになる。すなわち、左側のメインの表示は二次元データであるからプレートの上方からの画面となり、身体重心位置を立体感覚で表示させることはできない。プレート上には本発明と同様に左右のCOPの軌跡と合成COPの軌跡を表示できるが、合成COPは正確な位置ではない。そして、左右のプレートが検出する身体重心変位角θの瞬時値を得ることはできないのでベクトル表示させることは不可能である。画面右側上段のグラフと画面右側下段の検出データの表示は全く同じものとすることができるが、画面右側中段の表示では左右のプレートのCOPの軌跡は同じものが表示できるものの、合成COPは三次元位置としての身体重心を投影したものではないので、近似して見えても不正確な軌跡となっている。   Since the conventional barometer system cannot obtain three-dimensional data including the vertical direction (Z direction), a possible system display is as shown in FIG. That is, since the main display on the left side is two-dimensional data, it is a screen from above the plate, and the body gravity center position cannot be displayed in a stereoscopic sense. The left and right COP trajectories and the composite COP trajectory can be displayed on the plate as in the present invention, but the composite COP is not an accurate position. Since the instantaneous value of the body center-of-gravity displacement angle θ detected by the left and right plates cannot be obtained, the vector display is impossible. The graph on the upper right side of the screen and the display of the detection data on the lower right side of the screen can be exactly the same. Since it is not a projection of the center of gravity of the body as the original position, it is an inaccurate locus even if it looks close.

以上のように、本発明の方法を実施したシステムでは、モーションキャプチャを備えていなくても、従来の重心計で検出できるデータを基に、身体重心の三次元位置を測定することが可能であることを実証できた。そして、重心計とパソコンの組み合わせからなる従来の同機種のものが測定できなかった身体重心位置とそこの作用する力をデータとして得ることができるという画期的なシステムとなっている。   As described above, the system that implements the method of the present invention can measure the three-dimensional position of the body centroid based on data that can be detected by a conventional centimeter even without a motion capture. I was able to prove that. And it is an epoch-making system in which the position of the center of gravity of the body and the force acting on it can not be obtained as data, which could not be measured by the conventional model of the same type consisting of a combination of a centroid and a personal computer.

本発明の方法を組込んだシステムは、モーションキャプチャを備えた大規模システムと同様な計測をハードとしては従来の重心計とパソコンの組み合わせからなる重心計測システムで行えることから、設備費用は格段に安価となるため、小さな病院や診療所、保健所、個人医院、学校の保健室、企業等の健康管理室など広い部署で設置可能となり、その普及が見込まれる。   Since the system incorporating the method of the present invention can perform the same measurement as a large-scale system equipped with motion capture with a center-of-gravity measurement system consisting of a combination of a conventional center of gravity meter and a personal computer, the equipment cost is remarkably high. Since it becomes inexpensive, it can be installed in a wide range of departments such as small hospitals, clinics, health centers, private clinics, school health rooms, and health management rooms of companies, etc.

Claims (5)

垂直荷重からCOPを計測する重心計を用い、Δt間の立位状態における重心計上の力の作用点(COP)の変位量ΔCOPを測定するステップと、重心位置の移動速度(VCOP)をVCOP=ΔCOP/Δtで、重心移動加速度(αCOP)をαCOP=ΔVCOP/Δtで算出するステップと、t時の重心に作用する仮想の力Fx,FyとFzを次式で求めるステップとから成る重心計を用いて身体重心に作用する仮想の力を算出する方法。
ただし、Gは重力加速度、Fは時刻tの荷重である。
Using a center of gravity meter that measures COP from vertical load, the step of measuring the displacement ΔCOP of the force application point (COP) of the center of gravity in the standing state between Δt, and the movement speed (VCOP) of the center of gravity position is VCOP = A step of calculating the center-of-gravity movement acceleration (αCOP) by ΔCOP / Δt by αCOP = ΔVCOP / Δt, and a step of obtaining virtual forces Fx t , Fy t and Fz t acting on the center of gravity at time t by the following equation: A method of calculating a virtual force acting on the body center of gravity using a center of gravity meter.
However, G is a gravitational acceleration and Ft is a load at time t.
重心計には左足を載せるプレートLと右足を載せるプレートRを組み合わせたものを用い、請求項1に記載の方法によってそれぞれ仮想床反力を求めるステップと、左右のプレートL,R上の力の作用点(COP)PとPを結ぶ線分を左右のプレートの荷重比で内分して合成COPを算出するステップと、前記求めた左右の仮想床反力を前記の線分に対する合成COPの位置比率でX,Y成分ごとに算出するステップとからなる重心計を用いて身体重心に作用する仮想の力を算出する方法。 The center of gravity meter uses a combination of a plate L on which the left foot is placed and a plate R on which the right foot is placed, and the step of obtaining the virtual floor reaction force by the method according to claim 1 and the force on the left and right plates L, R , respectively. synthesis and step of internally dividing the line segment connecting the acting point (COP) P L and P R at a load ratio of the left and right plate is calculated synthetic COP, a virtual floor reaction force of the obtained right and left relative to the line segment A method of calculating a virtual force acting on the body center of gravity using a center of gravity meter comprising a step of calculating for each X and Y component by the COP position ratio. 垂直荷重からCOPを計測する重心計を用い、人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S] 及び慣性モーメントを参照し、立位状態を振り子モデルとして演算するステップと、体重をW,時刻t の垂直力成分を Ft,時刻t の前後力成分を Fy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求めるステップと、同様の手法でCOGの空間の座標値z、xを求めるステップと、からなる重心計を用いて身体重心位置の近似値を求める方法。
Using a center of gravity meter that measures COP from vertical load, the human body's center of gravity (COG) height l from the floor and the viscous friction coefficient C = [kgm 2 / S] of the shaft (ankle joint) and moment of inertia Referring to the following pendulum equation, the step of calculating the standing state as a pendulum model, the weight is W, the vertical force component at time t is Ft, the longitudinal force component at time t is Fy, and the left and right force component is Fx The value of θ is calculated, and the virtual force acting on the center of gravity of the body from the polar coordinates (l, θ) and the coordinate values z and y of the COG space are obtained, and the COG space coordinate values z and x are obtained in the same manner. And a method of obtaining an approximate value of a body center of gravity position using a center of gravity meter comprising:
垂直荷重からCOPを計測する重心計を用い、人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S] 及び慣性モーメントを参照し、立位状態からしゃがみ込んだ状態を振り子モデルとして演算するステップと、体重をW,時刻t のしゃがみ込み時にかかる垂直力成分を Ft’,時刻t の前後力成分を Fy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求めるステップと、同様の手法でCOGの空間の座標値z、xを求めるステップと、からなる重心計を用いてしゃがみ込んだ状態でのCOGの三次元空間位置(x、y、z)の近似値を得る方法。
Using a center of gravity meter that measures COP from vertical load, the human body's center of gravity (COG) height l from the floor and the viscous friction coefficient C = [kgm 2 / S] of the shaft (ankle joint) and moment of inertia The step of calculating as a pendulum model with reference to the squatting state from the standing position, the weight W as the vertical force component applied when squatting at time t, Ft ', the longitudinal force component at time t as Fy, and the left-right force component And Fx, the value of θ is calculated from the following pendulum equation, and the virtual force acting on the body center of gravity and the coordinate values z and y of the COG space are determined from the polar coordinates (l, θ), and a similar method And obtaining an approximate value of the three-dimensional space position (x, y, z) of the COG in a crouched state using a centroid meter.
左足を載せるプレートLと右足を載せるプレートRを隣接させた重心計と、該重心計が検出したデータを基に人間モデルから身体重心(COG)の床面からの高さlと軸(足関節)の粘性摩擦係数C=[kgm2/S] 及び慣性モーメントを参照し、立位状態を振り子モデルとして演算する手段と、体重をW,時刻t の垂直力成分を Ft,時刻t の前後力成分を Fy、左右力成分をFxとして、次の振り子の式からθの値を算出し、極座標(l,θ)から身体重心に作用する仮想の力とCOGの空間の座標値z、yを求める手段と、同様の手法でCOGの空間の座標値z、xを求める手段とからなる重心計を用いて身体重心位置の近似値を求めるシステム。
A center of gravity that makes the plate L that carries the left foot and the plate R that carries the right foot adjacent to each other, and the height l of the body center of gravity (COG) from the floor and the axis (ankle joint) based on the data detected by the center of gravity ), The means of calculating the standing state as a pendulum model, the weight as W, the vertical force component at time t as Ft, and the longitudinal force at time t as reference to the viscous friction coefficient C = [kgm 2 / S] and the moment of inertia The value of θ is calculated from the following pendulum equation with the component Fy and the left-right force component Fx, and the virtual force acting on the body center of gravity from the polar coordinates (l, θ) and the coordinate values z and y of the COG space are calculated. A system for obtaining an approximate value of the position of the center of gravity of a body using a center of gravity meter comprising means for obtaining and means for obtaining coordinate values z and x of the space of the COG by a similar method.
JP2012009093A 2012-01-19 2012-01-19 A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load Active JP5921892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009093A JP5921892B2 (en) 2012-01-19 2012-01-19 A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009093A JP5921892B2 (en) 2012-01-19 2012-01-19 A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load

Publications (2)

Publication Number Publication Date
JP2013146401A JP2013146401A (en) 2013-08-01
JP5921892B2 true JP5921892B2 (en) 2016-05-24

Family

ID=49044586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009093A Active JP5921892B2 (en) 2012-01-19 2012-01-19 A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load

Country Status (1)

Country Link
JP (1) JP5921892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059950B2 (en) 2019-01-31 2022-04-26 トヨタ自動車株式会社 Lubrication structure of rotating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666644B2 (en) * 2006-07-12 2011-04-06 本田技研工業株式会社 Control device for walking aids

Also Published As

Publication number Publication date
JP2013146401A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Yang et al. Collective sensing of workers' gait patterns to identify fall hazards in construction
US8315822B2 (en) Force measurement system having inertial compensation
US8315823B2 (en) Force and/or motion measurement system having inertial compensation and method thereof
Wang et al. Risk assessment of work-related musculoskeletal disorders in construction: State-of-the-art review
Seo et al. Motion data-driven biomechanical analysis during construction tasks on sites
Vignais et al. Innovative system for real-time ergonomic feedback in industrial manufacturing
Yu et al. Automatic biomechanical workload estimation for construction workers by computer vision and smart insoles
Godwin et al. Accuracy of inertial motion sensors in static, quasistatic, and complex dynamic motion
JP2012513227A (en) Walking monitor
Varela et al. A kinematic characterization of human walking by using CaTraSys
Liu et al. Local dynamic stability associated with load carrying
Mgbemena et al. Ergonomic evaluation on the manufacturing shop floor: A review of hardware and software technologies
Ryu et al. Analysis of the limits of automated rule-based ergonomic assessment in bricklaying
Cole Wearable sensors
JP2016179048A (en) Joint load visualization system
JP5921892B2 (en) A method and system for calculating approximate values of the force acting on the body center of gravity and the position of the body center of gravity using a center of gravity meter that measures COP from a vertical load
Yang et al. Sensing workers gait abnormality for safety hazard identification
Sagawa et al. 2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor
Yang Low-cost experimental system for center of mass and center of pressure measurement (June 2018)
Fukutoku et al. Measurement of joint moments using wearable sensors
JP6079585B2 (en) Gait balance evaluation device
JP6900795B2 (en) Analysis method of resultant force
Tsuichihara et al. Effect Analysis of Each Reach Zone in Ergonomics During Putting and Pulling Movement of Shelf on VR Experiment
Kagami et al. An approach to modeling and evaluation methods of human locomotion using IMU sensors
Liu et al. Three-dimensional gait analysis system with mobile force plates and motion sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5921892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250