JP5920952B2 - Damping control system of hydraulic actuator for construction machinery - Google Patents

Damping control system of hydraulic actuator for construction machinery Download PDF

Info

Publication number
JP5920952B2
JP5920952B2 JP2014520079A JP2014520079A JP5920952B2 JP 5920952 B2 JP5920952 B2 JP 5920952B2 JP 2014520079 A JP2014520079 A JP 2014520079A JP 2014520079 A JP2014520079 A JP 2014520079A JP 5920952 B2 JP5920952 B2 JP 5920952B2
Authority
JP
Japan
Prior art keywords
hydraulic
meter
hydraulic actuator
actuator
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014520079A
Other languages
Japanese (ja)
Other versions
JP2014525012A (en
Inventor
チュンハン イ
チュンハン イ
Original Assignee
ボルボ コンストラクション イクイップメント アーベー
ボルボ コンストラクション イクイップメント アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ コンストラクション イクイップメント アーベー, ボルボ コンストラクション イクイップメント アーベー filed Critical ボルボ コンストラクション イクイップメント アーベー
Publication of JP2014525012A publication Critical patent/JP2014525012A/en
Application granted granted Critical
Publication of JP5920952B2 publication Critical patent/JP5920952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/006Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/851Control during special operating conditions during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8606Control during or prevention of abnormal conditions the abnormal condition being a shock

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、建設機械用油圧アクチュエータのダンピング制御システムに係り、さらに詳しくは、ブームなどの作業装置を急操作または複合操作するときに、負荷の変動によって油圧アクチュエータ(ブームシリンダなどをいう)に生じる衝撃及び振動を低減することのできる建設機械用油圧アクチュエータのダンピング制御システムに関する。   The present invention relates to a damping control system for a hydraulic actuator for construction machinery, and more particularly, when a working device such as a boom is suddenly operated or combinedly operated, it occurs in a hydraulic actuator (referred to as a boom cylinder or the like) due to load fluctuations. The present invention relates to a damping control system for a hydraulic actuator for construction machinery capable of reducing shock and vibration.

一般に、掘削機などの建設機械は、ブームなどの作業装置が大型構造物からなり、且つ、高重量のものであるため、ジョイスティックによって作業装置を急激に操作したり複合的に操作したりする場合に建設機械全体に大きな振動及び衝撃が生じ、こうした衝撃及び振動は作業に際しての運転者の疲労度の増大につながる。   Generally, a construction machine such as an excavator has a large work structure such as a boom, and is heavy, so that the work apparatus is operated suddenly or in combination by a joystick. In addition, large vibrations and shocks occur in the entire construction machine, and such shocks and vibrations lead to an increase in the fatigue level of the driver during the work.

一方、独立して駆動される制御弁をブリッジ(bridge)状に並べて(例えば、4個)油圧アクチュエータ(ブームシリンダなど)の作動を制御する場合、2つの制御弁を用いて油圧シリンダの一方向への駆動を制御することが可能になる。すなわち、油圧ポンプから油圧シリンダの入口側に供給される作動油を制御する第1制御弁と、油圧シリンダの出口側から油圧タンクに戻る作動油を制御する第2制御弁とが用いられる。   On the other hand, when control valves that are driven independently are arranged in a bridge shape (for example, four) to control the operation of a hydraulic actuator (such as a boom cylinder), one direction of the hydraulic cylinder is achieved using two control valves. It becomes possible to control the drive to the. That is, a first control valve that controls hydraulic oil supplied from the hydraulic pump to the inlet side of the hydraulic cylinder and a second control valve that controls hydraulic oil that returns from the outlet side of the hydraulic cylinder to the hydraulic tank are used.

このとき、ジョイスティックの操作によって作業装置を急操作したり複合操作したりする場合、負荷の変動によって衝撃及び振動が生じる。このような衝撃を低減するために、従来より、油圧ポンプから吐出される作動油を油圧タンクに戻すダンピング用制御弁を取り付けて用いてきている。   At this time, when the working device is suddenly operated or compounded by operating the joystick, impact and vibration are generated due to fluctuations in the load. In order to reduce such an impact, a damping control valve that returns hydraulic oil discharged from the hydraulic pump to the hydraulic tank has been conventionally used.

この場合、衝撃を緩和するためのダンピング用制御弁を別設しなければならないためコストアップの要因となり、また、一つのダンピング用制御弁を用いて油圧システム全体を制御するため、他の油圧アクチュエータ(アームシリンダなど)に生じる衝撃を個別に制御することができないという問題点を有する。   In this case, a damping control valve for mitigating the impact must be provided separately, which increases the cost. In addition, another hydraulic actuator is used to control the entire hydraulic system using one damping control valve. There is a problem that it is impossible to individually control an impact generated in an arm cylinder or the like.

本発明は上記事情に鑑みてなされたものであり、その課題は、ジョイスティックによって作業装置を急操作したり複合操作したりするときに生じる衝撃及び振動を低減するためのダンピング用制御弁を別設する必要がなく、運転者の意図の通りに油圧アクチュエータをスムーズに作動させることのできる建設機械用油圧アクチュエータのダンピング制御システムを提供することにある。   The present invention has been made in view of the above circumstances, and a problem thereof is that a damping control valve for reducing shock and vibration generated when a working device is suddenly operated or combined with a joystick is separately provided. Therefore, it is an object of the present invention to provide a damping control system for a hydraulic actuator for construction machinery that can smoothly operate the hydraulic actuator as intended by the driver.

本発明の請求項1に係る建設機械用油圧アクチュエータのダンピング制御システムは、可変容量型油圧ポンプに接続される少なくとも一つ以上の油圧アクチュエータと、前記油圧ポンプの吐出側流路に並列接続され、前記油圧ポンプからの作動油を前記油圧アクチュエータの入口側及び出口側にそれぞれ供給する第1及び第2供給通路と、前記第1及び第2供給通路にそれぞれ分岐接続され、前記油圧アクチュエータからの作動油を油圧タンクにそれぞれ戻す第1及び第2排出通路と、前記油圧アクチュエータを一方向に駆動可能なように、切換え時に前記油圧ポンプから前記油圧アクチュエータの入口側に供給される作動油及び前記油圧アクチュエータの出口側から前記油圧タンクに戻る作動油をそれぞれ制御する第1メータイン用制御弁及び第1メータアウト用制御弁と、前記油圧アクチュエータを他の方向に駆動可能なように、切換え時に前記油圧ポンプから前記油圧アクチュエータの出口側に供給される作動油及び前記油圧アクチュエータの入口側から前記油圧タンクに戻る作動油をそれぞれ制御する第2メータイン用制御弁及び第2メータアウト用制御弁と、運転者による操作量に対応する電気式制御信号を出力する電気式ジョイスティックと、前記電気式ジョイスティックの操作量による制御信号と前記油圧アクチュエータに生じる負荷による制御信号によって前記第1及び第2メータイン用制御弁のうちのいずれか一方を開放するように制御し、前記油圧アクチュエータに生じる負荷が基準値を超える場合、前記油圧アクチュエータの出口側及び入口側から前記油圧タンクに戻る作動油をそれぞれ別々に制御する前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放するように制御信号を出力する制御器と、を備える。   A damping control system for a hydraulic actuator for construction machinery according to claim 1 of the present invention is connected in parallel to at least one hydraulic actuator connected to a variable displacement hydraulic pump and a discharge-side flow path of the hydraulic pump, First and second supply passages for supplying hydraulic oil from the hydraulic pump to an inlet side and an outlet side of the hydraulic actuator, respectively, and branched and connected to the first and second supply passages, respectively. Hydraulic oil and hydraulic pressure supplied from the hydraulic pump to the inlet side of the hydraulic actuator at the time of switching so that the first and second discharge passages for returning the oil to the hydraulic tank, respectively, and the hydraulic actuator can be driven in one direction A first meter-in control valve that controls the hydraulic oil that returns to the hydraulic tank from the outlet side of the actuator. And the first meter-out control valve and hydraulic oil supplied from the hydraulic pump to the outlet side of the hydraulic actuator at the time of switching so that the hydraulic actuator can be driven in the other direction and from the inlet side of the hydraulic actuator A second meter-in control valve and a second meter-out control valve that respectively control the hydraulic oil returning to the hydraulic tank; an electric joystick that outputs an electric control signal corresponding to an operation amount by a driver; and the electric type Control is performed so that either one of the first and second meter-in control valves is opened by a control signal based on an operation amount of a joystick and a control signal based on a load generated on the hydraulic actuator, and a load generated on the hydraulic actuator is a reference. If the value exceeds the value, the hydraulic pressure from the outlet side and the inlet side of the hydraulic actuator And a controller for outputting a control signal to open either one of the first and second meter-out control valves for controlling hydraulic fluid returns to the tank each separately.

本発明の請求項2に係る建設機械用油圧アクチュエータのダンピング制御システムは、可変容量型油圧ポンプに接続される油圧アクチュエータと、前記油圧アクチュエータを一方向に駆動可能なように、切換え時に油圧ポンプから前記油圧アクチュエータの入口側に供給される作動油及び油圧アクチュエータの出口側から油圧タンクTに戻る作動油をそれぞれ制御する第1メータイン用制御弁及び第1メータアウト用制御弁と、前記油圧アクチュエータを他の方向に駆動可能なように、切換え時に前記油圧ポンプから前記油圧アクチュエータの出口側に供給される作動油及び前記油圧アクチュエータの入口側から前記油圧タンクに戻る作動油をそれぞれ制御する第2メータイン用制御弁及び第2メータアウト用制御弁と、電気式ジョイスティックと、制御器と、を備える建設機械用油圧アクチュエータのダンピング制御システムにおいて、前記電気式ジョイスティックの操作による制御信号値、前記油圧アクチュエータの入口側に生じる圧力値及び前記油圧ポンプ側の設定圧力値をそれぞれ読み込むステップと、前記電気式ジョイスティックの操作による制御信号値が前記電気式ジョイスティックの操作有無を判別するための基準値を超えるか否かを判断するステップと、前記電気式ジョイスティックの操作による制御信号値が基準値を超える場合、前記油圧ポンプ側の設定圧力と前記油圧アクチュエータの入口側の目標圧力との差分を演算するステップと、前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超えるか否かを判断するステップと、前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、前記油圧アクチュエータの入口側から前記油圧タンクに戻る作動油をそれぞれ制御する前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放するように制御信号を出力するステップと、を含み、前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、前記第1及び第2メータアウト用制御弁のうちのいずれか一方に印加される制御信号によって前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放して前記油圧アクチュエータに生じる負荷の変動による衝撃を低減するように閉ループを構成して繰り返し制御する。   A damping control system for a hydraulic actuator for construction machinery according to claim 2 of the present invention includes a hydraulic actuator connected to a variable displacement hydraulic pump and a hydraulic pump at the time of switching so that the hydraulic actuator can be driven in one direction. A first meter-in control valve and a first meter-out control valve for controlling hydraulic oil supplied to the inlet side of the hydraulic actuator and hydraulic oil returning from the outlet side of the hydraulic actuator to the hydraulic tank T, and the hydraulic actuator; A second meter-in for controlling the hydraulic oil supplied from the hydraulic pump to the outlet side of the hydraulic actuator and the hydraulic oil returning to the hydraulic tank from the inlet side of the hydraulic actuator at the time of switching so that the hydraulic oil can be driven in the other direction. Control valve, second meter-out control valve, and electric joystick And a controller, a damping control system for a hydraulic actuator for construction machinery, wherein a control signal value due to operation of the electric joystick, a pressure value generated on the inlet side of the hydraulic actuator, and a set pressure value on the hydraulic pump side Respectively, a step of determining whether or not a control signal value by operating the electric joystick exceeds a reference value for determining whether or not the electric joystick is operated, and control by operating the electric joystick When the signal value exceeds the reference value, the step of calculating a difference between the set pressure on the hydraulic pump side and the target pressure on the inlet side of the hydraulic actuator, and the actual load generated on the inlet side of the hydraulic actuator determines the target pressure. Determining whether or not to exceed, and the hydraulic actuator Any of the first and second meter-out control valves that respectively control the hydraulic oil that returns to the hydraulic tank from the inlet side of the hydraulic actuator when the actual load generated on the inlet side of the motor exceeds the target pressure. Outputting a control signal to open one of the first and second meters when an actual load generated on the inlet side of the hydraulic actuator by operating the electric joystick exceeds a target pressure. The control signal applied to either one of the control valves for out opens one of the first and second meter-out control valves to reduce the impact caused by the fluctuation of the load generated in the hydraulic actuator. A closed loop is configured so as to repeat control.

本発明の請求項3に係る建設機械用油圧アクチュエータのダンピング制御システムは、請求項2に記載の建設機械用油圧アクチュエータのダンピング制御システムであって、前記油圧アクチュエータの入口側及び出口側に生じる圧力を検出して検出信号を前記制御器に送る圧力センサを備える。   A damping control system for a hydraulic actuator for construction machinery according to claim 3 of the present invention is the damping control system for a hydraulic actuator for construction machinery according to claim 2, wherein the pressure generated on the inlet side and the outlet side of the hydraulic actuator. And a pressure sensor that sends a detection signal to the controller.

本発明の請求項4に係る建設機械用油圧アクチュエータのダンピング制御システムは、請求項2に記載の建設機械用油圧アクチュエータのダンピング制御システムであって、前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、所定の曲線において前記油圧ポンプ側の設定圧力と前記油圧アクチュエータの入口側の目標圧力との間で生じる最大値によって前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放するように制御する。   A damping control system for a hydraulic actuator for construction machinery according to claim 4 of the present invention is the damping control system for a hydraulic actuator for construction machinery according to claim 2, wherein the inlet of the hydraulic actuator is operated by operating the electric joystick. When the actual load generated on the side exceeds the target pressure, the first and second meter-outs according to the maximum value generated between the set pressure on the hydraulic pump side and the target pressure on the inlet side of the hydraulic actuator in a predetermined curve Control so that either one of the control valves is opened.

本発明の請求項5に係る建設機械用油圧アクチュエータのダンピング制御システムは、請求項1に記載の建設機械用油圧アクチュエータのダンピング制御システムであって、前記油圧アクチュエータの伸張駆動に際しては、前記制御器からの制御信号によって前記第1メータイン用制御弁及び第1メータアウト用制御弁はそれぞれ開放し、前記第2メータイン用制御弁及び第2メータアウト用制御弁はそれぞれ閉止するように制御する。   A damping control system for a hydraulic actuator for construction machinery according to a fifth aspect of the present invention is the damping control system for a hydraulic actuator for construction machinery according to the first aspect, wherein the controller is used when the hydraulic actuator is driven to extend. The first meter-in control valve and the first meter-out control valve are each opened by the control signal from the control signal, and the second meter-in control valve and the second meter-out control valve are each closed.

本発明の請求項6に係る建設機械用油圧アクチュエータのダンピング制御システムは、請求項1に記載の建設機械用油圧アクチュエータのダンピング制御システムであって、前記油圧アクチュエータの収縮駆動に際しては、前記制御器からの制御信号によって前記第2メータイン用制御弁及び第2メータアウト用制御弁はそれぞれ開放し、前記第1メータイン用制御弁及び第1メータアウト用制御弁はそれぞれ閉止するように制御する。   A damping control system for a construction machine hydraulic actuator according to a sixth aspect of the present invention is the damping control system for a construction machine hydraulic actuator according to the first aspect, wherein the controller is used for contraction driving of the hydraulic actuator. The second meter-in control valve and the second meter-out control valve are each opened by the control signal from the control signal, and the first meter-in control valve and the first meter-out control valve are each closed.

本発明の請求項7に係る建設機械用油圧アクチュエータのダンピング制御システムは、請求項1に記載の建設機械用油圧アクチュエータのダンピング制御システムであって、前記第1及び第2メータイン用制御弁及び前記第1及び第2メータアウト用制御弁は、前記制御器からの電気的な制御信号によって切り換えられるソレノイド弁である。   A damping control system for a construction machine hydraulic actuator according to claim 7 of the present invention is the damping control system for a construction machine hydraulic actuator according to claim 1, wherein the first and second meter-in control valves, The first and second meter-out control valves are solenoid valves that are switched by an electrical control signal from the controller.

前記した構成を有する本発明の建設機械用油圧アクチュエータのダンピング制御システムは、下記のメリットを有する。   The damping control system for a hydraulic actuator for construction machine according to the present invention having the above-described configuration has the following merits.

作業装置を急操作したり複合操作したりするときに発生する衝撃を低減するためにダンピング用制御弁を追加構成する必要がないため、コストダウンを実現する。また、作業装置の急操作などに起因する衝撃や振動が低減されることから、作業の安定性及び運転の利便性が確保できる。   Since it is not necessary to additionally configure a damping control valve in order to reduce the impact generated when the working device is operated suddenly or combinedly, the cost can be reduced. In addition, since the impact and vibration caused by the sudden operation of the working device are reduced, the stability of the work and the convenience of driving can be ensured.

本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムの油圧回路図である。1 is a hydraulic circuit diagram of a damping control system for a hydraulic actuator for construction machinery according to an embodiment of the present invention. 本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムの電気構成図である。It is an electrical block diagram of the damping control system of the hydraulic actuator for construction machines by one Embodiment of this invention. 本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムのフローチャートである。It is a flowchart of the damping control system of the hydraulic actuator for construction machines by one Embodiment of this invention. 電気式ジョイスティックによって弁を制御することを示すグラフであり、縦軸は弁制御により弁の開度を示し、横軸は電気式ジョイスティックの操作量である。It is a graph which shows controlling a valve with an electric joystick, a vertical axis | shaft shows the opening degree of a valve by valve control, and a horizontal axis | shaft is the operation amount of an electric joystick.

以下、添付図面に基づき、本発明の好適な実施形態について詳述するが、これは本発明が属する技術分野において通常の知識を有する者が発明を容易に実施できる程度に詳細に説明するためのものであり、これにより本発明の技術的な思想及び範疇が限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments are described in detail so that a person having ordinary knowledge in the technical field to which the present invention can easily carry out the invention. Therefore, the technical idea and category of the present invention are not limited thereby.

図1から図4に示す本発明の一実施形態に係る建設機械用油圧アクチュエータのダンピング制御システムは、単一または複数以上の可変容量型油圧ポンプ(以下、「油圧ポンプ」と称する。)1に接続される少なくとも1以上の油圧アクチュエータ(油圧シリンダともいうが、以下、単に「アクチュエータ」と称する。)2と、
油圧ポンプ1の吐出側流路3に並列接続され、油圧ポンプ1からの作動油をアクチュエータ2の入口側及び出口側にそれぞれ供給する第1及び第2供給通路4、5と、
第1及び第2供給通路4、5にそれぞれ分岐接続され、アクチュエータ2の入口側及び出口側からの作動油を油圧タンクTにそれぞれ戻す第1及び第2排出通路6、7と、
アクチュエータ2を一方向に駆動可能なように(例えば、伸張駆動する場合)、切換え時に油圧ポンプ1からアクチュエータ2の入口側(大チャンバ2aをいう。)に供給される作動油及びアクチュエータ2の出口側(小チャンバ2bをいう。)から油圧タンクTに戻る作動油をそれぞれ制御する第1メータイン(meter−in)用制御弁8及び第1メータアウト(meter−out)用制御弁9と、
アクチュエータ2を他の方向に駆動可能なように(例えば、収縮駆動する場合)、切換え時に油圧ポンプ1からアクチュエータ2の出口側(小チャンバ2b)に供給される作動油及びアクチュエータ2の入口側(大チャンバ2a)から油圧タンクTに戻る作動油をそれぞれ制御する第2メータイン用制御弁10及び第2メータアウト用制御弁11と、
運転者による操作量に対応する電気式制御信号を出力する電気式ジョイスティック(以下、単に「ジョイスティック」と称する。)12と、
ジョイスティック12の操作量による制御信号とアクチュエータ2に生じる負荷による制御信号によって第1及び第2メータイン用制御弁8、10のうちのいずれか一方を開放するように制御し(図4の曲線グラフ「a」)、アクチュエータ2に生じる負荷が基準値を超える場合(例えば、ジョイスティック12により作業装置を急操作したり複合操作したりして負荷の変動が大きい場合)、アクチュエータ2の出口側及び入口側から油圧タンクTに戻る流量をそれぞれ制御する第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放するように制御信号(図4の曲線グラフ「b」、)を出力する制御器13と、を備える。
A damping control system for a hydraulic actuator for construction machinery according to an embodiment of the present invention shown in FIGS. 1 to 4 is a single or a plurality of variable displacement hydraulic pumps (hereinafter referred to as “hydraulic pumps”) 1. At least one or more hydraulic actuators (also referred to as hydraulic cylinders, but hereinafter simply referred to as “actuators”) 2 connected;
First and second supply passages 4, 5 connected in parallel to the discharge-side flow path 3 of the hydraulic pump 1 and supplying hydraulic oil from the hydraulic pump 1 to the inlet side and the outlet side of the actuator 2, respectively;
First and second discharge passages 6 and 7 that are branchedly connected to the first and second supply passages 4 and 5, respectively, and return the hydraulic oil from the inlet side and the outlet side of the actuator 2 to the hydraulic tank T, respectively.
Hydraulic fluid supplied from the hydraulic pump 1 to the inlet side of the actuator 2 (referred to as the large chamber 2a) and the outlet of the actuator 2 at the time of switching so that the actuator 2 can be driven in one direction (for example, in the case of extension driving). A first meter-in control valve 8 and a first meter-out control valve 9 for controlling the hydraulic fluid that returns to the hydraulic tank T from the side (referred to as the small chamber 2b),
The hydraulic oil supplied from the hydraulic pump 1 to the outlet side of the actuator 2 (small chamber 2b) at the time of switching and the inlet side of the actuator 2 so that the actuator 2 can be driven in the other direction (for example, in the case of contraction driving) A second meter-in control valve 10 and a second meter-out control valve 11 for respectively controlling the hydraulic oil returning from the large chamber 2a) to the hydraulic tank T;
An electric joystick (hereinafter simply referred to as “joystick”) 12 that outputs an electric control signal corresponding to the amount of operation by the driver;
Control is performed so that one of the first and second meter-in control valves 8 and 10 is opened by a control signal based on an operation amount of the joystick 12 and a control signal based on a load generated in the actuator 2 (curve graph “ a "), when the load generated in the actuator 2 exceeds a reference value (for example, when the working device is suddenly operated or compounded with the joystick 12 and the load varies greatly), the exit side and the entrance side of the actuator 2 A control signal (curve graph “b” in FIG. 4) is output so as to open one of the first and second meter-out control valves 9 and 11 for controlling the flow rate returning from the hydraulic tank T to the hydraulic tank T, respectively. A controller 13.

このとき、前記した油圧ポンプ1に並列接続される一対のアクチュエータ2と、アクチュエータ2に供給される作動油を独立してそれぞれに制御する第1及び第2メータイン用制御弁8、10及び第1及び第2メータアウト用制御弁9、11は左右対称に配設されるため、いずれか一方の構成要素についての詳細な説明は省く。なお、明細書の全体に亘って同じ構成要素には同じ符号を付する。   At this time, the pair of actuators 2 connected in parallel to the hydraulic pump 1 and the first and second meter-in control valves 8 and 10 for controlling the hydraulic oil supplied to the actuator 2 independently, respectively, and the first Since the second meter-out control valves 9 and 11 are symmetrically arranged, detailed description of any one of the components is omitted. In addition, the same code | symbol is attached | subjected to the same component throughout the whole specification.

図1〜図4に示すように、本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムは、可変容量型油圧ポンプ1に接続されるアクチュエータ2と、アクチュエータ2を一方向に駆動可能なように(伸張駆動する場合)、切換え時に油圧ポンプ1からアクチュエータ2の入口側(大チャンバ2aをいう)に供給される作動油及びアクチュエータ2の小チャンバ2bから油圧タンクTに戻る作動油をそれぞれ制御する第1メータイン用制御弁8及び第1メータアウト用制御弁9と、アクチュエータ2を他の方向に駆動可能なように(収縮駆動する場合)、切換え時に油圧ポンプ1からアクチュエータ2の出口側(小チャンバ2bをいう。)に供給される作動油及びアクチュエータ2の大チャンバ2aから油圧タンクTに戻る作動油をそれぞれ制御する第2メータイン用制御弁10及び第2メータアウト用制御弁11と、運転者による操作量に対応する電気式制御信号を出力する電気式ジョイスティック12と、制御器13と、を備える建設機械用油圧アクチュエータのダンピング制御システムにおいて、
ジョイスティック12の操作による制御信号値、アクチュエータ2の入口側に生じる圧力値及び油圧ポンプ1側の設定圧力値をそれぞれ読み込むステップ(S100)と、
ジョイスティック12の操作による制御信号値がジョイスティック12の操作有無を判別するための基準値を超えるか否かを判断するステップ(S200)と、
ジョイスティック12の操作による制御信号値が基準値を超える場合、油圧ポンプ1側の設定圧力とアクチュエータ2の入口側の目標圧力との差分を演算するステップ(S300、S400)と、
アクチュエータ2の入口側に生じる実際の負荷が目標圧力を超えるか否かを判断するステップ(S500)と、
アクチュエータ2の入口側に生じる実際の負荷が目標圧力を超える場合(例えば、ジョイスティック12によって作業装置を急操作したり複合操作したりして負荷の変動が生じた場合)、アクチュエータ2の入口側から油圧タンクTに戻る作動油をそれぞれ制御する第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放するように制御信号を出力するステップ(S600、S700)と、を含み、
ジョイスティック12の操作によってアクチュエータ2の入口側に生じる実際の負荷が目標圧力を超える場合、第1及び第2メータアウト用制御弁9、11のうちのいずれか一方に印加される制御信号によって第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放してアクチュエータ2に生じる負荷の変動による衝撃を低減するように閉ループを構成して繰り返し制御する。
As shown in FIGS. 1 to 4, the damping control system for a hydraulic actuator for construction machinery according to an embodiment of the present invention can drive the actuator 2 connected to the variable displacement hydraulic pump 1 and the actuator 2 in one direction. Thus (when extending), hydraulic oil supplied from the hydraulic pump 1 to the inlet side of the actuator 2 (referred to as the large chamber 2a) and hydraulic oil returning from the small chamber 2b of the actuator 2 to the hydraulic tank T at the time of switching. The first meter-in control valve 8 and the first meter-out control valve 9 to be controlled, respectively, and the outlet of the actuator 2 from the hydraulic pump 1 at the time of switching so that the actuator 2 can be driven in the other direction (when contracted). Hydraulic oil supplied to the side (referred to as a small chamber 2b) and the hydraulic tank T from the large chamber 2a of the actuator 2 A second meter-in control valve 10 and a second meter-out control valve 11 that respectively control the returning hydraulic oil, an electric joystick 12 that outputs an electric control signal corresponding to an operation amount by the driver, and a controller 13. In a damping control system for a hydraulic actuator for construction machinery comprising:
A step (S100) of reading a control signal value by operation of the joystick 12, a pressure value generated on the inlet side of the actuator 2 and a set pressure value on the hydraulic pump 1 side, respectively (S100);
Determining whether or not the control signal value due to operation of the joystick 12 exceeds a reference value for determining whether or not the joystick 12 is operated (S200);
A step of calculating a difference between a set pressure on the hydraulic pump 1 side and a target pressure on the inlet side of the actuator 2 when a control signal value by operation of the joystick 12 exceeds a reference value (S300, S400);
Determining whether or not the actual load generated on the inlet side of the actuator 2 exceeds the target pressure (S500);
When the actual load generated on the inlet side of the actuator 2 exceeds the target pressure (for example, when the load is fluctuated due to sudden operation or complex operation of the working device with the joystick 12), from the inlet side of the actuator 2 Outputting a control signal to open any one of the first and second meter-out control valves 9 and 11 for controlling the hydraulic oil returning to the hydraulic tank T (S600, S700), respectively. ,
When the actual load generated on the inlet side of the actuator 2 by the operation of the joystick 12 exceeds the target pressure, the first control signal applied to one of the first and second meter-out control valves 9 and 11 is used. In addition, one of the second meter-out control valves 9 and 11 is opened, and a closed loop is configured to repeatedly control so as to reduce an impact caused by a load variation generated in the actuator 2.

このとき、前記建設機械用油圧アクチュエータのダンピング制御システムは、前記したアクチュエータ2の入口側に生じる圧力を検出して検出信号を制御器13に送る圧力センサ14、15を備える。   At this time, the damping control system for the construction machine hydraulic actuator includes pressure sensors 14 and 15 that detect the pressure generated on the inlet side of the actuator 2 and send a detection signal to the controller 13.

前記建設機械用油圧アクチュエータのダンピング制御システムにおいて、前記したジョイスティック12の操作によってアクチュエータ2の入口側に生じる実際の負荷が目標圧力を超える場合、所定の曲線において油圧ポンプ1側の設定圧力とアクチュエータ2の入口側の目標圧力との間で生じる最大値によって第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放するように制御する。   In the damping control system for the hydraulic actuator for construction machinery, when the actual load generated on the inlet side of the actuator 2 by the operation of the joystick 12 exceeds the target pressure, the set pressure on the hydraulic pump 1 side and the actuator 2 in a predetermined curve Control is performed so that one of the first and second meter-out control valves 9 and 11 is opened according to the maximum value generated between the target pressure and the target pressure on the inlet side.

前記建設機械用油圧アクチュエータのダンピング制御システムにおいて、 前記したアクチュエータ2の伸張駆動に際しては、制御器13からの制御信号によって第1メータイン用制御弁8及び第1メータアウト用制御弁9はそれぞれ開放し、制御器13からの制御信号によって第2メータイン用制御弁10及び第2メータアウト用制御弁11はそれぞれ閉止するように制御する。   In the damping control system for a construction machine hydraulic actuator, when the actuator 2 is driven to extend, the first meter-in control valve 8 and the first meter-out control valve 9 are opened by a control signal from the controller 13, respectively. The second meter-in control valve 10 and the second meter-out control valve 11 are controlled to be closed by a control signal from the controller 13, respectively.

前記建設機械用油圧アクチュエータのダンピング制御システムにおいて、前記したアクチュエータ2の収縮駆動に際しては、制御器13からの制御信号によって第2メータイン用制御弁10及び第2メータアウト用制御弁11はそれぞれ開放し、制御器13からの制御信号によって第1メータイン用制御弁8及び第1メータアウト用制御弁9はそれぞれ閉止するように制御する。   In the damping control system for a hydraulic actuator for construction machinery, when the actuator 2 is contracted, the second meter-in control valve 10 and the second meter-out control valve 11 are opened by a control signal from the controller 13, respectively. The first meter-in control valve 8 and the first meter-out control valve 9 are controlled to be closed by the control signal from the controller 13, respectively.

前記建設機械用油圧アクチュエータのダンピング制御システムにおいて、前記した第1及び第2メータイン用制御弁8、10及び第1及び第2メータアウト用制御弁9、11は、制御器13からの電気的な制御信号によって切り換えられるソレノイド弁である。   In the damping control system for the hydraulic actuator for construction machinery, the first and second meter-in control valves 8 and 10 and the first and second meter-out control valves 9 and 11 are electrically connected to the controller 13. It is a solenoid valve that is switched by a control signal.

以下、添付図面に基づき、本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムの使用例について詳述する。   Hereinafter, a usage example of a damping control system for a hydraulic actuator for construction machinery according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

前記したアクチュエータ2の伸張駆動について説明すれば、制御器13からの制御信号によって第1メータイン用制御弁8及び第1メータアウト用制御弁9はそれぞれ開放し、第2メータイン用制御弁10及び第2メータアウト用制御弁11はそれぞれ閉止するように制御する。これにより、油圧ポンプ1から吐出される作動油は、吐出側流路3と、第1供給通路4及び第1メータイン用制御弁8を順に経由してアクチュエータ2の大チャンバ2aに供給される。これと同時に、アクチュエータ2の小チャンバ2bからの作動油は、第1メータアウト用制御弁9及び第2排出通路7を経て油圧タンクTに戻る。これにより、アクチュエータ2は伸張駆動する。   The extension drive of the actuator 2 described above will be described. The first meter-in control valve 8 and the first meter-out control valve 9 are opened by the control signal from the controller 13, respectively. The 2-meter-out control valve 11 is controlled to be closed. As a result, the hydraulic oil discharged from the hydraulic pump 1 is supplied to the large chamber 2 a of the actuator 2 through the discharge side flow path 3, the first supply passage 4 and the first meter-in control valve 8 in order. At the same time, the hydraulic oil from the small chamber 2 b of the actuator 2 returns to the hydraulic tank T through the first meter-out control valve 9 and the second discharge passage 7. Thereby, the actuator 2 is driven to extend.

このように、アクチュエータ2を伸張駆動するためにジョイスティック12を急操作したり複合操作したりして大きな負荷の変動が生じる場合、制御器13からの制御信号によって第2メータアウト用制御弁11を開放する。これにより、油圧ポンプ1からアクチュエータ2の入口側(大チャンバ2aをいう)に供給される作動油の一部が油圧タンクTに戻ってダンピング機能を奏するので、アクチュエータ2に生じる圧力の変動を低減して衝撃や振動を低減することができる。   In this way, when the joystick 12 is suddenly operated or compounded to drive the actuator 2 to extend, a large load fluctuation occurs, the second meter-out control valve 11 is controlled by the control signal from the controller 13. Open. As a result, part of the hydraulic oil supplied from the hydraulic pump 1 to the inlet side of the actuator 2 (referred to as the large chamber 2a) returns to the hydraulic tank T to perform a damping function, thereby reducing fluctuations in pressure generated in the actuator 2. Thus, impact and vibration can be reduced.

一方、前記したアクチュエータ2の収縮駆動について説明すれば、制御器13からの制御信号によって第2メータイン用制御弁10及び第2メータアウト用制御弁11はそれぞれ開放し、第1メータイン用制御弁8及び第1メータアウト用制御弁9はそれぞれ閉止するように制御する。これにより、油圧ポンプ1から吐出される作動油は、吐出側流路3、第2供給通路5、第2メータイン用制御弁10を順に経由してアクチュエータ2の小チャンバ2bに供給される。これと同時に、アクチュエータ2の大チャンバ2aからの作動油は第2メータアウト用制御弁11及び第2排出通路7を経て油圧タンクTに戻る。これにより、アクチュエータ2は収縮駆動する。   On the other hand, the contraction drive of the actuator 2 will be described. The second meter-in control valve 10 and the second meter-out control valve 11 are opened by the control signal from the controller 13, and the first meter-in control valve 8 is opened. The first meter-out control valve 9 is controlled to be closed. As a result, the hydraulic oil discharged from the hydraulic pump 1 is supplied to the small chamber 2 b of the actuator 2 through the discharge-side flow path 3, the second supply passage 5, and the second meter-in control valve 10 in order. At the same time, the hydraulic oil from the large chamber 2 a of the actuator 2 returns to the hydraulic tank T through the second meter-out control valve 11 and the second discharge passage 7. Thereby, the actuator 2 is driven to contract.

このように、アクチュエータ2を収縮駆動するためにジョイスティック12を急操作したり複合操作したりして大きな負荷の変動が生じる場合、制御器13からの制御信号によって第1メータアウト用制御弁9を開放する。これにより、油圧ポンプ1からアクチュエータ2の出口側(小チャンバ2bをいう)に供給される作動油の一部が油圧タンクTに戻ってダンピング機能を奏するので、アクチュエータ2に生じる圧力の変動を低減して衝撃や振動を低減することができる。   As described above, when the joystick 12 is suddenly operated or compounded to drive the actuator 2 in a contracting manner and a large load fluctuation occurs, the first meter-out control valve 9 is controlled by the control signal from the controller 13. Open. As a result, part of the hydraulic oil supplied from the hydraulic pump 1 to the outlet side of the actuator 2 (referred to as the small chamber 2b) returns to the hydraulic tank T to perform a damping function, thereby reducing fluctuations in pressure generated in the actuator 2. Thus, impact and vibration can be reduced.

前記したように、第1メータイン用制御弁8及び第1メータアウト用制御弁9は、これらが切り換えられるときにアクチュエータ2を伸張駆動し、第2メータイン用制御弁10及び第2メータアウト用制御弁11は、これらが切り換えられるときにアクチュエータ2を収縮駆動することができる。すなわち、アクチュエータ2は、ブリッジ状に接続されてそれぞれ別々に駆動される第1メータイン用制御弁8及び第1メータアウト用制御弁9、第2メータイン用制御弁10及び第2メータアウト用制御弁11によって伸縮駆動される。   As described above, the first meter-in control valve 8 and the first meter-out control valve 9 extend the actuator 2 when they are switched, and the second meter-in control valve 10 and the second meter-out control valve 9 The valve 11 can drive the actuator 2 to contract when these are switched. That is, the actuator 2 is connected in a bridge shape and is driven separately, and the first meter-in control valve 8 and the first meter-out control valve 9, the second meter-in control valve 10 and the second meter-out control valve, respectively. 11 is expanded and contracted.

以下、図3に基づき、本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムによってアクチュエータ2に圧力の変動によって生じる衝撃や振動を低減することについて説明する。   Hereinafter, based on FIG. 3, it will be described how to reduce the impact and vibration caused by the pressure fluctuation in the actuator 2 by the damping control system for the hydraulic actuator for construction machine according to one embodiment of the present invention.

ジョイスティック12の操作による制御信号値と、アクチュエータ(例えば、油圧シリンダ)2の入口側に生じる圧力値及び油圧ポンプ1側の設定圧力値をそれぞれ読み込む(ステップS100)。   The control signal value by the operation of the joystick 12, the pressure value generated on the inlet side of the actuator (for example, hydraulic cylinder) 2 and the set pressure value on the hydraulic pump 1 side are read (step S100).

次いで、ジョイスティック12の操作による制御信号値がジョイスティック12の操作有無を判別するための基準値を超えるか否かを判断し(ステップS200)、ジョイスティック12による制御信号値が基準値を超える場合にステップS300に移行し、ジョイスティック12による制御信号値が基準値よりも小さい場合にステップS800に移行する。   Next, it is determined whether or not the control signal value by the operation of the joystick 12 exceeds a reference value for determining whether or not the joystick 12 is operated (step S200). If the control signal value by the joystick 12 exceeds the reference value, a step is performed. The process proceeds to S300, and if the control signal value by the joystick 12 is smaller than the reference value, the process proceeds to Step S800.

次いで、ジョイスティック12の操作によってアクチュエータ2の入口側に供給される作動油の目標圧力を演算する(ステップS300)。   Next, the target pressure of the hydraulic oil supplied to the inlet side of the actuator 2 by operating the joystick 12 is calculated (step S300).

次いで、油圧ポンプ1側の設定圧力とアクチュエータ2の入口側の目標圧力との差分を演算する(ステップS400)。   Next, the difference between the set pressure on the hydraulic pump 1 side and the target pressure on the inlet side of the actuator 2 is calculated (step S400).

次いで、アクチュエータ2の入口側に生じる実際の負荷が目標圧力を超えるか否かを判断し(ステップS500)、アクチュエータ2に生じる実際の負荷が目標圧力を超える場合にステップS600に移行し、アクチュエータ2に生じる実際の負荷が目標圧力よりも小さい場合にステップS800に移行する。   Next, it is determined whether or not the actual load generated on the inlet side of the actuator 2 exceeds the target pressure (step S500). If the actual load generated on the actuator 2 exceeds the target pressure, the process proceeds to step S600. When the actual load generated in step S800 is smaller than the target pressure, the process proceeds to step S800.

次いで、所定の曲線において油圧ポンプ1側の設定圧力とアクチュエータ2の入口側の目標圧力との差分によって決定される最大値(図4の曲線グラフの「c」)を演算する(ステップS600)。   Next, the maximum value (“c” in the curve graph of FIG. 4) determined by the difference between the set pressure on the hydraulic pump 1 side and the target pressure on the inlet side of the actuator 2 in a predetermined curve is calculated (step S600).

次いで、ジョイスティック12の操作によってアクチュエータ2の入口側に生じる実際の負荷が目標圧力を超える場合、アクチュエータ2の入口側から油圧タンクTに戻る作動油を制御するために、第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放するように制御信号(図4の曲線グラフの曲線「b」)を出力した後、ステップS200に移行する(ステップS700)。   Next, when the actual load generated on the inlet side of the actuator 2 by the operation of the joystick 12 exceeds the target pressure, the first and second meter-outs are controlled to control the hydraulic oil returning from the inlet side of the actuator 2 to the hydraulic tank T. After outputting a control signal (curve “b” in the curve graph of FIG. 4) so as to open either one of the control valves 9 and 11, the process proceeds to step S200 (step S700).

このとき、制御器13から入力される、第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を切り換える制御信号値は、下式によって決定される。   At this time, the control signal value for switching either one of the first and second meter-out control valves 9 and 11 input from the controller 13 is determined by the following equation.

このとき、Kは、チューニングのためのパラメータであり、メータアウト用制御弁の最大値は、所定の曲線において油圧ポンプ1側の設定圧力とアクチュエータ2の入口側の目標圧力との差分によって決定される最大値であり、ダンピング曲線(damp curve)は、ジョイスティック12の操作信号によって予め定義された曲線によって決定される値である。 At this time, K is a tuning parameter, and the maximum value of the meter-out control valve is determined by the difference between the set pressure on the hydraulic pump 1 side and the target pressure on the inlet side of the actuator 2 in a predetermined curve. The damping curve (damp curve) is a value determined by a curve defined in advance by an operation signal of the joystick 12.

次いで、ステップS200において、ジョイスティック12による制御信号値がジョイスティック12の操作有無を判別するための基準値より小さい場合と、ステップS500において、アクチュエータ2に生じる実際の負荷が目標圧力よりも小さい場合、第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を閉止してステップS200に移行する過程を繰り返す(ステップS800)。   Next, when the control signal value by the joystick 12 is smaller than the reference value for determining whether or not the joystick 12 is operated in step S200, and when the actual load generated in the actuator 2 is smaller than the target pressure in step S500, The process of closing one of the first and second meter-out control valves 9 and 11 and moving to step S200 is repeated (step S800).

以上述べたように、ジョイスティック12によって作業装置を急操作したり複合操作したりするときにアクチュエータ2の入口側に生じる実際の負荷が目標圧力を超える場合、電気式ジョイスティック12の操作によって制御器13からの制御信号によって第1及び第2メータアウト用制御弁9、11のうちのいずれか一方を開放してアクチュエータ2の入口側に供給される作動油の一部を油圧タンクTに戻すことにより、アクチュエータ2に生じる負荷の変動に起因する衝撃を低減することができる。   As described above, when the actual load generated on the inlet side of the actuator 2 exceeds the target pressure when the working device is suddenly operated or combined with the joystick 12, the controller 13 is operated by operating the electric joystick 12. By opening one of the first and second meter-out control valves 9 and 11 in accordance with a control signal from the control signal, a part of the hydraulic fluid supplied to the inlet side of the actuator 2 is returned to the hydraulic tank T. Further, it is possible to reduce the impact caused by the load variation generated in the actuator 2.

以上述べたように、本発明の一実施形態による建設機械用油圧アクチュエータのダンピング制御システムによれば、電気式ジョイスティックによってブームなどの作業装置を急操作したり複合操作したりするときに負荷の変動に因って生じる衝撃や振動を低減するためのダンピング用制御弁を追加して取り付ける必要がなく、作業装置の急操作などによる衝撃や振動が低減されることから、作業の安定性及び運転の利便性が確保できる。   As described above, according to the damping control system for a hydraulic actuator for construction machinery according to one embodiment of the present invention, load fluctuations are caused when an operation device such as a boom is suddenly operated or combined with an electric joystick. Therefore, it is not necessary to install a damping control valve to reduce the impact and vibration caused by the operation, and the impact and vibration due to the sudden operation of the work equipment are reduced. Convenience can be secured.

1 可変容量型油圧ポンプ
2 油圧アクチュエータ(アクチュエータ)
3 吐出側流路
4 第1供給通路
5 第2供給通路
6 第1排出通路
7 第2排出通路
8 第1メータイン用制御弁
9 第1メータアウト用制御弁
10 第2メータイン用制御弁
11 第2メータアウト用制御弁
12 電気式ジョイスティック(ジョイスティック)
13 制御器
14、15 圧力センサ
1 Variable displacement hydraulic pump 2 Hydraulic actuator (actuator)
DESCRIPTION OF SYMBOLS 3 Discharge side flow path 4 1st supply path 5 2nd supply path 6 1st discharge path 7 2nd discharge path 8 1st meter-in control valve 9 1st meter-out control valve 10 2nd meter-in control valve 11 2nd Control valve for meter-out 12 Electric joystick (joystick)
13 Controller 14, 15 Pressure sensor

Claims (5)

可変容量型油圧ポンプに接続される油圧アクチュエータと、前記油圧アクチュエータを一方向に駆動可能なように、切換え時に油圧ポンプから前記油圧アクチュエータの入口側に供給される作動油及び前記油圧アクチュエータの出口側から油圧タンクに戻る作動油をそれぞれ制御する第1メータイン用制御弁及び第1メータアウト用制御弁と、前記油圧アクチュエータを他の方向に駆動可能なように、切換え時に前記油圧ポンプから前記油圧アクチュエータの出口側に供給される作動油及び前記油圧アクチュエータの入口側から前記油圧タンクに戻る作動油をそれぞれ制御する第2メータイン用制御弁及び第2メータアウト用制御弁と、電気式ジョイスティックと、制御器と、を備える建設機械用油圧アクチュエータダンピング制御システムにおいて、前記制御器によって実行される前記油圧アクチュエータのダンピング制御方法であって、
前記電気式ジョイスティックの操作による制御信号値、前記油圧アクチュエータの入口側に生じる圧力値及び前記油圧ポンプ側の設定圧力値をそれぞれ読み込むステップと、
前記電気式ジョイスティックの操作による制御信号値が前記電気式ジョイスティックの操作有無を判別するための基準値を超えるか否かを判断するステップと、
前記電気式ジョイスティックの操作による制御信号値が基準値を超える場合、前記油圧ポンプ側の設定圧力と前記油圧アクチュエータの入口側の目標圧力との差分を演算するステップと、
前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超えるか否かを判断するステップと、
前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、前記電気式ジョイスティックの操作による制御信号値と前記第1及び第2メータアウト用制御弁の開度との関係を定めた所定のダンピング曲線を用いて、前記油圧アクチュエータの入口側から前記油圧タンクに戻る作動油をそれぞれ制御する前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放するように制御信号を出力するステップと、を含み、
前記制御信号を出力するステップにおいて、前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、前記所定のダンピング曲線におけるメータアウト用制御弁の開度の最大値を、前記油圧ポンプ側の設定圧力と前記油圧アクチュエータの入口側の目標圧力との差分から決定し、前記最大値に基づいた前記所定のダンピング曲線を用いて、前記第1及び第2メータアウト用制御弁のうちのいずれか一方に印加される制御信号を出力し、前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放して前記油圧アクチュエータに生じる負荷の変動による衝撃を低減すること、さらに、前記各ステップにより閉ループを構成して繰り返し制御することを特徴とするダンピング制御方法
A hydraulic actuator connected to the variable displacement hydraulic pump, said hydraulic actuator so as to be driven in one direction, hydraulic fluid and an outlet side of the hydraulic actuator is supplied from the hydraulic pump to the inlet side of the hydraulic actuator when switching The first meter-in control valve and the first meter-out control valve that respectively control the hydraulic oil returning from the hydraulic tank to the hydraulic tank , and the hydraulic actuator from the hydraulic pump at the time of switching so that the hydraulic actuator can be driven in the other direction. A second meter-in control valve and a second meter-out control valve for controlling the hydraulic oil supplied to the outlet side of the hydraulic fluid and the hydraulic oil returning from the inlet side of the hydraulic actuator to the hydraulic tank, an electric joystick, and control construction machine hydraulic actuator damping control system for comprising a vessel, a Oite, a damping control method for the hydraulic actuator to be executed by the controller,
Reading a control signal value by operation of the electric joystick, a pressure value generated on the inlet side of the hydraulic actuator, and a set pressure value on the hydraulic pump side;
Determining whether a control signal value due to operation of the electric joystick exceeds a reference value for determining whether or not the electric joystick is operated;
A step of calculating a difference between a set pressure on the hydraulic pump side and a target pressure on the inlet side of the hydraulic actuator when a control signal value by operation of the electric joystick exceeds a reference value;
Determining whether an actual load generated on the inlet side of the hydraulic actuator by operating the electric joystick exceeds a target pressure;
When the actual load generated on the inlet side of the hydraulic actuator due to the operation of the electric joystick exceeds the target pressure, the control signal value by the operation of the electric joystick and the opening of the first and second meter-out control valves One of the first and second meter-out control valves that respectively control the hydraulic fluid that returns to the hydraulic tank from the inlet side of the hydraulic actuator using a predetermined damping curve that defines the relationship between Outputting a control signal to open, and
In the step of outputting the control signal , when the actual load generated on the inlet side of the hydraulic actuator by the operation of the electric joystick exceeds the target pressure, the maximum opening of the meter-out control valve in the predetermined damping curve A value is determined from a difference between a set pressure on the hydraulic pump side and a target pressure on the inlet side of the hydraulic actuator, and the first and second meter outs are determined using the predetermined damping curve based on the maximum value. A control signal applied to one of the control valves for the engine is output, one of the first and second meter-out control valves is opened, and an impact caused by a change in the load generated in the hydraulic actuator reducing the further characterized in that the repeatedly controlled by a closed loop by the steps Damping Grayed control method.
前記油圧アクチュエータの入口側及び出口側に生じる圧力を検出して検出信号を前記制御器に送る圧力センサを備えることを特徴とする請求項に記載のダンピング制御方法The damping control method according to claim 1 , further comprising a pressure sensor that detects a pressure generated on an inlet side and an outlet side of the hydraulic actuator and sends a detection signal to the controller . 前記電気式ジョイスティックの操作によって前記油圧アクチュエータの入口側に生じる実際の負荷が目標圧力を超える場合、前記所定のダンピング曲線におけるメータアウト用制御弁の開度の前記最大値によって前記第1及び第2メータアウト用制御弁のうちのいずれか一方を開放するように制御することを特徴とする請求項に記載のダンピング制御方法When the actual load generated on the inlet side of the hydraulic actuator by the operation of the electric joystick exceeds the target pressure, the first and second values are determined by the maximum value of the opening degree of the meter-out control valve in the predetermined damping curve. damping control method according to claim 1, wherein the controller controls to open either one of the meter-out valve. 前記油圧アクチュエータの収縮駆動に際しては、前記制御器からの制御信号によって前記第2メータイン用制御弁及び第2メータアウト用制御弁はそれぞれ開放し、前記第1メータイン用制御弁及び第1メータアウト用制御弁はそれぞれ閉止するように制御することを特徴とする請求項1に記載のダンピング制御方法When the hydraulic actuator is contracted, the second meter-in control valve and the second meter-out control valve are opened by a control signal from the controller, and the first meter-in control valve and the first meter-out control valve are opened. The damping control method according to claim 1, wherein each control valve is controlled to close . 前記第1及び第2メータイン用制御弁及び前記第1及び第2メータアウト用制御弁は、前記制御器からの電気的な制御信号によって切り換えられるソレノイド弁であることを特徴とする請求項1に記載のダンピング制御方法2. The first and second meter-in control valves and the first and second meter-out control valves are solenoid valves that are switched by an electrical control signal from the controller. The damping control method as described.
JP2014520079A 2011-07-12 2011-07-12 Damping control system of hydraulic actuator for construction machinery Expired - Fee Related JP5920952B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005087 WO2013008964A1 (en) 2011-07-12 2011-07-12 Hydraulic actuator damping control system for construction machinery

Publications (2)

Publication Number Publication Date
JP2014525012A JP2014525012A (en) 2014-09-25
JP5920952B2 true JP5920952B2 (en) 2016-05-24

Family

ID=47506234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520079A Expired - Fee Related JP5920952B2 (en) 2011-07-12 2011-07-12 Damping control system of hydraulic actuator for construction machinery

Country Status (6)

Country Link
US (1) US20140150416A1 (en)
EP (1) EP2733362A4 (en)
JP (1) JP5920952B2 (en)
KR (1) KR20140050004A (en)
CN (1) CN103649556B (en)
WO (1) WO2013008964A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012006316B4 (en) 2012-06-04 2023-07-06 Volvo Construction Equipment Ab Drive control method for a construction machine
US9725882B2 (en) 2013-01-24 2017-08-08 Volvo Construction Equipment Ab Device and method for controlling flow rate in construction machinery
CN105637232B (en) 2013-08-30 2018-06-19 伊顿公司 The control method and system of swing arm oscillation are reduced using a pair of independent hydraulically controlled metering valve
WO2015073329A1 (en) 2013-11-14 2015-05-21 Eaton Corporation Pilot control mechanism for boom bounce reduction
WO2016002850A1 (en) * 2014-07-03 2016-01-07 住友重機械工業株式会社 Shovel and method for controlling shovel
CN106661894B (en) 2014-07-15 2019-12-10 伊顿公司 Method and apparatus for achieving boom bounce reduction and preventing uncommanded motion in a hydraulic system
WO2016182099A1 (en) * 2015-05-12 2016-11-17 볼보 컨스트럭션 이큅먼트 에이비 Hydraulic circuit for construction equipment
US10271021B2 (en) * 2016-02-29 2019-04-23 Microsoft Technology Licensing, Llc Vehicle trajectory determination to stabilize vehicle-captured video
US10316866B2 (en) * 2016-03-10 2019-06-11 Hitachi Construction Machinery Co., Ltd. Construction machine
CN106703110B (en) * 2017-03-02 2019-07-30 柳州柳工挖掘机有限公司 Excavator intelligent damping hydraulic control method and control system
JP7023931B2 (en) * 2017-03-31 2022-02-22 住友重機械工業株式会社 Excavator
CN111542702B (en) 2017-04-28 2022-09-23 丹佛斯动力系统Ii技术有限公司 System for damping mass induced vibrations in a machine having a hydraulically controlled boom or elongate member
EP3615813A4 (en) 2017-04-28 2021-01-27 Eaton Intelligent Power Limited System with motion sensors for damping mass-induced vibration in machines
DE112018001592T5 (en) * 2017-04-28 2020-01-02 Eaton Intelligent Power Limited DRIFT COMPENSATION SYSTEM FOR A DRIFT IN RELATION TO DAMPING MASS-INDUCED VIBRATIONS IN MACHINES
DE102019123190A1 (en) * 2019-08-29 2021-03-04 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Agricultural implement with improved suspension
AU2020223732A1 (en) * 2019-08-29 2021-03-18 The Raymond Corporation Variable hydraulic pressure relief systems and methods for a material handling device
JP2022017833A (en) * 2020-07-14 2022-01-26 川崎重工業株式会社 Hydraulic pressure drive system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3034377A1 (en) * 1980-09-12 1982-04-22 Krauss-Maffei AG, 8000 München FLOW CONTROL VALVE
US5138838A (en) * 1991-02-15 1992-08-18 Caterpillar Inc. Hydraulic circuit and control system therefor
DE4128120A1 (en) * 1991-08-24 1993-02-25 Bosch Gmbh Robert HYDRAULIC VEHICLE BRAKE SYSTEM WITH ANTI-BLOCKING DEVICE
US5873245A (en) * 1995-07-10 1999-02-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system
US5960695A (en) * 1997-04-25 1999-10-05 Caterpillar Inc. System and method for controlling an independent metering valve
US5813226A (en) * 1997-09-15 1998-09-29 Caterpillar Inc. Control scheme for pressure relief
JP3691994B2 (en) * 1999-10-08 2005-09-07 新キャタピラー三菱株式会社 Fluid pressure actuator control method and fluid pressure actuator control device
US6662705B2 (en) * 2001-12-10 2003-12-16 Caterpillar Inc Electro-hydraulic valve control system and method
US6691603B2 (en) * 2001-12-28 2004-02-17 Caterpillar Inc Implement pressure control for hydraulic circuit
US6705079B1 (en) * 2002-09-25 2004-03-16 Husco International, Inc. Apparatus for controlling bounce of hydraulically powered equipment
JP2005140153A (en) * 2003-11-04 2005-06-02 Hitachi Constr Mach Co Ltd Hydraulic control device for construction machine
JP4096900B2 (en) * 2004-03-17 2008-06-04 コベルコ建機株式会社 Hydraulic control circuit for work machines
US7210292B2 (en) * 2005-03-30 2007-05-01 Caterpillar Inc Hydraulic system having variable back pressure control
EP1869260B1 (en) * 2005-04-04 2017-06-28 Volvo Construction Equipment Holding Sweden AB A method for damping relative movements occurring in a work vehicle during driving
US7210396B2 (en) * 2005-08-31 2007-05-01 Caterpillar Inc Valve having a hysteretic filtered actuation command
JP4715400B2 (en) * 2005-09-01 2011-07-06 コベルコ建機株式会社 Hydraulic control equipment for construction machinery
US7269947B2 (en) * 2005-12-09 2007-09-18 Caterpillar Inc. Vibration control method and vibration control system for fluid pressure control circuit
JP5004641B2 (en) * 2007-04-18 2012-08-22 カヤバ工業株式会社 Actuator control device
WO2009005425A1 (en) * 2007-07-02 2009-01-08 Parker Hannifin Ab Fluid valve arrangement
CN100491748C (en) * 2007-08-01 2009-05-27 太原理工大学 Independent control electrohydraulic system of oil inlet and outlet matching with pump valve composite flux
DE102007047886A1 (en) * 2007-11-28 2009-06-04 John Deere Fabriek Horst B.V. spray boom
CN100575716C (en) * 2008-03-21 2009-12-30 太原理工大学 A kind of redundant electrohydraulic servo-controlling system
CN201507490U (en) * 2009-04-28 2010-06-16 中国重型机械研究院有限公司 Ultra-low constant-speed hydraulic control device for large-sized oil cylinder
JP2010286074A (en) * 2009-06-12 2010-12-24 Kobe Steel Ltd Hydraulic control device of working machine and working machine having the same

Also Published As

Publication number Publication date
EP2733362A1 (en) 2014-05-21
JP2014525012A (en) 2014-09-25
US20140150416A1 (en) 2014-06-05
KR20140050004A (en) 2014-04-28
EP2733362A4 (en) 2015-08-05
CN103649556B (en) 2016-10-26
CN103649556A (en) 2014-03-19
WO2013008964A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5920952B2 (en) Damping control system of hydraulic actuator for construction machinery
JP5281573B2 (en) Method for calibrating an independent metering valve
JP5972879B2 (en) Hydraulic drive system
KR101407874B1 (en) Pump torque control device for hydraulic construction machine
JP5771291B2 (en) Hydraulic closed circuit system
Ding et al. Programmable hydraulic control technique in construction machinery: Status, challenges and countermeasures
EP3306112B1 (en) Construction-machine hydraulic control device
EP2980322B1 (en) Slewing drive apparatus for construction machine
EP2587072A1 (en) Flow control system for a hydraulic pump of construction machinery
EP2615311A1 (en) Flow rate control device for variable displacement type hydraulic pump for construction equipment
KR20150054960A (en) Work machine
US20190024677A1 (en) Load-dependent hydraulic fluid flow control system
EP2503067B1 (en) Hydraulic pump control device and control method for construction machinery
JP5816216B2 (en) Pump controller for construction machinery
JP4973047B2 (en) Hydraulic control circuit for work machines
JP5614814B2 (en) Hydraulic work machine
US10801181B2 (en) Energy regeneration device and work machine provided with energy regeneration device
JP2014190514A (en) Pump control device for construction machine
JP2011021694A (en) Revolution hydraulic control device for working machine
WO2014097693A1 (en) Hydraulic circuit and method for controlling same
KR101807883B1 (en) Construction equipment auto control system and method of electricity joystick control base
JP3655910B2 (en) Control device for hydraulic drive machine
JP2007092789A (en) Hydraulic control device for construction equipment
JP2024132733A (en) Work Machine
JP2013234694A (en) Control device of construction machine and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5920952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees