JP5917832B2 - Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing - Google Patents

Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing Download PDF

Info

Publication number
JP5917832B2
JP5917832B2 JP2011113248A JP2011113248A JP5917832B2 JP 5917832 B2 JP5917832 B2 JP 5917832B2 JP 2011113248 A JP2011113248 A JP 2011113248A JP 2011113248 A JP2011113248 A JP 2011113248A JP 5917832 B2 JP5917832 B2 JP 5917832B2
Authority
JP
Japan
Prior art keywords
brazing
aluminum
fluxless
clad
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011113248A
Other languages
Japanese (ja)
Other versions
JP2012240089A (en
Inventor
三宅 秀幸
秀幸 三宅
江戸 正和
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011113248A priority Critical patent/JP5917832B2/en
Publication of JP2012240089A publication Critical patent/JP2012240089A/en
Application granted granted Critical
Publication of JP5917832B2 publication Critical patent/JP5917832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、アルミニウム材のフラックスレスろう付方法およびフラックスレスろう付用Al−Si系ろう材ならびにフラックスレスろう付用アルミニウムクラッド材に関するものである。   The present invention relates to a fluxless brazing method for an aluminum material, an Al-Si brazing material for fluxless brazing, and an aluminum clad material for fluxless brazing.

ろう付方法としてフラックスを用いることなくろう付けを行うフラックスレスろう付方法が知られている。従来のフラックスレスろう付技術では、ろう付け前に材料表面を酸洗浄し酸化膜の厚みを20Åにする等の特殊な表面処理を施したり、材料に特殊なものを使用したり、特殊なろう付工法などが採用されている。しかしながら、コスト、品質安定性に問題があり本格的な実用化には至っていない。   As a brazing method, a fluxless brazing method for performing brazing without using a flux is known. In conventional fluxless brazing technology, the surface of the material is subjected to a special surface treatment such as acid cleaning and an oxide film thickness of 20 mm before brazing, a special material is used, Adjunct method is adopted. However, there are problems in cost and quality stability, and it has not yet been put into practical use.

そこで、特別な前処理を必要とすることなく大気圧下でフラックスレスろう付けを行うことができるろう付方法が提案されている(特許文献1参照)。減圧を伴うことなく非酸化性雰囲気中でろう付けを行う例としては、特許文献1に、ろう材に含有されるSi粒子径を制御してろう材表面に粗大なSi粒子を存在させるものが開示されている。これによれば、該Si粒子表面でのアルミニウムの緻密な酸化膜の成長を抑制し、かつ、該Si粒子部分からろう材をしみ出させ、この部位を基点にして酸化膜破壊作用が進むため、ろう付け強化が得られる。   Then, the brazing method which can perform fluxless brazing under atmospheric pressure, without requiring a special pretreatment is proposed (refer patent document 1). As an example in which brazing is performed in a non-oxidizing atmosphere without reducing pressure, Patent Document 1 discloses a technique in which coarse Si particles are present on the surface of the brazing material by controlling the Si particle diameter contained in the brazing material. It is disclosed. According to this, the growth of a dense oxide film of aluminum on the surface of the Si particles is suppressed, and the brazing material is oozed out from the Si particle portion, and the oxide film destruction action proceeds based on this portion. , Brazing reinforcement is obtained.

特許第4547032号公報Japanese Patent No. 4547032

しかしながら、上記特許文献1に示されるフラックスレスろう付方法においても、接合部形状によってはフィレット(ろう溜まり)形成能が十分ではない等、様々な形状の被ろう付け材(例えば熱交換器)に対して、必ずしもまだ十分な汎用性が得られていない。   However, even in the fluxless brazing method disclosed in Patent Document 1, various shapes of brazing materials (for example, heat exchangers) such as a fillet (brazing pool) forming ability may not be sufficient depending on the shape of the joint. On the other hand, sufficient versatility is not yet obtained.

本発明では、上記の問題を鑑み、様々な形状の被ろう付け材に対してその接合部に安定したフィレット形成能をもつフラックスレスろう付方法およびフラックスレスろう付用Al−Si系ろう材ならびにフラックスレスろう付用アルミニウムクラッド材を提供することを目的とする。   In the present invention, in view of the above-described problems, a fluxless brazing method having a stable fillet forming ability at a joint portion with respect to a brazing material having various shapes, an Al-Si brazing material for fluxless brazing, and An object is to provide an aluminum clad material for fluxless brazing.

本願発明者は、Al−Si系ろう材に、600℃における蒸気圧が10Torr以上の元素を適正に添加することで、ろう付時この元素が蒸発し、ろう付阻害要因となる材料表面酸化膜の分断作用を高めることを見出した。また、該元素が蒸発して接合部近傍の気相中に含まれる微量の酸素と反応することで酸素濃度をさらに下げてより良好なろう付け性が得られることも見いだした。   The inventor of the present application appropriately adds an element having a vapor pressure of 10 Torr or higher at 600 ° C. to the Al—Si brazing material, so that the element evaporates during brazing, and becomes a material surface oxide film that causes brazing inhibition. It has been found that the severing action is enhanced. It has also been found that the element evaporates and reacts with a small amount of oxygen contained in the gas phase in the vicinity of the joint, thereby further reducing the oxygen concentration and obtaining better brazing properties.

すなわち、本発明のアルミニウム材のフラックスレスろう付方法のうち第1の本発明は、Al−Si系ろう材が芯材にクラッドされて最表面に位置するアルミニウムクラッド材を用いるろう付方法であって、前記Al−Si系ろう材が、質量%で、Mgを0.2〜5.0%、Siを3〜13%含有し、さらに600℃における蒸気圧が10Torr以上の元素を含有し、残部がAlと不可避不純物からなる組成を有し、600℃における蒸気圧が10Torr以上の元素として、質量%で0.01〜0.05%のCsを含有し、減圧を伴わない非酸化性雰囲気中で、前記Al−Si系ろう材とろう付対象部材とを接触させ、加熱温度559〜620℃において、前記Al−Si系ろう材によりフラックスレスで接触部において前記芯材と前記ろう付対象部材とを接合することを特徴とする。 That is, among the fluxless brazing methods for aluminum material of the present invention, the first invention is a brazing method using an aluminum clad material in which an Al-Si brazing material is clad on a core material and located on the outermost surface. The Al—Si brazing material contains, by mass%, 0.2 to 5.0% Mg, 3 to 13% Si, and further contains an element having a vapor pressure at 600 ° C. of 10 Torr or more, Non-oxidizing atmosphere having a composition consisting of Al and inevitable impurities, and containing 0.01 to 0.05% by mass of Cs as an element having a vapor pressure of 10 Torr or higher at 600 ° C. The Al—Si brazing material and the brazing target member are brought into contact with each other, and at a heating temperature of 559 to 620 ° C., the Al—Si brazing material is flux-free by the Al—Si brazing material and the core material and the The brazing target member is joined.

本発明のアルミニウム材のフラックスレスろう付方法のうち第2の本発明はは、Al−Si系ろう材が芯材にクラッドされて最表面に位置するアルミニウムクラッド材を用いるろう付方法であって、前記Al−Si系ろう材が、質量%で、Mgを0.2〜5.0%、Siを3〜13%含有し、さらに600℃における蒸気圧が10Torr以上の元素を含有し、残部がAlと不可避不純物からなる組成を有し、600℃における蒸気圧が10Torr以上の元素として、質量%で0.01〜0.3%のPおよび0.01〜0.3%のSから選択される1種または2種の元素を含有し、減圧を伴わない非酸化性雰囲気中で、前記Al−Si系ろう材とろう付対象部材とを接触させ、加熱温度559〜620℃において、前記Al−Si系ろう材によりフラックスレスで接触部において前記芯材と前記ろう付対象部材とを接合することを特徴とするアルミニウム材のフラックスレスろう付方法。 Among the fluxless brazing methods for aluminum materials of the present invention, the second invention is a brazing method using an aluminum clad material in which an Al-Si brazing material is clad on a core material and located on the outermost surface. The Al—Si brazing filler material contains, in mass%, 0.2 to 5.0% Mg, 3 to 13% Si, and further contains an element having a vapor pressure at 600 ° C. of 10 Torr or more. Is selected from 0.01 to 0.3% P and 0.01 to 0.3% S by mass% as an element having a vapor pressure of 10 Torr or more at 600 ° C. In a non-oxidizing atmosphere that does not include reduced pressure, the Al-Si brazing material and the brazing target member are brought into contact with each other at a heating temperature of 559 to 620 ° C. Al-Si brazing filler metal A fluxless brazing method for an aluminum material, characterized in that the core material and the brazing target member are joined at a contact portion without flux.

第3の本発明のアルミニウム材のフラックスレスろう付方法は、第の本発明において、前記Al−Si系ろう材が、600℃における蒸気圧が10Torr以上の前記元素として、質量%で0.01〜0.3%のPおよび0.01〜0.3%のSから選択される1種または2種の元素を含有することを特徴とする。 The fluxless brazing method for an aluminum material according to a third aspect of the present invention is the method according to the first aspect , wherein the Al—Si brazing material is 0.1% by mass as the element having a vapor pressure at 600 ° C. of 10 Torr or more. It contains one or two elements selected from 01 to 0.3% P and 0.01 to 0.3% S.

第4の本発明のアルミニウム材のフラックスレスろう付方法は、第1〜第3の本発明のいずれかにおいて、前記Al−Si系ろう材が、600℃における蒸気圧が10Torr以上の前記元素として、質量%で0.01〜0.3%のK、0.01〜0.3%のNa、0.01〜0.05%のRbおよび0.01〜1%のSeから選択される1種または2種以上の元素を含有することを特徴とする。   A fluxless brazing method for an aluminum material according to a fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the Al—Si based brazing material is used as the element having a vapor pressure at 600 ° C. of 10 Torr or more. , 0.01% to 0.3% K by mass, 0.01% to 0.3% Na, 0.01% to 0.05% Rb, and 0.01% to 1% Se. It contains seeds or two or more elements.

以下、本発明に規定する条件について説明する。なお、以下における各成分の含有量はいずれも質量%で示されている。   Hereinafter, conditions defined in the present invention will be described. In addition, all the content of each component in the following is shown by the mass%.

(ろう材) (Brazing material)

Si:3〜13%
Siの含有量は、一般的にろう材として用いられる3〜13%とする。さらに下限は6%、上限は12%が好適である。6%未満ではろう付け時の液相量が不足する傾向にあり、12%を越えると、Al−Si系合金の過共晶Si領域となり、アルミニウム板製造時の加工性が悪くなる傾向にある。
Si: 3 to 13%
The Si content is 3 to 13%, which is generally used as a brazing material. Further, the lower limit is preferably 6% and the upper limit is preferably 12%. If it is less than 6%, the amount of liquid phase at the time of brazing tends to be insufficient, and if it exceeds 12%, it becomes a hypereutectic Si region of an Al—Si based alloy, and the workability at the time of producing an aluminum plate tends to deteriorate. .

Mg:0.2〜5.0%
Mgは、0.2%未満では本発明の効果であるろう付け時接合面の再酸化防止効果が得られず、5%を越えると効果が飽和し、かつ、アルミニウム材料の加工性に難を生じる。Mg含有量を最適化してAl−Si−Mg系ろう材の固相線温度の低下効果を利用すれば、優れたろう付性を発揮できる。この場合のMgの最適含有量は、Si含有量により変動するが、例えばSi含有量が6〜12%の場合は、Mg含有量は0.75〜1.5%が好ましい。この範囲であれば、ろうの融点低下が十分に得られ、Mgによるゲッター作用との相乗効果により、より良好なろう付性を得ることが可能となる。具体的には、Al−Si−Mg合金で最も低い固相線温度の559℃以上でろう付けができるようになる。
Mg: 0.2-5.0%
If Mg is less than 0.2%, the effect of the present invention, which is the effect of the present invention, cannot be obtained by the effect of preventing reoxidation of the joint surface during brazing, and if it exceeds 5%, the effect is saturated and the workability of the aluminum material is difficult. Arise. By optimizing the Mg content and utilizing the effect of lowering the solidus temperature of the Al—Si—Mg brazing material, excellent brazing properties can be exhibited. The optimum Mg content in this case varies depending on the Si content. For example, when the Si content is 6 to 12%, the Mg content is preferably 0.75 to 1.5%. If it is this range, the melting | fusing point fall of solder | brazing | wax will fully be obtained and it will become possible to obtain a more favorable brazing property by the synergistic effect with the getter effect | action by Mg. Specifically, brazing can be performed at 559 ° C. or higher, which is the lowest solidus temperature of an Al—Si—Mg alloy.

(600℃における蒸気圧が10Torr以上の元素)
ろう材には600℃における蒸気圧が10Torr以上の元素を少なくとも1種含有する。このような元素はろう付け温度である559〜620℃の範囲においてMgと同等以上の蒸気圧を持つことから、ろう付け時にMgよりも早い段階から材料の酸化膜破壊作用、再酸化防止作用が得られる。
なお、このような元素を添加することで、ろう付阻害要因となる、材料添加Mgの材料表面における酸化を抑制し、Mgに期待する役割である酸化膜破壊作用を高めることができる。
該元素のうち、上記の酸化膜破壊および再酸化防止効果が最も高いのはCsである。K、Na、Rb、Se、P、Sにも同様の効果が期待できるが、添加量はCsに比較して多いため、使用するろう付け品に求められるコスト等を考慮して適宜選択する。
また、P、Sは気相中でも雰囲気中の酸素を消費し、材料酸化膜の成長を抑制する効果がある。なお、上記の酸素とは非酸化雰囲気中に微量に含まれる酸素を指す。
これら元素の含有量以下に説明する。
(Elements with a vapor pressure of 10 Torr or higher at 600 ° C)
The brazing material contains at least one element having a vapor pressure at 600 ° C. of 10 Torr or more. Since such an element has a vapor pressure equal to or higher than that of Mg in the range of 559 to 620 ° C., which is a brazing temperature, the oxide film destruction action and the reoxidation prevention action of the material from the earlier stage than Mg during brazing. can get.
By adding such an element, it is possible to suppress oxidation of the material-added Mg on the surface of the material, which becomes a brazing inhibition factor, and to enhance the oxide film destruction action, which is a role expected of Mg.
Among these elements, Cs has the highest effect of preventing the above oxide film destruction and reoxidation. The same effect can be expected for K, Na, Rb, Se, P, and S. However, since the amount added is larger than that of Cs, it is appropriately selected in consideration of the cost required for the brazed product to be used.
P and S consume oxygen in the atmosphere even in the gas phase, and have an effect of suppressing the growth of the material oxide film. In addition, said oxygen refers to the oxygen contained in a trace amount in a non-oxidizing atmosphere.
The content of these elements will be described below.

Cs:0.01〜0.05%
Csはろう付時にMgと同等以上の蒸気圧をもつことから、ろう付時にMgよりも早い段階から材料の酸化膜破壊作用、再酸化防止作用を得るために選択により含有させる。Csの含有量が0.01%未満であると材料の酸化膜破壊作用と再酸化防止作用が低下し、安定的な接合状態が得られない。一方0.05%超えでは材料製造面において、合金化不良、コスト高等を生じ、製造上実用性が損なわれる。そのため、Csの含有量は0.01〜0.05%とする。なお、同様の理由で下限を0.02%、上限を0.04%とするのがより好ましい。
Cs: 0.01 to 0.05%
Since Cs has a vapor pressure equal to or higher than that of Mg at the time of brazing, it is contained by selection in order to obtain an oxide film destruction action and a reoxidation prevention action from a stage earlier than Mg at the time of brazing. When the Cs content is less than 0.01%, the oxide film destruction action and the reoxidation prevention action of the material are lowered, and a stable bonding state cannot be obtained. On the other hand, if it exceeds 0.05%, in terms of material production, poor alloying, high costs, etc. occur, and the practicality in production is impaired. Therefore, the Cs content is set to 0.01 to 0.05%. For the same reason, the lower limit is more preferably 0.02% and the upper limit is more preferably 0.04%.

P、S:0.01〜0.3%
P、Sはろう付時に大気圧より大きな蒸気圧をもち、材料の酸化膜破壊作用、再酸化防止作用に加えて、気相中でも雰囲気中の酸素を消費し、材料酸化膜の成長を抑制する効果があるため選択により含有させる。P、Sが各々0.01未満では、材料酸化膜破壊作用と再酸化防止作用が低下し、安定的な接合状態が得られない。一方、各々0.3%超えでは材料製造面において、合金化不良、コストUP等を生じ、製造上実用性が損なわれる。そのため、P、Sは上記範囲で含有させる。なお、同様の理由で下限を0.1%、上限を0.2%とするのがより好ましい。
P, S: 0.01 to 0.3%
P and S have a vapor pressure greater than atmospheric pressure during brazing, and in addition to the oxide film destruction action and reoxidation prevention action of the material, oxygen in the atmosphere is consumed even in the gas phase to suppress the growth of the material oxide film. Because it is effective, it is contained by selection. When P and S are each less than 0.01, the material oxide film destruction action and the reoxidation prevention action are lowered, and a stable bonding state cannot be obtained. On the other hand, if each exceeds 0.3%, in terms of material production, alloying failure, cost increase, etc. occur, and the practicality in production is impaired. Therefore, P and S are contained in the above range. For the same reason, the lower limit is more preferably 0.1% and the upper limit is more preferably 0.2%.

K、Na:0.01〜0.3%
Rb :0.01〜0.05%
Se :0.01〜1%
K、Na、RbおよびSeはろう付時にMgと同等以上の蒸気圧をもつことから、ろう付時にMgよりも早い段階から材料の酸化膜破壊作用、再酸化防止作用を得るために選択により含有させる。K、Na、Rb、Seが各々0.01%未満では材料の酸化膜破壊作用と再酸化防止作用が低下し、安定的な接合状態が得られない。一方、K、Naが0.3%超、Rbが0.05%超、Seが1%超では合金化不良、コストアップ等を生じ、材料の製造上実用性が損なわれる。そのため、K、Na、RbおよびSeは上記範囲とする。なお、同様の理由でK、Naの下限を0.1%、上限を0.2%、Rbの下限を0.02%、上限を0.04%、Seの下限を0.3%、上限を0.6%とするのがそれぞれより好ましい。
K, Na: 0.01 to 0.3%
Rb: 0.01 to 0.05%
Se: 0.01 to 1%
Since K, Na, Rb, and Se have a vapor pressure equal to or higher than that of Mg during brazing, they are included by selection in order to obtain an oxide film destruction action and a reoxidation prevention action from a stage earlier than Mg during brazing. Let If K, Na, Rb and Se are each less than 0.01%, the oxide film destruction action and the reoxidation prevention action of the material are lowered, and a stable bonding state cannot be obtained. On the other hand, if K and Na are more than 0.3%, Rb is more than 0.05%, and Se is more than 1%, alloying failure, cost increase, etc. occur, impairing the practicality in material production. Therefore, K, Na, Rb, and Se are within the above ranges. For the same reason, the lower limit of K and Na is 0.1%, the upper limit is 0.2%, the lower limit of Rb is 0.02%, the upper limit is 0.04%, the lower limit of Se is 0.3%, and the upper limit. Is more preferably 0.6%.

以上のように、600℃における蒸気圧が10Torr以上の元素として上記各元素を説明したが、本発明としてはこれら元素に限定されるものではない。ただし、上記元素は製造面での取り扱い易さ、コスト面から適宜選択されたものであり、ここに挙げていない放射性物質や特段の毒性を示す元素よりも実用面において優位である。   As described above, each of the above elements has been described as an element having a vapor pressure at 600 ° C. of 10 Torr or more, but the present invention is not limited to these elements. However, the above elements are appropriately selected from the viewpoint of ease of handling in production and cost, and are superior in practical use to radioactive substances not listed here and elements exhibiting special toxicity.

(被ろう付け材の表面粗さ)
本発明によって、接合形態を限定せず様々な被ろう付け材でのフラックスレスろう付が可能となる。熱交換器内の各接合部間などで接合状態のばらつきを少なくするには、接合部の表面粗さを低減することが有効である。表面粗さが低減することで、接合対象材料間の接触面での密着度が増して外部からの酸素供給がされにくくなり、ろう付け昇温過程での材料の酸化抑制力が高まる。ここで言う酸素供給とは、大気雰囲気中での酸素を意味するのではなく、非酸化性雰囲気中に僅かに含まれる酸素によるものを示す。本理由により、前記アルミニウムクラッド材、及び、前記被ろう付け材においては、少なくとも接合部接触部の表面粗さが、0.3μm以下であることがより好ましい。
(Surface roughness of brazing material)
According to the present invention, fluxless brazing with various brazing materials is possible without limiting the joining form. It is effective to reduce the surface roughness of the joints in order to reduce the variation in the joining state between the joints in the heat exchanger. By reducing the surface roughness, the degree of adhesion at the contact surface between the materials to be joined is increased, so that oxygen supply from the outside becomes difficult, and the ability to suppress oxidation of the material during the brazing temperature rising process is increased. The oxygen supply here does not mean oxygen in the air atmosphere, but indicates that oxygen is slightly contained in the non-oxidizing atmosphere. For this reason, in the aluminum clad material and the material to be brazed, it is more preferable that the surface roughness of at least the joint contact portion is 0.3 μm or less.

(芯材)
本発明に用いるAl−Si系ろう材がクラッドされているアルミニウムクラッド材の芯材組成は、接合を得るにあたって特に限定されるものではないが、フラックスレスろう付けを実現したことにより、高強度化を狙ったMg添加が積極的に行える。
(Core material)
The core material composition of the aluminum clad material clad with the Al-Si brazing material used in the present invention is not particularly limited in obtaining a bond, but it has been improved in strength by realizing fluxless brazing. Mg addition aiming at can be performed positively.

芯材成分として、質量%で、Si:0.1〜1.2%、Mg:0.01〜2.0%を含有し、残部Alと不可避不純物からなるものが示される。
また、芯材成分として、質量%で、Mn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.2%、Fe:0.1〜1.0%を含有し、残部Alと不可避不純物とからなるものが示される。
また、芯材成分として、質量%で、Si:0.1〜1.2%、Mg:0.01〜2.0%を含有し、さらにMn:0.2〜2.5%、Cu:0.05〜1.0%、Fe:0.1〜1.0%の内1種または2種以上を含有し、残部Alと不可避不純物とからなるものが示される。
また、芯材成分として、質量%で、Si:0.1〜1.2%、Mg:0.01〜2.0%を含有し、さらにMn:0.2〜2.5%、Cu:0.05〜1.0%、Fe:0.1〜1.0%の内1種または2種以上を含有し、さらにZr:0.01〜0.3%、Ti:0.01〜0.3%、Cr:0.01〜0.5%の内1種または2種以上を含有し、残部Alと不可避不純物とからなるものが示される。各元素の限定理由は以下のとおりである。
As the core component, those containing Si: 0.1 to 1.2% and Mg: 0.01 to 2.0% by mass%, and remaining Al and inevitable impurities are shown.
Moreover, as a core component, it is the mass%, Mn: 0.2-2.5%, Cu: 0.05-1.0%, Si: 0.1-1.2%, Fe: 0.1-0.1 It contains 1.0% and consists of the balance Al and inevitable impurities.
Moreover, as a core component, it contains Si: 0.1-1.2%, Mg: 0.01-2.0% by mass%, Furthermore, Mn: 0.2-2.5%, Cu: It contains one or more of 0.05 to 1.0% and Fe: 0.1 to 1.0%, and is composed of the balance Al and inevitable impurities.
Moreover, as a core component, it contains Si: 0.1-1.2%, Mg: 0.01-2.0% by mass%, Furthermore, Mn: 0.2-2.5%, Cu: It contains 0.05 to 1.0%, Fe: 0.1 to 1.0%, or one or more of them, and Zr: 0.01 to 0.3%, Ti: 0.01 to 0 .3%, Cr: 0.01 to 0.5% of one or more of them, and the balance consisting of Al and inevitable impurities are shown. The reasons for limitation of each element are as follows.

Si:0.1〜1.2%
Si単体でマトリックスに固溶して材料強度を向上させる他、本発明においては、Mgの積極添加との相乗効果によって得られるMgSiの析出により、材料強度を向上させる。このMgSi析出による硬化は、ろう付け熱処理後の時効析出により、飛躍的な材料強度向上に寄与する。従来のA3003合金等をベースとした合金設計においては、Al−Mn−Si化合物として分散して、材料強度を向上させる。下限未満では効果が不十分であり、上限を越えると、融点が低下し、芯材が溶融するので、上記範囲が望ましい。なお、Si含有量の一層好ましい範囲は0.3〜1.0%である。Mn等の含有によりSiの積極的な含有を要しない場合、0.1%未満のSiを不純物として含有することは許容される。
Si: 0.1-1.2%
In addition to improving the material strength by dissolving Si in a matrix with a simple substance of Si, in the present invention, the material strength is improved by precipitation of Mg 2 Si obtained by a synergistic effect with the positive addition of Mg. This hardening by Mg 2 Si precipitation contributes to a dramatic improvement in material strength by aging precipitation after brazing heat treatment. In an alloy design based on the conventional A3003 alloy or the like, it is dispersed as an Al—Mn—Si compound to improve the material strength. If the amount is less than the lower limit, the effect is insufficient. If the upper limit is exceeded, the melting point decreases and the core material melts, so the above range is desirable. In addition, the more preferable range of Si content is 0.3 to 1.0%. When positive inclusion of Si is not required due to inclusion of Mn or the like, it is allowed to contain less than 0.1% of Si as an impurity.

Mg:0.01〜2.0%
Mgは、Siと同時に添加されることでろう付後に微細な金属間化合物MgSiとして析出し、時効硬化により著しく強度が向上する効果を有する。また、ろう付加熱中にろう材から拡散してきたSiとも反応し、同様の強度効果を有する。さらに一部はろう材中に拡散し、ろう材表面の酸化膜破壊、酸化膜成長抑制作用に寄与する。下限未満では効果不十分であり、上限を超えると融点が低下し、芯材が溶融する。このため、Mg含有量は上記範囲が望ましい。
Mg: 0.01-2.0%
When Mg is added simultaneously with Si, it precipitates as a fine intermetallic compound Mg 2 Si after brazing and has the effect of significantly improving strength by age hardening. Moreover, it reacts with Si diffused from the brazing material during the brazing heat and has the same strength effect. Further, a part of it diffuses into the brazing material and contributes to the action of suppressing the oxide film destruction and oxide film growth on the surface of the brazing material. Below the lower limit, the effect is insufficient, and when the upper limit is exceeded, the melting point decreases and the core material melts. For this reason, the above range is desirable for the Mg content.

Mn:0.2〜2.5%
Mnは、金属間化合物として晶出または析出し、ろう付後の強度を向上させる。また、芯材の電位を貴にして耐食性も向上させる。下限未満では効果が不十分であり、上限を超えると、圧延などの加工性が低下する。また、一層の効果は得られない。これら理由によりMn含有量は上記範囲が望ましい。なお、Mn含有量の一層好ましい範囲は0.5〜1.5%である。
Mn: 0.2 to 2.5%
Mn crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. In addition, the corrosion resistance is improved by making the potential of the core material noble. If it is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, workability such as rolling deteriorates. In addition, further effects cannot be obtained. For these reasons, the Mn content is preferably within the above range. In addition, the more preferable range of Mn content is 0.5 to 1.5%.

Cu:0.05〜1.0%
Cuは、固溶してろう付後の強度を向上させると共に、芯材の電位を貴にして耐食性を向上させる。下限未満では効果が不十分であり、上限を超えると、融点が低下し、芯材が溶融する。このため、Cu含有量は上記範囲が望ましい。なお、Cu含有量の一層好ましい範囲は0.1〜0.7%である。
Cu: 0.05 to 1.0%
Cu is dissolved to improve the strength after brazing and to improve the corrosion resistance by making the potential of the core material noble. Below the lower limit, the effect is insufficient, and when the upper limit is exceeded, the melting point decreases and the core material melts. For this reason, the above range is desirable for the Cu content. In addition, the more preferable range of Cu content is 0.1 to 0.7%.

Fe:0.1〜1.0%
Feは金属間化合物として晶出または析出し、ろう付後の強度を向上させる。また、最終焼鈍時とろう付時の再結晶を促進する。下限未満では効果が不十分であり、上限を超えると、腐食速度が速くなりすぎる。また、最終焼鈍後の結晶粒径が細かくなりすぎて成形時に加工の導入されない部分でろうの侵食が著しく大きくなる。これら理由によりFe含有量が上記範囲が望ましい。なお、Fe含有量の一層好ましい範囲は0.2〜0.5%である。
Fe: 0.1 to 1.0%
Fe crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. It also promotes recrystallization during final annealing and brazing. If it is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the corrosion rate becomes too fast. Further, the crystal grain size after the final annealing becomes too fine, and the erosion of the wax becomes remarkably large at the portion where the processing is not introduced at the time of molding. For these reasons, the above range is desirable for the Fe content. In addition, the more preferable range of Fe content is 0.2 to 0.5%.

Zr、Ti:0.01〜0.3%
Cr :0.01〜0.5%
Zr、TiまたはCrは、ろう付後に微細な金属間化合物として分散し、強度を向上させる。下限未満では効果不十分であり、上限を超えると加工性が低下する。このため、これら成分の含有量は上記範囲が望ましい。
Zr, Ti: 0.01 to 0.3%
Cr: 0.01 to 0.5%
Zr, Ti or Cr is dispersed as a fine intermetallic compound after brazing to improve the strength. If it is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the workability decreases. Therefore, the content of these components is preferably in the above range.

Bi:0.01〜1.0%
Biは、材料の再酸化を抑制し、ろう材の濡れ拡がり性を向上させる。下限未満では効果が不十分であり、上限を超えても一層の効果は得られない。このため、Biの含有量は、上記範囲が望ましい。
Bi: 0.01 to 1.0%
Bi suppresses re-oxidation of the material and improves the wetting and spreading property of the brazing material. If it is less than the lower limit, the effect is insufficient, and even if the upper limit is exceeded, no further effect can be obtained. For this reason, the above range is desirable for the Bi content.

(クラッド材)
本発明に使用する上記クラッド材においては、少なくとも片面に上記Al−Si系ろう材がクラッドされていればよく、適宜、片面と両面クラッド材を使い分けることができる。両面クラッド材では、芯材の両面にろう材がクラッドされているものであってもよく、また片面に上記ろう材がクラッドされ、他の片面に犠牲材等のその他の材料がクラッドさ
れているものであってもよい。
(Clad material)
In the clad material used in the present invention, it is sufficient that the Al—Si brazing material is clad on at least one surface, and the single-sided and double-sided clad materials can be properly used. In the double-sided clad material, the both sides of the core material may be clad with a brazing material, the brazing material is clad on one side, and other materials such as a sacrificial material are clad on the other side. It may be a thing.

(被ろう付け材の材質)
ろう材以外の被ろう付け材としては、一般的に用いられているアルミニウム合金であれば何れも問題なく使用可能である。
(Material of brazing material)
As a brazing material other than the brazing material, any commonly used aluminum alloy can be used without any problem.

(被ろう付け材の初期酸化膜厚)
本発明の実施に当たっては、特に材料の初期酸化皮膜を抑制するような材料製作は必要としない為、通常、アルミニウムの量産コイル材として作製され得る、初期酸化膜厚20〜500Å程度のアルミニウム材料を使用できる。20Å未満では、従来技術に示したような酸洗浄等が必要となり、500Åを越えるものはMgによる酸化膜破壊作用が十分に得られず、良好な接合状態が得られにくくなる。
(Initial oxide film thickness of brazing material)
In practicing the present invention, since it is not necessary to manufacture a material that suppresses the initial oxide film of the material in particular, an aluminum material having an initial oxide film thickness of about 20 to 500 mm that can be normally manufactured as a mass production coil material of aluminum is used. Can be used. If it is less than 20 mm, acid cleaning or the like as shown in the prior art is required, and if it exceeds 500 mm, the oxide film destruction action by Mg cannot be sufficiently obtained, and it becomes difficult to obtain a good bonding state.

(炉内雰囲気)
本発明の実施にあたっては、炉内雰囲気を不活性ガス、或いは還元性ガス等の非酸化性ガスとすることで、雰囲気中の酸素濃度や露点を低下させ、被ろう付け材の再酸化を抑制する必要がある。使用する置換ガスの種類としては、接合を得るにあたり特に限定されるものではないが、コストの観点で、不活性ガスとしては窒素、アルゴン、還元性ガスとしては水素、アンモニア、一酸化炭素を用いることが好適である。雰囲気中の酸素濃度管理範囲としては、2〜100ppmがよい。2ppm未満の場合は、接合に不具合は生じないが、雰囲気の管理に多量のガスを使用する等、製造コストの増大懸念が生じるためである。100ppm超では被ろう付け材の再酸化が進みやすくなり、特にろう材が表面にないベア構成部材とろう材間の接合が十分に得られない為である。
(Furnace atmosphere)
In carrying out the present invention, the atmosphere in the furnace is an inert gas or a non-oxidizing gas such as a reducing gas, thereby reducing the oxygen concentration and dew point in the atmosphere and suppressing reoxidation of the brazing material. There is a need to. The type of replacement gas to be used is not particularly limited in obtaining bonding, but from the viewpoint of cost, nitrogen, argon, and hydrogen, ammonia, and carbon monoxide are used as the inert gas and the reducing gas, respectively. Is preferred. The oxygen concentration management range in the atmosphere is preferably 2 to 100 ppm. If it is less than 2 ppm, there is no problem in joining, but there is a concern that the manufacturing cost may increase, such as using a large amount of gas for the management of the atmosphere. If the content exceeds 100 ppm, the reoxidation of the brazing material is likely to proceed, and in particular, it is not possible to sufficiently obtain a bond between the bare component member and the brazing material which are not on the surface.

(ろう付け温度)
本発明においては、ろう材Al−Si−Mg合金の最も低い固相線温度の559℃以上でろう付けができ、当然、従来からのAl−Siろう材によるろう付け温度範囲も使用可能である。具体的には559〜620℃が良い。559℃未満ではろうの溶融が得られずろう付けが得られない。620℃超ではろう侵食が顕著となり、製品形状の維持等に問題が生じるため好ましくない。但し、この温度範囲においても、ろうの合金組成によって固相線温度が低い場合には、ろう侵食が顕著になる場合もあり、その際は、この温度範囲の中で合金組成にあったろう付け温度を選択するのが好ましい。
(Brazing temperature)
In the present invention, brazing can be performed at the lowest solidus temperature of 559 ° C. or higher of the brazing material Al—Si—Mg alloy, and naturally, a brazing temperature range by a conventional Al—Si brazing material can also be used. . Specifically, 559-620 degreeC is good. If it is less than 559 degreeC, the melting | fusing of a brazing cannot be obtained and brazing cannot be obtained. If it exceeds 620 ° C., the wax erosion becomes prominent, and there is a problem in maintaining the product shape. However, even in this temperature range, if the solidus temperature is low due to the alloy composition of the brazing, brazing erosion may become prominent. In this case, the brazing temperature suitable for the alloy composition within this temperature range. Is preferably selected.

本発明のろう材によれば、フラックスレスのろう付けにおいて様々な形状の被ろう付け材において、接合部に十分なフィレットを形成することで良好なろう付け性を得ることができる。   According to the brazing material of the present invention, it is possible to obtain good brazing properties by forming sufficient fillets at the joints in brazed materials having various shapes in fluxless brazing.

(a)は本発明におけるろう付け評価モデル、(b)は接合部の幅についての評価位置を示す図である。(A) is the brazing evaluation model in this invention, (b) is a figure which shows the evaluation position about the width | variety of a junction part.

以下に、本発明の一実施形態を説明する。
質量%で、Mgを0.2〜5.0%、Siを3〜13%含有し、さらに600℃における蒸気圧が10Torr以上の元素を含有し、残部がAlと不可避不純物からなる組成のAl−Si系ろう材を用意する。600℃における蒸気圧が10Torr以上の元素としては、0.01〜0.05%のCs、0.01〜0.3%のPおよび0.01〜0.3%のSから選択される1種または2種、0.01〜0.3%のK、0.01〜0.3%のNa、0.01〜0.05%のRbおよび0.01〜1%のSeから選択される1種または2種以上の元素が好適なものとして挙げられる。
Hereinafter, an embodiment of the present invention will be described.
Al in a composition containing 0.2 to 5.0% Mg and 3 to 13% Si, further containing an element having a vapor pressure of 10 Torr or higher at 600 ° C., and the balance being composed of Al and inevitable impurities. -Prepare a Si-based brazing material. The element having a vapor pressure at 600 ° C. of 10 Torr or higher is selected from 0.01 to 0.05% Cs, 0.01 to 0.3% P, and 0.01 to 0.3% S 1 Selected from seeds or two, 0.01-0.3% K, 0.01-0.3% Na, 0.01-0.05% Rb and 0.01-1% Se One or more elements are preferred.

上記Al−Si系ろう材と、芯材とは常法により製造することができ、両者またはこれに犠牲材などの他の材料とを重ねてクラッド圧延する。該クラッド圧延での製造条件は本発明としては特に限定されるものではない。また、各層のクラッド率も本発明としては特定されるものではない。
なお、上記のように芯材の組成は、Si:0.1〜1.2%、Mg:0.01〜2.0%を含有するもの、Mn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.2%、Fe:0.1〜1.0%を含有するもの、あるいはSi:0.1〜1.2%、Mg:0.01〜2.0%を含有し、さらにMn:0.2〜2.5%、Cu:0.05〜1.0%、Fe:0.1〜1.0%の内1種または2種以上を含有し、さらに所望によりZr:0.01〜0.3%、Ti:0.01〜0.3%、Cr:0.01〜0.5%、Bi:0.01〜1.0%の内1種または2種以上を含有するものなどが望ましい。
The Al—Si brazing material and the core material can be produced by a conventional method, and both or another material such as a sacrificial material is laminated and clad rolled. The production conditions in the clad rolling are not particularly limited as the present invention. Further, the cladding ratio of each layer is not specified as the present invention.
As described above, the composition of the core material is Si: 0.1 to 1.2%, Mg: 0.01 to 2.0%, Mn: 0.2 to 2.5%, Cu : 0.05 to 1.0%, Si: 0.1 to 1.2%, Fe: 0.1 to 1.0%, or Si: 0.1 to 1.2%, Mg: 0.01-2.0%, Mn: 0.2-2.5%, Cu: 0.05-1.0%, Fe: 0.1-1.0% 2 or more types, and if desired, Zr: 0.01 to 0.3%, Ti: 0.01 to 0.3%, Cr: 0.01 to 0.5%, Bi: 0.01 to 1 Those containing one or more of 0.0% are desirable.

また、本発明では前記アルミニウムクラッド材、及び、前記ろう付け対象部材の少なくとも接触部表面の表面粗さを、Raで0.3μm以下とするのが望ましい。この表面粗さは、材料の最終圧延時のロール表面粗度に依存し、そのロール表面粗度を、Raで0.45μm以下とすることで得られる。尚、ろう付け接合部がプレス等の熱交換器部材加工表面となる場合には、そのプレス等金型表面粗度を同様に管理することで目的の表面粗度が得られる。なお、RaはJIS B 0601:2001で定義される算術平均粗さを示している。   In the present invention, it is desirable that the surface roughness of at least the contact part surface of the aluminum clad material and the brazing target member is Ra or less 0.3 μm or less. This surface roughness depends on the roll surface roughness at the time of final rolling of the material, and can be obtained by setting the roll surface roughness to Ra of 0.45 μm or less. In addition, when the brazed joint portion is a heat exchanger member processed surface such as a press, the target surface roughness can be obtained by similarly controlling the die surface roughness of the press. Ra represents the arithmetic average roughness defined by JIS B 0601: 2001.

常法により得られるアルミニウムクラッド材は、上記Al−Si系ろう材が最表面に位置しており、初期酸化膜厚として20〜500Åの酸化皮膜が形成されている。上記アルミニウムクラッド材は、ベアフィン、無垢材コネクタなどのろう付け対象部材と組み付けられて、好適には熱交換器組立体などを構成する。なお、ろう付け対象部材としては種々の組成のアルミニウム材料を用いることができ、本発明としては特定のものに限定されるものではない。   In the aluminum clad material obtained by a conventional method, the Al—Si brazing material is located on the outermost surface, and an oxide film having an initial oxide film thickness of 20 to 500 mm is formed. The aluminum clad material is assembled with a member to be brazed such as a bare fin or a solid material connector, and preferably constitutes a heat exchanger assembly or the like. Note that aluminum materials having various compositions can be used as the brazing target member, and the present invention is not limited to a specific one.

上記組立体は、減圧を伴うことなく非酸化性雰囲気とされた加熱炉内に配置される。該非酸化性雰囲気は、窒素、アルゴンなどの不活性ガスまたは水素、アンモニア、一酸化炭素などの還元性ガス、あるいはこれらの混合ガスを用いて構成することができる。非酸化性雰囲気は、ろう付け加熱時には減圧を伴わず、通常は大気圧とされる。なお、非酸化性雰囲気を得る前に、置換などの目的で減圧工程を含むものであってもよい。加熱炉は密閉した空間を有することを必要とせず、ろう付け材の搬入口、搬出口を有するものであってもよい。このような加熱炉でも、不活性ガスを炉内に吹き出し続けることで非酸化性が維持される。該非酸化性雰囲気としては、酸素濃度として体積比で2〜100ppmが望ましい。
上記雰囲気下で559〜620℃で加熱をしてろう付けを行う。ろう付けにおいては、ろう付け対象部材との接触密着部がフラックスレスで良好に接合される。
なお、上記実施形態でAl−Si系ろう材は、クラッド材として用いるものとして説明したが、Al−Si系ろう材単材でろう付けに用いられるものであってもよい。
The assembly is placed in a heating furnace having a non-oxidizing atmosphere without decompression. The non-oxidizing atmosphere can be configured using an inert gas such as nitrogen or argon, or a reducing gas such as hydrogen, ammonia or carbon monoxide, or a mixed gas thereof. The non-oxidizing atmosphere is not at reduced pressure during brazing heating and is usually at atmospheric pressure. In addition, before obtaining a non-oxidizing atmosphere, you may include a pressure reduction process for the purpose of substitution. The heating furnace does not need to have a sealed space, and may have a brazing material carry-in port and a carry-out port. Even in such a heating furnace, the non-oxidizing property is maintained by continuously blowing the inert gas into the furnace. The non-oxidizing atmosphere preferably has an oxygen concentration of 2 to 100 ppm by volume.
It brazes by heating at 559-620 degreeC under the said atmosphere. In brazing, the contact and adhesion portion with the brazing target member is satisfactorily joined without flux.
In the above-described embodiment, the Al—Si brazing material is described as being used as a clad material, but an Al—Si brazing material may be used for brazing.

表1〜表2に示す組成(残部Alと不可避不純物)のAl−Si系ろう材と、芯材とをクラッドしたアルミニウムクラッド材として用意した。上記アルミニウムクラッド材は、各種組成ろう材と各種組成芯材とを、ろう材クラッド率を10%とし、H14相当調質の0.25mm厚に仕上げた。また、被ろう付け材としてJISA3003合金、H14調質のアルミニウムベア材(0.1mm厚)のフィン材を用意した。   Prepared as an aluminum clad material in which an Al—Si brazing material having the composition shown in Tables 1 and 2 (the balance Al and inevitable impurities) and a core material were clad. The aluminum clad material was prepared by brazing various composition brazing materials and various composition core materials to a brazing material clad rate of 10% and a 0.25 mm thickness of H14 equivalent tempering. Further, as a brazing material, a fin material made of JIS A3003 alloy and H14 tempered aluminum bare material (thickness 0.1 mm) was prepared.

○ろう付性
本発明の上記アルミニウムクラッド材を用いて幅20mmの扁平電縫管を製作し、図1(a)に示すように、JIS A3003ベア材のコルゲートフィンと組合せてコア形状とした。コアサイズは、チューブ15段、長さ300mmのコアである。
コアを窒素雰囲気中(酸素含有量50ppm)のろう付け炉にて、560〜600℃まで加熱し、ろう付け後の接合率を以下式にて求め、ろう付け状態を評価した。
フィン接合率=(フィンとチューブの総ろう付け長さ/フィンとチューブの総接触長さ)×100
なお、フィン接合率の判定基準は◎:95%以上、○:85%以上、△:80%以上、×:80%未満である。その結果を表1〜表2に示した。
O Brazing property A flat electro-sewn tube having a width of 20 mm was manufactured using the aluminum clad material of the present invention, and was combined with a corrugated fin of JIS A3003 bare material to form a core shape as shown in FIG. The core size is a core having 15 tubes and a length of 300 mm.
The core was heated to 560 to 600 ° C. in a brazing furnace in a nitrogen atmosphere (oxygen content 50 ppm), and the joining rate after brazing was determined by the following equation to evaluate the brazing state.
Fin joint rate = (total brazing length of fin and tube / total contact length of fin and tube) × 100
The criteria for determining the fin joint ratio are 率: 95% or more, ◯: 85% or more, Δ: 80% or more, and x: less than 80%. The results are shown in Tables 1 and 2.

○接合部幅評価
ろう付接合状態は上記接合率のみではなく、本発明の目的であるフィレット形成能の向上を確認するため、図1(b)に示したような接合部の幅(フィレット形成幅)を各試料で20点計測し、その平均値をもって優劣を評価した。その判定は以下の基準で◎:0.6mm以上 ○:0.3mm以上、×:0.3mm未満とした。同様にその結果を表1〜表2に示した。
○ Joint width evaluation In order to confirm not only the above-mentioned joining rate but also the improvement of fillet forming ability, which is the object of the present invention, the joint width as shown in FIG. 1 (b) (fillet formation) Width) was measured at 20 points for each sample, and the average value was evaluated for superiority or inferiority. The determination was based on the following criteria: A: 0.6 mm or more B: 0.3 mm or more, x: less than 0.3 mm. Similarly, the results are shown in Tables 1 and 2.

実施例の何れも良好なろう付性を示したのに対し、比較例では十分な接合が得られなかった。また、実施例では材料高強度化とろう付性との両立が得られたが、比較材では十分な接合は得られなかった。   While all of the examples showed good brazing properties, the comparative example did not provide sufficient bonding. In addition, in the examples, it was possible to achieve both high material strength and brazing, but sufficient bonding was not obtained with the comparative material.

Figure 0005917832
Figure 0005917832

Figure 0005917832
Figure 0005917832

Claims (4)

Al−Si系ろう材が芯材にクラッドされて最表面に位置するアルミニウムクラッド材を用いるろう付方法であって、前記Al−Si系ろう材が、質量%で、Mgを0.2〜5.0%、Siを3〜13%含有し、さらに600℃における蒸気圧が10Torr以上の元素を含有し、残部がAlと不可避不純物からなる組成を有し、600℃における蒸気圧が10Torr以上の元素として、質量%で0.01〜0.05%のCsを含有し、減圧を伴わない非酸化性雰囲気中で、前記Al−Si系ろう材とろう付対象部材とを接触させ、加熱温度559〜620℃において、前記Al−Si系ろう材によりフラックスレスで接触部において前記芯材と前記ろう付対象部材とを接合することを特徴とするアルミニウム材のフラックスレスろう付方法。   A brazing method using an aluminum clad material in which an Al-Si brazing material is clad on a core material and located on the outermost surface, wherein the Al-Si brazing material is 0.2% by mass and Mg is 0.2-5 0.0%, containing 3 to 13% of Si, further containing an element having a vapor pressure of 10 Torr or higher at 600 ° C., the balance being composed of Al and unavoidable impurities, and having a vapor pressure of 10 Torr or higher at 600 ° C. The element contains 0.01 to 0.05% Cs by mass%, and the Al—Si brazing material and the brazing target member are brought into contact with each other in a non-oxidizing atmosphere without depressurization. A fluxless brazing method for an aluminum material, wherein the core material and the brazing target member are joined at a contact portion at 559 to 620 ° C. without flux by the Al—Si brazing material. . Al−Si系ろう材が芯材にクラッドされて最表面に位置するアルミニウムクラッド材を用いるろう付方法であって、前記Al−Si系ろう材が、質量%で、Mgを0.2〜5.0%、Siを3〜13%含有し、さらに600℃における蒸気圧が10Torr以上の元素を含有し、残部がAlと不可避不純物からなる組成を有し、600℃における蒸気圧が10Torr以上の元素として、質量%で0.01〜0.3%のPおよび0.01〜0.3%のSから選択される1種または2種の元素を含有し、減圧を伴わない非酸化性雰囲気中で、前記Al−Si系ろう材とろう付対象部材とを接触させ、加熱温度559〜620℃において、前記Al−Si系ろう材によりフラックスレスで接触部において前記芯材と前記ろう付対象部材とを接合することを特徴とするアルミニウム材のフラックスレスろう付方法。   A brazing method using an aluminum clad material in which an Al-Si brazing material is clad on a core material and located on the outermost surface, wherein the Al-Si brazing material is 0.2% by mass and Mg is 0.2-5 0.0%, containing 3 to 13% of Si, further containing an element having a vapor pressure of 10 Torr or higher at 600 ° C., the balance being composed of Al and unavoidable impurities, and having a vapor pressure of 10 Torr or higher at 600 ° C. A non-oxidizing atmosphere containing one or two elements selected from 0.01 to 0.3% P and 0.01 to 0.3% S in terms of mass%, and not accompanied by reduced pressure The brazing material and the brazing target member are brought into contact with each other, and at a heating temperature of 559 to 620 ° C., the core material and the brazing target are contacted at the contact portion without flux by the Al—Si brazing material. Joining parts Fluxless brazing method of the aluminum material, characterized in Rukoto. 前記Al−Si系ろう材が、600℃における蒸気圧が10Torr以上の前記元素として、質量%で0.01〜0.3%のPおよび0.01〜0.3%のSから選択される1種または2種の元素を含有することを特徴とする請求項1に記載のアルミニウム材のフラックスレスろう付方法。     The Al—Si brazing material is selected from 0.01% to 0.3% P and 0.01% to 0.3% S by mass% as the element having a vapor pressure at 600 ° C. of 10 Torr or more. The fluxless brazing method for an aluminum material according to claim 1, comprising one or two elements. 前記Al−Si系ろう材が、600℃における蒸気圧が10Torr以上の前記元素として、質量%で0.01〜0.3%のK、0.01〜0.3%のNa、0.01〜0.05%のRbおよび0.01〜1%のSeから選択される1種または2種以上の元素を含有することを特徴とする請求項1〜3のいずれかに記載のアルミニウム材のフラックスレスろう付方法。   The Al—Si brazing filler metal is 0.01 to 0.3% K, 0.01 to 0.3% Na, 0.01% in mass% as the element having a vapor pressure at 600 ° C. of 10 Torr or more. The aluminum material according to any one of claims 1 to 3, comprising one or more elements selected from -0.05% Rb and 0.01-1% Se. Fluxless brazing method.
JP2011113248A 2011-05-20 2011-05-20 Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing Active JP5917832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113248A JP5917832B2 (en) 2011-05-20 2011-05-20 Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113248A JP5917832B2 (en) 2011-05-20 2011-05-20 Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing

Publications (2)

Publication Number Publication Date
JP2012240089A JP2012240089A (en) 2012-12-10
JP5917832B2 true JP5917832B2 (en) 2016-05-18

Family

ID=47462330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113248A Active JP5917832B2 (en) 2011-05-20 2011-05-20 Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing

Country Status (1)

Country Link
JP (1) JP5917832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020305A (en) * 2019-12-17 2020-04-17 东北轻合金有限责任公司 Aluminum alloy composite material skin material flat ingot and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182581A (en) * 1992-12-21 1994-07-05 Mitsubishi Alum Co Ltd Aluminum alloy brazing filler metal for brazing heat exchanger and aluminum alloy brazing sheet for heat exchanger
JP4547032B1 (en) * 2009-04-17 2010-09-22 三菱アルミニウム株式会社 Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020305A (en) * 2019-12-17 2020-04-17 东北轻合金有限责任公司 Aluminum alloy composite material skin material flat ingot and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012240089A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP4547032B1 (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP6055573B1 (en) Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger
JP3780380B2 (en) Aluminum alloy brazing sheet, brazing method using the same, and brazed product
JP2012050993A (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
WO2016080433A1 (en) Aluminum alloy cladding material for heat exchanger
JP6942449B2 (en) Aluminum alloy brazing sheet
WO2014115651A1 (en) Aluminum alloy cladding material and heat exchanger incorporating tube obtained by molding said cladding material
JP2012061483A (en) Flux-less brazing method of aluminum material
JP2012050995A (en) Aluminum alloy brazing material sheet for fluxless brazing and fluxless brazing method for aluminum material
WO2020204168A1 (en) Aluminum alloy brazing sheet, and method for manufacturing same
JP2012024827A (en) Fluxless brazing method of aluminum material and aluminum alloy brazing sheet for fluxless brazing
JP3224440B2 (en) Aluminum alloy brazing material for heat exchanger brazing and aluminum alloy brazing sheet for heat exchanger
JP2016069696A (en) Aluminum alloy brazing sheet
JP5614883B2 (en) Fluxless brazing method of aluminum material, aluminum alloy brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing
JP2003112286A (en) Aluminum alloy brazing filler metal and method of manufacturing heat exchanger made of aluminum alloy
CN107002184B (en) Aluminum alloy clad material for heat exchanger
JP5498213B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
CN112041472B (en) Heat exchanger made of aluminum alloy
JP2012030244A (en) Fluxless brazing method for aluminum material
JP5917832B2 (en) Fluxless brazing method of aluminum material, Al-Si brazing material for fluxless brazing, and aluminum clad material for fluxless brazing
JP6282444B2 (en) Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material
JP7364522B2 (en) Aluminum alloy brazing sheet and brazing method for aluminum alloy brazing sheet
JP5159709B2 (en) Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same
JP7231442B2 (en) Aluminum alloy clad fin material with excellent self-corrosion resistance and its manufacturing method
JPH01218795A (en) Al alloy brazing filler metal having high fillet strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5917832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250