JP5916572B2 - Vibration isolator with power generation means - Google Patents

Vibration isolator with power generation means Download PDF

Info

Publication number
JP5916572B2
JP5916572B2 JP2012205288A JP2012205288A JP5916572B2 JP 5916572 B2 JP5916572 B2 JP 5916572B2 JP 2012205288 A JP2012205288 A JP 2012205288A JP 2012205288 A JP2012205288 A JP 2012205288A JP 5916572 B2 JP5916572 B2 JP 5916572B2
Authority
JP
Japan
Prior art keywords
power generation
elastic body
generation means
vibration isolator
mounting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012205288A
Other languages
Japanese (ja)
Other versions
JP2014059027A (en
Inventor
長谷川 浩一
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2012205288A priority Critical patent/JP5916572B2/en
Publication of JP2014059027A publication Critical patent/JP2014059027A/en
Application granted granted Critical
Publication of JP5916572B2 publication Critical patent/JP5916572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車のパワーユニットと車両ボデーの間や橋桁と橋脚の間等に介装されて、それらを防振連結する防振装置に係り、特に入力振動のエネルギーを電力に変換する発電手段を備えた発電手段付き防振装置に関するものである。   The present invention relates to a vibration isolator which is interposed between a power unit of an automobile and a vehicle body or between a bridge girder and a bridge pier, etc., and connects them in a vibration isolating manner, and in particular, a power generation means for converting energy of input vibration into electric power. It is related with the vibration isolator with an electric power generation means provided with.

従来から、振動伝達系を構成する部材間に介装されて、それら部材を相互に防振連結する防振支持体乃至は防振連結体として防振装置が知られている。この防振装置は、振動伝達系を構成する一方の部材に取り付けられる第1の取付部材と、振動伝達系を構成する他方の部材に取り付けられる第2の取付部材とを、本体ゴム弾性体によって弾性連結した構造を有している。   Conventionally, an anti-vibration device is known as an anti-vibration support body or an anti-vibration coupling body that is interposed between members constituting a vibration transmission system and anti-vibration-connects the members to each other. The vibration isolator includes a first attachment member attached to one member constituting the vibration transmission system and a second attachment member attached to the other member constituting the vibration transmission system by a main rubber elastic body. It has an elastically connected structure.

ところで、最近では、省エネルギー化への高度な要求に対応するために、防振装置に入力される振動のエネルギーを電力に変換して利用することが提案されている。即ち、特開2008−202253号公報(特許文献1)に記載されているように、電磁誘導等に基づいて電力を生じるようにした発電手段を設けることで、入力される振動エネルギーの一部を電気に変換して利用するのである。発電手段としては、特許文献1に記載されているような、永久磁石のコイルに対する相対変位を利用する構造等も考えられるが、例えば、特許第4905820号公報(特許文献2)に示されているように、入力歪みに応じて磁界の変化を生じる磁歪素子を用いて、磁界の変化に応じた誘導起電力を得るようにした構造も検討されている。なお、特許文献2では、磁歪素子の共振による変形を利用して効率的に発電することが提案されているが、自動車や橋梁等では振動状態に悪影響を及ぼすおそれもあることから、発電手段は、振動伝達系を構成する部材間に跨るように配設されて、振動伝達系を構成する部材の相対変位によって変形とそれに伴う発電が生じるようにすることが望ましい。   By the way, recently, in order to respond to a high demand for energy saving, it has been proposed to convert the vibration energy input to the vibration isolator into electric power for use. That is, as described in Japanese Patent Application Laid-Open No. 2008-202253 (Patent Document 1), by providing power generation means that generates electric power based on electromagnetic induction or the like, a part of input vibration energy is reduced. It is converted into electricity and used. As the power generation means, a structure using a relative displacement of the permanent magnet with respect to the coil as described in Patent Document 1 is also conceivable. For example, it is disclosed in Japanese Patent No. 4905820 (Patent Document 2). Thus, a structure in which an induced electromotive force according to a change in the magnetic field is obtained using a magnetostrictive element that generates a change in the magnetic field according to the input strain has been studied. In Patent Document 2, it has been proposed to efficiently generate power by using deformation due to resonance of the magnetostrictive element. However, in an automobile, a bridge, or the like, the vibration state may be adversely affected. It is desirable that the vibration transmission system is arranged so as to straddle between the members constituting the vibration transmission system so that the deformation and the accompanying power generation are caused by the relative displacement of the members constituting the vibration transmission system.

しかしながら、振動伝達系を構成する部材間に介装される防振装置に対して発電手段を設けて、発電手段がそれら振動伝達系を構成する部材間に跨って配設されると、大振幅振動の入力時に発電手段が過大変形によって損傷するおそれがあった。なお、発電手段の過大変形を防止するために、防振装置のばねを硬くして振動伝達系を構成する部材間の相対変位量を抑えることは、防振性能への悪影響が懸念されることから、現実的ではなかった。   However, if the power generation means is provided for the vibration isolator interposed between the members constituting the vibration transmission system and the power generation means is disposed across the members constituting the vibration transmission system, the large amplitude There is a possibility that the power generation means may be damaged due to excessive deformation when the vibration is input. In addition, in order to prevent excessive deformation of the power generation means, it is feared that suppressing the relative displacement amount between the members constituting the vibration transmission system by hardening the spring of the vibration isolation device may adversely affect the vibration isolation performance. So it was not realistic.

特開2008−202253号公報JP 2008-202253 A 特許第4905820号公報Japanese Patent No. 4905820

本発明は、上述の事情を背景に為されたものであって、その解決課題は、優れた発電効率と耐久性を両立して、有効に発電することが可能とされた、新規な構造の発電手段付き防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and its solution problem is a novel structure capable of effectively generating power while achieving both excellent power generation efficiency and durability. An object of the present invention is to provide a vibration isolator with power generation means.

すなわち、本発明の第1の態様は、振動伝達系を構成する部材の各一方に取り付けられる第1の取付部材と第2の取付部材が本体ゴム弾性体によって弾性連結された防振装置本体に対して、それら第1の取付部材と第2の取付部材の間に入力される外力によって変形して発電する発電手段が設けられた発電手段付き防振装置において、前記第1の取付部材と前記第2の取付部材の間には前記本体ゴム弾性体によって弾性支持された中間部材が配設されていると共に、該中間部材を該第2の取付部材に連結する連結部材が設けられており、前記発電手段が該連結部材を含んで構成されて該第2の取付部材と該中間部材の相対変位による該連結部材の変形によって発電するようにしたことを、特徴とする。   That is, the first aspect of the present invention is the vibration isolator main body in which the first attachment member and the second attachment member attached to each one of the members constituting the vibration transmission system are elastically connected by the main rubber elastic body. On the other hand, in the vibration isolator with the power generation means provided with the power generation means that is deformed by the external force input between the first attachment member and the second attachment member, the first attachment member and the An intermediate member elastically supported by the main rubber elastic body is disposed between the second attachment members, and a connecting member for connecting the intermediate member to the second attachment member is provided. The power generation means is configured to include the connecting member, and is configured to generate electric power by deformation of the connecting member due to relative displacement between the second mounting member and the intermediate member.

このような第1の態様に記載された発電手段付き防振装置によれば、発電手段が中間部材と第2の取付部材を連結するように設けられていることから、発電手段の最大変形量が抑えられる。それ故、過大な変形による発電手段の損傷が生じ難くなって、耐久性の向上が図られる。   According to such a vibration isolator with a power generation means described in the first aspect, since the power generation means is provided so as to connect the intermediate member and the second mounting member, the maximum deformation amount of the power generation means. Is suppressed. Therefore, damage to the power generation means due to excessive deformation is less likely to occur, and durability is improved.

しかも、中間部材と第2の取付部材との相対変位量は、本体ゴム弾性体における第1の取付部材と中間部材を連結する部分と第2の取付部材と中間部分を連結する部分とのばね比を調節することで容易に設定可能であることから、発電手段の最大変形量を適当に調節することができる。従って、発電手段の過大変形による損傷を回避しつつ、高効率での発電が可能となる。   In addition, the relative displacement between the intermediate member and the second mounting member is determined by the springs of the portion connecting the first mounting member and the intermediate member and the portion connecting the second mounting member and the intermediate portion in the main rubber elastic body. Since it can be easily set by adjusting the ratio, the maximum deformation amount of the power generation means can be adjusted appropriately. Therefore, it is possible to generate power with high efficiency while avoiding damage due to excessive deformation of the power generation means.

本発明の第2の態様は、第1の態様に記載された発電手段付き防振装置において、前記発電手段が、磁歪材料で形成された前記連結部材にバイアス磁界が及ぼされていると共に、該連結部材にコイルが巻回された構造を有しており、該連結部材の変形による磁界の変化によって該コイルに誘導起電力が生じるようにされているものである。   According to a second aspect of the present invention, in the vibration isolator with the power generation means described in the first aspect, the power generation means has a bias magnetic field exerted on the connection member formed of a magnetostrictive material, The coupling member has a structure in which a coil is wound, and an induced electromotive force is generated in the coil by a change in a magnetic field due to deformation of the coupling member.

第2の態様によれば、振動入力時の第2の取付部材と中間部材の相対変位によって、磁歪材料で形成された連結部材が変形することで、コイルを通過する磁束が増減して、コイルに電磁誘導に基づいた誘導起電力が流れるようになっている。このような磁歪材料を利用した発電手段においても、過大変形による損傷を防ぎつつ、高効率の発電を実現することができる。   According to the second aspect, the coupling member formed of the magnetostrictive material is deformed by the relative displacement between the second mounting member and the intermediate member at the time of vibration input, so that the magnetic flux passing through the coil is increased or decreased. Inductive electromotive force based on electromagnetic induction flows through. Even in the power generation means using such a magnetostrictive material, highly efficient power generation can be realized while preventing damage due to excessive deformation.

本発明の第3の態様は、第2の態様に記載された発電手段付き防振装置において、前記連結部材には、バイアス磁界を及ぼす永久磁石が取り付けられているものである。   According to a third aspect of the present invention, in the vibration isolator with power generation means described in the second aspect, a permanent magnet that applies a bias magnetic field is attached to the connecting member.

第3の態様によれば、バイアス磁界が永久磁石の生じる磁界によって構成されていることから、構造の簡単化が図られると共に、磁界を生ぜしめるために通電する等といったエネルギー消費も不要となる。   According to the third aspect, since the bias magnetic field is constituted by the magnetic field generated by the permanent magnet, the structure can be simplified, and energy consumption such as energization to generate the magnetic field is not required.

本発明の第4の態様は、第3の態様に記載された発電手段付き防振装置において、前記連結部材における前記永久磁石の取付部分が、該連結部材における前記第2の取付部材および前記中間部材への連結部分を外れて設けられているものである。   According to a fourth aspect of the present invention, in the vibration isolator with power generation means described in the third aspect, the attaching portion of the permanent magnet in the connecting member is the second attaching member and the intermediate member in the connecting member. The connecting portion to the member is removed.

第4の態様によれば、連結部材と第2の取付部材および中間部材とを連結固定する力によって永久磁石が割れるのを防ぐことができると共に、連結部材と第2の取付部材および中間部材とを充分に大きな力で連結することができて、振動入力が繰り返されても連結部材と第2の取付部材および中間部材との連結状態が安定して維持される。   According to the fourth aspect, it is possible to prevent the permanent magnet from being cracked by a force for connecting and fixing the connecting member, the second mounting member, and the intermediate member, and the connecting member, the second mounting member, and the intermediate member. Can be coupled with a sufficiently large force, and the coupling state of the coupling member, the second mounting member, and the intermediate member is stably maintained even when the vibration input is repeated.

本発明の第5の態様は、第1〜第4の何れか1つの態様に記載された発電手段付き防振装置において、前記防振装置本体には、前記本体ゴム弾性体の弾性変形量を制限するストッパ手段が設けられているものである。   According to a fifth aspect of the present invention, in the vibration isolator with power generation means described in any one of the first to fourth aspects, the vibration isolator body has an elastic deformation amount of the main rubber elastic body. Stopper means for limiting is provided.

第5の態様によれば、本体ゴム弾性体の最大弾性変形量がストッパ手段によって規定されることから、本体ゴム弾性体で弾性連結された第2の取付部材と中間部材の相対変位量がストッパ手段によって制限されて、発電手段を構成する連結部材の最大変形量が制限される。それ故、連結部材の過大変形が効果的に防止されて、耐久性がより有利に確保される。   According to the fifth aspect, since the maximum elastic deformation amount of the main rubber elastic body is defined by the stopper means, the relative displacement amount between the second mounting member elastically connected by the main rubber elastic body and the intermediate member is the stopper. The maximum deformation amount of the connecting member constituting the power generation means is limited by the means. Therefore, excessive deformation of the connecting member is effectively prevented, and durability is ensured more advantageously.

本発明の第6の態様は、第1〜第5の何れか1つの態様に記載された発電手段付き防振装置において、前記本体ゴム弾性体が、前記第1の取付部材と前記中間部材を弾性連結する第1の弾性体と、前記第2の取付部材と該中間部材を弾性連結する第2の弾性体とを有しており、該第1の弾性体のばね定数が該第2の弾性体のばね定数よりも小さくされているものである。   According to a sixth aspect of the present invention, in the vibration isolator with power generation means described in any one of the first to fifth aspects, the main rubber elastic body includes the first attachment member and the intermediate member. A first elastic body that is elastically connected; a second elastic body that elastically connects the second mounting member and the intermediate member; and a spring constant of the first elastic body is the second elastic body. This is smaller than the spring constant of the elastic body.

第6の態様によれば、振動入力時に本体ゴム弾性体の弾性変形が主として第1の取付部材と中間部材を連結する第1の弾性体において生じることから、連結部材で相互に連結された第2の取付部材と中間部材の相対変位量が、第1の取付部材と中間部材の相対変位量よりも小さくなる。それ故、防振装置のばね特性に対する連結部材のばね成分の影響が低減されて、目的とする防振性能を容易に且つ有効に得ることができる。   According to the sixth aspect, since the elastic deformation of the main rubber elastic body mainly occurs in the first elastic body connecting the first mounting member and the intermediate member at the time of vibration input, The relative displacement amount between the second attachment member and the intermediate member is smaller than the relative displacement amount between the first attachment member and the intermediate member. Therefore, the influence of the spring component of the connecting member on the spring characteristics of the vibration isolator is reduced, and the desired vibration isolating performance can be obtained easily and effectively.

本発明によれば、連結部材の変形によって発電する発電手段がマウント本体に取り付けられており、連結部材が第2の取付部材と中間部材を連結するように設けられている。それ故、想定される入力とそれに伴う本体ゴム弾性体の弾性変形量に応じて、本体ゴム弾性体における第1の取付部材と中間部材を連結する部分のばねと第2の取付部材と中間部材を連結する部分のばねとの比を調節して、連結部材の最大変形量をコントロールすることができる。従って、弾性的に許容され得る範囲で連結部材の変形を大きく生ぜしめつつ、連結部材の過大な変形による損傷(塑性変形)を防ぐことができて、高い発電効率と優れた耐久性を両立して実現することが可能になる。   According to the present invention, the power generating means for generating electric power by deformation of the connecting member is attached to the mount body, and the connecting member is provided to connect the second attaching member and the intermediate member. Therefore, depending on the assumed input and the amount of elastic deformation of the main rubber elastic body, the spring of the portion connecting the first mounting member and the intermediate member in the main rubber elastic body, the second mounting member, and the intermediate member The maximum deformation amount of the connecting member can be controlled by adjusting the ratio of the portion connecting the spring and the spring. Therefore, it is possible to prevent damage (plastic deformation) due to excessive deformation of the connecting member while causing large deformation of the connecting member within an elastically acceptable range, and achieve both high power generation efficiency and excellent durability. Can be realized.

本発明の第1の実施形態としてのエンジンマウントを示す縦断面図。1 is a longitudinal sectional view showing an engine mount as a first embodiment of the present invention. 本発明の第2の実施形態としてのエンジンマウントを示す縦断面図。The longitudinal cross-sectional view which shows the engine mount as the 2nd Embodiment of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明に従う構造とされた発電手段付き防振装置の第1の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、防振装置本体としてのマウント本体12と発電手段14とを備えており、マウント本体12が第1の取付部材16と第2の取付部材18が本体ゴム弾性体20によって弾性連結された構造を有している。そして、第1の取付部材16が図示しないパワーユニットに取り付けられると共に、第2の取付部材18が図示しない車両ボデーに取り付けられることにより、パワーユニットが車両ボデーによって防振支持されるようになっている。なお、以下の説明において、上下方向とは、主たる振動の入力方向である図1中の上下方向を言う。   FIG. 1 shows an engine mount 10 for an automobile as a first embodiment of a vibration isolator with power generation means having a structure according to the present invention. The engine mount 10 includes a mount main body 12 as a vibration isolator main body and a power generation means 14. The mount main body 12 is elastically connected to the first attachment member 16 and the second attachment member 18 by a main rubber elastic body 20. Has a structured. The first attachment member 16 is attached to a power unit (not shown), and the second attachment member 18 is attached to a vehicle body (not shown), so that the power unit is supported in a vibration-proof manner by the vehicle body. In the following description, the vertical direction refers to the vertical direction in FIG. 1, which is the main vibration input direction.

より詳細には、第1の取付部材16は、全体として板状とされた高剛性の部材であって、略円板形状とされた第1の固着部22を備えており、第1の固着部22の中央部分には上方に向かって突出する取付用ボルト24が一体形成されている。更に、第1の取付部材16は、第1の固着部22と一体形成されたストッパ部26を備えている。このストッパ部26は、第1の固着部22から外周側に突出して設けられており、下方に延び出すと共に、その最下端から更に外周側に延び出した当接部28を備えている。   More specifically, the first mounting member 16 is a high-rigidity member having a plate shape as a whole, and includes a first fixing portion 22 having a substantially disk shape. A mounting bolt 24 that protrudes upward is integrally formed at the center of the portion 22. Further, the first mounting member 16 includes a stopper portion 26 that is integrally formed with the first fixing portion 22. The stopper portion 26 is provided so as to protrude from the first fixing portion 22 to the outer peripheral side, and includes a contact portion 28 that extends downward and further extends from the lowermost end to the outer peripheral side.

第2の取付部材18は、全体として板状とされた高剛性の部材であって、略円板形状の第2の固着部30を備えていると共に、第2の固着部30の中央から下方に向かって取付用ボルト31が突出している。また、第2の固着部30の径方向一方向で一方の側(図1中、右側)には、平板形状の被当接部32が一体形成されて延び出していると共に、第2の固着部30の径方向一方向で他方の側(図1中、左側)には、段付き板形状の支持部34が一体形成されて延び出している。支持部34の径方向の突出先端部分は、基端部分よりも上方に位置する第1の固定部36とされており、第1の固定部36には上下に貫通する連結用のボルト孔が形成されている。   The second mounting member 18 is a high-rigidity member that is plate-shaped as a whole, and includes a substantially disk-shaped second fixing portion 30 and a lower portion from the center of the second fixing portion 30. A mounting bolt 31 protrudes toward the end. In addition, a flat contact portion 32 is integrally formed and extended on one side (right side in FIG. 1) in one radial direction of the second fixing portion 30, and the second fixing portion 30. A stepped plate-shaped support portion 34 is integrally formed and extends on the other side (left side in FIG. 1) in one radial direction of the portion 30. A projecting distal end portion of the support portion 34 in the radial direction is a first fixing portion 36 positioned above the base end portion, and the first fixing portion 36 has a connecting bolt hole penetrating vertically. Is formed.

そして、第1の取付部材16と第2の取付部材18は、第1の固着部22と第2の固着部30が上下に所定の距離を隔てて対向するように配置されて、本体ゴム弾性体20によって相互に弾性連結されている。本体ゴム弾性体20は、全体として略円柱形状とされており、上面が第1の取付部材16の第1の固着部22に加硫接着されていると共に、下面が第2の取付部材18の第2の固着部30に加硫接着されている。   The first mounting member 16 and the second mounting member 18 are disposed so that the first fixing portion 22 and the second fixing portion 30 face each other at a predetermined distance in the vertical direction. The bodies 20 are elastically connected to each other. The main rubber elastic body 20 has a substantially cylindrical shape as a whole, and its upper surface is vulcanized and bonded to the first fixing portion 22 of the first mounting member 16 and its lower surface is the second mounting member 18. The second fixing part 30 is vulcanized and bonded.

さらに、第1の取付部材16のストッパ部26の当接部28が、第2の取付部材18の被当接部32に対して上方に所定距離を隔てて対向配置されていると共に、当接部28の下面には本体ゴム弾性体20と一体形成されたストッパゴム38が加硫接着されている。これにより、当接部28と被当接部32とのストッパゴム38を介した当接によって、第1の取付部材16と第2の取付部材18の上下方向での最大相対変位量を規定して、本体ゴム弾性体20の弾性変形量を制限する、ストッパ手段40が構成されている。   Further, the abutting portion 28 of the stopper portion 26 of the first mounting member 16 is disposed so as to face the abutted portion 32 of the second mounting member 18 with a predetermined distance therebetween, and contacted. A stopper rubber 38 formed integrally with the main rubber elastic body 20 is vulcanized and bonded to the lower surface of the portion 28. Thus, the maximum relative displacement amount in the vertical direction of the first mounting member 16 and the second mounting member 18 is defined by the contact between the contact portion 28 and the contacted portion 32 via the stopper rubber 38. Thus, stopper means 40 for limiting the amount of elastic deformation of the main rubber elastic body 20 is configured.

また、本体ゴム弾性体20には、中間部材42が固着されている。中間部材42は、略円板形状を有する高剛性の部材であって、径方向一方向で外周側に突出する第2の固定部44が一体形成されており、第2の固定部44には上下に貫通する連結用のボルト孔が形成されている。この中間部材42は、第1の取付部材16と第2の取付部材18の対向面間に配設されて、それら第1の取付部材16および第2の取付部材18と略平行に広がっており、本体ゴム弾性体20の軸方向中間部分に加硫接着されている。   An intermediate member 42 is fixed to the main rubber elastic body 20. The intermediate member 42 is a high-rigidity member having a substantially disk shape, and a second fixing portion 44 that protrudes outward in one radial direction is integrally formed. A connecting bolt hole penetrating vertically is formed. The intermediate member 42 is disposed between the opposing surfaces of the first mounting member 16 and the second mounting member 18 and extends substantially parallel to the first mounting member 16 and the second mounting member 18. The rubber elastic body 20 is vulcanized and bonded to an intermediate portion in the axial direction.

これにより、本体ゴム弾性体20が中間部材42を挟んだ上下に二分されており、中間部材42の上方には第1の取付部材16と中間部材42を弾性連結する第1の弾性体46が設けられていると共に、中間部材42の下方には第2の取付部材18と中間部材42を弾性連結する第2の弾性体48が設けられている。本実施形態のエンジンマウント10では、第1の弾性体46と第2の弾性体48が略同一の横断面形状を有していると共に、同一のゴム材料で形成されており、第1の弾性体46が第2の弾性体48よりも厚肉とされることで、第1の弾性体46のばね定数:k1 が第2の弾性体48のばね定数:k2 よりも小さくされている(k1 <k2 )。なお、本実施形態では、中間部材42に図示しない連通孔が設けられる等して、第1の弾性体46と第2の弾性体48が一体で形成されているが、第1,第2の弾性体46,48は、互いに別体で形成されていても良い。 Thereby, the main rubber elastic body 20 is divided into two parts up and down across the intermediate member 42, and a first elastic body 46 that elastically connects the first mounting member 16 and the intermediate member 42 above the intermediate member 42. A second elastic body 48 that elastically connects the second mounting member 18 and the intermediate member 42 is provided below the intermediate member 42. In the engine mount 10 of the present embodiment, the first elastic body 46 and the second elastic body 48 have substantially the same cross-sectional shape and are formed of the same rubber material. By making the body 46 thicker than the second elastic body 48, the spring constant: k 1 of the first elastic body 46 is made smaller than the spring constant: k 2 of the second elastic body 48. (K 1 <k 2 ). In the present embodiment, the first elastic body 46 and the second elastic body 48 are integrally formed, for example, by providing a communication hole (not shown) in the intermediate member 42. The elastic bodies 46 and 48 may be formed separately from each other.

このような構造とされたマウント本体12には、発電手段14が取り付けられている。発電手段14は、連結部材としての磁歪素子50を備えており、第1の取付部材16と第2の取付部材18の間に入力される外力によって磁歪素子50が変形することで、電気を生じるようになっている。   A power generation means 14 is attached to the mount body 12 having such a structure. The power generation means 14 includes a magnetostrictive element 50 as a connecting member, and generates electricity when the magnetostrictive element 50 is deformed by an external force input between the first mounting member 16 and the second mounting member 18. It is like that.

磁歪素子50は、変形に応じた磁界の変化を生じる反磁歪効果を発揮する磁歪材料で形成されており、長手板状乃至は棒状の部材であって、両端部に連結用ボルト孔52が貫通形成されていると共に、それら連結用ボルト孔52よりも内側には所定距離を隔てて取付用ボルト孔54が貫通形成されている。なお、磁歪素子50の形成材料は特に限定されるものではないが、例えば、鉄−ガリウム系合金や鉄−コバルト系合金、鉄−ニッケル系合金、テルビウム−ジスプロシウム−鉄系合金等が好適に採用され得る。   The magnetostrictive element 50 is made of a magnetostrictive material that exhibits a demagnetism effect that produces a change in magnetic field in accordance with deformation, and is a long plate or rod-like member, with connecting bolt holes 52 penetrating at both ends. The mounting bolt holes 54 are formed through the connecting bolt holes 52 at a predetermined distance from each other. The material for forming the magnetostrictive element 50 is not particularly limited. For example, an iron-gallium alloy, an iron-cobalt alloy, an iron-nickel alloy, a terbium-dysprosium-iron alloy, or the like is preferably used. Can be done.

さらに、磁歪素子50には、永久磁石56が取り付けられている。永久磁石56はフェライト等で形成された環状乃至は筒状の部材であって、軸方向に着磁されている。そして、2つの永久磁石56,56が、磁歪素子50における各一方の取付用ボルト孔54の周囲に重ね合わされて、取付用のボルトとナットによって磁歪素子50にそれぞれ固定されており、永久磁石56の磁束に基づいたバイアス磁界が磁歪素子50に常時及ぼされている。なお、上記の取付構造からも明らかなように、本実施形態では、取付用ボルト孔54,54およびそれらの周囲が、磁歪素子50における永久磁石56の取付部分とされている。また、磁歪素子50にバイアス磁界を及ぼす手段としては、永久磁石56に代えて或いは加えて電磁石を取り付けても良いし、磁歪素子50にバイアス磁界形成用のコイルを巻回して、該コイルに通電することで所定のバイアス磁界を磁歪素子50に及ぼすこともできる。   Further, a permanent magnet 56 is attached to the magnetostrictive element 50. The permanent magnet 56 is an annular or cylindrical member made of ferrite or the like, and is magnetized in the axial direction. Two permanent magnets 56 and 56 are overlapped around one mounting bolt hole 54 of the magnetostrictive element 50 and fixed to the magnetostrictive element 50 by mounting bolts and nuts, respectively. A bias magnetic field based on the magnetic flux is constantly applied to the magnetostrictive element 50. As is clear from the mounting structure described above, in the present embodiment, the mounting bolt holes 54 and 54 and their periphery are the mounting portions of the permanent magnet 56 in the magnetostrictive element 50. As a means for applying a bias magnetic field to the magnetostrictive element 50, an electromagnet may be attached in place of or in addition to the permanent magnet 56, or a coil for forming a bias magnetic field is wound around the magnetostrictive element 50 so that the coil is energized. Thus, a predetermined bias magnetic field can be applied to the magnetostrictive element 50.

更にまた、磁歪素子50には、コイル58が巻回されている。コイル58は、金属線材を巻回してなる一般的なものであって、磁歪素子50における一対の取付用ボルト孔54,54の間に巻き付けられて配設されている。なお、コイル58の両端部は、図示しないキャパシタ等の蓄電手段に対して電気的に接続されている。   Furthermore, a coil 58 is wound around the magnetostrictive element 50. The coil 58 is a general one formed by winding a metal wire, and is wound and disposed between a pair of mounting bolt holes 54 and 54 in the magnetostrictive element 50. Note that both ends of the coil 58 are electrically connected to power storage means such as a capacitor (not shown).

かくの如き構造を有する発電手段14は、マウント本体12に取り付けられている。即ち、磁歪素子50の長手方向一方の端部が第2の取付部材18の第1の固定部36に重ね合わされていると共に、磁歪素子50の長手方向他方の端部が中間部材42の第2の固定部44に重ね合わされており、磁歪素子50の両端部が連結用のボルトとナットによって第2の取付部材18と中間部材42の各一方に固定されている。これにより、第2の取付部材18と中間部材42が磁歪素子50によって連結されており、発電手段14が第2の取付部材18と中間部材42に跨って設けられている。なお、上記の連結構造からも明らかなように、本実施形態では、連結用ボルト孔52,52およびそれらの周囲が、磁歪素子50の第2の取付部材18および中間部材42への連結部分とされており、永久磁石56の取付部分が上記連結部分を外れて設けられている。   The power generation means 14 having such a structure is attached to the mount body 12. That is, one end in the longitudinal direction of the magnetostrictive element 50 is overlapped with the first fixing portion 36 of the second mounting member 18, and the other end in the longitudinal direction of the magnetostrictive element 50 is the second end of the intermediate member 42. The both ends of the magnetostrictive element 50 are fixed to one of the second mounting member 18 and the intermediate member 42 by connecting bolts and nuts. Thus, the second mounting member 18 and the intermediate member 42 are connected by the magnetostrictive element 50, and the power generation means 14 is provided across the second mounting member 18 and the intermediate member 42. As is clear from the above-described connection structure, in this embodiment, the connection bolt holes 52 and 52 and their surroundings are connected to the second attachment member 18 and the intermediate member 42 of the magnetostrictive element 50. The attachment part of the permanent magnet 56 is provided off the connection part.

このような発電手段14を備えたエンジンマウント10は、第1の取付部材16がパワーユニットに取り付けられると共に、第2の取付部材18が車両ボデーに取り付けられることにより、マウント本体12がパワーユニットを車両ボデーに対して防振支持せしめるようになっている。本実施形態では、第1の弾性体46のばね定数:k1 が第2の弾性体48のばね定数:k2 よりも小さくされていることから、第1の弾性体46の弾性変形量:ΔL1 が第2の弾性体48の弾性変形量:ΔL2 よりも大きく生じるようになっている。 The engine mount 10 provided with such power generation means 14 has the first attachment member 16 attached to the power unit and the second attachment member 18 attached to the vehicle body, whereby the mount body 12 attaches the power unit to the vehicle body. Against vibration. In this embodiment, since the spring constant: k 1 of the first elastic body 46 is smaller than the spring constant: k 2 of the second elastic body 48, the elastic deformation amount of the first elastic body 46: ΔL 1 is larger than the elastic deformation amount ΔL 2 of the second elastic body 48.

そして、エンジンマウント10の車両装着状態において、第1の取付部材16と第2の取付部材18の間にエンジンシェイク等の振動が上下方向に入力されると、本体ゴム弾性体20が弾性変形することによって、本体ゴム弾性体20の内部摩擦によるエネルギー減衰作用等に基づいた防振効果が発揮されるようになっている。   When the engine mount 10 is mounted on the vehicle and the vibration such as the engine shake is input between the first mounting member 16 and the second mounting member 18 in the vertical direction, the main rubber elastic body 20 is elastically deformed. As a result, an anti-vibration effect based on an energy damping action or the like due to internal friction of the main rubber elastic body 20 is exhibited.

また、第1の取付部材16と第2の取付部材18が上下に相対変位して本体ゴム弾性体20が弾性変形すると、中間部材42が第2の取付部材18に対して相対変位することから、第2の取付部材18と中間部材42を連結する磁歪素子50が弾性変形する。これにより、磁歪素子50と第2の取付部材18によって構成された磁気回路において磁束の変化が生じて、磁歪素子50に巻回されたコイル58において電磁誘導による誘導起電力が発生する。そして、コイル58の両端に接続された蓄電手段に発電された誘導起電力が蓄積されると共に、必要に応じて電装部品等に配分されて消費されるようになっている。   Further, when the first mounting member 16 and the second mounting member 18 are relatively displaced up and down and the main rubber elastic body 20 is elastically deformed, the intermediate member 42 is relatively displaced with respect to the second mounting member 18. The magnetostrictive element 50 connecting the second mounting member 18 and the intermediate member 42 is elastically deformed. As a result, a change in magnetic flux occurs in the magnetic circuit constituted by the magnetostrictive element 50 and the second mounting member 18, and an induced electromotive force is generated in the coil 58 wound around the magnetostrictive element 50. Then, the induced electromotive force generated in the power storage means connected to both ends of the coil 58 is accumulated, and is distributed and consumed by electrical components as necessary.

そこにおいて、エンジンマウント10では、磁歪素子50が中間部材42に固定されていることから、第1,第2の弾性体46,48のばね比を調節することで、磁歪素子50の変形量を適切に設定することが可能とされている。   In the engine mount 10, since the magnetostrictive element 50 is fixed to the intermediate member 42, the amount of deformation of the magnetostrictive element 50 can be reduced by adjusting the spring ratio of the first and second elastic bodies 46 and 48. It is possible to set appropriately.

すなわち、第1の取付部材16と第2の取付部材18の間に上下方向の外力:Fが入力されて、本体ゴム弾性体20が上下にΔLだけ弾性変形する場合を考えると、第1の弾性体46と第2の弾性体48のそれぞれに外力:Fが作用して、フックの法則から[数1],[数2]が成立する。なお、数式中のΔL1 が第1の弾性体46の弾性変形量であると共に、ΔL2 が第2の弾性体48の弾性変形量である。 That is, when a case in which an external force F in the vertical direction is input between the first mounting member 16 and the second mounting member 18 and the main rubber elastic body 20 is elastically deformed up and down by ΔL is considered, An external force F acts on each of the elastic body 46 and the second elastic body 48, and [Equation 1] and [Equation 2] are established from Hooke's law. Note that ΔL 1 in the equation is the amount of elastic deformation of the first elastic body 46, and ΔL 2 is the amount of elastic deformation of the second elastic body 48.

Figure 0005916572
Figure 0005916572
Figure 0005916572
Figure 0005916572

また、第1の弾性体46の弾性変形量:ΔL1 と、第2の弾性体48の弾性変形量:ΔL2 との和が、本体ゴム弾性体20の弾性変形量:ΔLになることから、下式が成立する。 The elastic deformation of the first elastic body 46: a [Delta] L 1, the amount of elastic deformation of the second elastic body 48: the sum of [Delta] L 2 is, the amount of elastic deformation of the main rubber elastic body 20: from becoming [Delta] L The following formula is established.

Figure 0005916572
Figure 0005916572

これら[数1]〜[数3]の3つの数式を第1の弾性体46の弾性変形量:ΔL1 と、第2の弾性体48の弾性変形量:ΔL2 についてそれぞれ解くと、以下の[数4],[数5]のようになる。 These [Number 1] to [Equation 3] Three formulas elastic deformation of the first elastic body 46: a [Delta] L 1, the amount of elastic deformation of the second elastic body 48: Solving respectively, for [Delta] L 2, the following [Formula 4], [Formula 5]

Figure 0005916572
Figure 0005916572
Figure 0005916572
Figure 0005916572

[数4],[数5]には、第1の弾性体46の弾性変形量:ΔL1 と第2の弾性体48の弾性変形量:ΔL2 が、第1の弾性体46のばね定数:k1 と第2の弾性体48のばね定数:k2 との比に応じて設定されることが、示されている。それ故、第1, 第2の弾性体46,48のばね定数の比を調節することで、第2の弾性体48の弾性変形量:ΔL2 を調節することが可能であり、第2の弾性体48の弾性変形量:ΔL2 に応じて定まる磁歪素子50の変形量を設計段階で容易に設定することができる。従って、磁歪素子50の最大変形量を調節することで、磁歪素子50の塑性破壊を防いで耐久性を確保しつつ、優れた発電効率で電力を得ることができる。しかも、第1,第2の弾性体46,48のばね比を変更設定しても、本体ゴム弾性体20全体のばね特性は略維持されることから、防振性能への悪影響も抑えられる。 [Expression 4], the Equation 5, the amount of elastic deformation of the first elastic body 46: [Delta] L 1 and the amount of elastic deformation of the second elastic body 48: [Delta] L 2 is the spring constant of the first elastic member 46 : Is set according to the ratio between k 1 and the spring constant of the second elastic body 48: k 2 . Therefore, it is possible to adjust the elastic deformation amount ΔL 2 of the second elastic body 48 by adjusting the ratio of the spring constants of the first and second elastic bodies 46, 48. The deformation amount of the magnetostrictive element 50 determined according to the elastic deformation amount ΔL 2 of the elastic body 48 can be easily set at the design stage. Therefore, by adjusting the maximum deformation amount of the magnetostrictive element 50, electric power can be obtained with excellent power generation efficiency while preventing the plastic breakdown of the magnetostrictive element 50 and ensuring durability. Moreover, even if the spring ratios of the first and second elastic bodies 46 and 48 are changed and set, the spring characteristics of the main rubber elastic body 20 as a whole are substantially maintained, so that adverse effects on the vibration isolation performance can be suppressed.

加えて、本実施形態のエンジンマウント10では、マウント本体12に本体ゴム弾性体20の弾性変形量を制限するストッパ手段40が設けられている。これにより、磁歪素子50の最大変形量がストッパ手段40のストッパ作用によって設定されることから、衝撃的な大荷重の入力時にも磁歪素子50の過大な変形が防止されて、磁歪素子50の耐久性が確保される。   In addition, in the engine mount 10 of the present embodiment, the mount body 12 is provided with stopper means 40 that limits the amount of elastic deformation of the main rubber elastic body 20. Thereby, since the maximum deformation amount of the magnetostrictive element 50 is set by the stopper action of the stopper means 40, excessive deformation of the magnetostrictive element 50 is prevented even when a shocking heavy load is input, and the durability of the magnetostrictive element 50 is improved. Sex is secured.

また、第1の弾性体46のばね定数:k1 が第2の弾性体48のばね定数:k2 よりも小さくされており、主として第1の弾性体46の弾性変形によって防振効果が発揮されることから、磁歪素子50で中間部材42と第2の取付部材18を連結したことによるマウント本体12のばね特性への影響が抑えられて、目的とする防振性能を容易に得ることができる。 Further, the spring constant: k 1 of the first elastic body 46 is made smaller than the spring constant: k 2 of the second elastic body 48, and the anti-vibration effect is exhibited mainly by the elastic deformation of the first elastic body 46. As a result, the influence on the spring characteristics of the mount body 12 due to the connection between the intermediate member 42 and the second mounting member 18 by the magnetostrictive element 50 can be suppressed, and the desired vibration-proof performance can be easily obtained. it can.

また、本実施形態では、安定した発電を実現するために磁歪素子50にバイアス磁界を付与する永久磁石56が、磁歪素子50に対して第2の取付部材18および中間部材42への連結部分(連結用ボルト孔52およびその周囲)を外れた長手方向内方に取り付けられている。このように、永久磁石56の磁歪素子50への取付構造を、磁歪素子50の第2の取付部材18および中間部材42への連結構造とは別に設けることにより、磁歪素子50を第2の取付部材18および中間部材42に取り付ける際に、永久磁石56の割れやボルトの締付け不足による磁歪素子50の脱落等といった不具合が回避される。   In the present embodiment, the permanent magnet 56 that applies a bias magnetic field to the magnetostrictive element 50 in order to realize stable power generation is connected to the second mounting member 18 and the intermediate member 42 with respect to the magnetostrictive element 50 ( The connecting bolt hole 52 and its surroundings are attached inward in the longitudinal direction. Thus, by providing the attachment structure of the permanent magnet 56 to the magnetostrictive element 50 separately from the connection structure of the magnetostrictive element 50 to the second attachment member 18 and the intermediate member 42, the magnetostrictive element 50 is attached to the second attachment member 18 and the intermediate member 42. When attaching to the member 18 and the intermediate member 42, problems such as cracking of the permanent magnet 56 and dropout of the magnetostrictive element 50 due to insufficient bolt tightening are avoided.

図2には、本発明に従う構造とされた発電機付き防振装置の第2の実施形態として、自動車用のエンジンマウント60が示されている。エンジンマウント60は、マウント本体12に発電手段62が取り付けられた構造を有している。なお、以下の説明において、第1の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことにより説明を省略する。   FIG. 2 shows an engine mount 60 for an automobile as a second embodiment of the vibration isolator with a generator having a structure according to the present invention. The engine mount 60 has a structure in which the power generation means 62 is attached to the mount body 12. In the following description, members and portions that are substantially the same as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

発電手段62は、板状とされた連結部材64の両面にそれぞれ圧電素子66を固着した構造を有している。連結部材64は、ばね鋼等で形成された板状の部材であって、上下方向の弾性変形が許容されている。更に、連結部材64の両端部分には、一対の連結用ボルト孔52,52が上下に貫通して形成されている。   The power generation means 62 has a structure in which the piezoelectric elements 66 are fixed to both surfaces of a plate-like connecting member 64. The connecting member 64 is a plate-like member made of spring steel or the like, and is allowed to be elastically deformed in the vertical direction. Further, a pair of connecting bolt holes 52, 52 are formed at both ends of the connecting member 64 so as to penetrate vertically.

また、連結部材64の上下両面には、圧電素子66が固着されている。圧電素子66は、外力の作用によって電荷を生じる膜状の素子であって、例えば、水晶半角ニオブ酸リチウム等の単結晶の他、セラミックスやポリフッ化ビニリデン等の高分子膜で形成される。なお、本実施形態では連結部材64の上下両面にそれぞれ圧電素子66が固着されているが、連結部材64の上下何れかの面にのみ圧電素子66を固着した構造も採用可能である。また、図中において明らかではないが、圧電素子66は、図示しない蓄電手段に対して電気的に接続されており、外力の作用で生じた電力が蓄電手段によって蓄えられるようになっている。   In addition, piezoelectric elements 66 are fixed to the upper and lower surfaces of the connecting member 64. The piezoelectric element 66 is a film-like element that generates an electric charge by the action of an external force, and is formed of, for example, a single crystal such as quartz half-angle lithium niobate, or a polymer film such as ceramics or polyvinylidene fluoride. In this embodiment, the piezoelectric elements 66 are fixed to both the upper and lower surfaces of the connecting member 64. However, a structure in which the piezoelectric elements 66 are fixed to only the upper and lower surfaces of the connecting member 64 can also be employed. Further, although not clearly shown in the figure, the piezoelectric element 66 is electrically connected to a power storage means (not shown) so that electric power generated by the action of an external force is stored by the power storage means.

そして、連結部材64は、その両端部が、一対の連結用ボルト孔52,52に挿通される連結用のボルトとナットによって、第2の取付部材18の第1の固定部36と中間部材42の第2の固定部44とに固定されている。これにより、第2の取付部材18と中間部材42が連結部材64によって相互に連結されており、発電手段62が第2の取付部材18と中間部材42に跨って配設されている。   The connecting member 64 is connected to the first fixing portion 36 and the intermediate member 42 of the second mounting member 18 by connecting bolts and nuts inserted into the connecting bolt holes 52 and 52 at both ends. The second fixing portion 44 is fixed. Thus, the second mounting member 18 and the intermediate member 42 are connected to each other by the connecting member 64, and the power generation means 62 is disposed across the second mounting member 18 and the intermediate member 42.

このような構造とされたエンジンマウント60においても、振動荷重の入力時に発電手段62において電力が発生するようになっている。即ち、第1の取付部材16と第2の取付部材18の間に振動が入力されて、第2の取付部材18と中間部材42が相対変位することから、連結部材64が弾性的に変形する。この連結部材64の変形に伴って、連結部材64に固着された圧電素子66が変形して、圧電素子66に応力が作用することから、圧電素子66において電力が生じて、蓄電手段に蓄えられる。本実施形態では、連結部材64の変形によって一対の圧電素子66,66の何れにも応力が作用して電力が発生することから、より効率的な発電が実現される。   Also in the engine mount 60 having such a structure, electric power is generated in the power generation means 62 when a vibration load is input. That is, since vibration is input between the first mounting member 16 and the second mounting member 18 and the second mounting member 18 and the intermediate member 42 are relatively displaced, the connecting member 64 is elastically deformed. . As the connecting member 64 is deformed, the piezoelectric element 66 fixed to the connecting member 64 is deformed and stress is applied to the piezoelectric element 66, so that electric power is generated in the piezoelectric element 66 and stored in the power storage means. . In the present embodiment, since the deformation of the connecting member 64 causes stress to act on both of the pair of piezoelectric elements 66 and 66 to generate electric power, more efficient power generation is realized.

このように、発電手段は、第2の取付部材18と中間部材42を連結する連結部材の変形によって電力を発生するものであれば、磁歪材料を用いた電磁誘導に基づく発電機構に限定されない。なお、発電手段を構成する発電素子としては、第1,第2の実施形態に示された磁歪素子や圧電素子の他、電歪素子等を用いることもできる。   As described above, the power generation means is not limited to a power generation mechanism based on electromagnetic induction using a magnetostrictive material as long as it generates electric power by deformation of the connecting member that connects the second mounting member 18 and the intermediate member 42. As a power generation element constituting the power generation means, an electrostrictive element or the like can be used in addition to the magnetostrictive element and the piezoelectric element shown in the first and second embodiments.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、本発明は、筒形防振装置にも適用可能である。具体的には、第1の取付部材としてのインナ軸部材と、第2の取付部材としてのアウタ筒部材とを、内外挿配置して、筒形の本体ゴム弾性体によって弾性連結すると共に、それらインナ軸部材とアウタ筒部材との径方向間を周方向に延びる筒形の中間部材を配設して本体ゴム弾性体に加硫接着する。更に、アウタ筒部材と中間部材を連結する連結部材を設けて発電手段を構成することにより、本発明に従う構造とされた発電手段付きの筒形防振装置を実現することができる。これによっても、インナ軸部材とアウタ筒部材との相対変位量に比して、アウタ筒部材と中間部材との相対変位量が小さくなることから、連結部材の損傷が防止されて、優れた耐久性と発電効率が両立して実現される。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, the present invention can be applied to a cylindrical vibration isolator. Specifically, the inner shaft member as the first mounting member and the outer cylindrical member as the second mounting member are inserted and removed from the inside, and elastically connected by the cylindrical main body rubber elastic body. A cylindrical intermediate member extending in the circumferential direction between the inner shaft member and the outer cylindrical member is disposed and vulcanized and bonded to the main rubber elastic body. Furthermore, by providing a connecting member for connecting the outer cylindrical member and the intermediate member to constitute the power generation means, it is possible to realize a cylindrical vibration isolator with the power generation means having a structure according to the present invention. This also reduces the relative displacement amount between the outer cylindrical member and the intermediate member as compared with the relative displacement amount between the inner shaft member and the outer cylindrical member, so that the connection member is prevented from being damaged and has excellent durability. And power generation efficiency are realized at the same time.

また、前記実施形態では、1つの発電手段だけが設けられた構造を例示したが、例えば、複数の発電手段が周上で互いに異なる位置に設けられていても良い。この場合には、必ずしも全ての発電手段が同一構造である必要はなく、例えば、磁歪素子を用いた第1の実施形態の発電手段14と、圧電素子を用いた第2の実施形態の発電手段62とを、組み合わせて採用することもできる。   Moreover, although the said embodiment illustrated the structure where only one power generation means was provided, for example, a plurality of power generation means may be provided at different positions on the circumference. In this case, it is not always necessary that all the power generation means have the same structure. For example, the power generation means 14 of the first embodiment using a magnetostrictive element and the power generation means of the second embodiment using a piezoelectric element. 62 can be used in combination.

また、前記実施形態では、本体ゴム弾性体20を構成する第1の弾性体46と第2の弾性体48の厚さを異ならせることによって、ばね比が調節されていたが、例えば、第1の弾性体と第2の弾性体の横断面形状を異ならせたり、第1の弾性体と第2の弾性体を形成するゴム材料を異ならせることによって、それら第1,第2の弾性体のばね比を調節することもできる。   In the embodiment, the spring ratio is adjusted by making the thicknesses of the first elastic body 46 and the second elastic body 48 constituting the main rubber elastic body 20 different from each other. By making the cross-sectional shapes of the elastic body and the second elastic body different, or by making the rubber materials forming the first elastic body and the second elastic body different, the first and second elastic bodies The spring ratio can also be adjusted.

さらに、前記実施形態では、第1の弾性体46のばね定数:k1 が第2の弾性体48のばね定数:k2 よりも小さくされていたが、第1,第2の弾性体46,48のばね定数の大小関係は特に限定されない。 Further, in the above embodiment, the spring constant: k 1 of the first elastic body 46 is smaller than the spring constant: k 2 of the second elastic body 48, but the first and second elastic bodies 46, The magnitude relationship of the spring constant of 48 is not particularly limited.

また、第2の取付部材18と中間部材42を連結する連結部材は、前記実施形態のように軸直角方向に延びていても良いが、軸方向に延びるように配設されていても良く、軸方向の振動入力に対して変形するようになっていても良いし、軸直角方向の振動入力に対して変形するようになっていても良い。   Further, the connecting member that connects the second mounting member 18 and the intermediate member 42 may extend in a direction perpendicular to the axis as in the above-described embodiment, but may be disposed so as to extend in the axial direction. It may be configured to be deformed with respect to a vibration input in the axial direction, or may be configured to be deformed with respect to a vibration input in a direction perpendicular to the axis.

また、本発明は、エンジンマウントにのみ適用されるものではなく、ボデーマウントやサブフレームマウント、デフマウント、サスペンションブッシュ等にも適用され得る。更に、本発明の適用範囲は、自動車に用いられる防振装置に限定されず、自動二輪車や鉄道用車両、産業用車両等の各種車両用の防振装置に適用される他、橋桁と橋脚の間等に介装される橋梁用の防振装置や、建物の基礎と柱の間等に介装される建築物用の防振装置等にも適用可能である。   The present invention is not only applied to engine mounts, but can also be applied to body mounts, subframe mounts, differential mounts, suspension bushings, and the like. Furthermore, the scope of application of the present invention is not limited to vibration isolators used in automobiles, but is applicable to vibration isolators for various vehicles such as motorcycles, railway vehicles, industrial vehicles, bridge girder and bridge piers. The present invention can also be applied to a vibration isolator for a bridge interposed between buildings, a vibration isolator for a building interposed between a building foundation and a pillar, or the like.

10,60:エンジンマウント(発電手段付き防振装置)、12:マウント本体(防振装置本体)、14,62:発電手段、16:第1の取付部材、18:第2の取付部材、20:本体ゴム弾性体、40:ストッパ手段、42:中間部材、46:第1の弾性体、48:第2の弾性体、50:磁歪素子(連結部材)、56:永久磁石、58:コイル、64:連結部材 10, 60: Engine mount (vibration isolation device with power generation means), 12: Mount main body (vibration isolation device main body), 14, 62: Power generation means, 16: First attachment member, 18: Second attachment member, 20 : Body rubber elastic body, 40: stopper means, 42: intermediate member, 46: first elastic body, 48: second elastic body, 50: magnetostrictive element (connection member), 56: permanent magnet, 58: coil, 64: Connecting member

Claims (6)

振動伝達系を構成する部材の各一方に取り付けられる第1の取付部材と第2の取付部材が本体ゴム弾性体によって弾性連結された防振装置本体に対して、それら第1の取付部材と第2の取付部材の間に入力される外力によって変形して発電する発電手段が設けられた発電手段付き防振装置において、
前記第1の取付部材と前記第2の取付部材の間には前記本体ゴム弾性体によって弾性支持された中間部材が配設されていると共に、
該中間部材を該第2の取付部材に連結する連結部材が設けられており、前記発電手段が該連結部材を含んで構成されて該第2の取付部材と該中間部材の相対変位による該連結部材の変形によって発電するようにしたことを特徴とする発電手段付き防振装置。
The first attachment member and the second attachment member attached to each one of the members constituting the vibration transmission system are elastically connected by the main rubber elastic body to the first attachment member and the second attachment member. In the vibration isolator with the power generation means provided with the power generation means for generating power by being deformed by the external force input between the two attachment members,
An intermediate member elastically supported by the main rubber elastic body is disposed between the first mounting member and the second mounting member,
A connecting member for connecting the intermediate member to the second mounting member is provided, and the power generation means includes the connecting member, and the connection is made by relative displacement between the second mounting member and the intermediate member. A vibration isolator with power generation means, wherein power is generated by deformation of a member.
前記発電手段が、磁歪材料で形成された前記連結部材にバイアス磁界が及ぼされていると共に、該連結部材にコイルが巻回された構造を有しており、該連結部材の変形による磁界の変化によって該コイルに誘導起電力が生じるようにされている請求項1に記載の発電手段付き防振装置。   The power generating means has a structure in which a bias magnetic field is exerted on the connecting member formed of a magnetostrictive material, and a coil is wound around the connecting member, and a change in magnetic field due to deformation of the connecting member. The vibration isolator with power generation means according to claim 1, wherein an induced electromotive force is generated in the coil. 前記連結部材には、バイアス磁界を及ぼす永久磁石が取り付けられている請求項2に記載の発電手段付き防振装置。   The vibration isolator with power generation means according to claim 2, wherein a permanent magnet that applies a bias magnetic field is attached to the connecting member. 前記連結部材における前記永久磁石の取付部分が、該連結部材における前記第2の取付部材および前記中間部材への連結部分を外れて設けられている請求項3に記載の発電手段付き防振装置。   The vibration isolator with a power generation means according to claim 3, wherein an attachment portion of the permanent magnet in the connection member is provided so as to be disengaged from the connection portions of the connection member to the second attachment member and the intermediate member. 前記防振装置本体には、前記本体ゴム弾性体の弾性変形量を制限するストッパ手段が設けられている請求項1〜4の何れか1項に記載の発電手段付き防振装置。   The vibration isolator with power generation means according to any one of claims 1 to 4, wherein the vibration isolator body is provided with stopper means for limiting an elastic deformation amount of the main rubber elastic body. 前記本体ゴム弾性体が、前記第1の取付部材と前記中間部材を弾性連結する第1の弾性体と、前記第2の取付部材と該中間部材を弾性連結する第2の弾性体とを有しており、該第1の弾性体のばね定数が該第2の弾性体のばね定数よりも小さくされている請求項1〜5の何れか1項に記載の発電手段付き防振装置。   The main rubber elastic body includes a first elastic body that elastically connects the first mounting member and the intermediate member, and a second elastic body that elastically connects the second mounting member and the intermediate member. The vibration isolator with power generation means according to any one of claims 1 to 5, wherein a spring constant of the first elastic body is smaller than a spring constant of the second elastic body.
JP2012205288A 2012-09-19 2012-09-19 Vibration isolator with power generation means Active JP5916572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205288A JP5916572B2 (en) 2012-09-19 2012-09-19 Vibration isolator with power generation means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205288A JP5916572B2 (en) 2012-09-19 2012-09-19 Vibration isolator with power generation means

Publications (2)

Publication Number Publication Date
JP2014059027A JP2014059027A (en) 2014-04-03
JP5916572B2 true JP5916572B2 (en) 2016-05-11

Family

ID=50615670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205288A Active JP5916572B2 (en) 2012-09-19 2012-09-19 Vibration isolator with power generation means

Country Status (1)

Country Link
JP (1) JP5916572B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064335A (en) * 1983-09-19 1985-04-12 Fuji Photo Film Co Ltd Viewfinder of automatic focusing camera
JPH11280841A (en) * 1998-03-27 1999-10-15 Tokimec Inc Damping actuator
US7550880B1 (en) * 2006-04-12 2009-06-23 Motran Industries Inc Folded spring flexure suspension for linearly actuated devices
JP2008202253A (en) * 2007-02-17 2008-09-04 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Vibrating power generator in construction machine
KR101457782B1 (en) * 2010-06-18 2014-11-03 도쿠리츠다이가쿠호징 가나자와다이가쿠 Power generation element and power generation apparatus provided with power generation element

Also Published As

Publication number Publication date
JP2014059027A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US9689457B2 (en) Torque rod and engine mounting system for using same
JP5598088B2 (en) Reactor fixing structure
JP2015135124A (en) Electromagnetic actuator, active vibration control device and fluid-encapsulated active vibration control device
KR20090086566A (en) Vibration damping device, method of controlling vibration damping device, method of correcting offset of vibration damping device, and leaf spring
JPH0324338A (en) Hydrulic pressure buffer type rubber receiver
WO2014141557A1 (en) Power generator
JP6174053B2 (en) Magnetostrictive vibration power generator
JP2015132316A (en) Electromagnetic actuator, and active type vibration control device and active type fluid-filled vibration-proofing device using the same
CN104956116A (en) An electromechanical generator for, and method of, converting mechanical vibrational energy into electrical energy
US20140284857A1 (en) Electronic active mount capable of bidirectional control
WO2010127568A1 (en) Initiative-control type electric torsion vibration absorber and implement method thereof
WO2012132378A1 (en) Vibration-based electric power generator
WO2016121852A1 (en) Power generator
JP2008028288A (en) Reactor device
KR101593576B1 (en) Piezoelectric magnetorheological fluid base isolator
JP2008182075A (en) Reactor
US20210222753A1 (en) Cylindrical antivibration device for motor mount
US8820492B1 (en) Soft matrix magnetorheological mounts for shock and vibration isolation
JP5916572B2 (en) Vibration isolator with power generation means
WO2018168516A1 (en) Vibration-proof frame
JP6155009B2 (en) Power generator
RU97783U1 (en) VIBRATOR WITH ELECTROMAGNETIC RIGID COMPENSATOR
JP2018123862A (en) Active damper
JP2006255649A (en) Electromagnetic actuator, active type damper using it, and fluid seal type active mount
JP3619056B2 (en) Active vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150