JP5915321B2 - Laminated body for pressure vessel liner, pressure vessel and method for producing the same - Google Patents

Laminated body for pressure vessel liner, pressure vessel and method for producing the same Download PDF

Info

Publication number
JP5915321B2
JP5915321B2 JP2012076831A JP2012076831A JP5915321B2 JP 5915321 B2 JP5915321 B2 JP 5915321B2 JP 2012076831 A JP2012076831 A JP 2012076831A JP 2012076831 A JP2012076831 A JP 2012076831A JP 5915321 B2 JP5915321 B2 JP 5915321B2
Authority
JP
Japan
Prior art keywords
pressure vessel
layer
reinforcing material
liner
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076831A
Other languages
Japanese (ja)
Other versions
JP2013203018A (en
Inventor
小川 浩一
浩一 小川
憲治 羽田野
憲治 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2012076831A priority Critical patent/JP5915321B2/en
Publication of JP2013203018A publication Critical patent/JP2013203018A/en
Application granted granted Critical
Publication of JP5915321B2 publication Critical patent/JP5915321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、圧力容器ライナー用積層体、圧力容器及びその製造方法に関し、さらに詳しくは、合成樹脂製ライナー材で形成される中空容器と外表面の補強材と接着強度が向上し、補強材を形成する補強糸の巻回時の巻きずれを防止することができ、また、成形時の形状保持性が飛躍的に改善された圧力容器ライナー用積層体、さらにはそれを用いてなる圧力容器及びその圧力容器の製造方法に関する。   The present invention relates to a laminate for a pressure vessel liner, a pressure vessel, and a method for producing the same, and more specifically, a hollow vessel formed of a synthetic resin liner material, a reinforcing material on an outer surface, and an adhesive strength are improved. Winding displacement of the reinforcing yarn to be formed can be prevented, and the pressure vessel liner laminate in which the shape retention at the time of molding is dramatically improved, and the pressure vessel using the laminate The present invention relates to a method for manufacturing the pressure vessel.

天然ガス、圧縮天然ガス、酸素や窒素、水素用タンク等の圧力容器では、充填圧力が20MPa〜100MPaという高圧であり、従来では、鋳鉄、鋼鉄製からなる金属製の高圧容器が一般的に使用されてきたが、昨今の燃費の向上のため自動車部品のプラスチック化や地球温暖化の原因となる二酸化炭素の排出量の抑制などから水素を利用した燃料電池電気自動車等の普及など、自動車等の軽量化や自動車燃料の多様化、リサイクル化等の環境面の変化から、これら圧力容器においても急速にプラスチック化が行われつつある。   In pressure vessels such as natural gas, compressed natural gas, oxygen, nitrogen, and hydrogen tanks, the filling pressure is as high as 20 MPa to 100 MPa. Conventionally, metal high-pressure vessels made of cast iron or steel are generally used. However, in order to improve fuel economy, automobile parts have become more popular, such as the spread of fuel cell electric vehicles that use hydrogen to reduce the amount of carbon dioxide that causes global warming. Due to environmental changes such as weight reduction, automobile fuel diversification and recycling, these pressure vessels are also rapidly becoming plastic.

例えば、自動車の燃料としてのLPG、水素を利用した燃料電池が使用され、搭載する圧力容器の軽量化が要望されている。例えば、鋼鉄製の容器に替わるものとして、アルミ製のライナーに炭素繊維で補強したものが使用されているが、さらに軽量化をはかるために、プラスチック製のライナーを使用した樹脂製容器も開発されている。例えば、特許文献1に記載の容器は、ガスバリア性を有する樹脂製のライナーが、耐圧性の繊維強化プラスチック(FRP)製の外側殻で覆われてなる圧力容器で、本質的に樹脂からなるので金属製のものに比べて軽量であり、燃費の向上が期待できる。   For example, fuel cells using LPG and hydrogen as fuel for automobiles are used, and weight reduction of the pressure vessel to be mounted is desired. For example, as an alternative to steel containers, aluminum liners reinforced with carbon fiber are used, but resin containers using plastic liners have also been developed to further reduce weight. ing. For example, the container described in Patent Document 1 is a pressure container in which a resin-made liner having gas barrier properties is covered with an outer shell made of pressure-resistant fiber reinforced plastic (FRP), and is essentially made of resin. It is lighter than metal ones and can be expected to improve fuel efficiency.

このような圧力容器は、特許文献1に示されるように、合成樹脂製ライナー材の外表面を繊維強化プラスチック(FRP:fiber reinforced plastics)あるいは繊維強化金属複合材料(FRM:fiber reinforced metal)などの補強糸をフィラメントワインディング法やテープワインディング法等によって、ヘリカル巻層、フープ巻層、レーベル巻層などで巻回、積層し、熱硬化性樹脂等の接着剤を溶融または硬化させて補強材層を形成させることが一般的に行われているが、これらの繊維糸をライナー材に巻回する際に表面が滑り易く、補強糸がずれてうまく巻回できないという問題が生じている。   In such a pressure vessel, as shown in Patent Document 1, the outer surface of a synthetic resin liner material is made of fiber reinforced plastic (FRP) or fiber reinforced metal composite (FRM). Reinforcing yarn is wound and laminated with helical winding layer, hoop winding layer, label winding layer, etc. by filament winding method or tape winding method, etc., and adhesive such as thermosetting resin is melted or cured to form a reinforcing material layer Although it is generally formed, there is a problem that when these fiber yarns are wound around the liner material, the surface is slippery, and the reinforcing yarn is displaced and cannot be wound well.

一方、このような圧力容器は、容器内へガスを充填し、または容器内からガスを取出すノズルを取付けるために、ノズル取付け用の口金部材が設けられている。口金部材は、通常、容器の内側ライナー材と一体的に結合されるが、ノズルを螺合させるための口金部材は通常金属製であり、内側ライナー材は軽量化または製造工程の簡素化の観点から口金部材とは異種のプラスチック材料から構成されるので、内側ライナー材と口金部材との結合部または界面部のシール性が要求されている。   On the other hand, such a pressure vessel is provided with a nozzle mounting member in order to attach a nozzle for filling the gas into the vessel or taking out the gas from the vessel. Normally, the base member is integrally coupled with the inner liner material of the container, but the base member for screwing the nozzle is usually made of metal, and the inner liner material is used in terms of weight reduction or simplification of the manufacturing process. Since the base member is made of a different plastic material, the sealing property of the joint portion or interface portion between the inner liner material and the base member is required.

本出願人は、先に、特許文献2においては、合成樹脂製ライナー材で形成された中空容器と、該中空容器の外層に設けられた補強材で形成された補強材層とを有し、かつ少なくとも1つの口金部材を有する圧力容器であって、該中空容器の外層に設けられた接着剤層を介して中空容器と補強材層とが接着または溶着されている圧力容器を提案している。そしてそこでは、合成樹脂製ライナー材で形成される中空容器の内側壁と口金部材との接着力を向上させ、気密シール性が高められた圧力容器が提案されているが、更に性能の向上したものが求められている。
特に、特許文献2には、接着剤層を形成する接着剤として、官能基を含有するポリオレフィン系樹脂又はその組成物が開示されているが、ライナー材と補強材との接着性にとりわけ優れ、補強材巻き付け時のライナー形状保持に適した材料に関する開示や示唆がなされているとは必ずしも言えない。
The present applicant, in Patent Document 2 , previously has a hollow container formed of a synthetic resin liner material, and a reinforcing material layer formed of a reinforcing material provided on the outer layer of the hollow container, And a pressure vessel having at least one base member, in which the hollow vessel and the reinforcing material layer are bonded or welded via an adhesive layer provided on the outer layer of the hollow vessel. . And, there has been proposed a pressure vessel in which the adhesive force between the inner wall of the hollow container formed of a synthetic resin liner material and the base member is improved, and the hermetic sealing property is improved, but the performance is further improved. Things are sought.
In particular, Patent Document 2 discloses a polyolefin-based resin containing a functional group or a composition thereof as an adhesive for forming an adhesive layer, and is particularly excellent in adhesion between a liner material and a reinforcing material, It cannot be said that disclosure or suggestion regarding a material suitable for retaining the liner shape at the time of winding the reinforcing material is necessarily made.

昨今の厳しい製品の品質管理、より高圧なガス充填の要求、あるいは、特に従来の圧力容器においては、比較的分子量の大きい天然ガスなどに対して気密性は発揮するものの、分子量の小さい水素ガスについては十分な耐水素ガス透過性を維持しているとはいい難く、より性能の高い接着性能や高品質な製品を、より安価で、簡単な製造工程で製造することが要望されている。   The recent demands for strict quality control of products, higher pressure gas filling, or the conventional pressure vessel, especially for natural gas with relatively high molecular weight, etc. Is difficult to maintain sufficient hydrogen gas permeation resistance, and there is a demand for producing a higher-performance adhesive performance and a higher-quality product at a lower cost and with a simple manufacturing process.

特開平7−305798号公報Japanese Patent Laid-Open No. 7-305798 特開2008−164131号公報JP 2008-164131 A

本発明の目的は、上記した従来技術の問題点に鑑み、合成樹脂製ライナー材で形成される中空容器の外表面の補強材との接着強度を格段に向上させ、補強材層を形成する補強糸の巻回時の巻きずれを防止し、綺麗で強固な補強層を有する圧力容器を製造することのできる圧力容器ライナー用積層体、さらにはそれを用いてなる圧力容器及びその圧力容器の製造方法を提供することにある。
また、本発明の他の目的は、圧力容器成形時の合成樹脂製ライナー材の形状保持性が格段に向上し、特に中空容器への補強材のワインディング時の形状保持性に優れ、また高温時の変形が起こりにくい圧力容器を製造することのできる圧力容器ライナー用積層体、さらにはそれを用いてなる圧力容器及びその圧力容器の製造方法を提供することにある。
The object of the present invention is to reinforce the formation of a reinforcing material layer by remarkably improving the adhesive strength with the reinforcing material on the outer surface of a hollow container formed of a synthetic resin liner material in view of the above-mentioned problems of the prior art. A pressure vessel liner laminate capable of producing a pressure vessel having a beautiful and strong reinforcing layer, preventing winding slippage when winding the yarn, and a pressure vessel using the pressure vessel and production of the pressure vessel It is to provide a method.
Another object of the present invention is to significantly improve the shape retention of the synthetic resin liner material during molding of the pressure vessel, particularly excellent in shape retention during winding of the reinforcing material to the hollow vessel, and at high temperatures. Another object of the present invention is to provide a pressure vessel liner laminate capable of producing a pressure vessel in which deformation of the pressure hardly occurs, a pressure vessel using the same, and a method for producing the pressure vessel.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の性状、特性および特定の層構成を有する圧力容器ライナー用積層体を用いると、合成樹脂製ライナー材の形状保持性を格段に向上させ、合成樹脂製ライナー材と補強材との接着強度を格段に向上させ、補強材を形成する補強糸の巻回時の巻きずれを防止することができ、成形時の形状保持性が飛躍的に高められることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the inventors of the present invention can maintain the shape of the synthetic resin liner material by using a laminate for a pressure vessel liner having specific properties, characteristics, and specific layer configurations. The shape of the molding material can be greatly improved, the adhesive strength between the synthetic resin liner material and the reinforcing material can be greatly improved, and the winding of the reinforcing yarn forming the reinforcing material can be prevented from slipping. The inventors have found that the retentivity can be dramatically improved and have completed the present invention.

すなわち、本発明の第1の発明によれば、下記の特性(1)〜(3)を有する熱可塑性樹脂層(I)と下記の特性(i)〜(iii)を有するポリエチレン層(II)とを含む圧力容器ライナー用積層体であって、
熱可塑性樹脂層(I)は、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、及び、エチレン−酢酸ビニル共重合体からなる群より選択される少なくとも一種の共重合体を含み、
熱可塑性樹脂層(I)の厚み割合が1〜90%、ポリエチレン層(II)の厚み割合が99〜10%であることを特徴とする圧力容器ライナー用積層体が提供される。
特性(1):密度が0.900〜0.970g/cmである
特性(2):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(3):極性基の量が4〜32重量%である
特性(i):密度が0.900〜0.970g/cmである
特性(ii):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(iii):DSCにて測定される高温側の融点ピークが120℃以上である
That is, according to the first invention of the present invention, the thermoplastic resin layer (I) having the following characteristics (1) to (3) and the polyethylene layer (II) having the following characteristics (i) to (iii): A pressure vessel liner laminate comprising:
The thermoplastic resin layer (I) comprises at least one copolymer selected from the group consisting of an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-vinyl acetate copolymer. Including
A laminate for a pressure vessel liner is provided in which the thickness ratio of the thermoplastic resin layer (I) is 1 to 90% and the thickness ratio of the polyethylene layer (II) is 99 to 10%.
Characteristic (1): Density is 0.900 to 0.970 g / cm 3 Characteristic (2): Melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg is 0.01 to 100 g / 10 Characteristic (3): The amount of polar groups is 4 to 32% by weight Characteristic (i): Density is 0.900 to 0.970 g / cm 3 Characteristic (ii): Temperature 190 ° C., load 2 Melt flow rate (MFR) measured at .16 kg is 0.01 to 100 g / 10 min. Characteristic (iii): High temperature side melting point peak measured by DSC is 120 ° C. or higher.

また、本発明の第2の発明によれば、ライナー材で形成された中空容器と、該中空容器の外層に設けられた補強材で形成された補強材層とを有し、かつ少なくとも1つの口金部材を有する圧力容器であって、前記ライナー材は、第1の発明に係る積層体であることを特徴とする圧力容器が提供される。 Further, according to the second invention of the present invention, it has a hollow container formed of a liner material and a reinforcing material layer formed of a reinforcing material provided on an outer layer of the hollow container, and at least one A pressure vessel having a base member, wherein the liner material is a laminate according to the first invention is provided.

また、本発明の第3の発明によれば、第2の発明において、ライナー材の熱可塑性樹脂層(I)は、補強材と接触するように配置されることを特徴とする圧力容器が提供される。 According to a third aspect of the present invention, there is provided the pressure vessel according to the second aspect, wherein the thermoplastic resin layer (I) of the liner material is disposed so as to contact the reinforcing material. Is done.

また、本発明の第4の発明によれば、第2又は3の発明において、前記補強材が、繊維強化材であることを特徴とする圧力容器が提供される。 According to a fourth aspect of the present invention, there is provided the pressure vessel according to the second or third aspect , wherein the reinforcing material is a fiber reinforcing material.

また、本発明の第5の発明によれば、第1の発明に係る圧力容器ライナー用積層体で形成された中空容器と、該中空容器の外層に設けられた補強材で形成された補強材層とを有し、かつ少なくとも1つの口金部材を有する圧力容器の製造方法であって、該中空容器の外層に補強材層を設け、該補強材を熱可塑性樹脂層(I)と接着又は溶着することを特徴とする圧力容器の製造方法が提供される。 Further, according to the fifth invention of the present invention, the hollow container formed by the pressure vessel liner laminate according to the first invention and the reinforcing material formed by the reinforcing material provided in the outer layer of the hollow container. A pressure vessel having at least one cap member, wherein a reinforcing material layer is provided on the outer layer of the hollow vessel, and the reinforcing material is bonded or welded to the thermoplastic resin layer (I). A method of manufacturing a pressure vessel is provided.

本発明の圧力容器ライナー用積層体によれば、合成樹脂製ライナー材で形成される中空容器の外表面の補強材との接着強度を格段に向上させることができ、補強材層を形成する補強糸の巻回時の巻きずれを防止することができ、綺麗で強固な補強層を有する圧力容器を製造することができる。
また、本発明の圧力容器ライナー用積層体によれば、合成樹脂製ライナー材の形状保持性が格段に向上し、特に中空容器への補強材のワインディング時の形状保持性に優れ、また高温時の変形が起こりにくい圧力容器を提供することができる。
According to the laminate for a pressure vessel liner of the present invention, it is possible to remarkably improve the adhesive strength with the reinforcing material on the outer surface of the hollow container formed of the synthetic resin liner material, and to form a reinforcing material layer. Winding of the yarn can be prevented from slipping, and a pressure vessel having a beautiful and strong reinforcing layer can be manufactured.
Further, according to the laminate for a pressure vessel liner of the present invention, the shape retainability of the synthetic resin liner material is remarkably improved, particularly excellent in shape retainability during winding of the reinforcing material to the hollow container, and at a high temperature. It is possible to provide a pressure vessel in which the deformation of is difficult to occur.

本発明の圧力容器ライナー用積層体は、前述した特性(1)〜(3)を有する熱可塑性樹脂層(I)と、前述した特性(i)〜(iii)を有するポリエチレン層(II)とを含み、熱可塑性樹脂層(I)の厚み割合が1〜90%、ポリエチレン層(II)の厚み割合が99〜10%である層構成を有することを特徴とする。
以下に、本発明を項目毎に詳細に説明する。
The laminate for a pressure vessel liner of the present invention comprises a thermoplastic resin layer (I) having the above-described characteristics (1) to (3), and a polyethylene layer (II) having the above-described characteristics (i) to (iii). The thickness ratio of the thermoplastic resin layer (I) is 1 to 90%, and the thickness ratio of the polyethylene layer (II) is 99 to 10%.
Below, this invention is demonstrated in detail for every item.

1.圧力容器の構造
本発明の圧力容器は、例えば特開2008−164131号公報に開示されたものと基本的には同様の構造を有する。
本発明に係る圧力容器は、合成樹脂製ライナー材(内層がポリエチレン層で、外層が熱可塑性樹脂層)で形成された中空容器(内側壁)と、該中空容器の外層に補強材で形成された補強材層(外側壁)とで構成され、該中空容器の少なくとも一方の端部には、高圧ガスの充填、排出用のノズル取付けのための口金部材を有し、中空容器と該補強材とは、接着または溶着している。
1. Structure of Pressure Vessel The pressure vessel of the present invention has basically the same structure as that disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-164131.
The pressure vessel according to the present invention is formed of a hollow container (inner wall) formed of a synthetic resin liner material (inner layer is a polyethylene layer and outer layer is a thermoplastic resin layer), and a reinforcing material on the outer layer of the hollow container. A reinforcing member layer (outer wall), and at least one end of the hollow container has a base member for attaching a nozzle for filling and discharging a high-pressure gas. The hollow container and the reinforcing member Is bonded or welded.

2.圧力容器構成部材の材料
以下に本発明で使用される原材料について具体的に詳述する。
(1)ライナー材
中空容器を形成するライナー材は、圧力容器に充填された高圧ガスを収納する。当該ライナー材は、充填されたガスが漏洩しないガスバリア性を有することが好ましい。また、ライナー材は、形状保持性が高いものが好ましく、積層材で構成されているものがよい。
2. Materials for Pressure Vessel Constituent Materials The raw materials used in the present invention are specifically described in detail below.
(1) Liner material The liner material which forms a hollow container accommodates the high pressure gas with which the pressure container was filled. The liner material preferably has a gas barrier property that prevents the filled gas from leaking. Further, the liner material is preferably one having a high shape retaining property, and is preferably composed of a laminated material.

(1−1)熱可塑性樹脂層(I)
本発明の圧力容器ライナー用積層体を構成する熱可塑性樹脂層(I)は、下記の特性(1)〜(3)を有する熱可塑性樹脂から形成される。なお、熱可塑性樹脂に、ポリエチレンを25〜75重量%含有させた場合には、下記の特性(4)を有することが好ましい。
特性(1):密度が0.900〜0.970g/cmである
特性(2):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(3):極性基の量が2〜40重量%である
特性(4):DSCにて測定される100℃以上での不融解成分の割合が20〜75%である
以下に、上記した特性(1)〜(4)のもつ技術的意義等について説明する。
1.特性(1)
本発明の熱可塑性樹脂は、密度が0.900〜0.970g/cmであり、好ましくは、0.905〜0.965g/cm、さらに好ましくは、0.910〜0.960g/cmの範囲であることが、容器の形状保持のために望ましい。なお、密度は、JIS K7112に準拠して測定されるものである。
熱可塑性樹脂の密度は、目的とする圧力容器の性能に応じて適宜選択することが可能であるが、密度が0.900g/cm未満では、剛性が不足しタンク口部強度の剛性が不足し、また、密度が0.970g/cmを超えるものは耐久性が低下するおそれがある。
(1-1) Thermoplastic resin layer (I)
The thermoplastic resin layer (I) constituting the laminate for a pressure vessel liner of the present invention is formed from a thermoplastic resin having the following characteristics (1) to (3). In addition, when 25 to 75 weight% of polyethylene is contained in a thermoplastic resin, it is preferable to have the following characteristic (4).
Characteristic (1): Density is 0.900 to 0.970 g / cm 3 Characteristic (2): Melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg is 0.01 to 100 g / 10 Characteristic (3): The amount of polar group is 2 to 40% by weight. Characteristic (4): The proportion of insoluble components at 100 ° C. or higher measured by DSC is 20 to 75%. The technical significance of the above characteristics (1) to (4) will be described.
1. Characteristics (1)
The thermoplastic resin of the present invention, density of 0.900~0.970g / cm 3, preferably, 0.905~0.965g / cm 3, more preferably, 0.910~0.960g / cm A range of 3 is desirable for maintaining the shape of the container. The density is measured according to JIS K7112.
The density of the thermoplastic resin can be appropriately selected according to the performance of the target pressure vessel. However, if the density is less than 0.900 g / cm 3 , the rigidity is insufficient and the rigidity of the tank mouth portion is insufficient. In addition, if the density exceeds 0.970 g / cm 3 , the durability may decrease.

2.特性(2)
本発明の熱可塑性樹脂は、温度190℃、荷重2.16kgにて測定されるメルトフローレート(MFR)が0.01〜100g/10分であり、好ましくは0.02〜80g/10分、さらに好ましくは0.05〜50g/10分であることが、中空容器の成形性の観点から望ましい。なお、MFRは、JIS K6922−1(温度190℃、荷重2.16kg)に準拠して測定されるものである。
熱可塑性樹脂のMFRは、目的とする圧力容器の成形方法に応じて適宜選択することが可能であるが、MFRが0.01g/10分未満では、流動性が低く成形が難しくなり、成形樹脂圧力が上昇し押出特性が低下する。100g/10分を超えると衝撃性、耐久性が低下するおそれがある。
2. Characteristics (2)
The thermoplastic resin of the present invention has a melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg of 0.01 to 100 g / 10 minutes, preferably 0.02 to 80 g / 10 minutes. More preferably, it is 0.05 to 50 g / 10 min from the viewpoint of moldability of the hollow container. The MFR is measured according to JIS K6922-1 (temperature 190 ° C., load 2.16 kg).
The MFR of the thermoplastic resin can be appropriately selected according to the molding method of the target pressure vessel. However, if the MFR is less than 0.01 g / 10 min, the fluidity is low and the molding becomes difficult, and the molding resin Pressure rises and extrusion characteristics decrease. If it exceeds 100 g / 10 minutes, impact properties and durability may be reduced.

3.特性(3)
本発明の熱可塑性樹脂は、極性基の量が2〜40重量%、好ましくは3〜36重量%、さらに好ましくは4〜32重量%である。
極性基の量が2重量%未満では、ライナー材と補強材との接着性が不十分となり、40重量%を超えると耐久性が低下する傾向がある。
本発明において、極性基とは、電気的に極性を有する置換基をいうが、好ましくは、(a)カルボキシル基、(b)カルボン酸無水物基、(c)アルコキシカルボニル基、および(d)アシルオキシ基からなる群から選択される少なくとも1種の置換基が、補強材との接着性、圧力容器としての耐久性等の観点から好適である。
3. Characteristic (3)
The thermoplastic resin of the present invention has a polar group content of 2 to 40% by weight, preferably 3 to 36% by weight, and more preferably 4 to 32% by weight.
When the amount of the polar group is less than 2% by weight, the adhesion between the liner material and the reinforcing material becomes insufficient, and when it exceeds 40% by weight, the durability tends to decrease.
In the present invention, the polar group means an electrically polar substituent, and preferably (a) a carboxyl group, (b) a carboxylic acid anhydride group, (c) an alkoxycarbonyl group, and (d) At least one substituent selected from the group consisting of acyloxy groups is preferable from the viewpoints of adhesion to a reinforcing material, durability as a pressure vessel, and the like.

(a)カルボキシル基は、カルボン酸の特性基であり、−COOHである。
(b)カルボン酸無水物基は、カルボン酸のカルボキシル2個から1分子の水が失われて、二つのアシル基が1個の酸素原子を共有する化学構造の基であり、−CO−O−CO−を意味する。
(c)アルコキシカルボニル基は、−COORを意味し、本発明において、RはC2n+1−(nは1〜6)を意味し、nは、好ましくは1〜4である。具体的には、メトキシカルボニル基、エトキシカルボニル基が挙げられる。
(d)アシルオキシ基は、−OCORを意味し、本発明において、RはC2n+1−(nは1〜6)を意味し、nは、好ましくは1〜4、さらに好ましくは1である。具体的には、アセチルオキシ基(アセトキシ又はアセトキシル基ともいう)が挙げられる。
当該極性基の量は、熱可塑性樹脂を製造する際に使用されたラジカル重合性酸コモノマー、アクリル酸エステルコモノマー、メタクリル酸エステルコモノマー、カルボン酸ビニルエステルコモノマー等の量から求めることができ、IR及びNMR解析等により測定することができる。
(A) A carboxyl group is a characteristic group of carboxylic acid and is —COOH.
(B) A carboxylic acid anhydride group is a group having a chemical structure in which one molecule of water is lost from two carboxyls of a carboxylic acid, and two acyl groups share one oxygen atom, and —CO—O Means -CO-.
(C) The alkoxycarbonyl group means —COOR, and in the present invention, R means C n H 2n + 1 — (n is 1 to 6), and n is preferably 1 to 4. Specific examples include a methoxycarbonyl group and an ethoxycarbonyl group.
(D) The acyloxy group means —OCOR 1, and in the present invention, R 1 means C n H 2n + 1 — (n is 1 to 6), and n is preferably 1 to 4, more preferably 1 It is. Specifically, an acetyloxy group (also referred to as an acetoxy group or an acetoxyl group) can be given.
The amount of the polar group can be determined from the amount of the radical polymerizable acid comonomer, acrylic acid ester comonomer, methacrylic acid ester comonomer, carboxylic acid vinyl ester comonomer, etc. used in producing the thermoplastic resin, IR and It can be measured by NMR analysis or the like.

4.特性(4)
熱可塑性樹脂層(I)には、必要により極性基を有しない熱可塑性樹脂を混合して使用することができる。本発明の効果を損なわない範囲で、ポリエチレンを25〜75重量%含有させることができる。熱可塑性樹脂層(I)の熱可塑性樹脂に、ポリエチレンを25〜75重量%含有させた場合、次の特性(4)を有することが好ましい。
本発明の熱可塑性樹脂は、DSCにて測定される100℃以上での不融解成分の割合が20〜75%、好ましくは21〜70%であることが、容器の形状保持性及び耐熱性の観点、特に中空容器への補強材のワインディング時の形状保持性の観点から望ましい。
DSCにて測定される100℃以上での不融解成分の割合は、熱可塑性樹脂に含まれる結晶性成分量の指標であり、当該割合の範囲内とすることにより成形品形状を十分に保持することができ、当該範囲外では、成形品の形状を保持しにくくなる傾向がある。
4). Characteristic (4)
In the thermoplastic resin layer (I), a thermoplastic resin having no polar group can be mixed and used if necessary. As long as the effects of the present invention are not impaired, the polyethylene can be contained in an amount of 25 to 75% by weight. When the thermoplastic resin of the thermoplastic resin layer (I) contains 25 to 75% by weight of polyethylene, it preferably has the following characteristic (4).
The thermoplastic resin of the present invention has a shape retention property and heat resistance of the container of 20 to 75%, preferably 21 to 70% of the insoluble component at 100 ° C. or higher as measured by DSC. From the viewpoint, particularly from the viewpoint of shape retention during winding of the reinforcing material to the hollow container.
The ratio of the infusible component at 100 ° C. or higher measured by DSC is an index of the amount of the crystalline component contained in the thermoplastic resin, and the molded product shape is sufficiently retained by being within the range of the ratio. However, outside the range, it tends to be difficult to maintain the shape of the molded product.

DSCは、示差走査熱量測定(differential scanning calorimetry)を意味し、示差走査熱量計を用いて測定され、結晶化温度、結晶化度等が測定される。DSCは、試料及び基準物質を加熱又は冷却によって調節しながら等しい条件下におき、この二つの間の温度差をゼロに保つに必要なエネルギーを時間又は温度に対して記録する方法に基づいて測定される。
DSCの測定では、試料を底の平らな金属容器につめ、精秤して試料量を求めたのち蓋で覆い、測定装置に設置し、経時に熱量変化量(ΔH)を求める。
本願発明において、100℃以上での不融解成分の割合は、熱可塑性樹脂組成物試料のDSCの100℃以上の熱量変化量(ΔHw)及び組成物の成分であるポリエチレンのみの試料のDSC熱量変化量(ΔHa)を測定し、ΔHw/ΔHaの割合(百分率)として求められる。
DSC means differential scanning calorimetry, which is measured using a differential scanning calorimeter to measure crystallization temperature, crystallinity, and the like. DSC is a measurement based on a method that records the energy required to keep the temperature difference between the two to zero while the sample and reference material are adjusted under heating or cooling under equal conditions. Is done.
In the DSC measurement, the sample is put in a flat metal container, and precisely weighed to determine the amount of the sample. Then, the sample is covered with a lid, placed in a measuring device, and the amount of change in heat (ΔH) is determined over time.
In the present invention, the ratio of the infusible component at 100 ° C. or higher is the amount of change in calorie (ΔHw) of the DSC of the thermoplastic resin composition sample at 100 ° C. or higher, and the DSC heat amount change of the sample of polyethylene alone as the component of the composition The amount (ΔHa) is measured and determined as a ratio (percentage) of ΔHw / ΔHa.

5.共重合体(B)
本発明の熱可塑性樹脂層(I)を形成する熱可塑性樹脂は、好ましくは、エチレンとラジカル重合性酸コモノマー、アクリル酸エステルコモノマー、メタクリル酸エステルコモノマー、およびカルボン酸ビニルエステルコモノマーからなる群から選択される少なくとも1種のコモノマーとの共重合体(B)が好適である。
上記共重合体(B)は、特定のエチレン−極性コモノマー共重合体であり、この特定の共重合体を用いることが、本発明の特徴の一つでもある。
5. Copolymer (B)
The thermoplastic resin forming the thermoplastic resin layer (I) of the present invention is preferably selected from the group consisting of ethylene and a radical polymerizable acid comonomer, an acrylate ester comonomer, a methacrylic acid ester comonomer, and a carboxylic acid vinyl ester comonomer. Preferred is a copolymer (B) with at least one comonomer.
The copolymer (B) is a specific ethylene-polar comonomer copolymer, and the use of this specific copolymer is also one of the features of the present invention.

共重合体(B)のラジカル重合性酸コモノマーとしては、具体的には、マレイン酸、フマル酸、シトラコン酸、イタコン酸等のα,β−不飽和ジカルボン酸またはこれらの無水物、アクリル酸、メタクリル酸、クロトン酸、ビニル酢酸、ペンテン酸等の不飽和モノカルボン酸等が挙げられ、中でも無水マレイン酸、アクリル酸、メタクリル酸が好ましい。
共重合体(B)のアクリル酸エステルコモノマーとしては、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等が挙げられ、中でもアクリル酸メチル、アクリル酸エチルが好ましい。
共重合体(B)のメタクリル酸エステルコモノマーとしては、具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられ、中でもメタクリル酸メチル、メタクリル酸エチルが好ましい。
共重合体(B)のカルボン酸ビニルエステルコモノマーとしては、具体的には、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられ、中でも酢酸ビニルが好ましい。
Specific examples of the radical polymerizable acid comonomer of the copolymer (B) include α, β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid, or anhydrides thereof, acrylic acid, Examples thereof include unsaturated monocarboxylic acids such as methacrylic acid, crotonic acid, vinyl acetic acid and pentenoic acid, among which maleic anhydride, acrylic acid and methacrylic acid are preferred.
Specific examples of the acrylate ester comonomer of the copolymer (B) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and the like. Among them, methyl acrylate and ethyl acrylate are preferable.
Specific examples of the methacrylate ester comonomer of the copolymer (B) include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and the like, and among them, methyl methacrylate and ethyl methacrylate are preferable.
Specific examples of the vinyl carboxylate comonomer of the copolymer (B) include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate and the like, and among these, vinyl acetate is preferable.

共重合体(B)の具体例としては、二元系共重合体として、例えば、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、エチレン−無水マレイン酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−酢酸ビニル共重合体が挙げられる。
三元系共重合体として、例えば、エチレン−アクリル酸−アクリル酸メチル共重合体、エチレン−アクリル酸−アクリル酸エチル共重合体、エチレン−アクリル酸−酢酸ビニル共重合体、エチレン−メタクリル酸−メタクリル酸メチル共重合体、エチレン−メタクリル酸−メタクリル酸エチル共重合体、エチレン−メタクリル酸−酢酸ビニル共重合体、エチレン−無水マレイン酸−アクリル酸メチル共重合体、エチレン−無水マレイン酸−アクリル酸エチル共重合体、エチレン−無水マレイン酸−メタクリル酸メチル共重合体、エチレン−無水マレイン酸−メタクリル酸エチル共重合体、エチレン−無水マレイン酸−酢酸ビニル共重合体が挙げられる。
さらに、上記のコモノマーを組み合わせた多元系の共重合体も挙げられる。
上記共重合体の中でも、特に、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−無水マレイン酸−アクリル酸メチル共重合体、エチレン−無水マレイン酸−アクリル酸エチル共重合体、エチレン−無水マレイン酸−メタクリル酸メチル共重合体、エチレン−無水マレイン酸−メタクリル酸エチル共重合体が好ましい。
Specific examples of the copolymer (B) include binary copolymers such as ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-maleic anhydride copolymer, ethylene- Examples thereof include a methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, an ethylene-ethyl methacrylate copolymer, and an ethylene-vinyl acetate copolymer.
Examples of terpolymers include ethylene-acrylic acid-methyl acrylate copolymer, ethylene-acrylic acid-ethyl acrylate copolymer, ethylene-acrylic acid-vinyl acetate copolymer, ethylene-methacrylic acid- Methyl methacrylate copolymer, ethylene-methacrylic acid-ethyl methacrylate copolymer, ethylene-methacrylic acid-vinyl acetate copolymer, ethylene-maleic anhydride-methyl acrylate copolymer, ethylene-maleic anhydride-acrylic Examples include ethyl acetate copolymer, ethylene-maleic anhydride-methyl methacrylate copolymer, ethylene-maleic anhydride-ethyl methacrylate copolymer, and ethylene-maleic anhydride-vinyl acetate copolymer.
Furthermore, the multi-component copolymer which combined said comonomer is also mentioned.
Among the above copolymers, in particular, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-maleic anhydride- A methyl acrylate copolymer, an ethylene-maleic anhydride-ethyl acrylate copolymer, an ethylene-maleic anhydride-methyl methacrylate copolymer, and an ethylene-maleic anhydride-ethyl methacrylate copolymer are preferred.

上記のコモノマーの含有量は、極性基の量が5〜40重量%となるようにすることが好ましい。極性基の量が5重量%未満では、ライナー材と補強材との接着性が不十分となり、40重量%を超えると耐久性が低下する傾向がある。
共重合体(B)は、チューブラー反応器、オートクレーブ反応器等を使用して高圧ラジカル重合法等により製造することができるが、イオン重合により製造されるものであってもよい。具体的には、特開昭60−240705号公報、特開平8−113680号公報等の実施例に記載の共重合体の製造方法に準じて製造することができる。
The content of the above-mentioned comonomer is preferably such that the amount of the polar group is 5 to 40% by weight. When the amount of the polar group is less than 5% by weight, the adhesion between the liner material and the reinforcing material becomes insufficient, and when it exceeds 40% by weight, the durability tends to decrease.
The copolymer (B) can be produced by a high-pressure radical polymerization method using a tubular reactor, an autoclave reactor or the like, but may be produced by ionic polymerization. Specifically, it can be produced according to the method for producing a copolymer described in Examples such as JP-A-60-240705 and JP-A-8-11680.

本発明の共重合体(B)は、温度190℃、荷重2.16kgにて測定されるメルトフローレート(MFR)が0.01〜100g/10分のものが好ましく、さらに好ましくは0.02〜80g/10分、さらに好ましくは0.05〜50g/10分であることが、中空容器の成形性の観点から望ましい。
MFRは、目的とする圧力容器の成形方法に応じて適宜選択することが可能であるが、MFRが0.01g/10分未満では、流動性が低く成形が難しくなり、成形樹脂圧力が上昇し押出特性が低下する。100g/10分を超えると衝撃性、耐久性が低下するおそれがある。なお、MFRは、JIS K6922−2(温度190℃、荷重2.16kg)に準拠して測定される。
The copolymer (B) of the present invention preferably has a melt flow rate (MFR) of 0.01 to 100 g / 10 min measured at a temperature of 190 ° C. and a load of 2.16 kg, more preferably 0.02. From the viewpoint of moldability of the hollow container, it is desirable that it is ˜80 g / 10 minutes, more preferably 0.05 to 50 g / 10 minutes.
The MFR can be appropriately selected according to the molding method of the target pressure vessel. However, if the MFR is less than 0.01 g / 10 min, the fluidity is low and molding becomes difficult, and the molding resin pressure increases. Extrusion properties are reduced. If it exceeds 100 g / 10 minutes, impact properties and durability may be reduced. The MFR is measured according to JIS K6922-2 (temperature 190 ° C., load 2.16 kg).

(1−2)ポリエチレン層(II)
本発明の圧力容器ライナー用積層体を構成するポリエチレン層(II)は、下記の特性(i)〜(iii)を有するポリエチレン(A)から形成される。
特性(i):密度が0.900〜0.970g/cmである
特性(ii):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(iii):DSCにて測定される高温側の融点ピークが120℃以上である
以下に、上記した特性(i)〜(iii)のもつ技術的意義等について説明する。
(1-2) Polyethylene layer (II)
The polyethylene layer (II) constituting the laminate for a pressure vessel liner of the present invention is formed from polyethylene (A) having the following characteristics (i) to (iii).
Characteristic (i): Density is 0.900 to 0.970 g / cm 3 Characteristic (ii): Melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg is 0.01 to 100 g / 10 Characteristic (iii): The melting point peak on the high temperature side measured by DSC is 120 ° C. or higher. The technical significance of the above characteristics (i) to (iii) will be described below.

1.特性(i)
本発明のポリエチレン(A)は、エチレン単独重合体あるいはエチレンとα−オレフィンとの共重合体を指すものであり、密度0.900〜0.970g/cm、好ましくは密度0.905〜0.965g/cm、より好ましくは0.910〜0.960g/cmの範囲であることが、容器の形状保持のために望ましい。
ポリエチレン(A)の密度は、目的とする圧力容器の性能に応じて設定することが可能であるが、密度が0.900g/cm未満では、剛性が不足しタンク口部強度の剛性が不足し、また、密度が0.970g/cmを超えるものは耐久性が低下するおそれがある。なお、当該密度は、JIS K7112に準拠して測定される。
1. Characteristic (i)
The polyethylene (A) of the present invention refers to an ethylene homopolymer or a copolymer of ethylene and α-olefin, and has a density of 0.900 to 0.970 g / cm 3 , preferably a density of 0.905 to 0. A range of .965 g / cm 3 , more preferably 0.910 to 0.960 g / cm 3 is desirable for maintaining the shape of the container.
The density of the polyethylene (A) can be set according to the performance of the target pressure vessel, but if the density is less than 0.900 g / cm 3 , the rigidity is insufficient and the rigidity of the tank mouth portion is insufficient. In addition, if the density exceeds 0.970 g / cm 3 , the durability may decrease. The density is measured according to JIS K7112.

2.特性(ii)
本発明のポリエチレン(A)は、温度190℃、荷重2.16kgにて測定されるメルトフローレート(MFR)が0.01〜100g/10分であり、好ましくは0.02〜80g/10分、さらに好ましくは0.05〜50g/10分であることが、中空容器の成形性の観点から望ましい。
ポリエチレン(A)のMFRは、目的とする圧力容器の成形方法に応じて設定することが可能であるが、MFRが0.01g/10分未満では、流動性が低く成形が難しくなり、成形樹脂圧力が上昇し押出特性が低下する。100g/10分を超えると衝撃性、耐久性が低下するおそれがある。なお、当該MFRは、JIS K6922−1(温度190℃、荷重2.16kg)に準拠して測定される。
2. Characteristic (ii)
The polyethylene (A) of the present invention has a melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg of 0.01 to 100 g / 10 minutes, preferably 0.02 to 80 g / 10 minutes. More preferably, it is 0.05 to 50 g / 10 min from the viewpoint of moldability of the hollow container.
The MFR of polyethylene (A) can be set according to the molding method of the target pressure vessel, but if the MFR is less than 0.01 g / 10 min, the fluidity is low and molding becomes difficult, and the molding resin Pressure rises and extrusion characteristics decrease. If it exceeds 100 g / 10 minutes, impact properties and durability may be reduced. The MFR is measured according to JIS K6922-1 (temperature 190 ° C., load 2.16 kg).

3.特性(iii)
本発明のポリエチレン(A)は、示差走査熱量測定(DSC)にて測定される高温側のピーク温度が120℃以上であり、好ましくは125℃以上である。この要件を満足することが、容器の形状保持性及び耐熱性の観点から、特に中空容器への補強材のワインディング時の形状保持性の観点から望ましい。
DSCにて測定される高温側のピーク温度は、結晶化温度の指標であり、高温側のピーク温度を120℃以上とすることにより、成形時の容器形状を確実に保持することができ、120℃未満では、成形時の容器形状を十分保持しにくくなる傾向がある。
DSCの高温側のピーク温度を120℃以上とするためには、融点が120℃以上の材料を選択することが重要であるが、選択に際しては、補強材との接着性についても考慮しなければならない。
なお、DSCは、示差走査熱量測定(differential scanning calorimetry)を意味し、示差走査熱量計を用いて測定され、結晶化温度、結晶化度等が測定される。DSCは、試料及び基準物質を加熱又は冷却によって調節しながら等しい条件下におき、この二つの間の温度差をゼロに保つに必要なエネルギーを時間又は温度に対して記録する方法に基づいて測定される。
DSCの測定では、試料を底の平らな金属容器につめ、精秤して試料量を求めたのち蓋で覆い、測定装置に設置し、経時に熱量変化量(ΔH)を測定し、高温側のピーク温度を求める。
3. Characteristics (iii)
The polyethylene (A) of the present invention has a peak temperature on the high temperature side measured by differential scanning calorimetry (DSC) of 120 ° C. or higher, preferably 125 ° C. or higher. Satisfying this requirement is desirable from the viewpoint of shape retention and heat resistance of the container, particularly from the viewpoint of shape retention during winding of the reinforcing material to the hollow container.
The peak temperature on the high temperature side measured by DSC is an index of the crystallization temperature. By setting the peak temperature on the high temperature side to 120 ° C. or higher, the shape of the container at the time of molding can be reliably maintained. If it is less than 0 ° C., the container shape at the time of molding tends to be difficult to maintain sufficiently.
In order to set the peak temperature on the high temperature side of DSC to 120 ° C. or higher, it is important to select a material having a melting point of 120 ° C. or higher. Don't be.
DSC means differential scanning calorimetry, and is measured using a differential scanning calorimeter to measure crystallization temperature, crystallinity, and the like. DSC is a measurement based on a method that records the energy required to keep the temperature difference between the two to zero while the sample and reference material are adjusted under heating or cooling under equal conditions. Is done.
In the DSC measurement, the sample is placed in a flat metal container at the bottom, precisely weighed to obtain the sample amount, covered with a lid, installed in a measuring device, and the amount of heat change (ΔH) is measured over time. The peak temperature of is determined.

4.ポリエチレン(A)
本発明のポリエチレン(A)は、エチレン単独重合体あるいはエチレンとα−オレフィンとの共重合体である。
ポリエチレン(A)のα−オレフィンとしては、直鎖または分岐鎖状の炭素数3〜20のオレフィンが好ましく、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセンを挙げることができる。またそれらを2種類以上組み合わせて使用しても良い。これら共重合体の中でも、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・4−メチル−1−ペンテン共重合体、エチレン・1−オクテン共重合体が経済性の観点から好適である。
4). Polyethylene (A)
The polyethylene (A) of the present invention is an ethylene homopolymer or a copolymer of ethylene and an α-olefin.
The α-olefin of polyethylene (A) is preferably a linear or branched olefin having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1- Examples include pentene, 1-octene, and 1-decene. Two or more of them may be used in combination. Among these copolymers, ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene-4-methyl-1-pentene copolymer, and ethylene / 1-octene copolymer are economical. It is preferable from the viewpoint.

本発明のポリエチレン(A)は、特に製造触媒、プロセス等に限定されるものではなく、非特許文献1(成書『ポリエチレン技術読本』(松浦一雄・三上尚孝編著、工業調査会刊行、2001年)のp.123〜160、p.163〜196等)に記載されている方法により製造することが可能である。即ち、チーグラー系触媒、クロム系触媒、シングルサイト系触媒等や、スラリー法、溶液法、気相法の各重合様式にて、各種重合反応器、重合条件、触媒にて製造することが可能である。   The polyethylene (A) of the present invention is not particularly limited to the production catalyst, process, etc. Non-patent document 1 (Critical book “Polyethylene Technology Reader” (written by Kazuo Matsuura and Naotaka Mikami, published by the Industrial Research Council, 2001) P. 123-160, p. 163-196, etc.). In other words, it can be manufactured with various polymerization reactors, polymerization conditions, and catalysts in each polymerization mode of Ziegler catalyst, chromium catalyst, single site catalyst, etc., slurry method, solution method, gas phase method. is there.

(1−3)層構成
本発明の合成樹脂製ライナー材は、前述した特定の熱可塑性樹脂層(I)と特定のポリエチレン層(II)とを含むが、その際、層構成としては、熱可塑性樹脂層(I)の厚み割合が1〜90%、ポリエチレン層(II)の厚み割合が99〜10%であることが重要である。熱可塑性樹脂層(I)の厚み割合が1%未満、ポリエチレン層(II)の厚み割合が99%超えると、層構成を維持するのが困難であったり、接着強度が確保できないといった問題があり、一方、熱可塑性樹脂層(I)の厚み割合が90%超え、ポリエチレン層(II)の厚み割合が10%未満であると、ワインディング時の形状が保持できない問題がある。
(1-3) Layer Configuration The synthetic resin liner material of the present invention includes the specific thermoplastic resin layer (I) and the specific polyethylene layer (II) described above. It is important that the thickness ratio of the plastic resin layer (I) is 1 to 90% and the thickness ratio of the polyethylene layer (II) is 99 to 10%. If the thickness ratio of the thermoplastic resin layer (I) is less than 1% and the thickness ratio of the polyethylene layer (II) exceeds 99%, there is a problem that it is difficult to maintain the layer configuration or the adhesive strength cannot be secured. On the other hand, if the thickness ratio of the thermoplastic resin layer (I) exceeds 90% and the thickness ratio of the polyethylene layer (II) is less than 10%, there is a problem that the shape at the time of winding cannot be maintained.

また、本発明の合成樹脂製ライナー材は、上記熱可塑性樹脂の複合材料とから構成されていても良い。
複合材や積層材としては、例えば、上記熱可塑性樹脂に、エンジニアリングプラスチック、金属部材、無機充填剤等が分散された複合材などが挙げられる。また積層材では、熱可塑性樹脂層/接着材層/バリア層を含む多層構造からなる積層体としてもよい。
上記エンジニアリングプラスチックとしては、ナイロン6、ナイロン6,6、ナイロン11、ナイロン12などの各種ポリアミド(PA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)、ポリビニルアルコール(PVA)などの水酸基含有各種樹脂、ポリエチレンテレフタラート(PET)やポリブチレンテレフタラート(PBT)などの各種ポリエステル樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS)、アクリロニトリル−スチレン共重合樹脂(AS)、ポリカーボネート(PC)樹脂、ポリアセタール(POM)樹脂やポリフェニレンエーテル(PPE)樹脂、ポリフェニレンサルファイド(PPS)樹脂、芳香族ポリエステル樹脂(液晶樹脂)などが挙げられる。
また、上記金属部材としては、鉄、アルミニウム、銅、錫、亜鉛、ニッケル、チタンなどの金属類や、これらを含む各種合金が挙げられる。
また、無機充填剤としては、タルク、シリカ、炭酸カルシウム、雲母などが挙げられるが、剛性を確保する場合には、平均粒径が0.5〜10μmの板状晶構造を持つ微粉末タルクや微粉末雲母等が好適である。
Moreover, the synthetic resin liner material of this invention may be comprised from the said composite material of the thermoplastic resin.
Examples of the composite material and the laminated material include composite materials in which engineering plastics, metal members, inorganic fillers, and the like are dispersed in the thermoplastic resin. The laminated material may be a laminated body having a multilayer structure including a thermoplastic resin layer / adhesive layer / barrier layer.
The engineering plastics include various polyamide (PA) resins such as nylon 6, nylon 6,6, nylon 11 and nylon 12, various hydroxyl group-containing resins such as ethylene-vinyl alcohol copolymer (EVOH) and polyvinyl alcohol (PVA). , Various polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin (AS), polycarbonate (PC) resin, polyacetal (POM) resin, polyphenylene ether (PPE) resin, polyphenylene sulfide (PPS) resin, aromatic polyester resin (liquid crystal resin), and the like.
Moreover, as said metal member, metals, such as iron, aluminum, copper, tin, zinc, nickel, titanium, and various alloys containing these are mentioned.
In addition, examples of the inorganic filler include talc, silica, calcium carbonate, mica, and the like. When ensuring rigidity, fine powder talc having a plate-like crystal structure with an average particle size of 0.5 to 10 μm Fine powder mica is preferred.

積層構造の合成樹脂製ライナー材としては、上記の熱可塑性樹脂層(I)/ポリエチレン層(II)/接着材層/バリア層の構造、熱可塑性樹脂層(I)/ポリエチレン層(II)/接着材層/バリア層/接着材層/熱可塑性樹脂層(I)の構造、熱可塑性樹脂層(I)/ポリエチレン層(II)/リグラインド層/接着材層/バリア層/接着材層/熱可塑性樹脂層(I)の構造なども、圧力容器に適用することができる。
前記バリア材層に好適に使用される材料としては、ポリアミド樹脂、ポリエステル樹脂、エチレン−ビニルアルコール共重合体、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂等が挙げられる。
ここで用いる接着材層としては、エポキシ樹脂、ポリウレタン樹脂などの熱硬化性樹脂等の公知の接着性樹脂を使用することができ、また特開2008−164131号公報記載の接着剤を使用することもできる。
これらの合成樹脂製ライナー材を用いて容器とする場合には、ブロー成形法、射出成形法、回転成形法、圧縮成形法などの成形法によって製造することができる。中でも、ブロー成形法によるのが好適である。
As a synthetic resin liner material having a laminated structure, the thermoplastic resin layer (I) / polyethylene layer (II) / adhesive layer / barrier layer structure, thermoplastic resin layer (I) / polyethylene layer (II) / Structure of adhesive layer / barrier layer / adhesive layer / thermoplastic resin layer (I), thermoplastic resin layer (I) / polyethylene layer (II) / regrind layer / adhesive layer / barrier layer / adhesive layer / The structure of the thermoplastic resin layer (I) can also be applied to the pressure vessel.
Examples of the material suitably used for the barrier material layer include polyamide resin, polyester resin, ethylene-vinyl alcohol copolymer, polyvinyl alcohol resin, polyacrylonitrile resin, and the like.
As the adhesive layer used here, a known adhesive resin such as a thermosetting resin such as an epoxy resin or a polyurethane resin can be used, and an adhesive described in JP-A-2008-164131 is used. You can also.
When these synthetic resin liner materials are used as containers, they can be produced by a molding method such as a blow molding method, an injection molding method, a rotational molding method, or a compression molding method. Of these, the blow molding method is preferred.

(2)補強材
補強材層を形成する補強材は、合成樹脂ライナー材から形成される中空容器の外層を覆い、圧力容器の耐圧性能を向上させる役割を担うものであり、アルミニウム、チタン、軽合金等の軽量の金属材で構成しても良いが、成形加工性、軽量化等を考慮した場合においては、繊維強化プラスチック(FRP:fiber reinforced plastics)あるいは繊維強化金属複合材料(FRM:fiber reinforced metal)で構成するのが好適である。
すなわち、内側壁を構成する合成樹脂製ライナー材をブロー成形等で成形された筒状の容器の外周壁を覆うようにFRP製の外側壁を形成するためには、上記内側の筒状容器の外周壁に、フィラメントワインディング法やテープワインディング法等によって、ヘリカル巻層、フープ巻層、レーベル巻層など、樹脂を含浸させた補強繊維束の巻層を形成し、ついで樹脂を加熱して溶融または硬化させて成形することによって外側壁の補強材とすることができる。外側壁の強度は、巻層を形成する補強繊維の種類、巻付ける形態、巻付ける厚さ、樹脂の種類、樹脂の厚さなどを種々組み合わせることにより、目的に合った好適な範囲の補強材とすることができる。また、織物などのような連続した補強材に熱硬化性樹脂を含浸させて成形するプリプレグ法等他の方法で形成しても良い。
(2) Reinforcing material The reinforcing material forming the reinforcing material layer covers the outer layer of the hollow container formed from the synthetic resin liner material and plays a role of improving the pressure resistance of the pressure container. Although it may be composed of a lightweight metal material such as an alloy, in the case of considering moldability, weight reduction, etc., fiber reinforced plastic (FRP: fiber reinforced plastics) or fiber reinforced metal composite material (FRM: fiber reinforced) metal).
That is, in order to form the FRP outer wall so as to cover the outer peripheral wall of the cylindrical container formed by blow molding or the like of the synthetic resin liner material constituting the inner wall, the inner cylindrical container A winding layer of a reinforcing fiber bundle impregnated with a resin, such as a helical winding layer, a hoop winding layer, or a label winding layer, is formed on the outer peripheral wall by a filament winding method or a tape winding method, and then the resin is heated to melt or It can be used as a reinforcing material for the outer wall by curing and molding. The strength of the outer side wall is a reinforcing material in a suitable range according to the purpose by combining various types of reinforcing fibers forming the winding layer, winding form, winding thickness, resin type, resin thickness, etc. It can be. Further, it may be formed by other methods such as a prepreg method in which a continuous reinforcing material such as a fabric is impregnated with a thermosetting resin.

巻層を形成するための補強繊維としては、炭素繊維、ガラス繊維、有機高弾性率繊維(例えばポリアラミド繊維)、無機繊維(金属繊維、ウイスカ、ボロン繊維、チラノ繊維)などが挙げられ、これらは1種類でも2種類以上を併用することもできる。
これらの補強繊維は、比強度、比弾性率に優れ、ワインディング時の糸切れや毛羽の発生がほとんどなく、生産性の向上、耐衝撃性能の低下防止などの観点から、炭素繊維が特に好ましい。
Examples of the reinforcing fiber for forming the wound layer include carbon fiber, glass fiber, organic high modulus fiber (for example, polyaramid fiber), inorganic fiber (metal fiber, whisker, boron fiber, Tyranno fiber), etc. One type or two or more types can be used in combination.
These reinforcing fibers are excellent in specific strength and specific elastic modulus, scarcely generate yarn breakage and fluff during winding, and carbon fibers are particularly preferable from the viewpoints of improving productivity and preventing reduction in impact resistance.

補強材の形成用樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂ポリイミド樹脂などの熱硬化性樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂、ABS樹脂、ポリエーテルケトン、ポリフェニレンサルファイドなどのエンジニアリングプラスチック、ポリプロピレン、ポリ4−メチル−1−ペンテン樹脂等の樹脂が挙げられる。これらの中でも、耐熱性、強度等の性能や経済性等の観点から一般的に熱硬化性樹脂が好ましい。   Reinforcing material forming resins include epoxy resins, unsaturated polyester resins, urea resins, phenol resins, melamine resins, polyurethane resins, polyimide resins and other thermosetting resins, polyamide resins, polyethylene terephthalate, polybutylene terephthalate and other polyester resins And engineering plastics such as ABS resin, polyetherketone and polyphenylene sulfide, and resins such as polypropylene and poly-4-methyl-1-pentene resin. Among these, thermosetting resins are generally preferred from the viewpoints of performance such as heat resistance and strength, and economical efficiency.

(3)口金部材
本発明の口金部材は、高圧ガスの充填、排出用のノズル取付けのために設置されるものである。例えば、一端が円盤状の形状を有したものは、圧力容器の内側の中空容器と外側の耐圧性の補強材層で構成される円筒状容器の少なくとも一端に、該圧力容器の中空容器の内側の半球状の肩部に、口金部材の円盤部が埋設するようにインサートされ、好ましくは予め粗面化や下地処理剤を施しておいた口金部材の円盤部と中空容器の最内層の接着材層とを当接して接着または溶着することができる。
(3) Base Member The base member of the present invention is installed for mounting a nozzle for filling and discharging high pressure gas. For example, one having a disk shape at one end is provided at least one end of a cylindrical container composed of a hollow container inside the pressure vessel and an outer pressure-resistant reinforcing material layer. In the hemispherical shoulder portion, the disc portion of the die member is inserted so as to be embedded, and preferably, the disc portion of the die member and the innermost layer adhesive of the hollow container, which has been subjected to roughening or ground treatment in advance. The layers can be brought into contact and bonded or welded.

口金部材の材料は、金属、樹脂いずれであってもよい。金属としては、アルミニウム、銅、ニッケル、チタンの合金、これらの複合材料、およびクロム・モリブデン合金等が挙げられる。樹脂としては、ナイロン6、ナイロン66、ナイロン12、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルペンテン、ポリカーボネート、変性ポリフェニレンオキサイド、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリオキシベンジレン、ポリスルホンなどの高剛性で耐熱性に優れたものが挙げられる。口金部材の材料は、これら例示したものに限定されるものではないが金属材料、特に軽量、機械的強度が高く、耐圧性で、比較的安価なアルミニウム、その合金などが好ましい。   The material of the base member may be either metal or resin. Examples of the metal include aluminum, copper, nickel, titanium alloys, composite materials thereof, and chromium / molybdenum alloys. As resins, nylon 6, nylon 66, nylon 12, polyethylene terephthalate, polybutylene terephthalate, polymethylpentene, polycarbonate, modified polyphenylene oxide, polyethersulfone, polyphenylene sulfide, polyarylate, polyetherimide, polyetheretherketone, polyimide , Polyamideimide, polyoxybenzylene, polysulfone and the like having high rigidity and excellent heat resistance. The material of the base member is not limited to those exemplified, but a metal material, particularly light weight, high mechanical strength, pressure resistance, relatively inexpensive aluminum, an alloy thereof, and the like are preferable.

3.圧力容器の製造方法
以下に本発明の圧力容器の製造方法について具体的に詳述する。
本発明に係る圧力容器は、合成樹脂製ライナー材(内層がポリエチレン層で、外層が熱可塑性樹脂層)で形成された中空容器(内側壁)と、該中空容器の外層に補強材で形成された補強材層(外側壁)とで構成され、該中空容器の少なくとも一方の端部には、高圧ガスの充填、排出用のノズル取付けのための口金部材を有し、中空容器の熱可塑性樹脂と該補強材とを接着または溶着している。
3. Manufacturing method of pressure vessel The manufacturing method of the pressure vessel of the present invention will be specifically described in detail below.
The pressure vessel according to the present invention is formed of a hollow container (inner wall) formed of a synthetic resin liner material (inner layer is a polyethylene layer and outer layer is a thermoplastic resin layer), and a reinforcing material on the outer layer of the hollow container. A reinforcing member layer (outer wall), and at least one end of the hollow container has a cap member for attaching a nozzle for filling and discharging a high-pressure gas, and the thermoplastic resin of the hollow container And the reinforcing material are bonded or welded together.

本発明の好ましい製造方法の一例を示すと、以下の通りである。
成形用の支持台に係属する支持部の上下に、好ましくは予め表面処理または下地処理した口金部材が支持され、ブロー成形機の多層ダイスからポリエチレン層の内層と、熱可塑性樹脂層の外層で構成される合成樹脂製ライナー材で形成される円筒状のパリソンを押出し、金型間に口金部材の円盤部を覆うようにパリソンを垂下させる。次いで、まだ十分パリソンがやわらかい状態で該金型を型閉めし、該パリソンを縮径し、口金部材の首部をパリソンと同時にピンチし、ブローアップしてパリソンを膨張させて金型内壁に押圧して中空容器を形成する。
一方、合成樹脂製ライナー材と、口金部材の円盤部とは、内圧により押圧されて密着し、接着または融着されて口金部材付中空容器が作製される。次いで中空容器の外周を、エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂を含浸させた、カーボンファイバー糸や束、ガラス繊維糸や束等の繊維糸、束、マット等により、被覆して、硬化させて繊維強化材(CFRP,GFRP等)層を形成して、圧力容器を製造する。
An example of a preferred production method of the present invention is as follows.
Above and below the support part associated with the support for molding, a base member that is preferably surface-treated or ground-treated in advance is supported, and is composed of an inner layer of a polyethylene layer and an outer layer of a thermoplastic resin layer from a multilayer die of a blow molding machine A cylindrical parison formed of a synthetic resin liner material is extruded, and the parison is suspended so as to cover the disk portion of the die member between the molds. Next, the mold is closed while the parison is still sufficiently soft, the diameter of the parison is reduced, the neck portion of the base member is pinched simultaneously with the parison, and blown up to expand the parison and press it against the inner wall of the mold. To form a hollow container.
On the other hand, the synthetic resin liner material and the disk portion of the base member are pressed and brought into close contact with each other by internal pressure, and are bonded or fused to produce a hollow container with a base member. Next, the outer periphery of the hollow container is covered with carbon fiber yarns or bundles, fiber yarns such as glass fiber yarns or bundles, bundles, mats, etc. impregnated with a thermosetting resin such as epoxy resin or unsaturated polyester resin. Then, the pressure vessel is manufactured by forming a fiber reinforcing material (CFRP, GFRP, etc.) layer by curing.

本発明の圧力容器の製造方法において、合成樹脂製ライナーで形成される中空容器及び接着材層の製造方法は、上記ブロー成形法に限定されるものではなく、射出成形、回転成形、圧縮成形等によって製造しても良いが、製造時に中空容器及び接着材層の形成と同時に口金部材が一体化でき、製造工程が簡単で、製造コストも安く、経済的であるため、多層ブロー成形法を採用することも可能である。   In the method for manufacturing a pressure vessel according to the present invention, the method for manufacturing a hollow container and an adhesive layer formed of a synthetic resin liner is not limited to the above blow molding method, but includes injection molding, rotational molding, compression molding, and the like. However, it is possible to integrate the base member at the same time as the formation of the hollow container and the adhesive layer at the time of manufacturing, the manufacturing process is simple, the manufacturing cost is low, and it is economical. It is also possible to do.

4.圧力容器の用途
本発明に係る圧力容器は、これに充填されるガスの種類は制限されるものではなく、天然ガス、液化石油ガス、窒素、酸素、水素、ヘリウムガス、アルゴンガス、ロケット燃料などが挙げられ、補強材と合成樹脂製ライナー材で形成される中空容器との接着力が高く、気密性が優れるなどの点からいずれにも好適に使用できる圧力容器である。
4). Use of pressure vessel The pressure vessel according to the present invention is not limited to the type of gas charged therein, and natural gas, liquefied petroleum gas, nitrogen, oxygen, hydrogen, helium gas, argon gas, rocket fuel, etc. The pressure vessel can be suitably used for any of the points such as high adhesive force between the reinforcing material and the hollow container formed of the synthetic resin liner material and excellent airtightness.

以下、実施例により本発明を具体的に説明するが、本発明はその要旨を逸脱しない限りこれら実施例によって制約をうけるものではない。なお、実施例および比較例において、物性の評価は次の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited by these Examples, unless it deviates from the summary. In Examples and Comparative Examples, physical properties are evaluated as follows.

1.測定法
(1)密度:JIS K7112に準拠して測定した(単位:g/cm)。
(2)メルトフローレート(MFR):JIS K6922−1(温度190℃、荷重2.16kg)に準拠して測定した(単位:g/10分)。
(3)示差走査熱量測定(DSC)にて測定される高温側のピーク温度:
示差走査熱量計を用いて測定した。試料及び基準物質を加熱又は冷却によって調節しながら等しい条件下におき、この二つの間の温度差をゼロに保つに必要なエネルギーを時間又は温度に対して記録する原理に基づいて測定した。DSCの測定では、試料を底の平らな金属容器につめ、精秤して試料量を求めたのち蓋で覆い、測定装置に設置し、経時に熱量変化量(ΔH)を測定し、高温側のピーク温度を求めた。
(4)DSCにて測定される100℃以上での不融解成分の割合:
DSCの測定では、試料を底の平らな金属容器につめ、精秤して試料量を求めたのち蓋で覆い、測定装置に設置し、経時に熱量変化量(ΔH)を求めた。熱可塑性樹脂組成物試料のDSCの100℃以上の熱量変化量(ΔHw)及び組成物の成分であるポリエチレン(A)のみの試料のDSCの100℃以上の熱量変化量(ΔHa)を測定し、ΔHw/ΔHaの割合(百分率)として求めた。
(5)極性基の量:
熱可塑性樹脂を製造する際に使用されたラジカル重合性酸コモノマー、アクリル酸エステルコモノマー、メタクリル酸エステルコモノマー、カルボン酸ビニルエステルコモノマー等の量から求めた。
(6)接着強度:
JIS K5600−5−6のクロスカット法に準じて測定し、分類0から2(良好で格段に優れているもの)を○、分類3から5のものを×とした。
(7)形状保持性:
ライナーの厚みが1mmであって、内容積が500mlの小型中空容器を成形し、当該容器を100℃の雰囲気中に1時間保管後、容器形状に変形が生じていないもの(良好で格段に優れているもの)を○、それ以外のものを×とした。
1. Measurement method (1) Density: Measured according to JIS K7112 (unit: g / cm 3 ).
(2) Melt flow rate (MFR): Measured according to JIS K6922-1 (temperature 190 ° C., load 2.16 kg) (unit: g / 10 minutes).
(3) Peak temperature on the high temperature side measured by differential scanning calorimetry (DSC):
Measurement was performed using a differential scanning calorimeter. The sample and reference material were placed under equal conditions while being adjusted by heating or cooling, and the energy required to keep the temperature difference between the two at zero was measured based on the principle of recording against time or temperature. In the DSC measurement, the sample is placed in a flat metal container at the bottom, precisely weighed to obtain the sample amount, covered with a lid, installed in a measuring device, and the amount of heat change (ΔH) is measured over time. The peak temperature of was determined.
(4) Ratio of insoluble component at 100 ° C. or higher as measured by DSC:
In the DSC measurement, the sample was put in a flat metal container, and precisely weighed to determine the amount of the sample. Then, the sample was covered with a lid, installed in a measuring apparatus, and the amount of change in heat (ΔH) was determined over time. Measure the calorie change (ΔHw) of the DSC of the thermoplastic resin composition sample at 100 ° C. or more and the calorie change (ΔHa) of the DSC of the sample of only the polyethylene (A) as a component of the composition, It calculated | required as a ratio (percentage) of (DELTA) Hw / (DELTA) Ha.
(5) Amount of polar group:
It calculated | required from the quantity of the radically polymerizable acid comonomer, the acrylic ester comonomer, the methacrylic ester comonomer, the carboxylic acid vinyl ester comonomer, etc. which were used when manufacturing the thermoplastic resin.
(6) Adhesive strength:
Measured according to the cross-cut method of JIS K5600-5-6, classifications 0 to 2 (good and markedly superior) were marked with ◯, and classifications 3 to 5 were marked with x.
(7) Shape retention:
A small hollow container having a liner thickness of 1 mm and an internal volume of 500 ml is molded, and after the container is stored in an atmosphere of 100 ° C. for 1 hour, the container shape is not deformed (good and remarkably excellent) ) Was marked with ○, and the others were marked with ×.

2.使用原料
[熱可塑性樹脂層(I)の共重合体(B)]
CP(1):エチレン−アクリル酸メチル共重合体、密度=0.943g/cm、MFR(温度190℃、荷重2.16kg)=2.0g/10分、アクリル酸メチル含有量=24重量%(メトキシカルボニル基含有量=16.5重量%)
CP(2):エチレン−アクリル酸エチル共重合体、密度=0.934g/cm、MFR(温度190℃、荷重2.16kg)=5.0g/10分、アクリル酸エチル含有量=20重量%(エトキシカルボニル基含有量=14.6重量%)
CP(3):エチレン−酢酸ビニル共重合体、密度=0.938g/cm、MFR(温度190℃、荷重2.16kg)=1.5g/10分、酢酸ビニル含有量=15重量%(メアセチルオキシ基含有量=10.3重量%)
CP(5):CP(1)25重量%及びPE(1)75重量%を混合した組成物、密度=0.944g/cm、MFR(温度190℃、荷重2.16kg)=0.1g/10分、アクリル酸メチル含有量=6重量%(メトキシカルボニル基含有量=4.1重量%)
CP(6):無水マレイン酸変性ポリエチレン、密度=0.933g/cm、MFR(温度190℃、荷重2.16kg)=0.5g/10分、無水マレイン酸グラフトモノマー量=0.5重量%(カルボン酸無水物基含有量=0.34重量%)
[ポリエチレン層(II)のポリエチレン(A)]
PE(1):エチレン・1−ヘキセン共重合体、密度=0.945g/cm、MFR(温度190℃、荷重2.16kg)=0.03g/10分
PE(3):エチレン−プロピレン−1−ヘキセン共重合体、密度=0.901g/cm、MFR(温度190℃、荷重2.16kg)=2.0g/10分
PE(4):エチレン−1−ヘキセン共重合体、密度=0.918g/cm、MFR(温度190℃、荷重2.16kg)=2.0g/10分
2. Raw material used [Copolymer (B) of thermoplastic resin layer (I)]
CP (1): ethylene-methyl acrylate copolymer, density = 0.944 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 2.0 g / 10 min, methyl acrylate content = 24 weight % (Methoxycarbonyl group content = 16.5% by weight)
CP (2): ethylene-ethyl acrylate copolymer, density = 0.934 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 5.0 g / 10 min, ethyl acrylate content = 20 weight % (Ethoxycarbonyl group content = 14.6% by weight)
CP (3): ethylene-vinyl acetate copolymer, density = 0.938 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 1.5 g / 10 min, vinyl acetate content = 15 wt% ( Meacetyloxy group content = 10.3 wt%)
CP (5): Composition in which CP (1) 25 wt% and PE (1) 75 wt% are mixed, density = 0.944 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 0.1 g / 10 minutes, methyl acrylate content = 6% by weight (methoxycarbonyl group content = 4.1% by weight)
CP (6): Maleic anhydride-modified polyethylene, density = 0.933 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 0.5 g / 10 minutes, maleic anhydride graft monomer amount = 0.5 weight % (Carboxylic anhydride group content = 0.34% by weight)
[Polyethylene layer (II) polyethylene (A)]
PE (1): ethylene / 1-hexene copolymer, density = 0.945 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 0.03 g / 10 min PE (3): ethylene-propylene- 1-hexene copolymer, density = 0.901 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 2.0 g / 10 min PE (4): ethylene-1-hexene copolymer, density = 0.918 g / cm 3 , MFR (temperature 190 ° C., load 2.16 kg) = 2.0 g / 10 min

(実施例1〜6、比較例1〜4)
表1に示した熱可塑性樹脂を用いて、ライナー材として、厚みが1mmであって、内容積が500mlの小型中空容器を成形した。ライナー材としての評価結果を表1に示した。
(Examples 1-6, Comparative Examples 1-4)
Using the thermoplastic resin shown in Table 1, a small hollow container having a thickness of 1 mm and an internal volume of 500 ml was formed as a liner material. The evaluation results as a liner material are shown in Table 1.

(実施例7)
[圧力容器の製造]
本願の実施例1〜6の積層体をライナー材として使用し、下記に述べるように、特開2008−164131号公報の実施例に記載の圧力容器の製造方法に準じて、圧力容器を製造した。
表面の一部に接着剤を塗布した口金部材を支持部の上下にインサートし、口金部材を設置して、日本製鋼所社製NB150連続中空成形機を用い、成形温度210℃、ブロー圧力1.4MPa、金型温度20℃、吹込時間130secの条件で、ブロー成形機のダイスから熱可塑性樹脂層で形成された筒状のパリソンを押出し、金型間に垂下させ、まだ十分パリソンがやわらかい状態で該金型を型閉めし、該パリソンを縮径し、口金部材料の首部をパリソンと同時にピンチして、空気等の気体をブローしてパリソンを金型壁に押圧して合成樹脂ライナー材で形成された中空容器を形成した。一方、ライナー材の肩部と口金部材とが内圧により合成樹脂製ライナー材の内側の肩部に押圧して、融着され、層厚0.3mm、容積30リットルの中空容器を作製した。次いで中空容器の外周を、熱硬化性樹脂であるエポキシ樹脂を含浸させた、カーボンファイバー束を被覆巻回した後、加熱押圧して、中空容器とエポキシ樹脂を含浸させたカーボンファイバー繊維強化材(CFRP)を融着し、エポキシ樹脂を硬化させて補強材層を形成し、圧力容器を製造した。
その結果、外観良好な圧力容器が得られた。
(Example 7)
[Manufacture of pressure vessels]
Using the laminates of Examples 1 to 6 of the present application as a liner material, a pressure vessel was produced according to the method for producing a pressure vessel described in Examples of Japanese Patent Application Laid-Open No. 2008-164131 as described below. .
A base member coated with an adhesive on a part of the surface is inserted above and below the support part, the base member is installed, and using a NB150 continuous hollow molding machine manufactured by Nippon Steel Works, a molding temperature of 210 ° C. and a blow pressure of 1. A cylindrical parison formed of a thermoplastic resin layer is extruded from a die of a blow molding machine under conditions of 4 MPa, a mold temperature of 20 ° C., and a blowing time of 130 seconds, and drooped between the molds, and the parison is still sufficiently soft. The mold is closed, the diameter of the parison is reduced, the neck of the base part material is pinched simultaneously with the parison, and a gas such as air is blown to press the parison against the mold wall. A formed hollow container was formed. On the other hand, the shoulder portion of the liner material and the base member were pressed against the inner shoulder portion of the synthetic resin liner material by internal pressure and fused to produce a hollow container having a layer thickness of 0.3 mm and a volume of 30 liters. Next, the outer periphery of the hollow container was impregnated with a thermosetting resin epoxy resin, wound with a carbon fiber bundle, heated and pressed to impregnate the hollow container and the epoxy resin with a carbon fiber fiber reinforcement ( CFRP) was fused, the epoxy resin was cured to form a reinforcing material layer, and a pressure vessel was manufactured.
As a result, a pressure vessel having a good appearance was obtained.

Figure 0005915321
Figure 0005915321

表1に示す結果から明らかなように、本発明の要件を満たす積層体をライナー材として使用した実施例1〜6では、補強材との接着強度が格段に向上し、かつ成形時の形状保持性が良好であり、従来のような補強材とのファイバーずれが発生せず、均一にファイバーが巻回できるため補強効果が向上するばかりでなく、外観も良好な圧力容器が得られた。
一方、本発明の要件の一部又は全てを満たさない積層体をライナー材として使用した比較1〜4では、形状保持性または接着強度の面で著しい問題が発生した。
As is clear from the results shown in Table 1, in Examples 1 to 6 in which the laminate satisfying the requirements of the present invention was used as the liner material, the adhesive strength with the reinforcing material was remarkably improved and the shape was maintained during molding. As a result, the pressure difference between the conventional reinforcing material and the fiber does not occur, and the fiber can be wound uniformly, so that not only the reinforcing effect is improved, but also a pressure vessel having a good appearance is obtained.
On the other hand, in Comparative Examples 1 to 4 in which a laminate that does not satisfy some or all of the requirements of the present invention was used as a liner material, a significant problem occurred in terms of shape retention and adhesive strength.

本発明の圧力容器(耐圧容器)およびその製造方法によれば、合成樹脂製ライナー材で形成される中空容器の外表面の補強材との接着強度を格段に向上させることができ、補強材層を形成する補強糸の巻回時の巻きずれを防止することができ、綺麗で強固な補強層を有する圧力容器を提供できる。そのため、本発明の圧力容器(耐圧容器)は、例えば、家庭用液化石油ガス容器、自動車用液化石油ガス容器、圧縮天然ガス(CNG:Compressed Natural Gas)、酸素や窒素などを保管する産業用圧力容器、燃料電池用水素タンク等として特に好適であり、その工業的価値は極めて大きい。   According to the pressure vessel (pressure vessel) and the manufacturing method thereof of the present invention, the adhesive strength with the reinforcing material on the outer surface of the hollow container formed of the synthetic resin liner material can be remarkably improved, and the reinforcing material layer The pressure vessel having a beautiful and strong reinforcing layer can be provided. Therefore, the pressure vessel (pressure vessel) of the present invention is, for example, a domestic liquefied petroleum gas vessel, an automotive liquefied petroleum gas vessel, a compressed natural gas (CNG), an industrial pressure for storing oxygen, nitrogen, or the like. It is particularly suitable as a container, a hydrogen tank for a fuel cell, etc., and its industrial value is extremely large.

Claims (5)

下記の特性(1)〜(3)を有する熱可塑性樹脂層(I)と下記の特性(i)〜(iii)を有するポリエチレン層(II)とを含む圧力容器ライナー用積層体であって、
熱可塑性樹脂層(I)は、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、及び、エチレン−酢酸ビニル共重合体からなる群より選択される少なくとも一種の共重合体を含み、
熱可塑性樹脂層(I)の厚み割合が1〜90%、ポリエチレン層(II)の厚み割合が99〜10%であることを特徴とする圧力容器ライナー用積層体。
特性(1):密度が0.900〜0.970g/cmである
特性(2):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(3):極性基の量が4〜32重量%である
特性(i):密度が0.900〜0.970g/cmである
特性(ii):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01〜100g/10分である
特性(iii):DSCにて測定される高温側の融点ピークが120℃以上である
A laminate for a pressure vessel liner comprising a thermoplastic resin layer (I) having the following characteristics (1) to (3) and a polyethylene layer (II) having the following characteristics (i) to (iii):
The thermoplastic resin layer (I) comprises at least one copolymer selected from the group consisting of an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-vinyl acetate copolymer. Including
A laminate for a pressure vessel liner, wherein the thermoplastic resin layer (I) has a thickness ratio of 1 to 90% and the polyethylene layer (II) has a thickness ratio of 99 to 10%.
Characteristic (1): Density is 0.900 to 0.970 g / cm 3 Characteristic (2): Melt flow rate (MFR) measured at a temperature of 190 ° C. and a load of 2.16 kg is 0.01 to 100 g / 10 Characteristic (3): The amount of polar groups is 4 to 32% by weight Characteristic (i): Density is 0.900 to 0.970 g / cm 3 Characteristic (ii): Temperature 190 ° C., load 2 Melt flow rate (MFR) measured at .16 kg is 0.01 to 100 g / 10 min. Characteristic (iii): High temperature side melting point peak measured by DSC is 120 ° C. or higher.
ライナー材で形成された中空容器と、該中空容器の外層に設けられた補強材で形成された補強材層とを有し、かつ少なくとも1つの口金部材を有する圧力容器であって、
前記ライナー材は、請求項1に記載の積層体であることを特徴とする圧力容器。
A pressure vessel having a hollow container formed of a liner material and a reinforcing material layer formed of a reinforcing material provided on an outer layer of the hollow container, and having at least one cap member;
The pressure vessel according to claim 1 , wherein the liner material is the laminate according to claim 1 .
ライナー材の熱可塑性樹脂層(I)は、補強材と接触するように配置されることを特徴とする請求項2に記載の圧力容器。 The pressure vessel according to claim 2, wherein the thermoplastic resin layer (I) of the liner material is disposed so as to be in contact with the reinforcing material. 前記補強材が、繊維強化材であることを特徴とする請求項2又は3に記載の圧力容器。 The pressure vessel according to claim 2 or 3, wherein the reinforcing material is a fiber reinforcing material. 請求項1に記載の圧力容器ライナー用積層体で形成された中空容器と、該中空容器の外層に設けられた補強材で形成された補強材層とを有し、かつ少なくとも1つの口金部材を有する圧力容器の製造方法であって、
該中空容器の外層に補強材層を設け、該補強材を熱可塑性樹脂層(I)と接着又は溶着することを特徴とする圧力容器の製造方法。
A hollow container formed of the pressure vessel liner laminate according to claim 1, and a reinforcing material layer formed of a reinforcing material provided on an outer layer of the hollow container, and at least one cap member is A method for manufacturing a pressure vessel, comprising:
A method for producing a pressure vessel, comprising: providing a reinforcing material layer on an outer layer of the hollow container, and bonding or welding the reinforcing material to the thermoplastic resin layer (I).
JP2012076831A 2012-03-29 2012-03-29 Laminated body for pressure vessel liner, pressure vessel and method for producing the same Active JP5915321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076831A JP5915321B2 (en) 2012-03-29 2012-03-29 Laminated body for pressure vessel liner, pressure vessel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076831A JP5915321B2 (en) 2012-03-29 2012-03-29 Laminated body for pressure vessel liner, pressure vessel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013203018A JP2013203018A (en) 2013-10-07
JP5915321B2 true JP5915321B2 (en) 2016-05-11

Family

ID=49522635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076831A Active JP5915321B2 (en) 2012-03-29 2012-03-29 Laminated body for pressure vessel liner, pressure vessel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5915321B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004398A (en) * 2013-06-20 2015-01-08 八千代工業株式会社 Pressure vessel and its manufacturing method
JP6185117B2 (en) * 2016-06-16 2017-08-23 八千代工業株式会社 Manufacturing method of pressure vessel
JP6950163B2 (en) * 2016-10-11 2021-10-13 三菱ケミカル株式会社 container
JP2018105441A (en) * 2016-12-27 2018-07-05 日本ポリエチレン株式会社 Polyethylene composition for pressure container liner, manufacturing method thereof, and pressure container
JP7066995B2 (en) * 2017-08-10 2022-05-16 トヨタ自動車株式会社 High pressure container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI893348A (en) * 1988-07-11 1990-01-12 Sumitomo Chemical Co ETYLEN-A-OLEFINKOPOLYMER OCH FILMER FRAMSTAELLDA AV DENNA.
GB8818622D0 (en) * 1988-08-05 1988-09-07 British Petroleum Co Plc Container for high pressure gases
JPH09235319A (en) * 1995-12-27 1997-09-09 Nippon Poriorefuin Kk Graft modified resin or its composition and laminate using the same
US5902869A (en) * 1996-03-22 1999-05-11 E. I. Du Pont De Nemours And Company Thermally stable ethylene/acid copolymers
JP2002188794A (en) * 2000-12-21 2002-07-05 Honda Motor Co Ltd High pressure hydrogen tank and manufacturing method thereof
JP2008164131A (en) * 2006-12-28 2008-07-17 Nippon Polyethylene Kk Pressure container and its manufacturing method
JP5269822B2 (en) * 2010-01-26 2013-08-21 日本ポリエチレン株式会社 Polyethylene for thin-walled containers and containers made thereof

Also Published As

Publication number Publication date
JP2013203018A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5915321B2 (en) Laminated body for pressure vessel liner, pressure vessel and method for producing the same
JP4961204B2 (en) Pressure vessel and method for manufacturing the same
EP4220002A1 (en) Pressure vessel
JP2008164131A (en) Pressure container and its manufacturing method
US10596744B2 (en) Method for welding a heat shield during manufacturing of a vehicle component
JPH10332082A (en) Pressure-resisting container
JP5906890B2 (en) Thermoplastic resin for pressure vessel liner, pressure vessel and method for producing the same
US6217962B1 (en) Moisture-resistant barrier material based on copolyamide PA-6, I/6, T/6, 6 and/or PA-6, I/6, T which is capable of being processed by drawing and/or thermoforming
CN113124309B (en) Plastic inner container of high-pressure hydrogen storage bottle and preparation method thereof
CN115003504B (en) Multilayer structure for transporting or storing hydrogen
JP4578068B2 (en) Laminated body for shell and pressure vessel using the same
JP4961203B2 (en) Pressure vessel and method for manufacturing the same
JP4808152B2 (en) Pressure vessel and method for manufacturing the same
US20230075842A1 (en) Multilayer structure for transporting or storing hydrogen
CN117615904A (en) Multilayer structure for transporting or storing hydrogen
KR20220135239A (en) Multi-layered structures for transporting or storing hydrogen
JP2018105441A (en) Polyethylene composition for pressure container liner, manufacturing method thereof, and pressure container
CN108025523A (en) For manufacturing the multilayer materials of improved plastics structural shape, the container that is made of the composite material, and the method for manufacturing the container
CN110182041A (en) Fuel tank
JP2003213010A (en) Molded article made of polyamide resin
JP2004018075A (en) Recyclable fuel tank made of resin
JP6950163B2 (en) container
JP2001322617A (en) Heat-resistant container
JP2024113946A (en) Ethylene-based resin composition for extrusion molding
JP2023176478A (en) Fiber-reinforced resin sheet, fiber-reinforced resin chopped material, fiber-reinforced resin composite material, and resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250